Enrichment in Bicategories

Matt Earnshaw Tallinn University of Technology

> Bob Walters Fest Tallinn, July 2023

Some history

"1980: I visited Milan and discovered that the sheaf condition can be expressed in terms of Cauchy completeness of categories enriched over a bicategory of 'relations' - this work appeared in Cahiers. A group of us studied categories enriched over bicategories, and bimodules between them. We looked at properties which lifted from the base bicategory to the bicategory of bimodules."

"1982: Lifting the tensor product lead to my idea with Lawvere and Carboni that the classical treatment of this in terms of symmetry could be explained in terms of a tensored one-object bicategory and a Eckmann-Hilton argument - I gave a lecture on this on 26th January 1983 which inspired Ross to discover braided monoidal categories with Joyal (whose motivation was different)."

> from My Interest in Monoidal Bicategories, 1997 rfcwalters.blogspot.com

Background: Metric spaces as enriched categories

Recall: in enriched categories, homs are no longer sets but objects in some other category.

(Lawvere, 1973) Metric spaces are categories enriched in the poset $\mathcal{V}=([0,\infty],\geqslant)$ with addition as monoidal product.¹

- Objects are points, and
- \blacksquare for each pair of objects we have a hom-object $d(x,y)\in [0,\infty],$
- \blacksquare satisfying $d(x,y)+d(y,z) \geqslant d(x,z)$ (composition), and
- $\ \ \, \blacksquare \ \, d(x,x) \geqslant 0 \ \, {\rm (units)}.$

 \mathcal{V} -functors $F: X \to Y$ are contracting maps:

• functions $F : \mathsf{Ob} \ X \to \mathsf{Ob} \ Y$,

 $\blacksquare \text{ satisfying } d_X(x,x') \geqslant d_Y(F(x),F(x')) \text{ for each pair } x,x' \in X.$

¹Metric spaces without symmetry and positivity axioms, and with potentially infinite distances.

$\mathcal{V}\text{-bimodules}$

We have a tensor product $A\otimes B$ of $\mathcal V\text{-categories:}$

- \blacksquare Objects are Ob $A \times \operatorname{Ob} B$
- $\blacksquare \text{ Hom-objects are given by tensor in } \otimes : \ (A \otimes B)((a,b),(a',b')) = A(a,a') \otimes B(b,b')$

For metric spaces, this amounts to the sum of the metrics on the product space: $d_{A\otimes B}((a,b),(a',b'))=d_A(a,a')+d_B(b,b').$

 \mathcal{V} -bimodules $P: X \bullet o Y$ are \mathcal{V} -functors $Y^{\mathsf{op}} \otimes X \to \mathcal{V}$ or equivalently:

A family $\{P(y, x)\}_{y \in Y, x \in X}$ of \mathcal{V} objects, equipped with left and right actions:

$$Y(y',y)\otimes P(y,x)\to P(y',x)\qquad P(y,x)\otimes X(x,x')\to P(y,x')$$

 $\mathcal V\text{-}categories,\ \mathcal V\text{-}bimodules$ and $\mathcal V\text{-}natural$ transformations form a bicategory, and thus we have a notion of adjointness for bimodules.

Cauchy-completion for \mathcal{V} -categories

(Lawvere, 1973) A metric space Y is Cauchy-complete \iff every pair of adjoint bimodules $p: X \stackrel{\frown}{\longrightarrow} Y: q$ is induced by a \mathcal{V} -functor $f: X \to Y$.

Suffices to consider points, X = 1.

 \mathcal{V} -functors $1 \to Y$ are just points of Y. Every point $y : 1 \to Y$ gives rise to a pair of adjoint bimodules, "the distance to/from y":

$$y_*(*,x): Y \dashrightarrow 1 := d_Y(y,x), \qquad y^*(x,*): 1 \dashrightarrow Y := d_Y(x,y)$$

Bimodules $1 \bullet Y, Y \bullet 1$ are "virtual points" (decreasing maps $Y^{(\text{op})} \to [0, \infty]$) Adjointness $p \dashv q : 1 \stackrel{\circ}{\downarrow} Y$ means:

- \blacksquare Unit: $0 \geqslant \bigwedge_{y \in Y} p(*,y) + q(y,*),$
- $\bullet \quad {\rm Counit:} \ q(x,*) + p(*,y) \geqslant d_Y(x,y),$
- Snake equations (hold automatically)

Cauchy-completion for \mathcal{V} -categories cont.

 $\text{Unit: } 0 \geqslant \bigwedge_{y \in Y} p(*,y) + q(y,*) \qquad \text{Counit: } q(x,*) + p(*,y) \geqslant d_Y(x,y)$

 $\text{Unit} \Longrightarrow \text{for every } n \in \mathbb{N} \text{ we can choose } y_n \in Y \text{ s.t. } p(*,y_n) + q(y_n,*) < \tfrac{1}{n}.$

Now using the counit: let k, l > n, $d_Y(y_k, y_l) \leq p(*, y_k) + q(y_l, *) \leq p(*, y_k) + q(y_l, *) + p(*, y_k) + q(y_l, *) \leq \frac{1}{k} + \frac{1}{l} \leq \frac{2}{n}$. Thus adjoint pairs of bimodules $p : 1 \stackrel{\circ}{\xrightarrow{}} Y : q$ are points in the completion of Y.

Further examples:

• $\mathcal{V} = Set$, Cauchy-completion is splitting of idempotents.

For a ring R considered as a $\mathcal{V} = AbGrp$ enriched category, Cauchy-completion is the category of finitely generated projective R-modules.

$\mathcal V\text{-}categories$ as lax 2-functors, and $\mathcal W\text{-}categories$

Consider the monoidal \mathcal{V} as a one-object bicategory $\Sigma \mathcal{V}$: morphisms are the objects of \mathcal{V} , 2-cells the morphisms of \mathcal{V} , composition \otimes .

For a set of objects X, let $X_{\rm ch}$ be the "chaotic" bicategory: objects X and trivial hom-categories.

Then the data of a $\mathcal V\text{-}category$ with objects X is exactly that of a lax 2-functor $X_{\rm ch}\to \Sigma\mathcal V.$

The local functors $F_{A,B}: 1 \to \Sigma \mathcal{V}(\bullet, \bullet)$ pick out the hom-object from A to B.

Laxators give us identities and composition:

 $\blacksquare \mbox{ for each } A \in X \mbox{, a 2-cell } {\rm Id}_{\bullet} \to F_{A,A}({\rm Id}_A) \mbox{,}$

 $\blacksquare \mbox{ for each triple } A,B,C\in X \mbox{, a 2-cell } F_{B,C}(1)\circ F_{A,B}(1)\rightarrow F_{A,C}(1\circ 1).$

Replacing $\Sigma \mathcal V$ with an arbitrary bicategory $\mathcal W,$ we obtain categories enriched in $\mathcal W.^2$

²Replacing the functor with certain spans of functors gives "categories enriched on two sides" (Kelly, Labella, Schmitt, Street).

$\mathcal{W}\text{-}\mathsf{categories}$

More explicitly, a $\mathcal W$ -category $\mathcal A$ is given by

- For each $U \in \mathcal{W}$, a set of objects \mathcal{A}_U over U, (for $x \in \mathcal{A}_U$ write e(x) = U)
- for objects A,B over U,V respectively, a 1-cell $\mathcal{A}(A,B):U\to V$ in $\mathcal{W},$

(Walters, 1981) "Draw a picture. \mathcal{A} is a space lying over \mathcal{W} ."

This idea was in the air: in notes of (Betti, 1980), but also (Bénabou, 1967) had called these *polyads*, since monads in \mathcal{W} are the case where $\mathcal{A} = 1$.

Walters' first advance was to provide a serious example (particularly of Cauchy-completion). Motivated by this, he went on to deepen the theory.

 \mathcal{W} -functors and \mathcal{W} -bimodules / -modules / -profunctors / -distributors A \mathcal{W} -functor $F : \mathcal{A} \to \mathcal{B}$ is given by:

• A function $F: \text{Ob } A \to \text{Ob } B$, such that for $A \in \mathcal{A}_U \Rightarrow FA \in \mathcal{B}_U$, and

$$\blacksquare \text{ a 2-cell } \bigcup_{\mathcal{B}(FA,FA')}^{\mathcal{A}(A,A')} V \text{ in } \mathcal{W} \text{ for each pair } A, A' \in \mathcal{A} \text{ over } U, V.$$

Bimodules now given by indexed family of 1-cells in ${\mathcal W}$ equipped with actions.

For \mathcal{W} -categories \mathcal{A}, \mathcal{B} , a bimodule $\Phi : \mathcal{A} \bullet \mathcal{O} \mathcal{B}$ is given by:

- **a** 1-cell $\Phi(B, A) : V \to U$ in \mathcal{W} , for each pair $A \in \mathcal{A}, B \in \mathcal{B}$ over U, V respectively,
- $\blacksquare \text{ a 2-cell } r: \Phi(B,A) \circ \mathcal{A}(A',A) \to \Phi(B,A) \text{, for each pair } A,A' \in \mathcal{A} \text{ and } B \in \mathcal{B} \text{,}$

• a 2-cell $\ell : \mathcal{B}(B', B) \circ \Phi(B, A) \to \Phi(B', A)$, for each $A \in \mathcal{A}$ and pair $B, B' \in \mathcal{B}$.

satisfying axioms making r, ℓ into (compatible) actions.

At first Walters only considered bicategories whose hom-categories are posets, in which case the axioms for 2-cells hold automatically.

Composition of bimodules can be defined as a colimit, we will only need posetal case.

- $\mathcal{A}(A,A') \leqslant \bigvee_B p(B,A) \circ q(A',B)$ (sup in the appropriate hom-poset)
- ${\color{black}\blacksquare} \bigvee_A q(A,B) \circ p(B',A) \leqslant \mathcal{B}(B,B')$

Cauchy-complete $\mathcal W\text{-}\mathsf{categories}$ are then defined exactly as for $\mathcal V\text{-}\mathsf{categories}.$

Sheaves as sets with equality in a locale

(Higgs, 1973) and (Fourman and Scott, 1979) developed a perspective on sheaves (on locales) as sets with a locale-valued equality.

- $\blacksquare \ A$ a set, $\mathcal{O}(X)$ a locale,
- $\blacksquare ~ [\bullet \simeq \bullet]: A \times A \to \mathcal{O}(X),$ a function such that
- $\label{eq:alpha} \left[a \simeq b \right] = [b \simeq a] \text{, and}$
- $\label{eq:alpha} \begin{tabular}{ll} \begin{tabular}{ll} b\simeq c \end{tabular} \wedge [a\simeq b] \leqslant [a\simeq c]. \end{tabular}$

There is an equivalence of categories between O(X)-sets and sheaves on X.

This looks like a category enriched in the locale, but lacking identities.

Walters' insight: by constructing an appropriate bicategory from the locale, we can refine the base of enrichment and get an exact correspondence.

Presheaves on locales as \mathcal{W} -categories

Given a locale $\mathcal{O}(X)$ we form the bicategory $\mathsf{Rel}(\mathcal{O}(X)) {:}$

- 1-cells $U \to V$ are elements $W \subseteq U \land V$
- $\blacksquare \ \operatorname{2-cells} \ \operatorname{given} \ \operatorname{by} \subseteq \ \operatorname{in} \ \mathcal{O}(X)$
- \blacksquare Composition given by \wedge in $\mathcal{O}(X)$

Given a presheaf $F: \mathcal{O}(X)^{\mathsf{op}} \to \mathsf{Set}$, we can form a $\mathsf{Rel}(\mathcal{O}(X))$ -category \mathcal{F} :

Take the objects over U to be the set F(U).

Take as hom $\mathcal{F}(s\in F(U),t\in F(V))$ the largest of those $W\subseteq U\wedge V$ where the restrictions $s|_W=t|_W$ agree.

(Walters, 1981) F is a sheaf precisely when \mathcal{F} is Cauchy-complete.

Sheaf condition as Cauchy-completion

(Walters, 1981) F is a sheaf precisely when \mathcal{F} is Cauchy-complete.

A presheaf on a locale is a *sheaf* when "every compatible family glues uniquely":

Given $U \subseteq \bigvee_i U_i$, and a family of sections $\{x_i \in F(U_i)\}$ compatible in the sense that $x_i|_{U_i \wedge U_j} = x_j|_{U_i \wedge U_j}$, then there exists a unique $x \in F(U)$ such that $x|_{U_i} = x_i$.

For each $U \in \mathcal{W}$ there is a one-object \mathcal{W} -category \hat{U} with * over U and $\hat{U}(*,*) = 1_U$. Suffices to consider modules to/from $X = \hat{U}$ for all $U \in \mathcal{W}$.

A \mathcal{W} -functor $s: \hat{U} \to \mathcal{F}$ is a section $s \in F(U)$. Every section $s \in F(U)$ gives rise to a pair of adjoint bimodules, assigning to each section $t \in F(V)$ the largest $W \subseteq U \land V$ such that $s|_W = t|_W$.

$$s_*(*,t): \mathcal{F} \bullet \!\!\!\! \bullet \!\!\! \circ \hat{U} := \mathcal{F}(s,t), \qquad s^*(t,*): \hat{U} \bullet \!\!\! \bullet \!\!\! \circ \mathcal{F} := \mathcal{F}(t,s)$$

Sheaf condition as Cauchy-completion (cont.)

Now consider adjoint bimodules $p \dashv q : \hat{U} \stackrel{\frown}{\underset{\leftarrow}{\to}} \mathcal{F}$. Adjointness means:

$$\blacksquare \ \text{Unit:} \ U \subseteq \bigvee_{s \in \mathcal{F}} \left(p(*,s) \land q(s,*) \right) \text{, so } \{ U_s := p(*,s) \land q(s,*) \}_s \text{ covers } U$$

$$\blacksquare$$
 Counit: $q(s,*) \wedge p(*,t) \subseteq \mathcal{F}(s,t)$

Counit implies $U_s \wedge U_t \subseteq \mathcal{F}(s,t),$ so $\{s|_{U_s}\}_s$ is a compatible family.

F is a sheaf \Rightarrow there exists a unique $s_0 \in F(U)$ such that $s_0|_{U_s} = s|_{U_s}.$

 $\text{Claim: } s_0: \hat{U} \to \mathcal{F} \text{ represents the adjoint pair, } p(*,s) = \mathcal{F}(s_0,s) = q(s,*).$

Follows from unit/counit and properties of bimodules.

(Walters, 1981) The category of sheaves on $\mathcal{O}(X)$ is equivalent to the category of skeletal symmetric Cauchy-complete $\text{Rel}(\mathcal{O}(X))$ -categories.

(Walters, 1982) Generalizes this to sheaves on arbitrary sites. In this case the enrichment is in a bicategory of relations not arising as internal relations.

A contemporary perspective

An indexed family of monoidal categories $F: \mathcal{C}^{\mathsf{op}} \xrightarrow{psd.} \mathsf{MonCat}$ is equivalently a monoidal fibration $\int F \to \mathcal{C}$, when \mathcal{C} is cartesian monoidal.

(Shulman, 2007) shows that monoidal fibrations give rise to *framed bicategories* (double categories with extra properties).

For a locale $\mathcal{O}(X),$ define $\mathcal{S}:\mathcal{O}(X)^{\mathrm{op}}\to\mathsf{MonCat}$ by:

- **\blacksquare** mapping an open U to the monoidal poset ($\otimes = \land$) of opens $V \subseteq U$, and
- for each $U \subseteq V$, define the monoidal functor $\mathcal{S}(V) \to \mathcal{S}(U) : W \mapsto W \cap U$.

The resulting framed bicategory has loose bicategory that of (Walters, 1981).

We can enrich in double categories: just take the underlying loose bicategory.

What is different is the resulting wider notion of enriched functor, which is the correct one in many cases. The requirement that when A lives over U then FA also lives over U, can be relaxed by requiring a compatible family of tight morphisms $U \rightarrow V$.

Bibliography I: Some work by others stemming from these ideas

- (1981) Street, Cauchy characterization of enriched categories
- » Èarly characterization of bicategories biequivalent to $\mathcal{W} ext{-Mod}$.
- (1982) Betti, Carboni, Cauchy-completion and the associated sheaf
- » Proving that Cauchy-completion always exists for $\mathcal W$ -categories, and further analysis of sheafification.
- (1983) Street, Enriched categories and cohomology
- » Extension to stacks, with applications to torsors and cohomology.
- (1984) Betti, Kasangian, Tree automata and enriched category theory
- » Encoding tree automata as categories enriched in the free quantaloid over a Lawvere theory.
- (1992) Verity, Enriched categories, internal categories and change of base
- » Àxiomátizes géneralized sites as bicategories with certain exactness properties, amongst other things.
- (1997) Gordon, Power, *Enrichment through variation*
- » Generalizes Gabriel-Ulmer duality to $\mathcal W$ -categories.
- (1999) Leinster, Generalized enrichment for categories and multicategories
- » Enrichment in virtual double categories (fc-multicategories) as unifying definition.
- (2004) Stubbe, Categorical structures enriched in a quantaloid
- » Extended consideration of the case of quantaloids, with applications.
- (2006) Schmitt, Worytkiewicz, *Bisimulation of enrichments*
- » Lifting bisimulation to $\check{\mathcal{W}}$ -categories.
- (2012) Cockett, Garner, *Restriction categories as enriched categories*
- » Restriction categories as categories enriched in a weak double category.
- (2013) Garner, Shulman, *Enriched categories as a free cocompletion*

» Develops the theory of bicategories enriched in monoidal bicategories, exhibiting $\mathcal{W} \mapsto \mathcal{W}$ -Cat as the free cocompletion of an enriched bicategory. ... and much more.

Bibliography II: Walters' work

■ (1981) Sheaves and Cauchy complete categories

» Category of sheaves on a locale H equivalent to category of skeletal symmetric Cauchy complete $\mathcal{W}(H)\text{-}\mathsf{categories}.$

- (1981) *The symmetry of the Cauchy completion of a category* (with R. Betti)
- » If the base bicategory satisfies the modular law, then symmetry is preserved by Cauchy completion.
- (1982) Sheaves on sites as Cauchy-complete categories
- » Extension of the first paper to sheaves for arbitrary Grothendieck topologies.
- (1982) Variation through enrichment (with R. Betti, A. Carboni & R. Street)
- » Colimits of $\mathcal W\text{-}\mathsf{categories}$ and fibrations as $\mathcal W\text{-}\mathsf{categories}.$
- (1983) On the completeness of locally internal categories (with R. Betti)
- » Treats the theory of locally internal categories by considering them as enriched in Span(\mathcal{E}), for \mathcal{E} a topos.
- (1985) *Closed bicategories and variable category theory* (with R. Betti)
- » Report on talks at Sydney CT Seminar. More work on locally internal categories as enrichment in Span.
- (1985) An axiomatics for bicategories of modules (with A. Carboni & S. Kasangian) » Proof that $\mathcal{W} \mapsto \mathcal{W}$ -Mod is idempotent, leading to a characterization of categories of modules.
- (1989) The calculus of ends over a base topos (with R. Betti)
- » Further work on locally internal categories as enriched categories, developing a calculus of ends.
- (1994) *Representations of modules and Cauchy completeness* (with Shu Hao Sun)
- » Initiated the analysis of categories of modules over rings as categories enriched over various bases.