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What are monoidal languages?

An approach to languages of graphs via the algebra of monoidal categories.
A monoidal language is a set of morphisms, in a (free, strict) monoidal category.
Morphisms in monoidal categories are string diagrams: certain acyclic graphs.
We investigate some well-behaved classes: regular and context-free.
The former includes regular languages of words, bottom-up and top-down trees, and
recognizable (Mazurkiewicz) traces.
Regular monoidal languages are recognized by monoidal automata. Not
determinizable in general, but interesting partial results.
Context-free monoidal languages are described by string diagrams with holes.
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Outline

■ Introduction to monoidal categories and string diagrams
■ Regular monoidal languages: grammars and automata
■ Results on determinization
■ Mazurkiewicz traces and asynchronous automata as monoidal automata
■ String diagrams beyond traces (work in progress)
■ Pumping lemma
■ Context-free monoidal languages (work in progress)
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From monoids to monoidal categories

a b

c

A monoid is equivalent to a category with one object.
Morphisms are the elements, composition is the monoid operation.

A strict monoidal category is equivalent to a 2-category with one object.
1-cells are the objects, 2-cells are the morphisms. Composition of 1-cells is tensor
product of objects, and of 2-cells tensor product of morphisms.
String diagrams are Poincaré dual to 2-dimensional pasting diagrams.
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[JS91]: String diagrams are sound for the axioms of strict monoidal categories.
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Free monoidal categories and string diagrams
A monoidal graph 𝒢 is a kind of multi-input multi-output graph given by: a set 𝑆 of sorts, a
set 𝐵 of boxes and functions 𝑠, 𝑡 ∶ 𝐵𝒢 ⇉ 𝑆𝒢
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A monoidal graph 𝒢 generates a free (strict) monoidal category ℱ𝒢 whose morphisms are
string diagrams over 𝒢. [JS91]: string diagrams are complete.
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Monoidal languages
Let 𝒢 be a finite monoidal graph, our 'monoidal alphabet'.
A (scalar, planar) monoidal language over 𝒢 is a set of morphisms in ℱ𝒢 from
the monoidal unit to itself: no dangling wires on the left or right.

...
Later we will consider more general 'boundary conditions' (initial and final
states). Bossut took initial and final regular languages over the sorts as boundary
languages.
We will also look at non-planar languages. But first, let us define the regular
monoidal languages.
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Grammars according to Walters
Walters (1989)a showed how to represent regular grammars as morphisms of graphs:

A regular grammar is a morphism of finite directed graphs
𝜙 ∶ 𝐺 → Σ, where Σ is a graph with one vertex, along with
two distinguished vertices of 𝐺.
The free category ℱ𝐺 on 𝐺 has objects the vertices and
morphisms the paths, with composition given by path
concatenation.
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(𝜙, 𝑋, 𝑌 ) determines a subset of Σ∗: take the image under ℱ𝜙 of the set of paths
ℱ𝐺(𝑋, 𝑌 ). The subsets of Σ∗ arising in this way are the regular languages over Σ.

aA Note on Context-Free Languages, https://doi.org/10.1016/0022-4049(89)90151-5
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Regular monoidal grammars and languages
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Defines a language: the 0 → 0 string diagrams that can be built.

γ ∉ L(ϕ)∈ L(ϕ)

Languages so definable are the (scalar) regular monoidal languages.

Technically, we pass to the free monoidal functor ℱ𝜙 ∶ ℱ𝑀 → ℱΓ, and take the
image of the set of morphisms ℱ𝑀(0, 0).
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Regular languages as regular monoidal languages

Take alphabets where each generator has arity and coarity 1.

a b

S P

S Q
a P Qb

R Qb

S a

Q Raa

ba , ,  ...ba ba{ {
Regular languages are regular monoidal languages over alphabets of this shape.
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Bottom-up regular tree languages as regular monoidal languages
Take alphabets where each generator has coarity 1 (plus an 'end' symbol).

::
ft []

::
ft [] L LVV

L
V

L

::
f

[]{ {
, ...... ,

Bottom-up regular tree languages are regular monoidal languages over alphabets
of this shape.
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Top-down regular tree languages as regular monoidal languages
Take alphabets where each generator has arity 1 (plus a 'start' symbol):

:: f t[]

::

f t[]LL V V
L
V

L

::

f

[]{ {
, ...... ,

Top-down regular tree languages are regular monoidal languages over alphabets
of this shape.
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Regular monoidal language of Sierpinski triangles
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Non-deterministic monoidal automata

■ 𝑉 , finite set
■ Γ, monoidal alphabet

■ ΔΓ = {𝑉 ar(𝛾)
Δ𝛾
−−→ 𝒫(𝑉 coar(𝛾))}𝛾∈𝐸Γ

, set of transition relations
Inductively extends to a strict monoidal functor ℱΓ → Rel𝑉
String diagrams 0 → 0 map to a function 𝑉 0 −→ 𝒫(𝑉 0) (accept/reject).
By restricting Γ we recover:
■ Ordinary non-deterministic automata
■ Top-down tree automata
■ Bottom-up tree automata
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The problem of determinization

Top-down tree automata cannot be determinized in general, so we cannot
expect to determinize non-deterministic monoidal automata.
Challenge
Characterize the deterministically recognizable RMLs.

Partial answers:
■ convex automata
■ necessary property of deterministic language
■ algebraic invariant
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Partial answer I: Convex automata
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𝛾 ∶ 𝑉 0 → 𝒫(𝑉 4) is not convex

A monoidal automaton is convex if its transition relations are convex.

Theorem. Convex automata can be determinized, by an analogue of the
powerset construction. E.g. word automata and bottom-up tree automata.
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Partial answer II: Causal closure
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Causal histories recombinable via equations in cartesian restriction categories
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Theorem. Deterministically recognizable languages are causally closed.
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Syntactic monoidal category
Recall that for a word language, its syntactic monoid is finite iff the language is regular.

We can define the syntactic monoidal category via the following equivalence relation:

...

......α β}n m{

...

𝛾 ≡𝐿 𝛿 if 𝐶[𝛾] ∈ 𝐿 ⟺ 𝐶[𝛿] ∈ 𝐿, for all contexts 𝐶.
Two string diagrams are equivalent if they are not distingushed by any context.

Theorem. If 𝐿 is regular monoidal then its syntactic monoidal category has finite
homsets.

Theorem. If the syntactic monoidal category is a cartesian restriction category, then
the language is deterministically recognizable.
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Symmetric monoidal languages
Our story works also for languages of non-planar diagrams. We allow our wires to cross
without tangling:

(  ,  )∈S𝒢 ∈S𝒢 α ∈ B𝒢

...... α

...... d1
... ...d3

... d1
...d3

... d2

......... d1

...... d1

... d2
...

= =
β

α

α

β

This gives string diagrams for symmetric monoidal categories.

We will now see how Mazurkiewicz traces are symmetric monoidal languages.
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Mazurkiewicz traces with string diagrams
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

εβ δα γ

19 / 30



Mazurkiewicz traces with string diagrams
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

ε
β

δ
α

γ

19 / 30



Mazurkiewicz traces with string diagrams
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

εβ δα γ

19 / 30



Mazurkiewicz traces with string diagrams
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

εβ δα γ

19 / 30



Mazurkiewicz traces with string diagrams
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

ε

β

δ

α

γ

19 / 30



Mazurkiewicz traces with string diagrams
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.
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⟨𝛼, 𝛽, 𝛾, 𝛿, 𝜀 ∣ 𝛼𝛿 = 𝛿𝛼, 𝛽𝛾 = 𝛾𝛽, 𝛿𝜀 = 𝜀𝛿, 𝛼𝛾 = 𝛾𝛼, 𝛾𝛿 = 𝛿𝛾⟩
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Mazurkiewicz traces in pictures
Such pictures often appear in the traces literature.

Zielonka 1987
Krishna, Muscholl 2013

Idea: these are elements of symmetric monoidal languages over certain alphabets.

Symmetric monoidal automata over such alphabets are Zielonka's asynchronous
automata.
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Distributed alphabets

To obtain trace languages, we take multi-sorted alphabets of a special shape.

1 1
1
2 2

1
2 2

1
3 3

3 3

1

We call a monoidal graph with the following properties a distributed alphabet:

■ 𝐵 is finite and 𝑆 is a finite ordinal (locations).

■ sorts appear in order in the sources and targets of each box,

■ each sort 𝑖 ∈ 𝑆 appears at most once in each source and target,

■ for each box 𝛾 ∈ 𝐵 , the sources and targets are non-empty and equal: 𝑠(𝛾) = 𝑡(𝛾).
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Trace languages are symmetric monoidal
A symmetric monoidal language is a set of morphisms in the free symmetric
monoidal ℱ𝐺 over a finite monoidal graph 𝐺.
Theorem. Let 𝐺 be a distributed alphabet. Then the monoid of string
diagrams in ℱ𝐺 from the (ordered) set of locations to itself is isomorphic to the
monoid of traces.
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Mazurkewicz trace languages are symmetric monoidal languages over distributed
alphabets.
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Why string diagrams?

Traces take many guises. In particular, their topological representation as
dependence graphs is well understood and widely used.
String diagrams can also be understood as certain (open) acyclic graphs.
So what are the advantages of string diagrams?
■ We can apply our general theory of automata over string diagrams.

This recovers asynchronous automata and their generalizations.
■ Linearization of traces is a diagrammatic operation with algebraic meaning.
■ Suggests various generalizations of trace languages, using the powerful
algebra of monoidal categories.
■ Shift in perspective allows us to apply new tools, and link to new literature.
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Regular symmetric monoidal languages
Regular symmetric monoidal languages are those recognized by symmetric monoidal automata.

α γβ ε δ

α γI P

β
Q

P
F

P

I R

γR R

γR F

α

α

P P

εP
F
F

R
δI Q

εF
F
F

F

γ

P F

(I,I,I), (F,F,F) ∈ 𝒬•×𝒬•×𝒬•

β

δ

α

γ

ε

α

δ

α

γ

β
α

γ

24 / 30



Regular symmetric monoidal languages
Regular symmetric monoidal languages are those recognized by symmetric monoidal automata.
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Asynchronous automata are monoidal automata
Recognizable trace languages are defined in the literature by an algebraic criterion.

(Zielonka 1987a) introduced asynchronous automata and proved that these accept
exactly the recognizable trace languages.

Theorem. Symmetric monoidal automata over distributed alphabets are precisely
Zielonka's asynchronous automata.

Consequently, recognizable trace languages are exactly regular symmetric monoidal
languages over distributed alphabets.

Our definition of automaton gives rise to a monoidal functor. By varying the codomain
of this functor we recover deterministic and probabilistic asynchronous automata (Jesi,
Pighizzini, Sabadini 1996b).

aNotes on Finite Asynchronous Automata, Informatique théorique et applications
bProbabilistic asynchronous automata, Mathematical Systems Theory
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Serialization via string diagrams for premonoidal categories

Often useful to consider the possible serializations of a trace.

We can do this using string diagrams for premonoidal categories, which equip boxes
with a new distinguished wire, preventing interchange.

=
α

β

α

β

We define a map from the free premonoidal category over a distributed alphabet, to the
free symmetric monoidal category over the same alphabet, by forgetting the red wire.

Theorem. The preimage of a string-diagrammatic trace language under this
morphism is its serialization.
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Beyond traces: work in progress
In our presentation of traces we have used resource wires for locations. By
construction, we have prevented their duplication.

Can we find a structure which gives semantics to string diagrams of concurrent
systems with actions richer than merely atomic ones? i.e. in which we can distinguish
locations from resources?

dough
$

$

bread
bread

mixflour
water

mix
flour
water

dough bake
bake

sell

sell

oven oven

register

register

In a recent abstract with Nester and Román, we introduce an extension of string
diagrams for premonoidal categories (Jeffrey 1998a, Román 2022b) to include these
two kinds of wires.

aPremonoidal Categories and a Graphical View of Programs, preprint
bPromonads and String Diagrams for Effectful Categories, Proceedings of ACT 2022
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Pumping lemma and a non-regular monoidal language
𝐿 regular monoidal ⟹∀𝑘 ∈ ℕ+, ∃𝑝 ⩾ 0 such that for any w ∈ 𝐿 and factorization

wmwi ki

... }...ki-1 } ...

...

km-1 }... ...w0 ...

...
k0} ......

𝑚 ⩾ 𝑝, 0 ⩽ 𝑘𝑖 ⩽ 𝑘, there exists 𝑖, 𝑗, ℓ such that 𝑘𝑖 = 𝑘𝑗 = ℓ and

w'''w'' ℓ

... }...ℓ }w'
... ( ( ...

a

∈ 𝐿, ∀𝑎 ⩾ 0

Example: unbraids on 𝑛 strings. 𝑛 = 2:

{... , {, ... 
28 / 30



Context-free monoidal languages
In recent work with Hefford and Romána, we introduced a category
of contexts in monoidal categories.

Contexts provide the notion necessary to define context-free
languages of string diagrams. These are described by grammars in
which contexts can appear both sequentially and in parallel.

We are generalizing the Chomsky-Schützenberger theorem to
context-free monoidal languages, following Melliès and Zeilbergerb.

Conjecture: the generic shape of derivation trees is described by a
context-free monoidal language that generalizes Dyck languages to
two dimensions.

Conjecture: there is a monoidal automaton that checks if a given
shape comes from a derivation.

aThe Produoidal Algebra of Process Decomposition, arxiv.org/abs/2301.11867
bParsing as a Lifting Problem..., arxiv.org/abs/2212.09060
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