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String diagrams for process theories

This talk is about a graphical syntax for processes, broadly construed.

Monoidal categories are an algebraic formalism for resource-transforming processes.

String diagrams are a sound and complete graphical syntax for monoidal categories.?
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Examples: sets and partial maps with cartesian product, Hilbert spaces and bounded

linear maps with tensor product.

2Joyal & Street [JS91]
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String diagrams for process theories

Completeness — the free symmetric monoidal category on a set of generating processes
is given by string diagrams:
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Soundness — equational reasoning is topological:

o] ) (o} o
_@_‘_@_ ><>< -

<>

3/ 14



Premonoidal categories for effectful processes

Interchange is not always obeyed by processes in computer science:

Premonoidal categories® refine monoidal categories: interchange does not hold globally.

Key example: Kleisli categories of strong monads, or more generally strong promonads.

Interchange holds just when the monad is commutative.

?Power and Robinson [PR97].

4/14



String diagrams for premonoidal categories

Adding a runtime wire presents the free premonoidal category with specified centre.?
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In practice, this global effect limits topological reasoning:
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2 Jeffrey, Roman [Jef97, Rom23].
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String diagrams with devices

In practice, this global effect limits topological reasoning:
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Introduce multiple device wires:

— setp |

Now many natural equations are topological again.
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String diagrams with devices

Premonoidal categories are an algebraic foundation for processes that may use both
resources and devices.
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Devices are definite noun phrases: if we only have one oven, we cannot bake in parallel.

We introduce a convenient presentation for premonoidal categories based on this idea.
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Device signature

Definition. A device signature is given by:
m sets R, P, D of resources, processes and devices,
m functions s, t : P — R* assigning source and target words of resources,

m a function d : P — Z2(D) specifying a set of devices used by each process.
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Device presentations

A device presentation further specifies some equations between string diagrams:
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Example adapted from the functional machine calculus.?

?Barrett, Heijltjes & McCusker [Bar23, BHM]
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Mazurkiewicz traces by devices

Mazurkiewicz traces [DR95] model the behaviour of concurrent machines.

Traces generalize words, the behaviour of sequential machines, by allowing specified
pairs of actions to commute.
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Proposition (E., Sobocinski [ES]). Mazurkiewicz traces arise as the morphisms of
premonoidal categories generated by device signatures with no resource wires.

These devices may be conceived of as shared memory locations.
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The canonical device presentation

=1

Proposition. The interference graph of a premonoidal category C determines a device
presentation of C that contains a device for each non-trivial maximal clique.

Proposition. The interference graph of a premonoidal category presented by devices
recovers the device presentation.
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The device lattice

The centralizer of a set S of processes in a premonoidal category contains all processes
interchanging with elements of S.

Proposition. Centralizers are premonoidal subcategories.
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Proposition. A premonoidal category C admits a lattice of premonoidal subcategories,
each corresponding to a subset of the devices of C, bounded below by its centre Z(C),
and above by C.
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Future directions: Combining effects

Combining categories of effectful processes:
m coproducts and tensor products of algebraic theories [HPP06]

m distributive laws of monads [Bec69]

Given two presentations, we have various ways to combine them.

How do these relate to known constructions for combining effects?
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