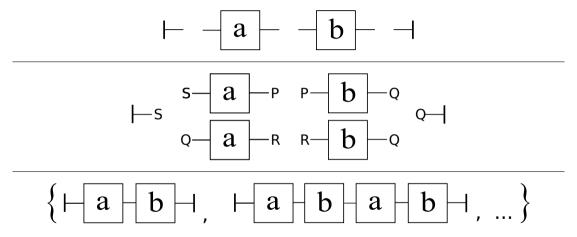
Regular Monoidal Languages

Matt Earnshaw¹ j.w.w. Paweł Sobociński¹

¹Tallinn University of Technology, Estonia

MFCS, Vienna August 2022

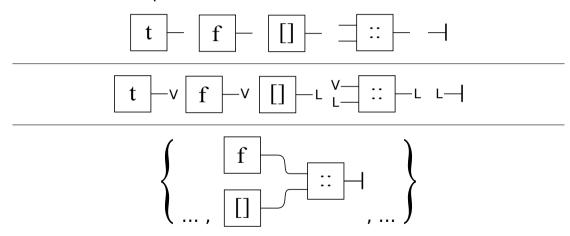
Regular languages with pictures



Fact: any regular language can be pictured in this way.

Bottom-up tree languages with pictures

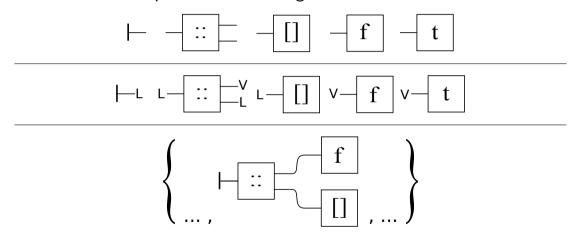
What about multiple wires on the left?



Fact: any bottom-up regular tree language can be pictured in this way.

Top-down tree languages with pictures

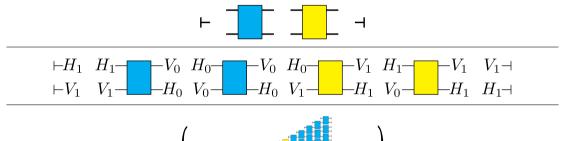
What about multiple wires on the right?

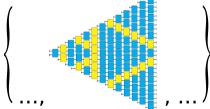


Fact: any top-down regular tree language can be pictured in this way.

Regular monoidal languages

What about multiple wires on the left and right?





How to define these pictures formally?

Monoidal graphs

A monoidal graph is a pair of functions $s, t : E \Rightarrow V^*$.

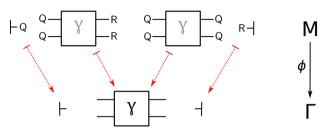
The components of a monoidal graph are generators.

When single-sorted, s and t give natural numbers: arity and coarity.

Morphism of monoidal graphs is a pair of functions $E \to E', V \to V'$ commuting with s and t.

All of our monoidal graphs will be finite.

Regular monoidal grammars and languages



Defines a language: the $0 \rightarrow 0$ string diagrams that can be built.

Definition

Languages so definable are regular monoidal languages.

Non-deterministic monoidal automata

Definition $\Delta = (V, \Delta_{\Gamma})$

- ▶ V, finite set
- Γ, monoidal alphabet
- $lackbox{} \Delta_{\Gamma} = \{V^{\mathsf{ar}(\gamma)} \stackrel{\Delta_{\gamma}}{\longrightarrow} \mathscr{P}(V^{\mathsf{coar}(\gamma)})\}_{\gamma \in E_{\Gamma}},$

set of transition relations

String diagrams $0 \to 0$ map to a $V^0 \to \mathscr{P}(V^0)$ (accept/reject).

By restricting Γ we recover:

- Ordinary non-deterministic automata
- Top-down tree automata
- Bottom-up tree automata

The problem of determinization

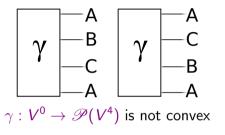
Challenge

Characterize the deterministically recognizable RMLs.

Partial answers:

- convex automata
- necessary property of deterministic language
- algebraic invariant

Partial answer I: Convex automata

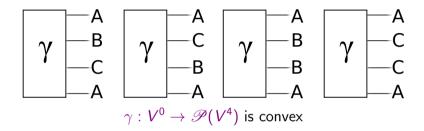


A monoidal automaton is convex if its transition relations are convex.

Theorem

Convex automata can be determinized, by an analogue of the powerset construction. E.g. word automata and bottom-up tree automata.

Partial answer I: Convex automata

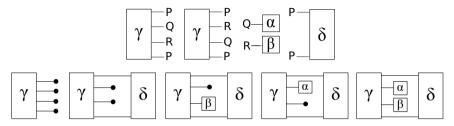


A monoidal automaton is convex if its transition relations are convex.

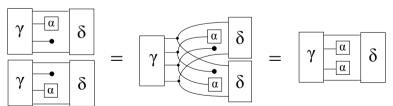
Theorem

Convex automata can be determinized, by an analogue of the powerset construction. E.g. word automata and bottom-up tree automata.

Partial answer II: Causal closure

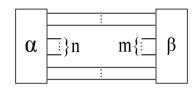


Causal histories recombinable via equations in cartesian restriction categories



Theorem: Deterministically recognizable RMLs are causally closed.

Partial answer III: Syntactic pro



$$\gamma \equiv_L \delta$$
 if $C[\gamma] \in L \iff C[\delta] \in L$, for all contexts C

Theorem

If L is an RML then its syntactic pro has finite homsets.

Theorem

If the syntactic pro of an RML has cartesian restriction category structure, then the language is deterministically recognizable.

Future work

- Completely characterize deterministic recognizability
- Embeddings of word languages
- Diagrammatics for pushdown and Zielonka automata, transducers, etc.
- Context-free monoidal languages via a monoidal multicategory of contexts

Thanks for your attention.