
String Diagrammatic Trace Theory

Matt Earnshaw1

j.w.w. Paweł Sobociński1

1Tallinn University of Technology, Estonia

MFCS, Bordeaux
September 1st 2023

1 / 10

Mazurkiewicz traces (in pictures)
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

εβ δα γ

2 / 10

Mazurkiewicz traces (in pictures)
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

ε
β

δ
α

γ

2 / 10

Mazurkiewicz traces (in pictures)
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

εβ δα γ

2 / 10

Mazurkiewicz traces (in pictures)
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

εβ δα γ

2 / 10

Mazurkiewicz traces (in pictures)
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

ε

β

δ

α

γ

2 / 10

Mazurkiewicz traces (in pictures)
Mazurkiewicz traces are a non-interleaving semantics for behaviour of systems with
concurrent atomic actions.

Words are the behaviour of sequential machines with atomic actions. Trace generalize
words by allowing specified pairs of actions to commute.

1 1
1
2 2

1
2 2

1
3 3

3 3

1

β

δ

α

γ

ε

δ

⟨𝛼, 𝛽, 𝛾, 𝛿, 𝜀 ∣ 𝛼𝛿 = 𝛿𝛼, 𝛽𝛾 = 𝛾𝛽, 𝛿𝜀 = 𝜀𝛿, 𝛼𝛾 = 𝛾𝛼, 𝛾𝛿 = 𝛿𝛾⟩

2 / 10

Mazurkiewicz traces in pictures
Such pictures often appear in the traces literature.

Zielonka 1987
Krishna, Muscholl 2013

We can make these formal, and in doing so recover asynchronous automata and more.

Claim: such pictures can be given semantics as morphisms in props, which can be
represented as string diagrams.

3 / 10

http://www.numdam.org/item/?id=ITA_1987__21_2_99_0
https://doi.org/10.1016/j.tcs.2013.07.015

Distributed alphabets
A monoidal graph is a kind of multi-input multi-output graph given by:

A set 𝑆 of sorts, a set 𝐵 of boxes, and functions 𝑠, 𝑡 ∶ 𝐵 ⇉ 𝑆∗.

We have already seen some examples.

1 1
1
2 2

1
2 2

1
3 3

3 3

1

We call a monoidal graph with the following properties a distributed alphabet:

■ 𝐵 is finite and 𝑆 is a finite ordinal (locations).

■ sorts appear in order in the sources and targets of each box,

■ each sort 𝑖 ∈ 𝑆 appears at most once in each source and target,

■ for each box 𝛾 ∈ 𝐵 , the sources and targets are non-empty and equal: 𝑠(𝛾) = 𝑡(𝛾).

4 / 10

From monoidal graphs to monoidal languages
A monoidal graph 𝐺 freely generates a prop ℱ𝐺: a category whose objects are
elements of 𝑆∗

𝐺 and whose morphisms are string diagrams built from the graph.

(,)∈S𝒢 ∈S𝒢 α ∈ B𝒢

...... α
...... d1

... ...d3

... d1
...d3

... d2

......... d1

...... d1

... d2

...

α

β

α

β
= = =

α

α

A symmetric monoidal language is a set of morphisms in the free prop ℱ𝐺 over a
finite monoidal graph 𝐺.

Theorem. Let 𝐺 be a distributed alphabet. Then the monoid of string diagrams in
ℱ𝐺 from the (ordered) set of locations to itself is the monoid of traces.

Therefore, Mazurkewicz trace languages are symmetric monoidal languages over
distributed alphabets.

5 / 10

Why string diagrams?

Traces take many guises. In particular, their topological representation as dependence
graphs is well understood and widely used.

String diagrams can also be understood as certain (open) acyclic graphs.

So what are the advantages of string diagrams?

■ We can apply our general theory of automata over string diagrams.a
This recovers asynchronous automata and their generalizations (e.g. probabilistic).

■ Linearization of traces is a diagrammatic operation with algebraic meaning.

■ Suggests various generalizations of trace languages, using the powerful algebra of
monoidal categories.

■ Shift in perspective allows us to apply new tools, and link to new literature.

a Introduced in E., Sobocinski 2022.
6 / 10

https://doi.org/10.4230/LIPIcs.MFCS.2022.44

Regular symmetric monoidal languages
Regular symmetric monoidal languages are those recognized by monoidal automata.

α γβ ε δ

α γI P

β
Q

P
F

P

I R

γR R

γR F

α

α

P P

εP
F
F

R
δI Q

εF
F
F

F

γ

P F

(I,I,I), (F,F,F) ∈ 𝒬•×𝒬•×𝒬•

β

δ

α

γ

ε

α

δ

α

γ

β
α

γ

7 / 10

Regular symmetric monoidal languages
Regular symmetric monoidal languages are those recognized by monoidal automata.

α γβ ε δ

α γI P

β
Q

P
F

P

I R

γR R

γR F

α

α

P P

εP
F
F

R
δI Q

εF
F
F

F

γ

P F

(I,I,I), (F,F,F) ∈ 𝒬•×𝒬•×𝒬•

β

δ

α

γ

ε

αI

I

I

I
P

Q

R
F

F
P

δI

I

FPF

α

γ

β
α

γ

F

F

F

P P

Q

R

P

7 / 10

Asynchronous automata are monoidal automata
Recognizable trace languages are defined in the literature by an algebraic criterion.

(Zielonka 1987a) introduced asynchronous automata and proved that these accept
exactly the recognizable trace languages.

Theorem. Symmetric monoidal automata over distributed alphabets are precisely
Zielonka's asynchronous automata.

Consequently, recognizable trace languages are exactly regular symmetric monoidal
languages over distributed alphabets.

Our definition of automaton gives rise to a monoidal functor. By varying the codomain
of this functor we recover deterministic and probabilistic asynchronous automata (Jesi,
Pighizzini, Sabadini 1996b).

aNotes on Finite Asynchronous Automata, Informatique théorique et applications
bProbabilistic asynchronous automata, Mathematical Systems Theory

8 / 10

https://eudml.org/doc/92285
https://link.springer.com/article/10.1007/BF01201811
https://link.springer.com/article/10.1007/BF01201811

Serialization via string diagrams for premonoidal categories

Often useful to consider the possible serializations of a trace.

We can do this using string diagrams for premonoidal categories, which equip boxes
with a new distinguished wire, preventing interchange.

=
α

β

α

β

We can define a map from the free premonoidal category over a distributed alphabet,
to the free prop over the same alphabet, by forgetting the red wire.

Theorem. The preimage of a string-diagrammatic trace language under this morphism
is its serialization.

9 / 10

Serialization via string diagrams for premonoidal categories

Often useful to consider the possible serializations of a trace.

We can do this using string diagrams for premonoidal categories, which equip boxes
with a new distinguished wire, preventing interchange.

≠
α

β

α

β

We can define a map from the free premonoidal category over a distributed alphabet,
to the free prop over the same alphabet, by forgetting the red wire.

Theorem. The preimage of a string-diagrammatic trace language under this morphism
is its serialization.

9 / 10

Beyond traces: sketch of future work
Many kinds of categorical structure admit a calculus of string diagrams.

Can we find a structure which gives semantics to string diagrams of concurrent
systems with actions richer than merely atomic ones? i.e. in which we can distinguish
locations from resources?

String diagrams for premonoidal categories (Jeffrey 1998a, Román 2022b) offer a
starting point, particularly when seen as embedded in the richer universe of diagrams
for (collages of) bimodular categories (Braithwaite, Román 2023c).

aPremonoidal Categories and a Graphical View of Programs, preprint
bPromonads and String Diagrams for Effectful Categories, Proceedings of ACT 2022
cCollages of String Diagrams, Proceedings of ACT 2023

10 / 10

https://www.researchgate.net/publication/228639836_Premonoidal_categories_and_a_graphical_view_of_programs
https://arxiv.org/abs/2205.07664
https://arxiv.org/abs/2305.02675

