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Abstract. Optics are bidirectional data accessors that capture data
transformation patterns such as accessing subfields or iterating over con-
tainers. Profunctor optics are composable representations of optics in
terms of polymorphic functions. Our work provides some original fami-
lies of optics and derivations, including an elementary one for traversals
that solves an open problem posed by Milewski. We generalize a classic
result by Pastro and Street on Tambara theory and use it to describe
mixed V-enriched profunctor optics and to endow them with V-category
structure.

1. Introduction

1.1. Optics. Optics are an abstract representation of some common pat-
terns in bidirectional data accessing. The most widely known optics are
lenses, pairs of functions view (S → A) and update (S × A → S) that
respectively retrieve and modify a subfield of a data structure (Figure 1).

data Address = Address
{ street' :: String
, city' :: String
, country' :: String }

viewStreet :: Address -> String
viewStreet = street'

updateStreet :: Address -> String -> Address
updateStreet a s = a {street' = s}

example :: Address
example = Address

{ street' = "221b Baker Street"
, city' = "London"
, country' = "UK" } }

>>> viewStreet example
"221b Baker Street"

Figure 1. Lenses are pairs of functions ’view’ and ’update’ that
capture the repeating pattern of accessing subfields.
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It is routine to describe how lenses can be composed to access nested sub-
fields. However, it is tedious, and it becomes increasingly difficult as other
data accessors enter the stage. We would like optics to behave modularly ;
in the sense that, given two optics, it should be possible to join them into a
composite optic that directly accesses the innermost subfield. Perhaps sur-
prisingly, many implementations allow the programmer to wrap optics into a
different representation and then use ordinary function composition to con-
struct composite optics. How is it possible to compose two constructs
that are not functions using ordinary function composition? Implementa-
tions provided by popular libraries such as lens [Kme18], mezzolens [O’C15]
in Haskell, or profunctor-optics [FMH+19] in Purescript, achieve this effect
by using different representations of optics in terms of polymorphic func-
tions and the Yoneda lemma. This text focuses on the encoding known as
profunctor representation, which is based in the isomorphism between lenses
(and optics in general) and functions polymorphic over profunctors with a
particular algebraic structure called a Tambara module. Optics under this
encoding are called profunctor optics.

1.2. Coend Calculus. Coend calculus is a branch of category theory that
describes the behaviour of ends and coends, certain universal objects associ-
ated to profunctors P : Cop×C→ V. Theorems involving ends and coends
can be proved by means of their universal properties; an extensive discussion
of this topic is in [Lor19]. Via the calculus induced by these universal prop-
erties, it is possible to construct isomorphisms between objects of a category
by means of a chain of ‘deduction rules’.

As an example, let us consider how two forms of the Yoneda lemma can be
written in terms of ends and coends. Ends and coends are usually denoted by
subscripted and superscripted integrals, respectively. This notation makes
Yoneda lemma resemble a ’Dirac delta’ integration rule, whereas commuta-
tivity of limits becomes a form of ’Fubini rule’.

∫
X∈V
V(C(A,X), FX)

∫ X∈C
C(A,X)⊗ FX

∼= {Yoneda reduction} ∼= {Coyoneda reduction}
FA FA

Figure 2. Yoneda lemma in terms of ends and coends.

∫
X1∈C

∫
X2∈C

P (X1, X2, X1, X2)

∫ X1∈C ∫ X2∈C
P (X1, X2, X1, X2)

∼= {Fubini rule (for ends)} ∼= {Fubini rule (for coends)}∫
X2∈C

∫
X1∈C

P (X1, X2, X1, X2)

∫ X2∈C ∫ X1∈C
P (X1, X2, X1, X2)

Figure 3. Commutativity of ends and coends.
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1.3. Contributions. Our first contribution is a generalization of Pastro and
Street’s double construction [PS08] that captures mixed and enriched optics
(§4). Their work characterized copresheaves over these doubles as Tam-
bara modules [PS08, Proposition 6.1]; we follow this idea to characterize
copresheaves of mixed optics to be suitably generalized Tambara modules.
As a corollary, we extend the result that justifies the profunctor represen-
tation of optics used in functional programming to the case of enriched and
mixed optics (Theorem 4.3), endowing them with V-category structure.

Our second contribution is the derivation of many optics, both existing in
the literature and novel, from a unified definition (Definition 2.1). We present
a new family of optics, which we dub algebraic lenses (Definition 3.5), that
unifies new examples with some optics already present in the literature, such
as Boisseau’s achromatic lens [Boi17, §5.2]. We introduce a new deriva-
tion showing that monadic lenses [ACG+16] are mixed optics. Similarly,
a new derivation showing that Myers’ lenses in a symmetric monoidal cat-
egory [Spi19, §2.2] are mixed optics (Proposition 3.4). We give a unified
definition of lens (Definition 3.1), that can be specialized to all of these pre-
vious examples (algebraic lens, monadic lens, lens in a symmetric monoidal
category). Finally, we present a new derivation of the optic known as traver-
sal (Definition 3.11) in terms of a monoidal structure originally described by
Kelly [Kel05, §8] for the study of non-symmetric operads (Proposition 3.13),
as well as a generalization.

2. Optics

The structure that is common to all optics is that they divide a bigger
data structure of type S ∈ C into some focus of type A ∈ C and some
context or residual M ∈M around it. We cannot access the context but we
can still use its shape to update the original data structure, replacing the
current focus by a new one. The definition will capture this fact imposing
a quotient relation on the possible contexts; this quotient is expressed by
the dinaturality condition of a coend. The category of contexts M will be
monoidal, allowing us to compose optics with contextsM andN into an optic
with context M ⊗N . Finally, as we want to capture type-variant optics, we
leave open the possibility of the new focus being of a different type B ∈ D,
possibly in a different category, which yields a new data structure of type
T ∈ D.

Definition 2.1 (after Mil17, BG18, Ril18). Let (M,⊗, I, a, λ, ρ) be a mo-
noidal V-category [Day70]. Let it act on two arbitrary V-categories C and D
with strong monoidal V-functors ( L ) : M → [C,C] and ( R ) : M → [D,D];
let us write

φA : A ∼= I L A, φM,N,A : M L N L A ∼= (M ⊗N) L A,

ϕB : B ∼= I R B, ϕM,N,B : M R N R B ∼= (M ⊗N) R B,

for the structure isomorphisms of the strong monoidal actions L and R .
Let S,A ∈ C and T,B ∈ D. An optic from (S, T ) with the focus on

(A,B) is an element of the following object described as a coend

Optic L , R ((A,B), (S, T )) :=

∫ M∈M
C(S,M L A)⊗D(M R B, T ).
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The two strong monoidal actions L and R represent the two different ways
in which the context interacts with the focus: one when the data structure
is decomposed and another one, possibly different, when it is reconstructed.
Varying these two actions we will cover many examples from the literature
and propose some new ones, as the following table summarizes.

Name Description Actions Base
Adapter C(S,A)⊗D(B, T ) (Opticid,id) V,⊗
Lens C(S,A)×D(S •B, T ) (Optic×,•) W,×
Monoidal lens CCom(S,A)×C(US ⊗B, T ) (Optic⊗,U×) W,×
Algebraic lens C(S,A)×D(ΨS •B, T ) (OpticU×,U•) W,×
Monadic lens W(S,A)×W(S ×B,ΨT ) (Optic×,o) W,×
Linear lens C(S, [B, T ] •A) (Optic⊗,•) V,⊗
Prism C(S, T •A)×D(B, T ) (Optic•,+) W,×
Coalg. prism C(S,ΘT •A)×D(B, T ) (OpticU•,U+) W,×
Grate D([S,A] •B, T ) (Optic{},•) V,⊗
Glass C(S × [[S,A], B], T ) (Optic×[],×[]) W,×
Affine traversal C(S, T +A⊗ {B, T}) (Optic+⊗,+⊗) W,×
Traversal V(S,

∫ n
An ⊗ [Bn, T ]) (OpticPw,Pw) V,⊗

Kaleidoscope
∫
n V([An, B], [Sn, T ]) (OpticApp,App) V,⊗

Setter V([A,B], [S, T ]) (Opticev,ev) V,⊗
Fold V(S,LA) (OpticFoldable,∗) V,⊗

3. Examples of optics

3.1. Lenses and prisms. The basic definition of lens [Ole82, Pal07] has
been generalized in many different directions. Monadic lenses [ACG+16],
lenses in a symmetric monoidal category [Spi19, §2.2], linear lenses [Ril18,
§4.8] or achromatic lenses [Boi17, §5.2] are some of them. However, these
generalizations are not mutually compatible in general. They use the mo-
noidal structure in different ways and introduce monadic effects in different
parts of the signature. Many were not presented as optics, and a profunctor
representation for them was not considered. We present two derivations
of lenses as mixed optics that capture all of the variants mentioned before,
together with new ones, and endow them with a unified profunctor repre-
sentation (Theorem 4.3).

Definition 3.1. Let C be a cartesianW-category with a monoidalW-action
(•) : C×D→ D to an arbitrary W-category D. A lens is an element of

Lens((A,B), (S, T )) := C(S,A)×D(S •B, T ).

Proposition 3.2. Lenses are mixed optics (as in Definition 2.1) for the
actions of the cartesian product (×) : C × C → C and (•) : C × D → D.
That is, Lens ∼= Optic(×,•).

Proof. The universal property of the product can be summarized as it being
right adjoint to the diagonal functor (∆): C→ C2.∫ C∈C

C(S,C ×A)×D(C •B, T )
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∼= {Adjunction ∆ a (×)}∫ C∈C
C(S,C)×C(S,A)×D(C •B, T )

∼= {Coyoneda}
C(S,A)×D(S •B, T ). �

Definition 3.3 (Spi19, §2.2). A lens in a symmetric monoidal category C
is a view and update pair where the view is a comonoid homomorphism,

mLens⊗((A,B), (S, T )) := CCom(S,A)×C(US ⊗B, T ).

Proposition 3.4. Lenses in a symmetric monoidal category are a particular
case of Definition 3.1.

Proof. The category of cocommutative comonoids CCom over a category C
can be given a cartesian structure in such a way that the forgetful functor
U : CCom → C is strict monoidal (see [Fox76], where a stronger result is
shown). We can show mLens⊗ ∼= Optic(⊗,•) where (•) is given by S •A :=
US ⊗A. �

Definition 3.5. Let Ψ: C → C be a W-monad in a cartesian W-category
C. Let (•) : C×D→ D be a monoidalW-action to an arbitraryW-category
D. An algebraic lens is an element of

LensΨ((A,B), (S, T )) := C(S,A)×D(ΨS •B, T ).

Proposition 3.6. Algebraic lenses are mixed optics for the actions of the
product by the carrier of an algebra (U×) : EMΨ×C→ C and (U•) : EMΨ×D→
D. That is, LensΨ

∼= Optic(U×,U•).

Proof. The W-category of algebras is cartesian making the forgetful functor
U : EMΨ → C monoidal; UC ×A defines a strong monoidal action.∫ C∈EMΨ

C(S,UC ×A)×D(UC •B, T )

∼= {Adjunction (×) a ∆}∫ C∈EMΨ

C(S,UC)×C(S,A)×D(UC •B, T )

∼= {Adjunction Ψ a U}∫ C∈EMΨ

EMΨ(ΨS,C)×C(S,A)×D(UC •B, T )

∼= {Coyoneda}
C(S,A)×D(ΨS •B, T ). �

Definition 3.7 (Ril18, §4.8). Let (D,⊗, []) be a right closed V-category
with a monoidal V-action (•) : D⊗C→ C to an arbitrary V-category C. A
linear lens is an element of

Lens[]((A,B), (S, T )) := C(S, [B, T ] •A).

Proposition 3.8. Linear lenses are mixed optics (as in Definition 2.1) for
the actions of the monoidal product (⊗) : D×D→ D and (•) : D×C→ C.
That is, Lens[]

∼= Optic⊗,•
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Proof. The monoidal product has a right adjoint given by the exponential.∫ D∈D
C(S,D •A)⊗D(D ⊗B, T )

∼= {Adjunction (−⊗B) a [B,−]}∫ D∈D
C(S,D •A)⊗D(D, [B, T ])

∼= {Coyoneda}
C(S, [B, T ] •A). �

Definition 3.9. Let D be a cocartesianW-category with a monoidalW-ac-
tion (•) : D × C → C to an arbitrary category C. A prism is an element
of

Prism((A,B), (S, T )) := C(S, T •A)×D(B, T ).

In other words, a prism from (S, T ) to (A,B) is a lens from (T, S) to (B,A)
in the opposite categories Dop and Cop. However, they can also be seen as
optics from (A,B) to (S, T ).

Proposition 3.10. Prisms are mixed optics (as in Definition 2.1) for the
actions of the coproduct (+): D ×D → D and (•) : C ×D → D. That is,
Prism ∼= Optic(•,+).

Proof. The coproduct (+): C2 → C is left adjoint to the diagonal functor.∫ D∈D
C(S,D •A)×D(D +B, T )

∼= {Adjunction (+) a ∆}∫ D∈D
C(S,D •A)×D(D,T )×D(B, T )

∼= {Coyoneda}
C(S, T •A)×D(B, T ). �

3.2. Traversals.

Definition 3.11. A traversal is an element of

Traversal((A,B), (S, T )) := V
(
S,

∫ n∈N
An ⊗ [Bn, T ]

)
.

Remark 3.12. Let (N,+) be the free strict monoidal category on one object.
Ends and coends indexed by N coincide with products and coproducts, re-
spectively. Here A(−) : N→ C is the unique monoidal V-functor sending the
generator of N to A ∈ C. Each functor C : N→ V induces a power series

PwC(A) =

∫ n∈N
An ⊗ Cn.

This defines an action Pw: [N,C] → [C,C] sending the indexed family to
its power series. We propose a derivation of the traversal as the optic for
power series.

Proposition 3.13. Traversals are optics (as in Definition 2.1) for power
series. That is, Traversal ∼= OpticPw,Pw.
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Proof. The derivation generalizes that of linear lenses (Definition 3.7).∫ C∈[N,V]

V
(
S,

∫ n∈N
Cn ⊗An

)
⊗ V

(∫ n∈N
Cn ⊗Bn, T

)
∼= {Continuity}∫ C∈[N,V]

V
(
S,

∫ n∈N
Cn ⊗An

)
⊗
∫
n∈N
V (Cn ⊗Bn, T )

∼= {Adjunction (−⊗Bn) a [Bn,−]}∫ C∈[N,V]

V
(
S,

∫ n∈N
Cn ⊗An

)
⊗
∫
n∈N
V (Cn, [B

n, T ])

∼= {Natural transformation}∫ C∈[N,V]

V
(
S,

∫ n∈N
Cn ⊗An

)
⊗ [N,V]

(
C(−), [B

(−), T ]
)

∼= {Coyoneda}

V
(
S,

∫ n∈N
An ⊗ [Bn, T ]

)
. �

4. Tambara theory

Profunctor optics are functions polymorphic over profunctors endowed
with some extra algebraic structure. This extra structure depends on the
family of the optic they represent. For instance, lenses are represented by
functions polymorphic over cartesian profunctors, while prisms are repre-
sented by functions polymorphic over cocartesian profunctors [PGW17, §3].
Milewski notes that the algebraic structures accompanying these profunc-
tors are precisely Tambara modules [Mil17], a particular kind of profunctor
that has been used to characterize the monoidal centre of convolution monoi-
dal categories [Tam06]. Because of this correspondence, categories of lenses
or prisms can be obtained as particular cases of the “Doubles for monoidal
categories” defined by Pastro and Street [PS08, §6].

Generalizing the construction of these “Doubles for monoidal categories”,
we obtain that copresheaves over the standard V-category structure of optics
(as in Definition 2.1) are Tambara modules.

Definition 4.1. Let (M,⊗, I) be a monoidal V-category with two monoidal
actions ( L ) : M⊗C→ C and ( R ) : M⊗D→ D. A generalized Tambara
module consists of a V-profunctor P : Cop⊗D→ V endowed with a family
of morphisms

αM,A,B : P (A,B)→ P (M L A,M R B)

V-natural in A ∈ C and B ∈ D and V-dinatural M ∈M, which additionally
satisfies the two equations

αI,A,B ◦ P (φA, ϕ
−1
B ) = id,

αM⊗N,A,B ◦ P (φM,N,A, ϕ
−1
M,N,B) = αM,N LA,N RB ◦ αN,A,B,

for every M,N ∈M, every A ∈ C and every B ∈ D.
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4.1. Profunctor representation theorem. Let us zoom out to the big
picture again. It has been observed that optics can be composed using their
profunctor representation; that is, profunctor optics can be endowed with a
natural categorical structure. On the other hand, we have generalized the
double construction by Pastro and Street [PS08] to abstractly obtain the
category Optic. The last missing piece that makes both coincide is the
profunctor representation theorem, which will justify the profunctor repre-
sentation of optics and their composition in profunctor form being the usual
function composition.

The profunctor representation theorem for the case V = Sets and non-
mixed optics has been discussed by Boisseau and Gibbons [BG18, Theorem
4.2]. Although our statement is more general and the proof technique is
different, the main idea is the same. In both cases, the key insight is the
following lemma, already described by Milewski [Mil17].

Lemma 4.2 (“Double Yoneda” from Milewski [Mil17]). For any V-category
A, the hom-object between X and Y is V-naturally isomorphic to the object
of V-natural transformations between the functors that evaluate copresheaves
in X and Y ; that is,

A(X,Y ) ∼= [[A,V],V](−(X),−(Y )).

The isomorphism is given by the canonical maps A(X,Y )→ V(FX,FY ) for
each F ∈ [A,V]. Its inverse is given by computing its value on the identity
on the A(X,−) component.

Proof. In the functor V-category [A,V], we can apply the Yoneda embedding
to two representable functors A(Y,−) and A(X,−) to get

Nat(A(Y,−),A(X,−)) ∼=
∫
F
V
(

[A(X,−), F ], [A(Y,−), F ]
)
.

Here reducing by Yoneda lemma on both the left hand side and the two
arguments of the right hand side, we get the desired result. �

Theorem 4.3 (Profunctor representation theorem).∫
P∈Tamb

V(P (A,B), P (S, T )) ∼= Optic((A,B), (S, T )).

Proof. We apply Double Yoneda (Lemma 4.2) to the V-category Optic and
then use that copresheaves over it are precisely Tambara modules. �

5. Conclusions

We have extended a result by Pastro and Street to a setting that is useful
for optics in functional programming. Using it, we have refined some of the
optics already present in the literature to mixed optics, providing deriva-
tions for each one of them. We have also described new optics. A Haskell
implementation is available at [PR20].
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5.1. Related work. Pastro and Street [PS08] first described the construc-
tion of doubles in their study of Tambara theory. Their results can be reused
for optics thanks to the observations of Milewski [Mil17]. The profunctor
representation theorem and its implications for functional programming have
been studied by Boisseau and Gibbons [BG18]. We combine their approach
with Pastro and Street’s to get a proof of a more general version of this
theorem.

The case of mixed optics was first mentioned by Riley [Ril18, §6.1], but
his work targeted a more restricted case. Specifically, the definitions of
optic given by Riley [Ril18, Definition 2.0.1] and Boisseau [BG18, §4.5] deal
only with the particular case in which V = Sets, the categories C and D
coincide, and the two actions are the same. Riley uses the results of Jaskelioff
and O’Connor [JO15] to propose a description of the traversal in terms of
traversable functors [Ril18, §4.6]; our derivation simplifies this approach,
which was in principle not suitable for the enriched case.

A central aspect of Riley’s work is the extension of the concept of lawful
lens to arbitrary lawful optics [Ril18, §3]. This extension works exactly the
same for the optics we define here, so we do not address it explicitly in this
text. A first reasonable notion of lawfulness for the case of mixed optics for
two actions ( L ) : M ⊗ C → C and ( R ) : N ⊗ D → D is to use a cospan
C → E ← D of actions to push the two parts of the optic into the same
category and then consider lawfulness in E. This can be applied to monadic
lenses, for instance, when the monad is copointed.
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