
PNGT’04 Preliminary Version

A congruence for Petri nets

Vladimiro Sassone

University of Sussex

Paweł Sobocínski
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Abstract

We introduce a way of viewing Petri nets as open systems. This is done by considering
a bicategory of cospans over a category of p/t nets and embeddings. We derive a labelled
transition system (LTS) semantics for such nets using GIPOs and characterise the resulting
congruence. Technically, our results are similar to the recent work by Milner on applying
the theory of bigraphs to Petri Nets. The two main differences are that we treat p/t nets
instead of c/e nets and we deal directly with a category of nets instead of encoding them
into bigraphs.

1 Introduction

The theory of Petri nets is an attractive graphical formalism which captures several
interesting issues associated with concurrency. More recently, the field of process
calculus has been concerned with exploring syntactic formalisms for the description
of concurrent and mobile systems and with associated proof techniques. This paper
is an attempt to relate the two perspectives by treating Petri nets as a sort of algebra,
together with a labelled transition system semantics and an associated bisimulation
congruence.

We introduce the notion ofPetri contextwhich is a marked Petri net enriched
with aninnerand anouterinterface; for us an interface is simply an arbitrary subset
of the places of the net. A net with inner interface of cardinalitym and an outer
interface of cardinalityn is an arrow of a bicategory.

The composition of two such nets is simply the glueing together of nets at their
common interface. The usual “token-game” semantics of nets is implemented as a
reduction relation on thegroundnets, which are nets with empty inner interface.
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Indeed, each reaction rule models the firing of a net transition, in the sense that
the left hand side of the rule is the transition with its input places marked and the
output places unmarked, while the right hand side is the transition with its input
places unmarked and its output places marked. The fact that we are concerned with
terms (ground nets), contexts (Petri contexts) and a reduction semantics clarifies
our earlier remark about viewing Petri nets as a kind of process calculus.

The advantage of such an approach is that we are now able to use intuitions
and techniques from the field of process-calculi to reason about a net’s behaviour.
Indeed, instead of studying a (ground) net’s internal behaviour as is usual in Petri
net theory, we restrict our view of the net to the outer interface and study how the
net interacts with its environment by substituting it into an arbitrary Petri context
and studying the behaviour of the resulting larger system. We believe that this is
a valid and interesting way of treating nets as open systems. In this paper, we
begin the study of such nets and characterise the canonical strong bisimilarity that
arises by synthesising a labelled transition system using the technique introduced
by Leifer and Milner [6] and expanded by the authors in [9].

Leifer and Milner introduced the notion of reactive systems in [6] as a gener-
alisation of several situations that occur in the field of process calculus. Indeed,
since the publication of Berry and Boudol’s influential work on the chemical ab-
stract machine [2], it has become commonplace to define the operational semantics
of calculi via a reduction semantics – often generated from basic rules and closed
by substituting for parameters and into arbitrary reactive/evaluation contexts. A
labelled transition system is then normally given later; these are vital because the
notion of bisimulation and the associated coinductive reasoning is a powerful tool
for reasoning about contextual equivalence, provided that bisimilarity is sound for
such an equivalence.

Leifer and Milner were particularly interested in using their theory on examples
where the contexts were not term algebras, but rather were of a graphical nature.
This work, developed to some extent in Leifer’s thesis [5], has led to the definition
of bigraphsby Milner and Jensen [3]. Bigraphs are a powerful formalism intended
to act as a sort of unifying language for concurrent formalisms – in the sense that
the study the relationship between two languages, one may first encode them into
bigraphs and study their theory asbigraphical reactive systems. Unfortunately, rel-
ative pushouts (RPOs) typically do not exist in such cases, essentially because the
algebraic structure of contexts induces non trivial context automorphisms. Leifer
and Milner solved this problem by adding intensional information to the objects
or the arrows of the categories involved, taking away the possibility of automor-
phisms. As a side-effect arrow composition becomes a partial operation, giving
rise to Milner’s notion ofprecategories.

The present authors, in [9], showed an alternative approach. They proceeded
not by forgetting the automorphisms, rather by keeping them as a first-class mem-
ber of the category – this meant working in a 2-category or bicategory instead of
an ordinary category. The resulting generalisation of relative pushouts,groupoidal
relative pushoutsor GRPOs satisfy similar properties to RPOs. Moreover, the so-
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lutions proposed by Milner and Leifer can be recast naturally in this more abstract
approach, as illustrated in [8].

Recently, the authors have shown that GRPOs exist within a wide class of
cospan bicategories overadhesive categories, the latter were introduced by the sec-
ond author and S. Lack [4]. The technical details of this paper can be largely seen
as an application of that general theorem to the adhesive category of Petri nets and
embeddingsMNet (cf. section 2).

Recently, Milner [7] has applied the theory of bigraphs to c/e Petri nets, by en-
coding the nets into bigraphs and studying their behavioural theory. Unfortunately,
in order to make this work, Milner had to introduce a further complication into the
theory of bigraphs – namely a type system. This was necessary in order to restrict
the allowable contexts – since it is possible to construct bigraphs which are not in
the image of the encoding. We avoid such encoding problems by working directly
with a category of Petri nets.

Our work is related to the work on open Petri nets by Baldan, Corradini, Ehrig
and Heckel [1]. While we leave it as future work to determine the precise rela-
tionship, we mention here the main structural difference. Firstly, an open place in
their terminology is a place in our outer interface. Baldan et al. make a distinction
betweeninput placesandoutput places, where an input place is able to receive
tokens from the environment and an output place is able to contribute tokens to
the environment. All the places in our interfaces are both input and output in their
sense, since they are able to both receive tokens from and contribute tokens to the
environment.

In section 2 we introduce the category of nets which shall be relevant throughout
the paper. We turn such nets into open systems by providing them with inner and
outer interfaces in section 3. We provide the semantics of the model is section 4
and proceed to derive the labelled transition semantics using GRPOs. In section 5
we characterise the resulting bisimulation congruence using a simpler LTS. We
conclude and offer directions for future work in section 6. In order to increase the
readability of this introductory exposition we have left out most of the proofs.

2 Petri nets and embeddings

A marked net pis a place-transition net together with a marking; more formally
a it is a quadruple〈P,T,K, s, t, k〉 whereP, T andK are respectively finite sets of
places, transitions and tokens,s, t : T → S⊕ are, respectively, the sources and
targets of a transition, andk : K → P is the positions of the tokens on the places.
For the purpose of this paper, we rule out nets withself-loops, e.g., we assume that
transitions have disjoint pre- and post-sets. We shall define a structural notion of
Petri net morphism, as opposed to the usual behavioural notions; this is because
we shall use the morphisms to speak about the topology of a net instead of its
behaviour. Thus a netmorphism f : p → p′ consists of mapsf0 : P → P′,
f1 : T → T′ and f2 : K → K′ such thats′ f1 = f ⊕0 s andt′ f1 = f ⊕0 t andk′ f2 = f0k.
As we are interested exclusively in embeddings, we shall assume thatf0, f1 and f2
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Fig. 1. Example of an embedding.

are injective. LetMNet be the category of marked nets and embeddings.

Example 2.1 Consider the two marked nets illustrated in Figure 1. There is an
obvious embedding of the left net into the right net, as indicated by the arrow.

Proposition 2.2 MNet is adhesive.

Proof. The categoryMNet is actually the subcategory of monos of a presheaf
topos. We leave the details to the reader. �

3 Nets with interfaces

We are now ready to endow our nets with interfaces which shall allow us to com-
pose them.

Definition 3.1 (Net with interfaces) Given finite ordinalsmandn, a (marked) net
with inner interfacem and outer interfacen, denotedp : m→ n, is a marked net
p = 〈P,T,K, s, t, k〉 together with injective functionsι : m → P ando : n → P.
Graphically, we represent such a net by labelling a subset of places with 1 through
to m, the inner-face, and a subset with 1 through ton, the outer-face.

We shall follow the convention of drawing the numbers corresponding to the
inner interface under a place and the numbers corresponding to the outer interface
over a place.

We shall sometimes refer to a netp : m→ n with interfaces as aPetri context.
Whenm= 0 we shall refer to such net as aPetri term.

Example 3.1 Consider the three nets illustrated in Figure 2. The leftmost net has
inner interface 1 and outer interface 2, the second net has inner interface 2 and outer
interface 1 while the rightmost net has both inner and outer interface 1.

Definition 3.2 (Bicategory of nets with interfaces)The bicategory of nets with
interfacesINet has:

• objects: the finite ordinals 0, 1,. . . ;
• arrows: the arrows fromm to n are the marked netsp : m → n with inner

interfacem and outer interfacen;
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Fig. 2. Netsp1, p2 and their compositionp2p1 : 1→ 1.
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Fig. 3. The identity id :n→ n.

• 2-cells: marked net isomorphisms which preserve the inner and the outer inter-
face – in other words, a 2-cellα : p→ p′ : m→ n is an embeddingα : p→ p′

which is surjective on places, transitions and tokens and moreoverαι = ι′ (inner
interfaces are preserved) andαo = o′ (outer interfaces are preserved).

We illustrate the identity arrows ofINet in Figure 3.
Composition inINet can be described intuitively as the glueing of marked nets

along their common interface. More formally, given netsp1 : k→ l andp2 : l → m,
the composite netp2p1 : k → m is obtained by taking the pushout inMNet of
o1 : l → p1 andι2 : l → p2. Thus the result is obtained by putting the two nets side
by side, equating the places with shared interface and adding together the tokens
on these equated places.

Example 3.2 The rightmost net in Figure 2 is the composition of the other two
nets.

We shall say that a marked net isdiscretewhen it contains no transitions and
no tokens – in other words it is a set of places. The bicategoryINet is actually
(biequivalent to) the full subcategory of the bicategory Cospan(INet) with discrete
nets as objects. This fact is useful for us because we are able to apply the central re-
sult of [10] which provides a construction of GRPOs in certain cospan bicategories
over adhesive categories.

Lemma 3.3 INethas GRPOs.

Proof. BecauseINet can be seen as a full subcategory of a cospan bicategory over
an adhesive category (see Proposition 2.2), the main theorem of [10] applies to the
larger cospan bicategory. Thus, it remains only to verify that, starting with a dia-
gram inINet, the construction of GRPOs within the larger bicategory Cospan(INet)
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Fig. 5. GIPO inINet giving rise to a label in LTS(P).

results in a diagram inINet. We leave out this routine calculation. �

4 The token game as reaction

In this section, we formalise the token-game semantics of nets via reaction rules.
This allows us to use the framework of reactive systems (cf. [6,8,11]) and derive a
canonical labelled transition system on which bisimilarity is a congruence.

Definition 4.1 (P) We obtain a reactive systemP from INet by letting the set of
reactionsR include, for everym, n ∈ N andk1, . . . , km, l1, . . . , ln ∈ N+ a reaction rule
as illustrated in Figure 4. One also needs to provide reaction rules for transitions
which have places both in the pre- and post-set; we leave the details to the reader.

Let B denote the reaction relation obtained by closing the reaction rules de-
tailed in Definition 4.1 under composition with arbitrary Petri contexts. Intuitively,
this relation corresponds to the ordinary Petri net semantics in the sense that we
havep B ∗p′ iff p′ can be obtained fromp by firing a number of transitions.

Using GIPOs, we can generate a labelled transition system LTS(P) to reason
about marked nets with interfaces. The states are Petri terms modulo isomorphism.
The labels are the smallest contexts which allow a reaction to occur, in the sense
that the resulting redex diagram is a GIPO. We direct the reader to [9, 8, 11] for
background on such construction and for further details.

Definition 4.2 (LTS(P)) The labelled transition system LTS(P) has:

• states: Petri terms modulo isomorphism;

• transitions:p f Idr if there exists a reaction rule〈l, r〉 ∈ R, a Petri contextd
and a net isomorphismα : f p→ dl so that the diagram in Figure 5 is a GIPO in
INet.
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Fig. 7. GIPO corresponding to the transition in Figure 6.

Example 4.1 We illustrate an example of a transition in Figure 6. The correspond-
ing GIPO is illustrated in Figure 7, where the four Petri nets depict the arrows on
the respective edges of theα redex-square.

As a consequence of a general result [9] (which is a generalisation of the origi-
nal result [6]) by Leifer and Milner, strong bisimilarity on LTS(P) is a congruence.
In this paper, we concentrate solely on strong bisimilarity; we leave the treatment
of weak bisimilarity as future work. Weak bisimilarity promises to be a more in-
teresting equivalence because it does not distinguish terms based only on internal
behaviour. However, strong bisimilarity already makes several interesting identifi-
cations on Petri terms, some of which we illustrate in Figure 8.

5 Characterising bisimilarity

The labelled transition system LTS(P) derived using GIPOs is canonical and bisim-
ilarity on it is a congruence. However, because of the nature of the underlying
reactive system, LTS(P) is easily seen to be infinitely branching and may seem
rather complex at first. Here we characterise the bisimulation congruence using a
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much simpler setting; indeed, we shall define an alternative simple labelled transi-
tion system on Petri terms and prove that the resulting bisimilarity coincides with
bisimilarity on LTS(P).

Definition 5.1 We define an ltsT± as follows:

• states are Petri terms modulo isomorphism;
• there are three types of transitions:
· p +i I p′ if p′ is the net resulting fromp by adding a token at itsith outer

place;
· p −i I p′ if p has a token at itsith outer node andp′ is the net resulting from

p after removing a token from itsith outer place;
· p τ I p′ if p′ results fromp through the firing of one transition (without any

interaction with the environment).

Let ∼± denote (strong) bisimilarity on such lts.
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Fig. 10. inm,n : n→ n+ 1 andoutm,n : n→ n+ 1.

The following lemma presents some of the properties of∼±.

Lemma 5.2

(i) if p ∼± q thenp andq have equal interfaces, with the same number of tokens
on each outer place;

(ii) if p ∼± q andp contains a transition which consumeski1, . . . , kih tokens from
respectivelyp’s i1th,. . . ,ihth outer place, thenq contains a transition which
also consumeski1, . . . , kih tokens fromq’s i1th,. . . ,ihth outer place.

Returning to LTS(P), it is easy to see that the labels generated via GIPOs contain
at most one Petri net transition, since every individual reaction corresponds to the
the firing of a single transition in the token game.

Proposition 5.1 If p f I p′ then f contains at most one transition.

It is clear that ifp f I p′ and f is discrete then the transition corresponds to
an internal firing of a transition without any interaction from the environment.

The following lemma relates such internal transitions in both the transition sys-
tems.

Lemma 5.3 p
τ
−→ p′ in T± iff p idn I p′ in LTS(P).

Proof. Omitted. �

It is also possible thatf contains no transitions but instead adds tokens to one or
more outer places ofp which allows a transition of withinp to fire. The properties
of GRPOs guarantee that the tokens added arepreciselythe tokens required for the
transition to fire, that is, no unnecessary tokens are added.

The following lemma relates such transitions with traces inT±.

Lemma 5.4 Suppose thatp f I p′ and f contains no transitions and is not dis-
crete. Then there existm > 0, 1 ≤ i1, . . . , im ≤ n andk1, . . . , km > 0 such that
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p
+i1
−→k1 . . .

+im
−→km

τ
−→ p′, where−→i denotes a sequence ofi transitions.

We now turn our attention to the only other possible case forf , by relating in
the following lemma relates labelled transitions in LTS(P) which contain a Petri
transition, and certain traces inT±.

Lemma 5.5 Consider a diagram as in Figure 5, wheref is a Petri context which
contains exactly one transitiont with m input places,n output places, withki tokens
being consumed a theith input place andl i tokens being produced at theith outer
place, as in Figure 4.

Let i1, . . . , im′ be the places ofp which are identified with the input places of
t, and letk′1, . . . , k

′
m′ denote the number of tokens consumed from these places as a

result of firing the transition.
Similarly, let i′1, . . . , i

′
n′ be the places ofp which are identified with the output

places oft, and letl′1, . . . , l
′
n′ be the number of tokens which result from firing the

transition.
Then, the following facts hold, where−→i denotes a sequence ofi transitions,

and f represent the residue off after the firing.

(i) if p f I p′′ is a transition in LTS(P) then there existsp′ such thatp′′ = f p′

andp
−i1
−→k′1

. . .
−im′
−→k′

m′

+i′1
−→l′1

. . .
+in′
−→l′

n′
p′ is a trace inT±;

(ii) if p
−i1
−→k′1

. . .
−im′
−→k′

m′

+i′1
−→l′1

. . .
+in′
−→l′

n′
p′ is a trace inT± thenp f I f p′ is a tran-

sition in LTS(P).

Proof. Omitted. �

Two particular labels of transitions in LTS(P) shall be useful,inm,n andoutm,n :
n → n + 1, illustrated in Figure 9. A transitioninm,n results in the introduction of
a token at themth outer place of a net. Similarly, a transitionoutm,n results in the
taking away one token from themth outer place. The transitionsinm,n andoutm,n are
not exactly the same as+mand−mof T± because they leave behind a residueinm,n

andoutm,n as illustrated in Figure 10.
In the case ofinm,n, the residue can be forgotten as we now demonstrate. In

the following let\m,n be the Petri context illustrated in Figure 11. We use\n as a
shorthand for\n,n.

Lemma 5.6 Given an arbitrary Petri termp with outer interfacen, we have that
\n+1inm,np ∼ p.

Corollary 5.7 For any two Petri termsp andq, if inm,np ∼ inm,nq thenp ∼ q.
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Proof. Using the conclusion of Lemma 5.6 and the fact that∼ is a congruence we
havep ∼ \n+1inm,np ∼ \n+1inm,nq ∼ q. �

The situation forout is slightly trickier in that the analogue of Lemma 5.6 is
actually false – the transition introduced into a net byout can keep firing if more

tokens appear at its input place. A simple counterexample is the Petri termp = /.-,()*+•
1

.

Although p clearly cannot perform any internal behaviour, we have that\2out1,1p
can perform a reaction. Fortunately, the analogue of Corollary 5.7 holds.

Lemma 5.8 For any two Petri termsp andq, if outm,np ∼ outm,nq thenp ∼ q.

Proof. Omitted. �

We are now ready to prove the main result of this section which is that the
observational power of the two labelled transition systems coincides.

Theorem 5.9 ∼ = ∼±.

Proof. (1)∼ ⊆ ∼±. First we shall show that the labels ofT± are at least as powerful
as the labels generated via GIPOs.

It is enough to show that{ (p,q) | p ∼ q } is aT± bisimulation. Indeed, suppose

that p
+i
−→ p′. Then p ini,n I ini,np′ using part 2 of Lemma 5.5. Using the fact

that p ∼ q, we haveq ini,n Iq′′ andini,np′ ∼ q′′; using part 1 of Lemma 5.5, there

exists aq′ such thatq′′ = ini,nq′ andq
+i
−→ q′. Moreover, we haveini,np′ ∼ ini,nq′,

which using Corollary 5.7 yieldsp′ ∼ q′.

The case ofp
−i
−→ p′ is similar, with Lemma 5.8 playing a key role.

Finally, using Lemma 5.3, ifp
τ
−→ p′ thenp id I p′. Thenq id Iq′ for some

q′ such thatp′ ∼ q′. Using Lemma 5.3 again yieldsq
τ
−→ q′.

(2) ∼± ⊆ ∼. We shall show that the contextual closure of∼±, A = { (cp, cq) |
p ∼± q } is a LTS(P)-bisimulation.

Indeed, suppose that for somep ∼± q we havecp f I p′. Using standard
theory [9], we can decompose the GIPO corresponding to the label and obtain a
transitionp f ′ I p′′ and contextd′ so thatd′p′′ = p′.

We now use the fact thatf ′ is either discrete, consists only of tokens, or consists
of exactly one transition. Iff ′ is discrete, one uses Lemma 5.3 to obtain that also
q f ′ Iq′′, with p′′ ∼± q′′. Because GIPOs compose, we obtaincq f Id′q′′, and
clearly (p′,d′q′′) ∈ A.

If f ′ is not discrete but contains only tokens, we use Lemma 5.4 to obtain a trace

p
+i1
−→k1 . . .

+im
−→km

t
−→ p′′; yielding a corresponding traceq

+i1
−→k1 . . .

+im
−→km

τ
−→ q′′

with p′′ ∼± q′′. Using the second part of Lemma 5.2, we are able to conclude thatq
has a transition which requires precisely the added tokens to fire; meaning that we
are able to deriveq f ′ Iq′′. We are now able to use the fact that GIPOs compose
as in the previous case.
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Finally, if f contains a single transitiont, then using part 1 of Lemma 5.5, there

existi1, . . . , im and j1, . . . , jn such thatp
−i1
−→k1 . . .

−im
−→km

+ j1
−→l1 . . .

+ jn
−→ln p′′′ such that

p′′ = f ′p′′′. Then we have thatq can also perform the above trace and arrive atq′

such thatp′′′ ∼ q′. Using part 2 of Lemma 5.5,q f ′ I f ′q′. Using the fact that
GIPOs compose, we havecq f Id′ f ′q′. �

6 Conclusion and future work

We have described a way of using Petri nets in order to model open systems. The
approach is based on previous theoretical work and inherits a canonical labelled
transition system and the resulting strong bisimulation congruence. We have char-
acterised the congruence using a simpler transition system. Our work is technically
very similar to Milner’s treatment of Petri nets inside bigraphs.

As future work, we plan to analyse the exact relationship of our approach with
open nets [1]. We also plan to study weak bisimilarity which promises to be more
interesting than strong bisimilarity from an operational perspective.
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