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Abstract. We introduce adhesive categories, which are categoriéssiviicture

ensuring that pushouts along monomorphisms are well-lsehdwany types of
graphical structures used in computer science are showa ézdmples of adhe-
sive categories. Double-pushout graph rewriting gersalivell to rewriting on

arbitrary adhesive categories.

Introduction

Recently there has been renewed interest in reasoninggigipbical methods, particu-
larly within the fields of mobility and distributed compugjfil4, 20] as well as applica-
tions of semantic techniques in molecular biology [6, 4]s&ch has also progressed
on specific graphical models of computation [19]. As the namdff various models
grows, it is important to understand the basic underlyinggiples of computation on
graphical structures. Indeed, a solid understanding ofaihiedations of a general class
of models (provided bydhesive categories, introduced in this paper), together with a
collection of general semantic techniques (for examplé) [22| provide practitioners
and theoreticians alike with a toolbox of standard techesqwith which to construct
the models, define the semantics and derive proof-methodsdeoning about these.

Category theory provides uniform proofs and constructiac®ss a wide range
of models. The usual approach is to find a natural class ofjodts with the right
structure to support the range of constructions partidoltire application area. A well-
known example is the class of cartesian-closed categavlgsh provides models for
simply typed lambda calculi [18].

In this paper we shall demonstrate that adhesive categlogies structure which
allows a development of a rialfeneral theory of double-pushout (d-p) rewriting [13].
D-p graph rewriting has been widely studied and the field can be consibieslatively
mature [21, 8, 12].

In D-p rewriting, a rewrite rule is given as a spar- K — R. Roughly, the intuition
is thatL forms the left-hand side of the rewrite ruRforms the right-hand side ari€,
common to both. andR, is the sub-structure to be unchanged as the rule is appbed.
apply the rule to a structuk®, one first needs to find a matth— C of L within C. The
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rule is then applied by constructing the missing pdetdY and arrows) of the following
diagram
L+~ K—R

L

C<~—E—D

in a way which ensures that the two squares are pushout diggnce such a diagram
is constructed we may deduce tleat—> D, that is,C rewrites toD.

D-p rewriting is formulated in categorical terms and is #fere portable to struc-
tures other than directed graphs. There have been severaipas [11, 9] to isolate
classes of categories in which one can perform d-p rewriind in which one can
develop the rewriting theory to a satisfactory level. Intjgatar, several axioms were
put forward in [11] in order to prove a local Church-Rosseraitem for such general
rewrite systems. Additional axioms were needed to provereige version of the so-
called concurrency theorem [15].

An important general construction which appears in muchefiterature on graph-
ical structures in computer science is the pushout cons&truGometimes referred to as
generalised union [9], it can often be thought of as the cansbn of a larger structure
from two smaller structures by gluing them together alongaxred substructure.

One can think of adhesive categories as categories in whiglhquts along monomor-
phisms are “well-behaved”, where the paradigm for behaviegiven by the category
of sets. An example of the good behaviour of these pushotitgaighey are stable un-
der pullback (the dual notion to pushout, which intuitiven often be thought of as
a “generalised intersection”). The idea is analogous tbdhaxtensive categories [3],
which have well-behaved coproducts in a similar sense.eStoproducts can be ob-
tained with pushouts and an initial object, and an initigeabis “well-behaved” if it
is strict, one might expect that adhesive categories withiet itial object would be
extensive, and this indeed turns out to be the case.

Various notions of graphical structures used in computense form adhesive cat-
egories. This includes ordinary directed graphs, typedlgg§l] and hypergraphs [11],
amongst others. The structure of adhesive category allewte derive useful proper-
ties. For instance, the union of two subobjects is calcdlatethe pushout over their
intersection, which corresponds well with the intuitiorpofshout as generalised union.

We shall consideadhesive grammars which are d-p rewrite systems on adhesive
categories. We show that the resulting rewriting theoryai$sfactory by proving the
local Church-Rosser theorem and the concurrency theorénowithe need for extra
axioms. We shall also examine how adhesive categories fiiwihe previously con-
ceived general frameworks for rewriting [11, 9]. Many of theoms put forward in [11]
follow elegantly as lemmas from the axioms of adhesive aates.

Adhesive categories, therefore, provide a satisfactorgehm which to define a
theory of rewriting on “graph-like” structures. They are theematically elegant and
arguably less ad-hoc than previous approaches. We firmigveethat they will prove
useful in the development of further theory in the area ofasstins of graph-based com-
putation, and in particular, in the development of a contakheory of graph rewriting.

Structure of the paper. In 81 we recall the definition of extensive categories. Thisomo
of van Kampen (VK) square is given in 82. VK squares are cémtridne definition of



adhesive categories which are introduced in §3. In §4 we statl prove some basic
lemmas which hold in any adhesive category. We also showtltieasubobjects of an
object in an adhesive category form a distributive lattisgh the union of two sub-
objects constructed as the pushout over their intersedfiendevelop double-pushout
rewriting theory in adhesive categories in 85 and offer aganson with High-Level
Replacement Categories in 86. We conclude in §7 with dastfor future research.

Many of the proofs have been omitted. The interested readgrwish to consult
the full version [16].

1 Extensive categories

Throughout the paper we assume that the reader is familthrbaisic concepts of cat-
egory theory. In this section we recall briefly the notion xfemsive category [3].

Definition 1 A categoryC is said to bextensive when

() it has finite coproducts
(ii) it has pullbacks along coproduct injections
(i) given a diagram where the bottom row is a coproduct thag

X"z vy

SN U

the two squares are pullbacks if and only if the top row is aradpct.

The third axiom states what we mean when we say that the coprad-Bis “well-
behaved”: it includes the fact that coproducts are stabtkeupullback, and it implies
that coproducts are disjoint (the pullback of the coprodhjettions is initial) and that
initial objects are strict (any arrow to an initial object shlbe an isomorphism). It also
implies a cancellativity property of coproducts: given aamorphismA+B = A+C
compatible with the injections, one can construct an isqhismB = C. For an object
Z of an extensive category, the lattice Sxip¢f coproduct summands dfis a Boolean
algebra.

2 Van Kampen squares

The definition of adhesive category is stated in terms of sbimg called azan Kampen
sguare, which can be thought of as a “well-behaved pushout”, in alaimvay to which
coproducts can be thought of as “well-behaved” in an extensategory; essentially
this means that they behave as they do in the category of sets.

The name van Kampen derives from the relationship betwessethquares and the
van Kampen theorem in topology, in its “coverings versias presented for example
in [2]. This relationship is described in detail in [17].



Definition 2 (van Kampen square) A van Kampen (VK) square (i) is a pushout which
satisfies the following condition: given a commutative ciifdeof which (i) forms the
bottom face and the back faces are pullbacks,

m_C v
C A/ /C b B/
1/ \( g’ DI /
A B a " b
N m_C ¢
9 D n = N

«
A\%%B
(i) (ii)

(=]

the front faces are pullbacks if and only if the top face is ahmut. Another way of
stating the “only if” condition is that such a pushout is reqd to be stable under
pullback.

Another, equivalent, way of defining a VK square in a categdatl pullbacks is as
follows. A VK square(i) is a pushout which satisfies the property that given a commu-
tative diagrantiii), the two squares are pullbacks if and only if there existstaeaC’
and morphisms

/ , f/ C//

A/i)D/<n_B/ Al(ic/_>Bl m}/ \Nf

A B’

N O

A?D(TB AWC—f>B g p N
(iii) (iv) (v)

so that the squares (iv) are pullbacks anV) is a pushout.

By a pushout along a monomorphismwe mean a pushout, as in Diagréinabove,
in which m is a monomorphism. Similarly, ifn is a coproduct injection, we have a
pushout along a coproduct injection.

A crucial class of examples of VK squares is provided by:

Theorem 3. In an extensive category, pushouts along coproduct injections are VK
squares.

We have the following important properties of VK squares:

Lemma 4 In a VK square as ifi), if mis a monomorphism themis a monomorphism
and the square is also a pullback.



Proof. Suppose that the bottom face of the cube
C / ‘ i B

N
h B l ‘
A< B

m_ C &f
g é/

is VK. Then the top and bottom squares are pushouts, whilbdbk squares are pull-

backs ifmis a monomorphism. Thus the front faces will be pullbacke:ftont right

face being a pullback means thais a monomorphism, and the front left face being a
pullback means that the original square is a pullback.

3 Adhesive categories

We shall now proceed to define the notion of adhesive categor provide various
examples and counterexamples.

Definition 5 (Adhesive category)A categoryC is said to beadhesive if

(i) C has pushouts along monomorphisms;
(ii) C has pullbacks;
(i) pushouts along monomorphisms are VK-squares.

Just as the third axiom of extensive categories (Definitiparisures that coprod-
ucts are “well-behaved”, it is the third axiom of adhesiveegaries which ensures that
pushouts along monomorphisms are “well-behaved”. Thikides the fact that such
pushouts are stable under pullback.

Since every monomorphism Betis a coproduct injection, arfdetis extensive, we
immediately have:

Example 6 Setis adhesive.

Observe that the restriction to pushouts along monomanhis necessary: there
are pushouts iSetwhich are not VK squares. Consider the 2 element abeliamdgfeu
(the following argument works for any non-trivial group).the diagram

my Lo X ZLp g,
Zz/ *‘ \Zz

Nl(



both the bottom and the top faces are easily verified to bequistand the rear faces
are both pullbacks. However, the front two faces are nobpuaks.

Even with the restriction to pushouts along a monomorphisiamy well-known
categories fail to be adhesive.

Counterexample 7 The categoriePos Top, Gpd andCat are not adhesive.

Since the definition of adhesive category only uses pullbagkshouts, and rela-
tionships between these, we have the following constrastinvolving adhesive cate-
gories:

Proposition 8

(i) If C andD are adhesive categories then s€is D;
(i) If Cis adhesive then so af&/C andC/C for any objecC of C;
(iii) If Cis adhesive then so is any functor categtyC|.

SinceSetis adhesive, part (iii) of the proposition implies that amggheaf topos
[X,Sef is adhesive. In particular, the categdByaph of directed graphs is adhesive.
Indeed, ifC is adhesive, then so is the categ@naph(C) = [ = -, C] of internal graphs
in C.

Part (i) implies that categories of typed graphs [1], coéal(or labelled) graphs[5],
ranked graphs [14] and hypergraphs [11], considered init&x@iure on graph gram-
mars, are adhesive.

As a consequence, all proof techniques and constructioasliesive categories
can be readily applied to any of the aforementioned categafi graphs. In fact, more
generally, we have:

Proposition 9 Any elementary toposis adhesive.

This is somewhat harder to prove than the result for predbpafkes; the proof can be
foundin [17].

Part(ii) of Proposition 8 also allows us to construct examples of sigheategories
which are not toposes.

Example 10 The categorpet. = 1/Setof pointed sets (or equivalently, sets and partial

functions) is adhesive, but is not extensive, and therefsmot a topos.

4 Basic properties of adhesive categories

Here we provide several simple lemmas which hold in any edéeategory. Lemma 11
demonstrates why adhesive categories can be consideregese@lisation of exten-
sive categories. Lemmas 12, 13, 15 and 16 shed some light ghopts in adhesive
categories.

Lemma 11 An adhesive category is extensive if and only if it has a sinitial object.



Proof. In an extensive category the initial object is strict [3, wsition 2.8]. On the
other hand, in an adhesive category with strict initial ehjany arrow with domain 0
is mono. Consider the cube

A/ B

A+ B 7
in which the bottom square is a pushout along a monomorphisite the back squares
are pullbacks since the initial object is strict. By adhesigss, front squares are pull-
backs if and only if the top squares is a pushout; but this 8stshe front squares are
pullbacks if and only if the top row of these squares is a cdpod(Z=X+Y).

The conclusions of the following two lemmas are used extehsin literature on
algebraic graph rewriting. Indeed, they are usually assuaseaxioms (see [9] and §6
below) in attempts at generalising graph rewriting. Theldhio any adhesive category
by Lemma 4:

Lemma 12 Monomorphisms are stable under pushout.
Lemma 13 Pushouts along monomorphisms are also pullbacks.

The notion of pushout complement [13] is vital in algebrgip@aches to graph
rewriting.

Definition 14 Letm: C — A andg: A — B be arrows in an arbitrary categomn (s

not assumed to be mono). gushout complement of the pair(m,g) consists of arrows

f :C — B andn: B — D for which the resulting square commutes and is a pushout.
We shall sometimes refer to pushout complementsharfios, this refers to pushout
complements of pairém, g) wheremis mono.

The conclusion of the following lemma is a crucial ingredienmany applications
of graph rewriting. It has also been assumed as an axiomiildtpier to prove the con-
currency theorem (cf. Theorem 27). It is important mainlgdagse it assures that once
an occurrence of a left hand side of a rewrite rule is foundhiwit structure, then the
application of the rewrite rule results in a structure whihnique up to isomorphism
(cf. 85). In other words, rewrite rule application is furmectal up to isomorphism.

Lemma 15 Pushout complements of monos (if they exist) are unique upamor-
phism.

Proof. Suppose that the following diagrams
m C it m C_ ¥
KN ¥
A B A B
o 5 ' N D%



are pushouts and thatis mono. Consider the cube

e
AL
g\%%

in which the front right face is a pullback,: C — U is the map induced by and f,
and the unnamed arrows are identities. Then the front faweshee back left face are
pullbacks, hence the back right face is also a pullback; batottom face is a pushout,
hence the top face is a pushout. But this impliesihainvertible, since it is the pushout
of 1c. By symmetry, so too is. The induced isomorphisiji= k! : B — B’ satisfies
nj=nandjf = f'.

The final lemma of this section will be used in Section 6 to shbat adhesive
categories are high-level replacement categories:

Lemma 16 Consider a diagram

A B E
o Is v
C— D> F

in which the marked morphisms are mono, the exterior is aquisimd the right square
is a pullback. Then the left square is a pushout, and so afireguare both pullbacks
and pushouts.

Proof. This amountsto stability of the exterior pushout underfpadk alongv: D — F.

4.1 Algebra of subobjects

We can put a preorder on monomorphisms into an olject an arbitrary category
by defining a monomorphism: A — Z to be less than or equal to a monomorphism
b: B — Z precisely when there exists an arrowA — B such thabc = a. A subobject
(of Z) is an equivalence class with respect to the equivalencergesd by this preorder.
For example, subobjects Betare subsets while subobjects@Gmnaph are subgraphs.

Here we shall demonstrate that, in adhesive categoriemsiof two subobjects can
be constructed by pushout over their intersection. Thigiges further evidence of how
pushouts behave in adhesive categories as well as makirgprexise the intuition that
the pushout operation “glues together” two structures @larcommon substructure.
As a corollary, it follows that in an adhesive category thitidas of subobjects are
distributive.



Let C be an adhesive category, afid fixed object ofC. We write Subg) for the
category of subobjects & in C; it has products (=intersections), given by pullback in
C. It has a top object, given ¥ itself. If C has a strict initial object 0, then the unique
map 0— Z is a monomorphism, and is the bottom object of Ji)b(

Theorem 17. For an object Z of an adhesive category C, the category Sub(Z) of sub-
objects of Z has binary coproducts:. the coproduct of two subobjectsis the pushout in C
of their intersection.

Since pushouts are stable it follows that intersectiornsidige over unions:

Corollary 18 The lattice Suly) is distributive.

5 Double-Pushout Rewriting

Here we shall recall the basic notions of double-pushoutitieg [13,21] and show
that it can be defined within an arbitrary adhesive category.
Henceforth we shall assume tt@is an adhesive category.

Definition 19 (Production) A productionp is a span

Lk SR 1)

in C. We shall say thap is left-linear whenl is mono, andinear when botH andr are
mono. We shall lef? denote an arbitrary set of productions anddeange overP.

In order to develop an intuition of why a production is defirzsda span, we shall
restrict our attention to linear production rules. One ni@ntconsideK as a substruc-
ture of bothL andR. We think of L andR as respectively the left-hand side and the
right-hand side of the rewrite rule In order to perform the rewrite, we need to match
L as a substructure of a redé€x The structurel, thought of as a substructure lof is
exactly the part of. which is to remain invariant as we apply the ruleo

Thus, an application of a rewrite rule consists of threesstEpst we must match
as a substructure of the red€xsecondly, we delete all of parts of the redex matched
by L which are not included ii. Thirdly, we add all ofR which is not contained ik,
thereby producing a new structube The deletion and addition of structure is handled,
respectively, by finding a pushout complement and constrgiet pushout.

Definition 20 (Gluing Conditions) Given a productiorp as in (1), amatch in C is
a morphismf : L — C. A match f satisfies thegluing conditions with respect top
precisely when there exists an objécand morphismg : K — E andv: E — C such
that

g

Mm<—X

L
fl
C«

is a pushout diagram. (In other words, there exists a pustamaplement of, f) in
the sense of Definition 14.)



Definition 21 (Derivation) Given an objecC € C and a set of productior, we write
C ——=p ¢ D for a productionp € # and a morphisnf : L — C if (a) f satisfies the
gluing conditions with respect 1g and (b) there is a diagram

LK
flal
C« E

—R

In
D
in which both squares are pushouts.

The objectE in the above diagram can be thought of as a temporary statesin t
middle of the rewrite process. Returning briefly to our imfiat description, it is the
structure obtained fron® by deleting all the parts of not contained irK. Recall
from Lemma 15 that i is mono (that is, ifp is left-linear) thenE is unique up to
isomorphism. Indeed, {f is a left-linear productiorG —>p, D andC —>, + D’ then

we must haved = D'. This is a consequence of Lemma 15 and the fact that pushouts
are unique up to isomorphism.

Definition 22 (Adhesive Grammar) An adhesive grammda is a pair(C,P) whereC
is an adhesive category aRds a set of linear productions.

Assuming that all the productions are linear allows us tdveea rich rewriting
theory on adhesive categories. Henceforward we assumeéhate working over an
adhesive grammds.

5.1 Local Church-Rosser theorem

As shall be explained in section 6, adhesive categories eaifitoducts are high-level
replacement categories. In particular, we get the locar€&h&Rosser theorem [15, 9].
Before presenting this theorem we need to recall briefly thtions of parallel-
independent derivation and sequential-independentat@iv. The reader may wish to
consult [5] for a more complete presentation.
A parallel-independent derivation is a pair of derivations

C—=b>p.f, D1 and C—p,.1,D2

as illustrated in diagram (2) which satisfy an additionauieement, namely the exis-
tence of morphismss: L1 — E» ands: L, — E; which render the diagram commutative,
in the sense thabr = f; andvis= fo.

Rl%Kj_ Lz(—K2—>R2
h1 gll fl\ m lgz hz ()
l Wy 2 Wy

Similarly, asequential-independent derivation, illustrated in diagram (3), is a derivation

C >y, D1 > p2.f4 D



where there additionally exist arrows: Ry — Ez ands : L, — Ej such thatv;, s =
andv3r’ = hs.

L2<—K2—>R2

L1<— Ky —

Vi E3 W3 D

The statement of the theorem below differs from those presljopublished in the
literature in that we do not need coproducts to establisfethevalence of the first 3
items.

Theorem 23 (Local Church-Rosser)The following are equivalent

1. C—=>p, 5, D1 and C—>y, 1, Do are parallel-independent derivations
2. C—>p; 1, Dy and Dy —=>, 1 D are sequential-independent derivations
3. C—>p, r, D2 and Do —>, ¢/ D are sequential-independent derivations.

If moreover C is extensive then we may add the so-called parallelism theorem
4. C——=p 4. [f.1p) D iSaderivation.

In fact, the proof that (B>(2) remains valid more generally in the context of left-
linear productions, but the proof of the converse requiresakrity.

5.2 Concurrency Theorem

The original concurrency theorems were proved for grapmgrars [7] and later gen-
eralised to high-level replacement categories (cf. 86)Lit] vhich satisfy additional
axiom sets, there called HLR2 and HLR2*. Roughly, the corenty theorem states
that given two derivations in a sequence, together withrinfidion about how they
are related, one may construct a single derivation whickrivaises the two original
derivations and performs them “concurrently”. Moreover anay reverse this process
and deconstruct a concurrent derivation into two relatgdeetial derivations. Here we
state and prove the concurrency theorem for adhesive gresnmitihout the need for
extra axioms.

We shall first need to recall the notions of dependency miatlependent derivation
and concurrent production.

Definition 24 (Dependency Relation)Suppose thap; and p; are linear productions.
A dependency relation for (ps, p2) is an objecX together with arrows: X — Ry and
t: X — Ly for whichry, s, t, andl, can be incorporated into a diagram

S X t
rp / \ |2

Ki—= R Wt Lo +— K> (4)
91~L \ / lgz
/ ’ !
E1 " D v E>

in which all three regions are pushouts.



Definition 25 (Dependent Derivation) Consider a derivatio —>p, 1, D1—=p, 1,
D as illustrated ir(i) below

2N
r 2
I " I r K1 — Rj_ h/l fé L2 — Kz
Li+—Ki—Rg h L+ Ky =R glll / J/QIZ
floal NV e e B— D5
C vl = Wi D1 m Es W—3) D elv 1 EII, 2 vez
Ei ™ D1 v E,

(i) (i)
and a dependency relatiohfor (ps, p2). The derivation is said to b¥-dependent if
his= fot and there exist morphisnes : E; — E; andey : E; — E; satisfyingeig) = 01
andexg, = g2, and if moreover the unique map: D’ — D satisfyingdh} = h; and
dfj = f, also satisfieslw; = wie; anddv, = voe, (seeii)).
Definition 26 (Concurrent Production) Given a dependency relatiot for (pi1, p2),
the X-concurrent production pz;x p2 is the span

viu whv
C/ «— P/ — D/

obtained by taking the bottom row of the following extensidiDiagram (4)

X
t

s
Iy ry / I2 r2
Ll(—K1—>R;|_ h/l fé L2%K2—>R2
Lot la N, S el ot |
D’

/ ! ! !
C<71El EZW}D

in which T and 1 are pushouts af7is a pullback.

Theorem 27 (Concurrency Theorem).

1. Given an X-dependent derivation C —>p, ¢, D1—>p, 1, D there exists an X-
concurrent derivation C —>p,. p, D

2. Given an X-concurrent derivation C—=>p .., D, there exists an X-dependent
derivation C —>p, 1, D1—=>p, 1, D.

6 Relation with High-Level Replacement Categories

High-level replacement categories [9—11] or HLR-categ®@ncompass several at-
tempts to isolate general categorical axioms which leadategories in which one
can define double-pushout graph rewriting and prove usk&drems such as the lo-
cal Church-Rosser theorem and the concurrency theorem.

HLR-categories usually have axioms which are parametdsedan arbitrary class
of morphismsM . Here we give a simplified version of the definition which agse
in [9]. The simplification is that we tak@/ to be the class of monomorphisms: we
justify this by noting that this is the case in the majorityeahmples.



Definition 28 (HLR-categories) A categoryS is an HLR-category if it satisfies the
following axioms:

pairsC — A — B with at least one of the arrows mono have a pushout;
pairsB — D « C with both morphisms mono have pullbacks;

monos are preserved by pushout;

finite coproducts exist;

pushouts of monos are pullbacks;

pushout-pullback decomposition holds: that is, giveragém

oukrwNE

A B E
s Iy

CoyDyF

if the marked morphisms are mono, the whole rectangle is hquisand the right
square is a pullback, then the left square is a pushout.

Lemma 29 Any adhesive category with an initial object is an HLR-catgg
Proof. This follows immediately from Lemmas 12, 13, and 16.

The axioms listed above are enough to prove the local ChRadser theorem (cf.
Theorem 23), bunhot the concurrency theorem (cf. Theorem 27). To prove ther]atte
extra axioms had to be introduced in [11], such as the cointiusf the following
lemma. Interestingly, it is almost the dual of the main axiofradhesive categories.

Lemma 30 (Cube-pushout-pullback-lemma [11])Given a cube in which all arrows
in the top and bottom faces are mono, if the top face is a pcklbad the front faces are
pushouts, then the bottom face is a pullback if and only ifithek faces are pushouts.

Proof. Since the front faces are pushouts along monomorphismg atfeealso pull-
backs.

If the bottom face is a pullback, then the back faces are sty stability of the
pushouts on the front faces. Suppose conversely that thefees are pushouts; since
they are pushouts along monomorphisms, they are also pkb®ne now simply
“rotates the cube”: since the front right and back left faaes pushouts, and the top
and back right faces are pullbacks, it follows by adhesigsrieat the bottom square is
a pullback.

An HLR-category which has the conclusion of Lemma 30 as atitiaddl axiom
is sometimes referred to as an HLR2-category [11]. It is imdiate, therefore, that any
adhesive category with an initial object is an HLR2-catggor

The strongest axiom system for general rewriting is enjdpyeithe so-called HLR2*-
categories [11]. These are HLR2-categories which, aduitlg, have the conclusion of
Lemma 15 as an axiom, that is, pushout complements of moeoi tirey exist, unique
up to isomorphism. Finally, they satisfy an axiom known astthisted-triple-pushout-
condition. We believe that this axiom does not hold in antesby adhesive category,
although it does hold, for instance, in any topos. Indeet fiossible to extend the
definition of adhesive categories in a natural way so thathsted-triple-pushout-
condition holds [17].



7 Conclusions and future work

We introduced the notions of van Kampen (VK) square and adhesitegory. VK
squares are “well-behaved pushouts”, and a category issagh&hen pushouts along
monos are VK. Adhesive categories are closely related &nsite categories.

Double-pushout (d-p) rewriting can be defined in an arbjt@thesive category.
We introduced adhesive grammars, which are adhesive c&sguith a set of linear
productions. Adhesive grammars have sufficient structuréhe development of a rich
rewriting theory. In particular, we proved the local ChueRbsser and the so-called
concurrency theorem within the setting of adhesive grarsmake have also shown
that adhesive categories satisfy many of the axioms [9, 1i¢lwwere proposed in
order to prove these theorems. Thus, we have arrived at 8 ofasategories which
supports such a theory of d-p rewriting, however, we belibat adhesive categories
are mathematically elegant and less ad-hoc than previapopals.

In order to back this claim and to further develop the thedrgdhesive categories,
we have demonstrated a number of useful properties. Fariost subobject union is
formed as a pushout over the intersection, and subobjesrsittion distributes over
subobject union. We have provided some closure propertigshvallow the construc-
tion of new adhesive categories from old. Any elementarp$op adhesive, but there
are examples of adhesive categories which are not toposteesive categories in-
clude many well-known notions of graph structures used mpmater science and are
instances of HLR2-categories [11].

We believe that adhesive categories will be useful in theeligment of specific
graphical models of computation and the development of sémiechniques for rea-
soning about such models. The rewriting theory needs to belaeed further, with,
for example, the construction of canonical dependencyiogisfrom derivations [11].
A related task is to clarify the relationship of adhesiveegatries and the HLR2*-
categories [11].

Another possible direction for future work is to examine Wi adhesive cat-
egories have enough structure so that groupoidal relatishquts [22] can be con-
structed in cospan bicategories over adhesive categ8ues. cospan bicategories pro-
vide a way of understanding graphs in a modular fashion atidovdgvide a general
class of models which should include bigraphs [19] as examphA further question
to be resolved is whether demanding the good behaviour dfquis only along some
class of monomorphisms will result in further interestirgegories.
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