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Abstract. We introduce adhesive categories, which are categories with structure
ensuring that pushouts along monomorphisms are well-behaved. Many types of
graphical structures used in computer science are shown to be examples of adhe-
sive categories. Double-pushout graph rewriting generalises well to rewriting on
arbitrary adhesive categories.

Introduction

Recently there has been renewed interest in reasoning usinggraphical methods, particu-
larly within the fields of mobility and distributed computing [14, 20] as well as applica-
tions of semantic techniques in molecular biology [6, 4]. Research has also progressed
on specific graphical models of computation [19]. As the number of various models
grows, it is important to understand the basic underlying principles of computation on
graphical structures. Indeed, a solid understanding of thefoundations of a general class
of models (provided byadhesive categories, introduced in this paper), together with a
collection of general semantic techniques (for example [22]) will provide practitioners
and theoreticians alike with a toolbox of standard techniques with which to construct
the models, define the semantics and derive proof-methods for reasoning about these.

Category theory provides uniform proofs and constructionsacross a wide range
of models. The usual approach is to find a natural class of categories with the right
structure to support the range of constructions particularto the application area. A well-
known example is the class of cartesian-closed categories,which provides models for
simply typed lambda calculi [18].

In this paper we shall demonstrate that adhesive categorieshave structure which
allows a development of a richgeneral theory of double-pushout (d-p) rewriting [13].
D-p graph rewriting has been widely studied and the field can be considered relatively
mature [21, 8, 12].

In D-p rewriting, a rewrite rule is given as a spanL←K→R. Roughly, the intuition
is thatL forms the left-hand side of the rewrite rule,R forms the right-hand side andK,
common to bothL andR, is the sub-structure to be unchanged as the rule is applied.To
apply the rule to a structureC, one first needs to find a matchL→C of L within C. The
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rule is then applied by constructing the missing parts (E, D and arrows) of the following
diagram

L
��

K
��

oo // R
��

C Eoo // D

in a way which ensures that the two squares are pushout diagrams. Once such a diagram
is constructed we may deduce thatC B D, that is,C rewrites toD.

D-p rewriting is formulated in categorical terms and is therefore portable to struc-
tures other than directed graphs. There have been several attempts [11, 9] to isolate
classes of categories in which one can perform d-p rewritingand in which one can
develop the rewriting theory to a satisfactory level. In particular, several axioms were
put forward in [11] in order to prove a local Church-Rosser theorem for such general
rewrite systems. Additional axioms were needed to prove a general version of the so-
called concurrency theorem [15].

An important general construction which appears in much of the literature on graph-
ical structures in computer science is the pushout construction. Sometimes referred to as
generalised union [9], it can often be thought of as the construction of a larger structure
from two smaller structures by gluing them together along a shared substructure.

One can think of adhesive categories as categories in which pushouts along monomor-
phisms are “well-behaved”, where the paradigm for behaviour is given by the category
of sets. An example of the good behaviour of these pushouts isthat they are stable un-
der pullback (the dual notion to pushout, which intuitivelycan often be thought of as
a “generalised intersection”). The idea is analogous to that of extensive categories [3],
which have well-behaved coproducts in a similar sense. Since coproducts can be ob-
tained with pushouts and an initial object, and an initial object is “well-behaved” if it
is strict, one might expect that adhesive categories with a strict initial object would be
extensive, and this indeed turns out to be the case.

Various notions of graphical structures used in computer science form adhesive cat-
egories. This includes ordinary directed graphs, typed graphs [1] and hypergraphs [11],
amongst others. The structure of adhesive category allows us to derive useful proper-
ties. For instance, the union of two subobjects is calculated as the pushout over their
intersection, which corresponds well with the intuition ofpushout as generalised union.

We shall consideradhesive grammars which are d-p rewrite systems on adhesive
categories. We show that the resulting rewriting theory is satisfactory by proving the
local Church-Rosser theorem and the concurrency theorem without the need for extra
axioms. We shall also examine how adhesive categories fit within the previously con-
ceived general frameworks for rewriting [11, 9]. Many of theaxioms put forward in [11]
follow elegantly as lemmas from the axioms of adhesive categories.

Adhesive categories, therefore, provide a satisfactory model in which to define a
theory of rewriting on “graph-like” structures. They are mathematically elegant and
arguably less ad-hoc than previous approaches. We firmly believe that they will prove
useful in the development of further theory in the area of semantics of graph-based com-
putation, and in particular, in the development of a contextual theory of graph rewriting.

Structure of the paper. In §1 we recall the definition of extensive categories. The notion
of van Kampen (VK) square is given in §2. VK squares are central in the definition of



adhesive categories which are introduced in §3. In §4 we state and prove some basic
lemmas which hold in any adhesive category. We also show thatthe subobjects of an
object in an adhesive category form a distributive lattice,with the union of two sub-
objects constructed as the pushout over their intersection. We develop double-pushout
rewriting theory in adhesive categories in §5 and offer a comparison with High-Level
Replacement Categories in §6. We conclude in §7 with directions for future research.

Many of the proofs have been omitted. The interested reader may wish to consult
the full version [16].

1 Extensive categories

Throughout the paper we assume that the reader is familiar with basic concepts of cat-
egory theory. In this section we recall briefly the notion of extensive category [3].

Definition 1 A categoryC is said to beextensive when

(i) it has finite coproducts
(ii) it has pullbacks along coproduct injections

(iii) given a diagram where the bottom row is a coproduct diagram

X
r
��

m // Z
h
��

Y
s
��

noo

A
i
// A + B B

j
oo

the two squares are pullbacks if and only if the top row is a coproduct.

The third axiom states what we mean when we say that the coproductA+B is “well-
behaved”: it includes the fact that coproducts are stable under pullback, and it implies
that coproducts are disjoint (the pullback of the coproductinjections is initial) and that
initial objects are strict (any arrow to an initial object must be an isomorphism). It also
implies a cancellativity property of coproducts: given an isomorphismA + B ∼= A +C
compatible with the injections, one can construct an isomorphismB∼= C. For an object
Z of an extensive category, the lattice Sub(Z) of coproduct summands ofZ is a Boolean
algebra.

2 Van Kampen squares

The definition of adhesive category is stated in terms of something called avan Kampen
square, which can be thought of as a “well-behaved pushout”, in a similar way to which
coproducts can be thought of as “well-behaved” in an extensive category; essentially
this means that they behave as they do in the category of sets.

The name van Kampen derives from the relationship between these squares and the
van Kampen theorem in topology, in its “coverings version”,as presented for example
in [2]. This relationship is described in detail in [17].



Definition 2 (van Kampen square) A van Kampen (VK) square (i) is a pushout which
satisfies the following condition: given a commutative cube(ii) of which (i) forms the
bottom face and the back faces are pullbacks,

C f
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?m

����
�

A

g ��
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? B

n����
�

D

(i)

C′m′

vvnnnnnn f ′
  

AA

c

��

A′

a

��

g′
  A

A B′

b

��

n′
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(ii)

the front faces are pullbacks if and only if the top face is a pushout. Another way of
stating the “only if” condition is that such a pushout is required to be stable under
pullback.

Another, equivalent, way of defining a VK square in a categorywith pullbacks is as
follows. A VK square(i) is a pushout which satisfies the property that given a commu-
tative diagram(iii), the two squares are pullbacks if and only if there exists an objectC′

and morphisms

A′

a
��

g′
// D′

d
��

B′
n′oo

b
��

A g
// D Bn

oo

(iii)

A′

a
��

C′
m′oo

c
��

f ′
// B′

b
��

A Cm
oo

f
// B

(iv)

C′ f ′

  A
Am′

~~}}

A′

g′
  A

A B′

n′
~~}}

D′

(v)

so that the squares in(iv) are pullbacks and(v) is a pushout.
By a pushout along a monomorphism we mean a pushout, as in Diagram(i) above,

in which m is a monomorphism. Similarly, ifm is a coproduct injection, we have a
pushout along a coproduct injection.

A crucial class of examples of VK squares is provided by:

Theorem 3. In an extensive category, pushouts along coproduct injections are VK
squares.

We have the following important properties of VK squares:

Lemma 4 In a VK square as in(i), if m is a monomorphism thenn is a monomorphism
and the square is also a pullback.



Proof. Suppose that the bottom face of the cube
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is VK. Then the top and bottom squares are pushouts, while theback squares are pull-
backs ifm is a monomorphism. Thus the front faces will be pullbacks: the front right
face being a pullback means thatn is a monomorphism, and the front left face being a
pullback means that the original square is a pullback.

3 Adhesive categories

We shall now proceed to define the notion of adhesive category, and provide various
examples and counterexamples.

Definition 5 (Adhesive category)A categoryC is said to beadhesive if

(i) C has pushouts along monomorphisms;
(ii) C has pullbacks;

(iii) pushouts along monomorphisms are VK-squares.

Just as the third axiom of extensive categories (Definition 1) ensures that coprod-
ucts are “well-behaved”, it is the third axiom of adhesive categories which ensures that
pushouts along monomorphisms are “well-behaved”. This includes the fact that such
pushouts are stable under pullback.

Since every monomorphism inSetis a coproduct injection, andSetis extensive, we
immediately have:

Example 6 Setis adhesive.

Observe that the restriction to pushouts along monomorphisms is necessary: there
are pushouts inSetwhich are not VK squares. Consider the 2 element abelian group Z2

(the following argument works for any non-trivial group). In the diagram

Z2×Z2π1

uukkkk π2
&&M

MM

+

��

Z2

��

��
@@

Z2

��

tthhhhhhhhhh

1

��

Z2
kkk

k

uukk &&N
NNN

1
  A

A 1
sshhhhhhhhhh

1



both the bottom and the top faces are easily verified to be pushouts and the rear faces
are both pullbacks. However, the front two faces are not pullbacks.

Even with the restriction to pushouts along a monomorphism,many well-known
categories fail to be adhesive.

Counterexample 7 The categoriesPos, Top, Gpd andCat are not adhesive.

Since the definition of adhesive category only uses pullbacks, pushouts, and rela-
tionships between these, we have the following constructions involving adhesive cate-
gories:

Proposition 8

(i) If C andD are adhesive categories then so isC×D;
(ii) If C is adhesive then so areC/C andC/C for any objectC of C;

(iii) If C is adhesive then so is any functor category[X,C].

SinceSet is adhesive, part (iii) of the proposition implies that any presheaf topos
[X,Set] is adhesive. In particular, the categoryGraph of directed graphs is adhesive.
Indeed, ifC is adhesive, then so is the categoryGraph(C)= [·⇒ ·, C] of internal graphs
in C.

Part (ii) implies that categories of typed graphs [1], coloured (or labelled) graphs [5],
ranked graphs [14] and hypergraphs [11], considered in the literature on graph gram-
mars, are adhesive.

As a consequence, all proof techniques and constructions inadhesive categories
can be readily applied to any of the aforementioned categories of graphs. In fact, more
generally, we have:

Proposition 9 Any elementary topos is adhesive.

This is somewhat harder to prove than the result for presheaftoposes; the proof can be
found in [17].

Part(ii) of Proposition 8 also allows us to construct examples of adhesive categories
which are not toposes.

Example 10 The categorySet∗= 1/Setof pointed sets (or equivalently, sets and partial
functions) is adhesive, but is not extensive, and therefore, is not a topos.

4 Basic properties of adhesive categories

Here we provide several simple lemmas which hold in any adhesive category. Lemma 11
demonstrates why adhesive categories can be considered as ageneralisation of exten-
sive categories. Lemmas 12, 13, 15 and 16 shed some light on pushouts in adhesive
categories.

Lemma 11 An adhesive category is extensive if and only if it has a strict initial object.



Proof. In an extensive category the initial object is strict [3, Proposition 2.8]. On the
other hand, in an adhesive category with strict initial object, any arrow with domain 0
is mono. Consider the cube

0
uujjjjjjjjj
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��
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II

I Y
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��
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llllll
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$$I

II B
jvvmmmmm

A + B

in which the bottom square is a pushout along a monomorphism,while the back squares
are pullbacks since the initial object is strict. By adhesiveness, front squares are pull-
backs if and only if the top squares is a pushout; but this saysthat the front squares are
pullbacks if and only if the top row of these squares is a coproduct (Z=X+Y).

The conclusions of the following two lemmas are used extensively in literature on
algebraic graph rewriting. Indeed, they are usually assumed as axioms (see [9] and §6
below) in attempts at generalising graph rewriting. They hold in any adhesive category
by Lemma 4:

Lemma 12 Monomorphisms are stable under pushout.

Lemma 13 Pushouts along monomorphisms are also pullbacks.

The notion of pushout complement [13] is vital in algebraic approaches to graph
rewriting.

Definition 14 Let m : C→ A andg : A→ B be arrows in an arbitrary category (m is
not assumed to be mono). Apushout complement of the pair(m,g) consists of arrows
f : C→ B andn : B→ D for which the resulting square commutes and is a pushout.
We shall sometimes refer to pushout complements ofmonos, this refers to pushout
complements of pairs(m,g) wherem is mono.

The conclusion of the following lemma is a crucial ingredient in many applications
of graph rewriting. It has also been assumed as an axiom [11] in order to prove the con-
currency theorem (cf. Theorem 27). It is important mainly because it assures that once
an occurrence of a left hand side of a rewrite rule is found within a structure, then the
application of the rewrite rule results in a structure whichis unique up to isomorphism
(cf. §5). In other words, rewrite rule application is functional up to isomorphism.

Lemma 15 Pushout complements of monos (if they exist) are unique up toisomor-
phism.

Proof. Suppose that the following diagrams

Cm
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f
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>> B′

n′
~~~~

D



are pushouts and thatm is mono. Consider the cube
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in which the front right face is a pullback,h : C→U is the map induced byf and f ′,
and the unnamed arrows are identities. Then the front faces and the back left face are
pullbacks, hence the back right face is also a pullback; and the bottom face is a pushout,
hence the top face is a pushout. But this implies thatk is invertible, since it is the pushout
of 1C. By symmetry, so too isl. The induced isomorphismj = kl−1 : B→ B′ satisfies
n′ j = n and j f = f ′.

The final lemma of this section will be used in Section 6 to showthat adhesive
categories are high-level replacement categories:

Lemma 16 Consider a diagram

A��
l ��

k // B // r //
��
s
��

E��
v
��

C u
// D //

w
// F

in which the marked morphisms are mono, the exterior is a pushout and the right square
is a pullback. Then the left square is a pushout, and so all squares are both pullbacks
and pushouts.

Proof. This amounts to stability of the exterior pushout under pullback alongw : D→ F .

4.1 Algebra of subobjects

We can put a preorder on monomorphisms into an objectZ of an arbitrary category
by defining a monomorphisma : A→ Z to be less than or equal to a monomorphism
b : B→ Z precisely when there exists an arrowc : A→ B such thatbc = a. A subobject
(of Z) is an equivalence class with respect to the equivalence generated by this preorder.
For example, subobjects inSetare subsets while subobjects inGraph are subgraphs.

Here we shall demonstrate that, in adhesive categories, unions of two subobjects can
be constructed by pushout over their intersection. This provides further evidence of how
pushouts behave in adhesive categories as well as making more precise the intuition that
the pushout operation “glues together” two structures along a common substructure.
As a corollary, it follows that in an adhesive category the lattices of subobjects are
distributive.



Let C be an adhesive category, andZ a fixed object ofC. We write Sub(Z) for the
category of subobjects ofZ in C; it has products (=intersections), given by pullback in
C. It has a top object, given byZ itself. If C has a strict initial object 0, then the unique
map 0→ Z is a monomorphism, and is the bottom object of Sub(Z).

Theorem 17. For an object Z of an adhesive category C, the category Sub(Z) of sub-
objects of Z has binary coproducts: the coproduct of two subobjects is the pushout in C
of their intersection.

Since pushouts are stable it follows that intersections distribute over unions:

Corollary 18 The lattice Sub(Z) is distributive.

5 Double-Pushout Rewriting

Here we shall recall the basic notions of double-pushout rewriting [13, 21] and show
that it can be defined within an arbitrary adhesive category.

Henceforth we shall assume thatC is an adhesive category.

Definition 19 (Production) A productionp is a span

L K
loo r // R (1)

in C. We shall say thatp is left-linear whenl is mono, andlinear when bothl andr are
mono. We shall letP denote an arbitrary set of productions and letp range overP .

In order to develop an intuition of why a production is definedas a span, we shall
restrict our attention to linear production rules. One may then considerK as a substruc-
ture of bothL andR. We think of L andR as respectively the left-hand side and the
right-hand side of the rewrite rulep. In order to perform the rewrite, we need to match
L as a substructure of a redexC. The structureK, thought of as a substructure ofL, is
exactly the part ofL which is to remain invariant as we apply the rule toC.

Thus, an application of a rewrite rule consists of three steps. First we must matchL
as a substructure of the redexC; secondly, we delete all of parts of the redex matched
by L which are not included inK. Thirdly, we add all ofR which is not contained inK,
thereby producing a new structureD. The deletion and addition of structure is handled,
respectively, by finding a pushout complement and constructing a pushout.

Definition 20 (Gluing Conditions) Given a productionp as in (1), amatch in C is
a morphismf : L→ C. A match f satisfies thegluing conditions with respect top
precisely when there exists an objectE and morphismsg : K→ E andv : E →C such
that

L
f ��

K
loo

g
��

C Ev
oo

is a pushout diagram. (In other words, there exists a pushoutcomplement of(l, f ) in
the sense of Definition 14.)



Definition 21 (Derivation) Given an objectC ∈C and a set of productionsP , we write
C Bp, f D for a productionp ∈ P and a morphismf : L→ C if (a) f satisfies the
gluing conditions with respect tol, and (b) there is a diagram

L
f ��

K
g
��

loo r // R
h��

C Ev
oo

w
// D

in which both squares are pushouts.

The objectE in the above diagram can be thought of as a temporary state in the
middle of the rewrite process. Returning briefly to our informal description, it is the
structure obtained fromC by deleting all the parts ofL not contained inK. Recall
from Lemma 15 that ifl is mono (that is, ifp is left-linear) thenE is unique up to
isomorphism. Indeed, ifp is a left-linear production,C Bp, f D andC Bp, f D′ then
we must haveD ∼= D′. This is a consequence of Lemma 15 and the fact that pushouts
are unique up to isomorphism.

Definition 22 (Adhesive Grammar) An adhesive grammarG is a pair〈C,P〉whereC
is an adhesive category andP is a set of linear productions.

Assuming that all the productions are linear allows us to derive a rich rewriting
theory on adhesive categories. Henceforward we assume thatwe are working over an
adhesive grammarG.

5.1 Local Church-Rosser theorem

As shall be explained in section 6, adhesive categories withcoproducts are high-level
replacement categories. In particular, we get the local Church-Rosser theorem [15, 9].

Before presenting this theorem we need to recall briefly the notions of parallel-
independent derivation and sequential-independent derivation. The reader may wish to
consult [5] for a more complete presentation.

A parallel-independent derivation is a pair of derivations

C Bp1, f1 D1 and C Bp2, f2D2

as illustrated in diagram (2) which satisfy an additional requirement, namely the exis-
tence of morphismsr : L1→ E2 ands : L2→ E1 which render the diagram commutative,
in the sense thatv2r = f1 andv1s = f2.

R1

h1
��

K1

g1
��

r1oo
l1 // L1 r

&&
f1

??

��
??

??

L2s

xx
f2

��

����
��

K2

g2
��

l2oo
r2 // R2

h2
��

D1 E1w1
oo

v1
// C E2v2

oo
w2

// D2

(2)

Similarly, asequential-independent derivation, illustrated in diagram (3), is a derivation

C Bp1, f1 D1 Bp2, f ′2
D



where there additionally exist arrowsr′ : R1→ E3 ands′ : L2→ E1 such thatw1s′ = f ′2
andv3r′ = h1.

L1

f1
��

K1

g1
��

l1oo
r1 // R1 r′

''
h1

AA

  A
AA

A

L2s′

ww
f ′2

}}

~~}}
}}

K2

g′2
��

l2oo
r2 // R2

h′2
��

C E1v1
oo

w1
// D1 E3v3

oo
w3

// D

(3)

The statement of the theorem below differs from those previously published in the
literature in that we do not need coproducts to establish theequivalence of the first 3
items.

Theorem 23 (Local Church-Rosser).The following are equivalent

1. C Bp1, f1 D1 and C Bp2, f2 D2 are parallel-independent derivations
2. C Bp1, f1 D1 and D1 Bp2, f ′2

D are sequential-independent derivations
3. C Bp2, f2 D2 and D2 Bp1, f ′1

D are sequential-independent derivations.

If moreover C is extensive then we may add the so-called parallelism theorem

4. C Bp1+p2,[ f1, f2] D is a derivation.

In fact, the proof that (1)⇒(2) remains valid more generally in the context of left-
linear productions, but the proof of the converse requires linearity.

5.2 Concurrency Theorem

The original concurrency theorems were proved for graph grammars [7] and later gen-
eralised to high-level replacement categories (cf. §6) in [11] which satisfy additional
axiom sets, there called HLR2 and HLR2*. Roughly, the concurrency theorem states
that given two derivations in a sequence, together with information about how they
are related, one may construct a single derivation which internalises the two original
derivations and performs them “concurrently”. Moreover, one may reverse this process
and deconstruct a concurrent derivation into two related sequential derivations. Here we
state and prove the concurrency theorem for adhesive grammars without the need for
extra axioms.

We shall first need to recall the notions of dependency relation, dependent derivation
and concurrent production.

Definition 24 (Dependency Relation)Suppose thatp1 andp2 are linear productions.
A dependency relation for 〈p1, p2〉 is an objectX together with arrowss : X → R1 and
t : X → L2 for which r1, s, t, andl2 can be incorporated into a diagram

X
s
}}||

|| t
!!B

BB
B

K1

g′1 ��

r1 // R1 h′1
��

@@
@@

L2f ′2
��~~

~~
K2

l2oo

g′2��

E ′1 w′1

// D′ E ′2v′2

oo

(4)

in which all three regions are pushouts.



Definition 25 (Dependent Derivation) Consider a derivationC Bp1, f1 D1 Bp2, f2
D as illustrated in(i) below

L1
f1 ��

K1
g1 ��

l1oo
r1 // R1 h1

!!B
BB

B
L2f2

}}||
||

K2
g2��

l2oo
r2 // R2

h2��

C E1v1
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w1
// D1 E3v3

oo
w3

// D

(i)

X
s
}}{{

{{ t
!!C

CC
C

K1

g′1 ��

r1 // R1 h′1
  

AA
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L2f ′2
~~}}

}}
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l2oo

g′2��

E ′1
e1 ��

w′1

// D′

d��

E ′2
e2��

v′2

oo

E1 w1
// D1 E2v2

oo

(ii)

and a dependency relationX for 〈p1, p2〉. The derivation is said to beX-dependent if
h1s = f2t and there exist morphismse1 : E ′1→ E1 ande2 : E ′2→ E2 satisfyinge1g′1 = g1

ande2g′2 = g2, and if moreover the unique mapd : D′ → D1 satisfyingdh′1 = h1 and
d f ′2 = f2 also satisfiesdw′1 = w1e1 anddv′2 = v2e2 (see(ii)).

Definition 26 (Concurrent Production) Given a dependency relationX for 〈p1, p2〉,
theX-concurrent production p1;X p2 is the span

C′ P′
v′1u′

oo
w′2v′

// D′

obtained by taking the bottom row of the following extensionof Diagram (4)

X
s
}}||

|| t
!!B

BB
B

L1

f ′1 ��

K1

†

l1oo

g′1��

r1 // R1 h′1
��

@@
@@

L2f ′2
��~~

~~
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l2oo
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r2 // R2

h2��

C′ E ′1v′1

oo

w′1

// D′ E ′2v′2

oo

w′2

// D′

P′
]

v′

==

u′

aa

in which † and ‡ are pushouts and] is a pullback.

Theorem 27 (Concurrency Theorem).

1. Given an X-dependent derivation C Bp1, f1 D1 Bp2, f2 D there exists an X-
concurrent derivation C Bp1;X p2 D

2. Given an X-concurrent derivation C Bp1;X p2 D, there exists an X-dependent
derivation C Bp1, f1 D1 Bp2, f2 D.

6 Relation with High-Level Replacement Categories

High-level replacement categories [9–11] or HLR-categories encompass several at-
tempts to isolate general categorical axioms which lead to categories in which one
can define double-pushout graph rewriting and prove useful theorems such as the lo-
cal Church-Rosser theorem and the concurrency theorem.

HLR-categories usually have axioms which are parametrisedover an arbitrary class
of morphismsM . Here we give a simplified version of the definition which appears
in [9]. The simplification is that we takeM to be the class of monomorphisms: we
justify this by noting that this is the case in the majority ofexamples.



Definition 28 (HLR-categories) A categoryS is an HLR-category if it satisfies the
following axioms:

1. pairsC← A→ B with at least one of the arrows mono have a pushout;
2. pairsB→ D←C with both morphisms mono have pullbacks;
3. monos are preserved by pushout;
4. finite coproducts exist;
5. pushouts of monos are pullbacks;
6. pushout-pullback decomposition holds: that is, given a diagram

A��
l ��

k // B // r //
��
s
��

E��
v
��

C u
// D //

w
// F

if the marked morphisms are mono, the whole rectangle is a pushout and the right
square is a pullback, then the left square is a pushout.

Lemma 29 Any adhesive category with an initial object is an HLR-category.

Proof. This follows immediately from Lemmas 12, 13, and 16.

The axioms listed above are enough to prove the local Church-Rosser theorem (cf.
Theorem 23), butnot the concurrency theorem (cf. Theorem 27). To prove the latter,
extra axioms had to be introduced in [11], such as the conclusion of the following
lemma. Interestingly, it is almost the dual of the main axiomof adhesive categories.

Lemma 30 (Cube-pushout-pullback-lemma [11])Given a cube in which all arrows
in the top and bottom faces are mono, if the top face is a pullback and the front faces are
pushouts, then the bottom face is a pullback if and only if theback faces are pushouts.

Proof. Since the front faces are pushouts along monomorphisms, they are also pull-
backs.

If the bottom face is a pullback, then the back faces are pushouts by stability of the
pushouts on the front faces. Suppose conversely that the back faces are pushouts; since
they are pushouts along monomorphisms, they are also pullbacks. One now simply
“rotates the cube”: since the front right and back left facesare pushouts, and the top
and back right faces are pullbacks, it follows by adhesiveness that the bottom square is
a pullback.

An HLR-category which has the conclusion of Lemma 30 as an additional axiom
is sometimes referred to as an HLR2-category [11]. It is immediate, therefore, that any
adhesive category with an initial object is an HLR2-category.

The strongest axiom system for general rewriting is enjoyedby the so-called HLR2*-
categories [11]. These are HLR2-categories which, additionally, have the conclusion of
Lemma 15 as an axiom, that is, pushout complements of monos are, if they exist, unique
up to isomorphism. Finally, they satisfy an axiom known as the twisted-triple-pushout-
condition. We believe that this axiom does not hold in an arbitrary adhesive category,
although it does hold, for instance, in any topos. Indeed, itis possible to extend the
definition of adhesive categories in a natural way so that thetwisted-triple-pushout-
condition holds [17].



7 Conclusions and future work

We introduced the notions of van Kampen (VK) square and adhesive category. VK
squares are “well-behaved pushouts”, and a category is adhesive when pushouts along
monos are VK. Adhesive categories are closely related to extensive categories.

Double-pushout (d-p) rewriting can be defined in an arbitrary adhesive category.
We introduced adhesive grammars, which are adhesive categories with a set of linear
productions. Adhesive grammars have sufficient structure for the development of a rich
rewriting theory. In particular, we proved the local Church-Rosser and the so-called
concurrency theorem within the setting of adhesive grammars. We have also shown
that adhesive categories satisfy many of the axioms [9, 11] which were proposed in
order to prove these theorems. Thus, we have arrived at a class of categories which
supports such a theory of d-p rewriting, however, we believethat adhesive categories
are mathematically elegant and less ad-hoc than previous proposals.

In order to back this claim and to further develop the theory of adhesive categories,
we have demonstrated a number of useful properties. For instance, subobject union is
formed as a pushout over the intersection, and subobject intersection distributes over
subobject union. We have provided some closure properties which allow the construc-
tion of new adhesive categories from old. Any elementary topos is adhesive, but there
are examples of adhesive categories which are not toposes. Adhesive categories in-
clude many well-known notions of graph structures used in computer science and are
instances of HLR2-categories [11].

We believe that adhesive categories will be useful in the development of specific
graphical models of computation and the development of semantic techniques for rea-
soning about such models. The rewriting theory needs to be developed further, with,
for example, the construction of canonical dependency relations from derivations [11].
A related task is to clarify the relationship of adhesive categories and the HLR2*-
categories [11].

Another possible direction for future work is to examine whether adhesive cat-
egories have enough structure so that groupoidal relative pushouts [22] can be con-
structed in cospan bicategories over adhesive categories.Such cospan bicategories pro-
vide a way of understanding graphs in a modular fashion and will provide a general
class of models which should include bigraphs [19] as examples. A further question
to be resolved is whether demanding the good behaviour of pushouts only along some
class of monomorphisms will result in further interesting categories.
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