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ADHESIVE AND QUASIADHESIVE CATEGORIES ∗

STEPHENLACK 1 AND PAWEŁ SOBOCIŃSKI2

Abstract. We introduce adhesive categories, which are categories with struc-
ture ensuring that pushouts along monomorphisms are well-behaved, as well
as quasiadhesive categories which restrict attention to regular monomorphisms.
Many examples of graphical structures used in computer science are shown to
be examples of adhesive and quasiadhesive categories. Double-pushout graph
rewriting generalizes well to rewriting on arbitrary adhesive and quasiadhesive
categories.
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INTRODUCTION

Recently there has been renewed interest in reasoning using graphical methods, partic-
ularly within the fields of mobility and distributed computing [15,21] as well as applica-
tions of semantic techniques in molecular biology [4,6]. Research has also progressed on
specific graphical models of computation [20]. As the number of various models grows,
it is important to understand the basic underlying principles of computation on graphical
structures. Indeed, a solid understanding of the foundations of a general class of models
(provided byadhesive categories), together with a collection of general semantic tech-
niques (for example [23]) will provide practitioners and theoreticians alike with a toolbox
of standard techniques with which to construct the models, define the semantics and de-
rive proof-methods for reasoning about these.

Category theory provides uniform proofs and constructions across a wide range of
models. The usual approach is to find a natural class of categories with the right structure
to support the range of constructions particular to the application area. A well-known
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example is the class of cartesian-closed categories, which provides models for simply
typed lambda calculi [19].

In this paper we shall demonstrate that adhesive categories have structure which al-
lows a development of a richgeneral theory of double-pushout (DPO) rewriting [14].
DPOgraph rewriting has been widely studied and the field can be considered relatively
mature [8,13,22].

In DPO rewriting, a rewrite rule is given as a spanL← K→ R. Roughly, the intuition
is thatL forms the left-hand side of the rewrite rule,R forms the right-hand side andK,
common to bothL andR, is the sub-structure to be unchanged as the rule is applied. To
apply the rule to a structureC, one first needs to find a matchL→C of L within C. The
rule is then applied by constructing the missing parts (E, D and arrows) of the following
diagram

L
��

K
��

oo // R
��

C Eoo // D

in a way which ensures that the two squares are pushout diagrams. Once such a diagram
is constructed we may deduce thatC B D, that is,C rewrites toD.

DPO rewriting is formulated in categorical terms and is therefore portable to structures
other than directed graphs. There have been several attempts [9, 11] to isolate classes of
categories in which one can perform DPO rewriting and in which one can show that
such rewriting grammars satisfy useful properties. In particular, several axioms were
put forward in [11] in order to prove a local Church-Rosser theorem for such general
grammars. Additional axioms were needed to prove a general version of the so-called
concurrency theorem [16].

An important general construction which appears in much of the literature on graphical
structures in computer science is the pushout construction. Sometimes referred to as
generalized union [9], it can often be thought of as the construction of a larger structure
from two smaller structures by gluing them together along a shared substructure.

One can think of adhesive categories as categories in which pushouts along monomor-
phisms are “well-behaved”, where the paradigm for behaviour is given by the category of
sets. An example of the good behaviour of these pushouts is that they are stable under
pullback (the dual notion to pushout, which intuitively can often be thought of as a “gen-
eralized intersection”). The idea is analogous to that of extensive categories [3], which
have well-behaved coproducts in a similar sense. Since coproducts can be obtained with
pushouts and an initial object, and an initial object is “well-behaved” if it is strict, one
might expect that adhesive categories with a strict initial object would be extensive, and
this indeed turns out to be the case.

Various notions of graphical structures used in computer science form adhesive cate-
gories. This includes ordinary directed graphs, typed graphs [1] and hypergraphs [11],
amongst others. Indeed, it turns out that any elementary topos is adhesive, although this
shall be proved elsewhere [18]. The structure of adhesive category allows us to derive use-
ful properties. For instance, the union of two subobjects is calculated as the pushout over
their intersection, which corresponds well with the intuition of pushout as generalized
union.
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The notion of adhesivity is too strong for several relevant examples. These examples
motivate the study ofquasiadhesivecategories. As a topos is adhesive, so a quasitopos is
quasiadhesive [18]; a fact which has guided our terminology. Roughly, instead of focusing
on the behaviour of pushouts along arbitrary monomorphisms, quasiadhesive categories
restrict attention to pushouts alongregular monomorphisms. Quasiadhesive categories
are shown to encompass several categories of interest to computer scientists, including
the categorySpecof algebraic specifications and algebraic specification morphisms.

Adhesive categories can be seen as a degenerate quasiadhesive category, namely one
whereall monomorphisms are regular. While the theory of quasiadhesive categories gen-
eralises the theory of adhesive categories, we believe it is nonetheless useful to study
the stronger property of adhesivity because of its simplicity; helpful when dealing with
examples which do not require the extra generality.

This paper is an expanded version of the extended abstract [17]. It extends this earlier
version with full proofs, some new results about adhesive categories and a more complete
treatment of the relationship between adhesive categories and HLR-categories. It also
introduces the class of quasiadhesive categories, foreshadowed in [17].

We shall consideradhesive grammarsandquasiadhesive grammars, which are DPO
grammars on, respectively, adhesive and quasiadhesive categories. We prove the local
Church-Rosser theorem and the concurrency theorem without the need for extra axioms.
We shall also examine how adhesive and quasiadhesive categories fit within the previously
conceived general frameworks for rewriting [9, 11]. Many of the axioms put forward
in [11] follow elegantly as lemmas from the axioms of adhesive categories.

Adhesive and quasiadhesive categories, therefore, provide an abstract setting in which
it is possible to define a theory of DPO rewriting. They are mathematically elegant and
arguably less ad-hoc than previous approaches.

Structure of the paper.In §1 we recall the definition of extensive categories. The notion
of van Kampen (VK) square is given in §2. VK squares are central in the definition of
adhesive categories which are introduced in §3. In §4 we state and prove some basic
lemmas which hold in any adhesive category. In §5 we show that, in adhesive categories,
the subobjects of any object form a distributive lattice, with the union of two subobjects
constructed as the pushout over their intersection. Quasiadhesive categories are motivated
and defined in §6. We develop double-pushout rewriting theory in adhesive categories in
§7 and offer a comparison with High-Level Replacement Categories in §8. We conclude
in §9 with directions for future research.

Conventions.Throughout the paper we assume that the reader is familiar with basic con-
cepts of category theory. We adopt the convention in diagrams of usually not writing
labels for identities, arrows to terminal objects, arrows from initial objects and (binary)
coproduct coprojections. When we do need to name coprojections, we usei1 and i2 to
refer to, respectively, the first and the second coprojection, letting the context determine
exactly which coproduct is discussed.
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1. EXTENSIVE CATEGORIES

We shall repeatedly use basic properties of pushouts and pullbacks, and in particular,
the following well-known lemma, sometimes referred to as the pasting lemma. Since
pushouts and pullbacks are dual, there are two versions of the lemma.

Lemma 1.1. Given a commutative diagram:

A
k //

l
��

B

s

��

k // E

v

��

C u
// D w

// F

• Pullback version- If the right square is a pullback then the left square is a pull-
back if and only if the whole rectangle is a pullback.
• Pushout version- If the left square is a pushout then the right square is a pushout

if and only if the whole rectangle is a pushout.

In the remainder of this section we recall briefly the notion of extensive category [3].

Definition 1.2. A categoryC is said to beextensivewhen

(i) it has finite coproducts
(ii) it has pullbacks along coproduct coprojections

(iii) given a diagram where the bottom row is a coproduct diagram

X

r

��

m // Z

h
��

Y

s

��

noo

A // A+B Boo

the two squares are pullbacks if and only if the top row is a coproduct.

The third axiom states what we mean when we say that the coproductA+B is “well-
behaved”: it includes the fact that coproducts are stable under pullback, and it implies that
coproducts are disjoint (the pullback of the coprojections is initial) and that initial objects
are strict.1 It also implies a cancellativity property of coproducts: given an isomorphism
A+B∼= A+C compatible with the coprojections, one can construct an isomorphismB∼=
C. For an objectZ of an extensive category, the latticeSub(Z) of coproduct summands of
Z is a Boolean algebra.

This third axiom is actually equivalent to requiring certain canonical functors to be
equivalences of categories (Proposition 1.3,(i)). This is sometimes taken to be the def-
inition of extensive categories; apart from elegance, it has the added advantage of not
requiring pullbacks along coprojections.

1An initial object is said to bestrict precisely when any arrow with the initial object as its codomain is an
isomorphism.
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Proposition 1.3. Given a categoryC, the following conditions are equivalent for all ob-
jectsA andB:

(i) the functorC/A×C/B→C/(A+B), which forms the coproducts of morphisms in
C, is an equivalence of categories;

(ii) in a commutative diagram

X
m //

r

��

Z

h
��

Y
noo

s

��

A // A+B Boo

the top row is a coproduct diagram if and only if the squares are pullbacks;
(iii) (when C has pullbacks along coproduct coprojections) the functor

C/(A+B)→ C/A×C/B

given by pullback along the coprojectionsA→ A+B andB→ A+B is an equiva-
lence of categories.

The following is a simple lemma about pullbacks in extensive categories; it states that
pullbacks commute with coproducts.

Lemma 1.4. Suppose thatC is an extensive category and that diagrams (i) and (ii ) below
are pullbacks inC.

A1
f1 //

g1

��

B1

u1

��

C1 v1
// D1

(i)

A2
f2 //

g2

��

B′

u2

��

C2 v2
// D2

(ii)

A1 +A2

g1+g2

��

f1+ f2 // B1 +B2

u1+u2

��

C1 +C2 v1+v2

// D1 +D2

(iii )

Then diagram (iii ) is a pullback inC.

Proof. Diagrams (i) and (ii ) can also be seen as pullbacks in, respectively,C/D1 and
C/D2. Diagram(iii) is then the image of the two pullbacks under the equivalenceC/D1×
C/D2→ C/(D1 + D2) of Proposition 1.3, part (i). It is a pullback since equivalences
preserve limits. �

2. VAN KAMPEN SQUARES

In this section we work in a categoryC with pullbacks. The definition of adhesive cat-
egory is stated in terms of something called avan Kampen square, which can be thought
of as a “well-behaved pushout”, in a similar way to which coproducts can be thought of
as “well-behaved” in an extensive category; essentially this means that they satisfy some
of the properties of certain pushouts in the category of sets.
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The name van Kampen derives from the relationship between these squares and the
van Kampen theorem in topology, in its “coverings version”, as presented for example
in [2]. This relationship is described in detail in [18].

Definition 2.1 (van Kampen square). A van Kampen (VK) squareis a pushout as in (VK1)

C
f

��
??

??
?

m

����
��

�

A

g ��
??

??
? B

n����
��

�

D

(VK1)

C′m′

uukkkkkkkk f ′

##H
HH

c

��

A′

a

��

g′
##H

HH B′

b

��

n′
uukkkkkkkk

D′

d
��

Cm
kkkk

uukkkk
f
##H

HHH

A
g ##

HHH
H B

nuukkkkkkkkk

D

(VK2)

which satisfies the following condition, for any commutative cube (VK2) of which (VK1)
forms the bottom face and the back faces are pullbacks: the front faces are pullbacks if
and only if the top face is a pushout. (Another way of stating the “only if” condition is
that such a pushout is required to be stable under pullback.)

Another, equivalent, way of defining a VK square in a category with pullbacks is as
follows. A VK square (VK1) is a pushout which satisfies the property that given a com-
mutative diagram(i), the two squares are pullbacks if and only if there exists an objectC′

and morphisms

A′

a
��

g′
// D′

d
��

B′
n′oo

b
��

A g
// D Bn
oo

(i)

A′

a
��

C′
m′oo

c
��

f ′
// B′

b
��

A Cm
oo

f
// B

(ii)

C′ f ′

  
AAm′

~~}}

A′

g′
  A

A B′

n′
~~}}

D′

(iii )

so that the squares in(ii) are pullbacks and(iii) is a pushout.
By apushout along a monomorphismwe mean a pushout, as in diagram (VK1) above,

in whichm is a monomorphism.
A morphismm is said to beregular monomorphism when it is an equalizer

A
m // B

f
//

g
// C

of two morphisms. (It follows easily from the universal property of equalizers that any
equalizer is a monomorphism.) Then ifm in diagram (VK1) is a regular monomorphism,



TITLE WILL BE SET BY THE PUBLISHER 7

we have a pushout along a regular monomorphism, while if it is a coprojection then we
have a pushout along a coprojection.

A crucial class of examples of VK squares is provided by:

Theorem 2.2. In an extensive category, pushouts along coproduct coprojections are VK
squares.

Proof. If m:C→A is a coprojection, sayC→C+E, then the diagrams (VK1) and (VK2)
have the form

C f

&&LLLLLL
xxrrrrr

C+E

f+E &&
LLLL B

xxrrrrr

B+E

(i)

C′

ssgggggggggggg f ′

''OO
OOO

O

c

��

C′+E′

c+e

��

u ''OOOO B′

b

��

vssggggggggggggg

Z

h
��

Cggggg
ssgggggg f

''OOOOOO

C+E

f+E
''OOO B

ssgggggggggggg

B+E

(ii)

where the unlabelled arrows are coprojections.
If the top face is a pushout then we may takeZ = B′+E′, it then follows thath= b+e.

The front right face of the cube is then a pullback, using extensivity. The front left face
is a pullback using the conclusion of Lemma 1.4; it is constructed by “adding together”
two pullbacks, namely the back right face of the cube and the pullback of the identity on
E ande : E′→ E.

Conversely, suppose that the front faces are pullbacks. Then, as the bottom row of the
following diagram

E′

e
��

// C′+E′

c+e
��

u // Z

h
��

B′

b
��

voo

E // C+E
f+E
// B+E Boo

is a coproduct diagram and all the squares are pullbacks, we may deduce that the top row
is a coproduct diagram, that isZ = B′+E′. Thus the top face of the cube is a pushout.�

We have the following important properties of VK squares:

Lemma 2.3. In a VK square as in (VK1), ifm is a monomorphism thenn is a monomor-
phism and the square is also a pullback.



8 TITLE WILL BE SET BY THE PUBLISHER

Proof. Suppose that the bottom face of the cube

C
uukkkkkkk f

""FF
F

��

C

m

��

f
##GG

G B

��

uukkkkkkk

B

n
��

Cmkkk
uukkk

f
##FF

F

A
g ##

GGG B
nuukkkkkkk

D

is VK. Then the top and bottom squares are pushouts, while the back squares are pullbacks
if m is a monomorphism. Thus the front faces will be pullbacks: the front right face being
a pullback means thatn is a monomorphism, and the front left face being a pullback
means that the original square is a pullback. �

There is an alternative way of defining a VK square which involves requiring a certain
functor to be an equivalence of categories. This is akin to the alternative way of presenting
the main axiom of extensive categories (see Proposition 1.3).

Definition 2.4. Given a spanA
m←−C

f−→B, letC/A×C/C C/B denote the category with:

−−− objects: commutative diagrams, as illustrated below, where both squares are pull-
backs;

A′

a
��

C′
m′oo

f ′
//

c
��

B′

b
��

A Cm
oo

f
// B

−−− arrows: given two such diagrams, as illustrated below, an arrow is a triplep :
A′→ A′′, q : C′→C′′ andr : B′→ B′′ so thata′p = a, c′q = c andb′r = b, while
pm′ = m′′q and f ′′q = r f ′.

A′
a

p

xxqqq
qqq

q C′
m′oo

c
q

xxqqqqqq
f ′
// B′

r
xxrrrrrr

b

��

A′′

a′ &&MMMMMMM C′′
m′′oo

�� c′ &&MMMMMMM
f ′′
// B′′

�� b′ &&MM
MMM

MM

A Cm
oo

f
// B

Composition and identities are obvious.
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For a morphismu : U →V we shall writeu∗ : C/V → C/U for the functor given by
pulling back alongu. Now, suppose that we have a pushout diagram as below.

C
f

��
??

??
?

m

����
��

�

A

g ��
??

??
? B

n����
��

�

D

Then the functorsn∗ andg∗ induce a functor

Pb : C/D→ C/A×C/C C/B

which takes an arrowd : D′ → D and gives the object ofC/A×C/C C/B obtained by
taking the rear faces of the cube (VK2). One constructs the cube by taking pullbacks, first
in order to construct the front faces and then the back faces. It is easy to verify that this
definition defines the functor

On the other hand, ifC has pushouts (or pushouts along monomorphisms, if we assume
m to be a monomorphism) we can define a functor

Po : C/A×C/C C/B→ C/D

as follows: starting with the back faces of diagram (VK2) we construct the pushout ofm′

and f ′ and obtain a unique arrowd : D′→ D given by the universal property of pushouts.

Proposition 2.5. Pb is right adjoint toPo.

The compositePoPb is given by pulling backd : D′→ D and then forming a pushout;
thus the counit of the adjunction is invertible if and only if, in the cube, if the vertical faces
are pullbacks then the top face is a pushout; in other words, if the pushout (VK1) is stable
under pullback. On the other hand, the unit of the adjunction is invertible if and only if,
whenever the back faces are pullbacks, and the top (and bottom) faces are pushouts, then
the front faces are also pullbacks. We may summarize all this as follows:

Proposition 2.6. For the pushout diagram (VK1), the following conditions are equivalent:

(i) Pb is an equivalence;
(ii) Po is an equivalence;

(iii) diagram(i) is a VK-square;
(iv) the pushout is stable under pullback, and the functorPb is essentially surjective on

objects.2

Remark 2.7. It is important to consider what underlying conditions are required of a
category forPb andPo to exist.

2A functor F : C→ D is said to beessentially surjective on objectswhen, for every objectD ∈ D, there
exists an objectC∈ C such thatFC∼= D.
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(i) Condition (i) of the proposition makes sense without assuming all pushouts, and
could be taken as the definition of van Kampen square when not all pushouts are
assumed to exist. Furthermore, ifm in diagram (VK1) is a monomorphism, thenPo
will exist provided that pushouts along monomorphisms do so, and the proposition
will hold in that generality;

(ii) Condition (ii) makes sense without assuming all pullbacks, however, arbitrary pull-
backs alongm andg in the square (VK1) must exist forPb to exist; recall that we
make no assumptions aboutg.

We can put a preorder on monomorphisms into an objectZ of an arbitrary category by
defining a monomorphisma : A→Z to be less than or equal to a monomorphismb : B→Z
precisely when there exists an arrowc : A→ B such thatbc= a. We shall denote such
a preorder bySub(Z). A subobject (ofZ) is an equivalence class with respect to the
equivalence generated by this preorder. For example, subobjects inSetare subsets while
subobjects inGraph are subgraphs. Letg : A→D be a morphism along which pullbacks
of monomorphisms exist, and letg∗ : Sub(D)→ Sub(A) be the resulting functor. A right
adjoint tog∗, if it exists, is called∀g. Even if ∀g does not exist, it may exist partially:
given a subobjectC of A, we write∀g(C) for a subobject ofD for which D′ ≤ ∀g(C) if
and only ifg∗(D′)≤C.

Lemma 2.8. In a VK square (VK1) withm a monomorphism,n = ∀g(m).

Proof. Let d : D′→ D be an arbitrary monomorphism, and form the cube

C′m′

uukkkkkkk f ′
##G

G
c

��

A′

a

��

g′
$$H

H B′

b

��

n′uukkkkkkk

D′

d
��

Cm
jjj

ttjjjj
f
$$II

I

A
g $$

III B
nttjjjjjjjj

D

in which the top and bottom squares are pushouts and the remaining faces are pullbacks.
Observe thatg∗(d : D′ → D) is a : A′ → A. Now D′ ≤ B if and only if n′ is invertible,
while g∗(D′) ≤C if and only if m′ is invertible. But the top face is both a pushout and a
pullback, som′ is invertible if and only ifn′ is invertible. Thusn : B→D has the universal
property of∀g(m : C→ A). �

3. ADHESIVE CATEGORIES

We shall now proceed to define the notion of adhesive category, and provide various
examples and counterexamples.

Definition 3.1 (Adhesive category). A categoryC is said to beadhesiveif

(i) C has pushouts along monomorphisms;
(ii) C has pullbacks;
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(iii) pushouts along monomorphisms are VK-squares.

Remark 3.2.
(i) By defining VK-squares as in Proposition 2.6 (i) we could leave out the assumption

of pushouts along monomorphisms, but the existence of such pushouts would then
be a consequence (see Remark 2.7 (i));

(ii) Similarly, by defining VK-squares as in Proposition 2.6 (ii) we could drop the
assumption of arbitrary pullbacks, but arbitrary pullbacks would then be a conse-
quence (see Remark 2.7 (ii));

Just as the third axiom of extensive categories (Definition 1.2) ensures that coprod-
ucts are “well-behaved”, it is the third axiom of adhesive categories which ensures that
pushouts along monomorphisms are “well-behaved”. This includes the fact that such
pushouts are stable under pullback.

Since every monomorphism inSet is a coproduct coprojection, andSet is extensive,
we immediately have:

Example 3.3. Setis adhesive.

Observe that the restriction to pushouts along monomorphisms is necessary: there are
pushouts inSetwhich are not VK squares. Consider the underlying set of the 2-element
abelian groupZ2 (the argument works for any non-trivial group). In the diagram

Z2×Z2π1

ssfffffffffffff π2
((QQ

QQQ
+

��

Z2

��

((QQQQQQQ Z2

��

ssfffffffffffffff

1

��

Z2
fffffffff

ssffffff
((QQQQQQQ

1
((QQQQQQQQ 1

ssffffffffffffffff

1

both the bottom and the top faces are easily verified to be pushouts and the rear faces are
both pullbacks. However, the front two faces are not pullbacks.

Even with the restriction to pushouts along a monomorphism, many well-known ex-
tensive categories fail to be adhesive.

Example 3.4. The categoriesPos, Top, Gpd andCat are not adhesive.

Proof. Write [n] for the ordered set{0≤ 1≤ . . .n−1}. The pushout square

[1] 0 //

1 ��

[2]

��

[2] // [3]

in Pos is not van Kampen, since it is not stable under pullback along the map[2]→ [3]
sending 0 to 0 and sending 1 to 2. ThusPos is not adhesive. The same pushout square,
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regarded as a pushout of categories, shows thatCat is not adhesive. For the case ofGpd,
one simply replaces the poset[n] by the groupoid withn objects and a unique isomorphism
between each pair of objects.

Finally consider the categoryTop of topological spaces. A finite poset induces a finite
topological space on the same underlying set: the topology is determined by specifying
that y is in the closure ofx if and only if x≤ y. Applying this process to the previous
example yields an example showing thatTop is not adhesive. �

Since the definition of adhesive category only uses pullbacks, pushouts, and relation-
ships between these, we have the following constructions involving adhesive categories:

Proposition 3.5.
(i) If C andD are adhesive categories then so isC×D;

(ii) If C is adhesive then so areC/C andC/C for any objectC of C;
(iii) If C is adhesive then so is any functor category[X,C].

BecauseSet is adhesive, part (iii) of the proposition implies the following.

Corollary 3.6. Any presheaf topos[X,Set] is adhesive.

In particular, the categoryGraph of directed graphs is adhesive. Indeed, ifC is adhe-
sive, then so is the categoryGraph(C) = [·⇒ ·, C] of internal graphs inC.

Part (ii) implies that categories of typed graphs [1], coloured (or labelled) graphs [5],
ranked graphs [15] and hypergraphs [11], considered in the literature on graph grammars,
are adhesive.

As a consequence, all proof techniques and constructions in adhesive categories can be
readily applied to any of the aforementioned categories of graphs. In fact, more generally,
we have:

Proposition 3.7. Any elementary topos is adhesive.

This is somewhat harder to prove than the result for presheaf toposes; the proof can be
found in [18].

Part (ii) of Proposition 3.5 also allows us to construct examples of adhesive categories
which are not toposes.

Example 3.8. The categorySet∗ = 1/Setof pointed sets (or equivalently, sets and partial
functions) is adhesive, but is not extensive, and therefore, is not a topos.

Proof. In the category of pointed sets, the initial object is the one-point set 1. Since every
non-initial object has a map into 1, the initial object is not strict, and so the category is
not extensive [3, Proposition 2.8]. �

4. BASIC PROPERTIES OF ADHESIVE CATEGORIES

In this section we prove several simple lemmas which hold in any adhesive category.
Lemma 4.1 describes the relationship between adhesive categories and extensive cate-
gories. Lemmas 4.2, 4.3, 4.5 , 4.6 and 4.7 shed some light on pushouts in adhesive cate-
gories.
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Lemma 4.1. An adhesive category is extensive if and only if it has a strict initial object.

Proof. In an extensive category the initial object is strict [3, Proposition 2.8]. On the
other hand, in an adhesive category with strict initial object, any arrow with domain 0 is a
monomorphism. Consider the cube

0
sshhhhhhhhhhhh

&&MM
MMM

M

��

X

r

��

m &&MMMMM Y

s

��

nsshhhhhhhhhhhh

Z

t
��

0
hhhhhh

sshhhhhh
&&MM

MMM
M

A
i &&

MMM
M B

jsshhhhhhhhhh

A+B

in which the bottom square is a pushout along a monomorphism, while the back squares
are pullbacks since the initial object is strict. By adhesiveness, front squares are pullbacks
if and only if the top squares is a pushout; but this says that the front squares are pullbacks
if and only if the top row of these squares is a coproduct (Z=X+Y). �

As explained previously, there are adhesive categories which are not extensive – for
instanceSet∗ (Example 3.8) which doesn’t have a strict initial object. Conversely, there
are many extensive categories which are not adhesive; for instancePos, Top and Cat
(Example 3.4).

The following two lemmas are used extensively in the literature on algebraic graph
rewriting. Indeed, they are usually assumed as axioms (see [9] and §8 below) in attempts
at generalizing graph rewriting. They hold in any adhesive category by Lemma 2.3.

Lemma 4.2. Monomorphisms are stable under pushout in any adhesive category.

Lemma 4.3. In any adhesive category, pushouts along monomorphisms are also pull-
backs.

The following definition introduces the notion of pushout complement [14], which is
vital in algebraic approaches to graph rewriting.

Definition 4.4. Let m : C→ A andg : A→ B be arrows in an arbitrary category (m is not
assumed to be a monomorphism).

C
m

����
��

� f

��

A

g ��
??

??
? B

n��
D

A pushout complementof the pair(m,g) consists of arrowsf : C→ B andn : B→ D
for which the resulting square commutes and is a pushout, as illustrated in the diagram
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above. We shall sometimes refer to pushout complements ofmonomorphisms: this refers
to pushout complements of pairs(m,g) wherem is a monomorphism.

The following lemma is a crucial ingredient in many applications of graph rewriting.
It has also been assumed as an axiom [11] in order to prove the concurrency theorem (cf.
Theorem 7.11). It is important mainly because it assures that once an occurrence of a left
hand side of a rewrite rule is found within a structure, then the application of the rewrite
rule results in a structure which is unique up to isomorphism (cf. §7). In other words,
rewrite rule application is functional up to isomorphism.

Lemma 4.5. Pushout complements of monomorphisms (if they exist) are unique up to
isomorphism. In other words, given two pushouts along a monomorphismmas illustrated
below, there exists an isomorphismϕ : B→ B′ such thatn′ϕ = n andϕ f = f ′.

C
f
//

m

��

B

n

��

C
f ′
//

m

��

B′

n′

��

A g
// D A g

// D

Proof. Using Lemma 2.8, bothn andn′ have the universal property of∀g(m), and so we
haven∼= n′ in Sub(D), meaning that there is an isomorphismϕ : B→B′ such thatn′ϕ = n.
The fact thatϕ f = f ′ follows becausen′ is a monomorphism. �

The following lemma will be used in Section 8 to show that adhesive categories are
high-level replacement categories:

Lemma 4.6. Consider a diagram

A��

l
��

k // B //
r //

��

s

��

E��
v

��

C u
// D // w

// F

in which the marked morphisms are monomorphisms, the exterior is a pushout and the
right square is a pullback. Then the left square is a pushout, and so all squares are both
pullbacks and pushouts.
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Proof. This amounts to stability of the exterior pushout under pullback alongw : D→ F .
We illustrate this in the diagram below, where we leave the identity morphisms unlabelled.

A

��

k

��
??

??
?��

l

����
��

�

C

��

u

��
??

??
? A

k

��
??

??
?��

c��
����

B

�� ��
??

??
?

C

u ��
??

??
? D

�� ��
@@

@@
@ B �� r??

��
??

B��
r
��

��

s
����

��
�

D ��
w ��

@@
@@

@ D��
w
��

E��
v��~~

~~
~

F

�

The following lemma is of a similar nature (the difference between the diagrams of
Lemma 4.6 and Lemma 4.7 is that different morphisms are assumed to be mono) and was
used in [24]; the proof is straightforward and similar to the proof of Lemma 4.6.

Lemma 4.7. Consider a diagram

A

l
��

// k // B

s

��

// r // E

v

��

C // u
// D // w

// F

in which the marked morphisms are monomorphisms, the exterior is a pushout, the right
square is a pullback, and morphismsk, r,u and w are monomorphisms. Then the left
square is a pushout.

The following lemma shows that all monomorphisms in adhesive categories are regu-
lar.

Lemma 4.8. Monomorphisms are regular.

Proof. Givenm : A→ B, construct the pushout ofmwith itself:

A
m //

m
��

B
n1
��

B n2
// C.

Sincem is a monomorphism, the diagram above is also a pullback (Lemma 4.3). It is
now easy to show thatm is the equalizer ofn1 andn2. Indeed, suppose we’re given a
morphismp : X → B such thatn1p = n2p. Using the pullback property, there exists a
unique morphismh : X→ A such thatmh= p. �
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The following lemma is an easy corollary of the former, but we include a simple direct
proof.

Lemma 4.9. Adhesive categories are balanced. That is, a morphism which is both a
monomorphism and an epimorphism is an isomorphism.

Proof. Suppose thatf : A→ B is both a monomorphism and an epimorphism. Because it
is an epimorphism, the diagram

A
f
��

f
// B

1
��

B
1
// B

is a pushout. Sincef is a monomorphism, using Lemma 4.3 we can conclude that it is
also a pullback, but this implies thatf is invertible. �

5. ALGEBRA OF SUBOBJECTS

Recall that the monomorphisms into an objectZ form a preorderSub(Z), and that a
subobject refers to an equivalence class with respect to the resulting equivalence relation.
Thus the subobjects ofZ organise themselves in a poset. Subobjectintersection(resp.
union) refers to the meet (resp. join) in this poset. If a poset has both (binary) meets and
joins we say that it is alattice, a lattice isdistributivewhen the meets distribute over the
joins.

Here we shall demonstrate that, in adhesive categories, the union of two subobjects can
be constructed as the pushout over their intersection. This provides further evidence of
how pushouts behave in adhesive categories, as well as making more precise the intuition
that the pushout operation “glues together” two structures along a common substructure.
As a corollary, it follows that in an adhesive category the lattices of subobjects are dis-
tributive.

Let C be an adhesive category, andZ a fixed object ofC. ThenSub(Z) has products
(=intersections), given by pullback inC. It has a top object, given byZ itself. If C has
a strict initial object 0, then the unique map 0→ Z is a monomorphism, and is the initial
object ofSub(Z).

Theorem 5.1. For an object Z of an adhesive categoryC, the categorySub(Z) of sub-
objects of Z has binary coproducts: the coproduct of two subobjects is their pushout inC
over their intersection.

Proof. We shall show how to form binary coproducts (=unions) inSub(Z). Let a : A→ Z
andb : B→ Z be subobjects ofZ, and form the intersectionA∩B→ Z, with projections
p : A∩B→ A andq : A∩B→ B; and now the pushout

A∩B
q
//

p
��

B
v
��

A u
// C
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in C. Let c : C→ Z be the unique map satisfyingcu= a andcv= b. We shall show thatc
is a monomorphism, and so thatC is the coproductA∪B in Sub(Z) of A andB. Suppose
then thatf ,g : K→C satisfyc f = cg. Form the following pullbacks

L1

f1
��

l1 // K
f
��

L2
l2oo

f2
��

A u
// C Bv
oo

M1

g1
��

m1 // K
g
��

M2
m2oo

g2
��

A u
// C Bv
oo

N11
m11 //

l11
��

M1

m1
��

N12

l12
��

m12oo

L1
l1 // K L2

l2oo

N21

l21

OO

m21
// M2

m2

OO

N22

l22

OO

m22
oo

and note that each of the following pairs are the coprojections of a pushout, hence each
pair is jointly epimorphic:(l1, l2), (m1,m2), (m11,m12), and(m21,m22). We are to show
that f = g; to do this, it will suffice to show thatf m1 = gm1 and f m2 = gm2; we shall
prove only the former, leaving the latter to the reader. To show thatf m1 = gm1 it will in
turn suffice to show thatf m1m11 = gm1m11 and f m1m12 = gm1m12.

First note thata f1l11 = cu f1l11 = c f l1l11 = cgl1l11 = cgm1m11 = cug1m11 = ag1m11, so
that f1l11 = g1m11 sincea is monic; thusf m1m11 = f l1l11 = u f1l11 = ug1m11 = gm1m11

as required.
On the other hand,b f2l12 = cv f2l12 = c f l2l12 = cgl2l12 = cgm1m12 = cug1m12 =

ag1m12, so by the universal property of the pullbackA∩B, there is a unique maph :
N12→ A∩B satisfyingph = g1m12 andqh = f2l12. Now f m1m12 = f l2l12 = v f2l12 =
vqh= uph= ug1m12 = gm1m12, and sof m1 = gm1 as claimed. As promised, we leave
the proof thatf m2 = gm2 to the reader, and deduce thatf = g, so thatc is monic. �

Since pushouts are stable it follows that intersections distribute over unions:

Corollary 5.2. The latticeSub(Z) is distributive.

Proof. It is easy to verify that the front and back faces of the cube below are pullbacks.
Because the bottom face is a pushout, we use adhesivity in order to conclude that the top
face is a pushout, which in turn implies thatA∩ (B∪C) = (A∩B)∪ (A∩C).

A∩B∩C
rrdddddddddddddd

**UUUU

��

A∩B

��

**UUU A∩C

��

rrdddddddddddddd

A∩ (B∪C)

��

B∩Cdddddddd
rrddddddddd

**UUUUUUU

B
**UUUUUUU C

rrdddddddddddddddddd

B∪C

�
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6. QUASIADHESIVE CATEGORIES

The notion of adhesivity is too strong for some relevant examples, and therefore, it
is useful to study weaker notions. In this section, we introduce the class of quasiad-
hesive categories. Quasiadhesive categories have well-behaved pushouts alongregular3

monomorphisms, that is, only such pushouts are required to be VK-squares.

Definition 6.1. A categoryC is said to bequasiadhesiveif

(i) C has pushouts along regular monomorphisms;
(ii) C has pullbacks;

(iii) pushouts along regular monomorphisms are VK-squares.

Since regular monomorphisms are monomorphisms, the class of quasiadhesive cate-
gories includes the class of adhesive categories. In fact, we have that

Proposition 6.2. Adhesive categories are precisely the quasiadhesive categories in which
every monomorphism is regular.

The conclusion of the Proposition 6.2 raises the question of whether it is useful to
study the stronger property of adhesivity when quasiadhesive categories are strictly more
general. We believe that the answer is positive due to the added simplicity of not having
to consider regularity when it is not required.

Although quasiadhesive categories are strictly more general than adhesive categories,
the categories mentioned in Example 3.4 still fail to be quasiadhesive: in each case the
pushout in question is actually the pushout of two regular monomorphisms.

Just as an adhesive category is extensive iff it has a strict initial object (Lemma 4.1),
we have:

Lemma 6.3. A quasiadhesive category is extensive if and only if it has a strict initial
object.

6.1. PROPERTIES OF QUASIADHESIVE CATEGORIES

It will be useful to examine the properties of regular monomorphisms in quasiadhesive
categories. First, recall some basic facts about regular monomorphisms which hold in any
category.

Proposition 6.4. The following hold in any categoryC:

(i) if mn is a regular monomorphism andm is arbitrary thenn is a regular monomor-
phism;

(ii) if C has pullbacks then the class of regular monomorphisms is stable under pullback.

An important property of regular monomorphisms in quasiadhesive categories is that
the composite of regular monomorphisms is a regular monomorphism; this is not the case
in general (non-quasiadhesive) categories — for example it is not true inCat. Another
crucial property which holds in quasiadhesive categories is that regular monomorphisms
are stable under pushouts.

3Recall that a regular monomorphism is one that is an equalizer of two morphisms.
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Lemma 6.5. The following hold in any quasiadhesive categoryC:

(i) regular monomorphisms are stable under pushout;
(ii) regular monomorphisms are closed under composition.

Proof. (i). Suppose that diagram (a) below is a pushout and thatm is a regular monomor-
phism.

C f
��

??
?m

����
�

A

g ��
??

? B

n����
�

D

(a)

Cm
ttiiiiiiii f

$$II
I

m

��

A

p

��

g %%
KKK B

n

��

nttjjjjjjjj

D

r
��

Aq
jjjj

ttjjjj
g
$$HH

H

A′

h
$$JJ

J D
suujjjjjjj

D′

(b)
Thenm is the equalizer ofp andq, obtained by constructing the pushout illustrated as
the back left face of diagram (b). Now there exists a (unique) morphismt : A′→ A such
that t p = idA andtq = idA.4 It follows that p andq are regular (for instance,p is easily
checked to be the equaliser of idA′ andpt). Hence we are able to complete the cube in (b)
so that all faces are pushouts. Indeed all except possibly the front right face are pushouts
along regular monomorphisms, hence VK squares, hence pullbacks. Since the bottom
square is VK, it follows that the front right face is also a pullback, which implies thatn is
the equalizer ofr ands.

(ii). Recall from the proof of Lemma 4.8 that if a pushout of a morphism with itself is also
a pullback then the morphism is a regular monomorphism. Now, ifm andn are regular
monomorphisms, form the pushouts in

A
m //

m
��

B
p
��

n // C
r
��

B
n ��

q
// D

u
��

t // E
v��

C s
// F w

// G

and use the fact (i) that regular monomorphisms are stable under pushout to deduce that
all four squares are VK, hence pullbacks, and so that the composite square is a pullback,
and so finally thatnm is the equalizer ofvr andws. �

One also has the closure properties shown for adhesive categories. In particular:

Proposition 6.6. Let C andD be quasiadhesive categories,X an arbitrary category, and
C an object ofC. Then:

(i) C×D is quasiadhesive;
(ii) C/C is quasiadhesive;

4Thusp andq are said are split monomorphisms; a morphism is said to be a split monomorphism precisely
when it has a left inverse. It follows easily that such a morphism is mono and, moreover, regular.
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If moreoverC has equalizers then also

(iii) C/C is quasiadhesive;
(iv) the functor category[X,C] is quasiadhesive.

Proof. We rely on the facts that pushouts and pullbacks are constructed pointwise in all of
the above cases, the class of regular monomorphisms inC×D is the product of the regular
monomorphisms ofC andD, the regular monomorphisms ofC/C coincide with those of
C. We use the hypothesis thatC has equalizers to ensure that the regular monomorphisms
of C/C and[X,C] are formed as inC. �

We can also say something about the subobjects in quasiadhesive categories.

Proposition 6.7. Given any two regular subobjects in the category of subobjectsSub(Z),
their coproduct is calculated as the pushout over their intersection. In general, however,
there seems to be no reason why the resulting subobject should be regular.

6.2. EXAMPLES

Binary relations. A simple, yet important, example of a quasiadhesive category is the
categoryBRel of binary relations. The objects of this category are injective functions
m : E→V×V, whereE,V are arbitrary sets andV×V denotes the cartesian product of
V with itself. Morphisms are commutative squares

E
m
��

fE // E′

m′
��

V×V
fV× fV

// V ′×V ′.

Computer scientists may be familiar with this category in another guise, that is, the cat-
egory of graphs without edge identities; or in other words, graphs with at most one edge
from one vertex to another. More formally, the categoryBRel is easily seen to be equiv-
alent to the categoryGr where the objects are the class{〈V,E〉 | E ⊆V×V } and the
morphisms are ordinary graph homomorphisms.

It is routine to verify thatBRel is complete and cocomplete, indeed,BRel is a full
reflective subcategory ofGraph, the category of “ordinary” graphs and graph morphisms.
Limits are calculated pointwise, and a consequence, a mono inBRel is a morphism where
both fE and fV are injective. Regular monomorphisms inBRel are easily characterised
as precisely the graph monomorphisms which reflect edges, or more abstractly:

Proposition 6.8. A monomorphism is regular inBRel iff the corresponding square of
monos is a pullback diagram.

Notice that a simple corollary of Proposition 6.8 is thatBRel is not a topos, since
in toposes every monomorphism is regular. For the same reasons, it is not adhesive
(Lemma 4.8). Indeed, we shall demonstrate a simple counterexample of a pushout along
a mono which fails to be VK, let 1 denote the object 0→ 1×1 (the discrete graph on one
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vertex) and let 1′ denote the object 1→ 1×1 (the complete graph on one vertex). Then
clearly, the diagram below is a pushout along a mono inBRel, but it is not a pullback.

1
�����

�
��

???
?

1′

��
??

? 1′

����
�

1′

Lemma 6.9. BRelis quasiadhesive.

Proof. See Remark 6.15. �

Algebraic specifications.Here we shall consider the categorySpec[9] of algebraic spec-
ifications and algebraic specification morphisms. We begin by recalling the definition
of Specas given in [9]. First we recall a simple notion of multi-sorted signature for an
algebraic specification.

Definition 6.10. A signatureΣ = 〈S,P,dom,cod〉 whereS is a set of sorts,P is a set
of operator symbols,dom: P→ S∗ is a map giving each operator symbol a possibly
empty string overSandcod : P→ Sgives each operator a sort. An operatorσ ∈ P with
dom(σ) = s1 . . .sn andcod(σ) = sshall be writtenσ : s1 . . .sn→ s. A signature morphism
f : Σ0→ Σ1 consists of a mapsfS : S0→ S1 and fP : P0→ P1 so that givenσ : s1 . . .sn→ s
we havefP(σ) : fS(s1) . . . fS(sn)→ fS(s). Let Sig denote the category of signatures and
signature morphisms.

Fixing a particular signatureΣ and a setX =
S

s∈SXs of variables for each sorts of Σ,
one constructs the set of all terms of each sorts with variables fromX, denotedTΣ(X)s,
in a standard way.

Definition 6.11. An equation is a pair of termst1, t2 ∈ TΣ(X)s, denotedt1 = t2. A positive
conditional equation is an expression of the forme1∧·· ·∧en⇒ e′ wheree1, . . . ,en,e′ are
equations.

A signature morphismf : Σ0→ Σ1 induces a mapTΣ0(X)s→ TΣ1(X) fS(s), also called
f , in the obvious way. This map clearly extends to equations, so that given positive
conditional equationeof sortswe have a positive conditional equationf (e) of sort fS(s).

Definition 6.12. An algebraic specificationS= 〈Σ,E〉 consists of a signatureΣ and a setE
of positive conditional equations overΣ. An algebraic specification morphismf : S0→S1

consists of a signature morphismfΣ : Σ0→ Σ1 so that for everye∈E0 we havef (e)∈E1.
Algebraic specifications and their morphisms form the categorySpec.

An algebraic specification morphism is injective if and only if the underlying signature
morphism is injective — which is the same as saying the underlying functions on the sets
of sorts and operators are injective. An algebraic specification morphismf : S0→ S1 is
strict if, given an arbitrary positive conditional equatione, we havef (e)∈E1 thene∈E0.

Proposition 6.13. The classes of regular monomorphisms and strict injective morphisms
in Speccoincide.
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The reader is directed to [9, Fact 6.3.6] for details of how pushouts are constructed in
Spec. Roughly, one constructs a pushout pointwise on the sorts and operators of the signa-
ture, as well as the equations. Pullbacks of arbitrary morphisms are similarly constructed
“pointwise”.

Lemma 6.14. Specis quasiadhesive.

Proof. See Remark 6.15. �

Remark 6.15. We have omitted the proofs of Lemmas 6.9 and 6.14. While it is possi-
ble to prove the VK property directly for pushouts along regular monos using only the
descriptions of pushouts, pullbacks, and regular monos inBRel andSpec, the resulting
proofs are tedious and unenlightening. Moreover, it turns out that both the examples fit
into a general framework of quasiadhesive categories [18], making such proofs unneces-
sary.

7. DOUBLE-PUSHOUT REWRITING

Here we shall recall the basic notions of double-pushout rewriting [14, 22] and show
that it can be carried out within an arbitrary quasiadhesive category. In the quasiadhe-
sive context, we work with regular monomorphisms; recall that if we happen to be in an
adhesive category, every monomorphism is regular.

Definition 7.1 (Production). A productionp is a span

L K
loo r // R (1)

in C. We shall say thatp is left-linear when l is a regular monomorphism, andlinear
when bothl andr are regular monomorphisms. We shall letP denote an arbitrary set of
productions and letp range overP .

In order to develop an intuition of why a production is defined as a span, we shall
restrict our attention to linear production rules. One may then considerK as a substructure
of bothL andR. We think ofL andRas respectively the left-hand side and the right-hand
side of the rewrite rulep. In order to perform the rewrite, we need to matchL as a
substructure of a redexC. The structureK, thought of as a substructure ofL, is exactly
the part ofL which is to remain invariant as we apply the rule toC.

Thus, an application of a rewrite rule consists of three steps. First we must matchL
as a substructure of the redexC; secondly, we delete all parts of the redex matched by
L which are not included inK. Thirdly, we add all ofR which is not contained inK,
thereby producing a new structureD. The deletion and addition of structure is handled,
respectively, by finding a pushout complement and constructing a pushout.

Definition 7.2 (Gluing Conditions). Given a productionp as in (1), amatch in C is a
morphismf : L→C. A match f satisfies thegluing conditionswith respect top precisely
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when there exists an objectE and morphismsg : K→ E andv : E→C such that

L
f
��

K
loo

g
��

C Ev
oo

is a pushout diagram. (In other words, there exists a pushout complement of(l , f ) in the
sense of Definition 4.4.)

Definition 7.3 (Derivation). Given an objectC∈ C and a set of productionsP , we write
C Bp, f D for a productionp∈ P and a morphismf : L→C if (a) f satisfies the gluing
conditions with respect tol , and (b) there is a diagram

L
f
��

K
g
��

loo r // R
h
��

C Ev
oo

w
// D

in which both squares are pushouts.

The objectE in the above diagram can be thought of as a temporary state in the middle
of the rewrite process. Returning briefly to our informal description, it is the structure
obtained fromC by deleting all the parts ofL not contained inK. Recall from Lemma 4.5
that if l is a regular monomorphism (that is, ifp is left-linear) thenE is unique up to
isomorphism. Indeed, ifp is a left-linear production,C Bp, f D andC Bp, f D′ then
we must haveD∼= D′. This is a consequence of Lemma 4.5 and the fact that pushouts are
unique up to isomorphism.

Definition 7.4 (Adhesive and quasiadhesive grammars). A quasiadhesive grammarG is
a pair〈C,P〉 whereC is a quasiadhesive category andP is a set of linear productions. If
C is in fact adhesive, we callG anadhesive grammar.

Assuming that all the productions are linear allows us to derive a rich rewriting theory
on quasiadhesive categories. Henceforth we assume that we are working over an arbitrary
quasiadhesive grammarG.

7.1. LOCAL CHURCH-ROSSER THEOREM

As we shall explain in section 8, adhesive and quasiadhesive categories naturally fall
into the framework of high-level replacement categories. In particular, we get the local
Church-Rosser theorem [9,16] in the setting of quasiadhesive or adhesive grammars.

Before presenting this theorem we recall briefly the notions of parallel-independent
derivation and sequential-independent derivation. The reader may wish to consult [5] for
a more complete presentation.

Definition 7.5. A parallel-independent derivationis a pair of derivations

C Bp1, f1 D1 and C Bp2, f2D2
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as illustrated in diagram (2) which satisfy an additional requirement, namely the existence
of morphismsr : L1→ E2 ands : L2→ E1 which render the diagram commutative, in the
sense thatv2r = f1 andv1s= f2.

R1

h1
��

K1

g1
��

r1oo
l1 // L1 r

&&
f1

??

��
???

?

L2s

xx
f2

��

�����
�

K2

g2
��

l2oo
r2 // R2

h2
��

D1 E1w1
oo

v1
// C E2v2
oo

w2
// D2

(2)

Definition 7.6. Similarly, asequential-independent derivation, illustrated in diagram (3),
is a derivation

C Bp1, f1 D1 Bp2, f ′2
D

where there additionally exist arrowsr ′ : R1→ E3 ands′ : L2→ E1 such thatw1s′ = f ′2
andv3r ′ = h1.

L1

f1
��

K1

g1
��

l1oo
r1 // R1 r ′

''
h1

AA

  A
AAA

L2s′

ww
f ′2

}}

~~}}}
}

K2

g′2
��

l2oo
r2 // R2

h′2
��

C E1v1
oo

w1
// D1 E3v3
oo

w3
// D

(3)

If the underlying category has coproducts and given a pair of productions

p1 = L1 K1
l1oo

r1 // R1 and p2 = L2 K2
l2oo

r2 // R2,

we may construct a production

p1 + p2 = L1 +L2 K1 +K2
l1+l2oo

r1+r2 // R1 +R2.

Note that if l1 and l2 are regular monomorphisms,l1 + l2 need not even be a monomor-
phism, and similarly forr1 andr2. If this is required one could further supposeC to be
extensive, in which case the coproduct of two regular monomorphisms would indeed be
a regular monomorphism.

The statement of the theorem below differs from those previously published in the
literature in that we do not need coproducts to establish the equivalence of the first 3
items.

Theorem 7.7(Local Church-Rosser). The following are equivalent:

(1) C Bp1, f1 D1 and C Bp2, f2 D2 are parallel-independent derivations
(2) C Bp1, f1 D1 and D1 Bp2, f ′2

D are sequential-independent derivations
(3) C Bp2, f2 D2 and D2 Bp1, f ′1

D are sequential-independent derivations.

If moreoverC has coproducts then we may add the so-calledparallelism theorem, which
states that item (4), below, is equivalent to the above three items.

(4) C Bp1+p2,[ f1, f2] D is a derivation.
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Proof. (1)⇒(2): Let C Bp1, f1 D1 andC Bp2, f2 D2 be parallel-independent (see
Definition 7.5 and associated diagram) derivations. Form the pullback(i) below.

E1

v1
��

G
e1oo

e2
��

C E2v2
oo

(i)

L1

r
��

K1

g1

��

l1oo

E2

v2
��

K2g2oo

l2
��

C E1v1
oo L2s

oo

(ii)

L1

r
��

K1

(†) k1
��

l1oo

E2

v2
��

G
(?)

e2oo

e1
��

K2

(‡)

k2oo

l2
��

C E1v1
oo L2s

oo

(iii )

K1

k1
��

r1 // R1

t
��

K2

r2
��

k2 // G e3 //

e4
��

E3

w3
��

R2 u
// E4 w4

// D

(iv)

The two regions in(ii) are pushouts [cf. diagram (3)]. Combining the two diagrams gives
(iii) , with k1 andk2 obtained by the universal property of(i) and satisfyinge2k1 = g1 and
e1k2 = g2. Regions (†), (‡), and (?) are pushouts by Lemma 4.6, and one now goes on to
construct(iv) by taking successive pushouts.

The sequential-independent (see Definition 7.6 and associated diagram) derivation
C Bp1, f1 D1 Bp2, f ′2

D may now be constructed with the pushout squares below.

L1

r
��

K1

k1
��

l1oo
r1 // R1

t
��

E2

v2
��

Ge2oo

e1
��

e3 // E3

v3
��

C E1v1
oo

w1
// D1

L2

s
��

K2
l2oo

k2
��

r2 // R2

u
��

E1

w1
��

Ge1oo

e3
��

e4 // E4

w4
��

D1 E3 w3
//

v1
oo D

(2)⇒(1): Suppose thatC Bp1, f1 D1 andD1 Bp2, f ′2
D are sequential-independent

derivations. Form the pullback(v) below.

F

e1
��

e3 // E3

v3
��

E1 w1
// D1

(v)

K1

g1

��

r1 // R1

r ′
��

K2

l2
��

g′2
// E3

v3
��

L2
s′
// E1 w1

// D1

(vi)

K1

(†)k1
��

r1 // R1

r ′
��

K2

(‡)

k2 //

l2
��

F
(?)

e3 //

e1
��

E3

v3
��

L2
s′
// E1 w1

// D1

(vii)

K1

k1
��

l1 // L1

t
��

K2

r2
��

k2 // F e2 //

e4
��

E2

w3
��

R2 u
// E4 w4

// D2

(viii)

The two regions in(vi) are pushouts [cf. diagram (3)]. Combining the two diagrams gives
(vii), with k1 andk2 obtained by the universal property of(i) and satisfyinge3k2 = g′2 and
e1k1 = g1. Regions (†), (‡), and (?) are pushouts by Lemma 4.6, and one now goes on to
construct(viii) by taking successive pushouts.
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The parallel independent derivationsC Bp1, f1 D1 andC Bp2, f2 D2 may now be
constructed with the pushout squares below.

L1

r
��

K1

k1
��

l1oo
r1 // R1

t
��

E2

v2
��

Fe2oo

e1
��

e3 // E3

��

C E1v1
oo

w1
// D1

L2

s′
��

K2
l2oo

k2
��

r2 // R2

u
��

E1

w1
��

Fe1oo

e2
��

e4 // E4

w4
��

D1 E3 w3
//

v1
oo D2

In fact, the proof that (1)⇒(2) remains valid more generally in the context of left-linear
productions, but the proof of the converse requires linearity.

The proof of (1)⇔(3) is similar.
To prove (1)⇔(4), we first note that, in a quasiadhesive category with coproducts, the

objectsC andD obtained in(iii) and(iv) can be obtained as the pushouts in(ix) and(x)
below.

L1 +L2

[ f1, f2]
��

K1 +K2
l1+l2oo

[k1,k2]
��

C Gc
oo

(ix)

K1 +K2

[k1,k2]
��

r1+r2 // R1 +R2

[h1,h2]
��

G
d

// D

(x)
Starting with parallel-independent derivationsC Bp1, f1 D1 andC Bp2, f2 D2, we

construct diagrams(iii) and (iv) from which, using the translation outlined above, we
get diagrams(ix) and (x), which in turn amount to a derivationC Bp1+p2,[ f1, f2] D.
Similarly, starting with a derivationC Bp1+p2,[ f1, f2] D, we obtain diagram(ix), from
which we obtain diagram(iii) . This gives us enough data to conclude thatC Bp1, f1 D1

andC Bp2, f2 D2 are parallel-independent. �

7.2. CONCURRENCY THEOREM

The original concurrency theorems were proved for graph grammars [7] and later gen-
eralized to high-level replacement categories (cf. §8) in [11] which satisfy additional ax-
iom sets, there called HLR2 and HLR2*. Roughly, the concurrency theorem states that
given two derivations in a sequence, together with information about how they are related,
one may construct a single derivation which internalizes the two original derivations and
performs them “concurrently”. Moreover, one may reverse this process and deconstruct a
concurrent derivation into two related sequential derivations. Here we state and prove the
concurrency theorem for quasiadhesive or adhesive grammars without the need for extra
axioms.

We shall first need to recall the notions of dependency relation, dependent derivation
and concurrent production.

Definition 7.8 (Dependency Relation). Suppose thatp1 and p2 are linear productions.
A dependency relationfor 〈p1, p2〉 is an objectX together with arrowss : X → R1 and
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t : X→ L2 for which r1, s, t, andl2 can be incorporated into a diagram

X
s
}}|||

| t
!!B

BBB

K1

g′1 ��

r1 // R1 h′1
��

@@
@@

L2f ′2
��~~

~~
K2

l2oo

g′2��

E′1 w′1

// D′ E′2v′2

oo

(4)

in which all three regions are pushouts.

Definition 7.9 (Dependent Derivation). Consider a derivationC Bp1, f1 D1 Bp2, f2 D
as illustrated in(i) below

L1
f1 ��

K1
g1 ��

l1oo
r1 // R1 h1

!!B
BBB

L2f2
}}|||

|
K2

g2��

l2oo
r2 // R2

h2��

C E1v1
oo

w1
// D1 E3v3
oo

w3
// D

(i)

X
s
}}{{{

{ t
!!C

CCC

K1

g′1 ��

r1 // R1 h′1
  

AA
AA

L2f ′2
~~}}

}}
K2

l2oo

g′2��

E′1
e1 ��

w′1

// D′

d��

E′2
e2��

v′2

oo

E1 w1
// D1 E2v2
oo

(ii)

and a dependency relationX for 〈p1, p2〉. The derivation is said to beX-dependentif
h1s= f2t and there exist morphismse1 : E′1→ E1 ande2 : E′2→ E2 satisfyinge1g′1 = g1

and e2g′2 = g2, and if moreover the unique mapd : D′ → D1 satisfyingdh′1 = h1 and
d f ′2 = f2 also satisfiesdw′1 = w1e1 anddv′2 = v2e2 (see(ii) ).

Definition 7.10(Concurrent Production). Given a dependency relationX for 〈p1, p2〉, the
X-concurrent production p1;X p2 is the span

C′ P′
v′1u′
oo

w′2v′
// D′

obtained by taking the bottom row of the following extension of diagram (4)

X
s
}}|||

| t
!!B

BBB

L1

f ′1 ��

K1

†

l1oo

g′1��

r1 // R1 h′1
��

@@
@@

L2f ′2
��~~

~~
K2

‡

l2oo

g′2 ��

r2 // R2

h2��

C′ E′1v′1

oo

w′1

// D′ E′2v′2

oo

w′2

// D′

P′
]

v′

==

u′

aa

in which † and ‡ are pushouts and] is a pullback.
An X-concurrent derivation C Bp1;X p2, f D is a derivation wherep1;X p2 is anX-

concurrent production.
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Theorem 7.11(Concurrency Theorem).

(1) Given an X-dependent derivation C Bp1, f1 D1 Bp2, f2 D there exists an X-
concurrent derivation C Bp1;X p2 D

(2) Given an X-concurrent derivation C Bp1;X p2 D, there exists an X-dependent
derivation C Bp1, f1 D1 Bp2, f2 D.

Proof. (1). Suppose that we have anX dependent-derivation, as illustrated in the solid
part of the left diagram below

X

(iii )

s

~~}}
}}

} t

  
@@

@@
@

L1

(i)f ′1
��

f1

##

K1

(ii)g′1��

l1oo
r1 // R1

h′1
��

??
??

? L2

f ′2
����

��
�

K2

(iv)

l2oo

g′2��

r2 // R2

(v) h′2
��

h2

{{

C′

(vi)c
��

E′1
(vii)e1

��

v′1
oo w′1

// D′1
d1
��

E′2
(viii) (ix)e2

��

v′2
oo w′2

// D′

d
��

C E1v1
oo

w1
// D1 E2v2
oo

w2
// D

P′v′

vvlllllll p
!!DD

D

u′

��

E′2

v′2

��

e′2

""EE
P

u

��

v
vvmmmmmmm

E2

v2
��

E′1
w′1

mmm
vvmmm

e1
  

BB

D′1
d1
""EE

E1

w1vvmmmmmm

D1

in which (iii) , (i)+(vi) , (ii)+(vii) , (iv)+(viii) , (v)+(ix), (ii) , and(iv) are pushouts, so that
also(vii) and(viii) are pushouts. Fill in the dotted parts of the diagram to obtain further
pushouts(i), (v), (vi), and(ix).

By Lemma 4.2 bothw′1 and v′2 are monomorphisms, and now by Lemma 4.3 both
(vii) and(viii) are pullbacks. Consider the cube, above right, in which bottom and front
left faces are the pullbacks(vii) and(viii) , and the remaining faces are constructed so as
to be pullbacks. Since the bottom face is also a pushout, so is the top face. Similarly,
since the front left face is a pushout, so is the back right face. Combining the top and
back right faces of the cube with regions(vi) and(ix) yields anX-concurrent derivation
C Bp1;X p2,c D.

(2). Suppose that we have anX-concurrent derivationC Bp1;X p2, f D, as illustrated
by the solid part of the diagram below left.

X
t
!!C

CCCs
}}{{{

{

L1

f ′1

��

K1
l1oo

g′1

��

r1 // R1 h′1
  

AA
A L2f ′2

~~}}
}

K2
l2oo

g′2

��

r2 // R2

h′2

��

D′1

C′

c
��

E′1
(i)

w′1
77ooooooooov′1oo

e1��

P′u′oo

(iii )(ii) p
��

v′ // E′2
(iv)

v′2
ggOOOOOOOOO w′2 //

e2��

D′

d
��

C E1v1oo Puoo

q

gg

r

77v // E2 w2 // D

X
s
}}{{{

{ t
!!C

CCC

L1

f ′1
��

K1

g′1
��

l1oo
r1 // R1

h′1

��
44

44
44

4 L2

f ′2

��











K2
l2oo

g′2
��

r2 // R2

h′2
��

C′

c
��

E′1
(i) e1��

v′1
oo w′1

// D′1
(v) (vi)d1��

E′2
(iv)e2��

v′2
oo w′2

// D′

d
��

C E1v1
oo

w1
// D1 E2v2
oo

w2
// D

We construct pushouts(ii) and(iii) and obtainv1 andw2 using the universal properties.
It now follows that(i) and(iv) are also pushouts. Now construct the pushout(v); since
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(ii)+(v) and(iii) are pushouts, there is a unique mapv2 : E2→D1 so that(vi) is a pushout
and (iii)+(vi) equals(ii)+(v) . The diagram on the right now provides the requiredX-
dependent derivationC Bp1,c f ′1

D1 Bp2,d1 f ′2
D. �

8. RELATIONSHIP WITH HIGH-LEVEL REPLACEMENT CATEGORIES

High-level replacement categories [9–11] or HLR-categories encompass several at-
tempts to isolate general categorical axioms which lead to categories in which one can de-
fine double-pushout graph rewriting and prove useful theorems such as the local Church-
Rosser theorem and the concurrency theorem.

Definition 8.1 (HLR-categories). A categorySwith a class of morphismsM is an HLR-
category if it satisfies the following axioms:

(1) pairsC← A→ B with at least one of the arrows inM have a pushout;
(2) pairsB→ D←C with both morphisms inM have pullbacks;
(3) M is stable under pushout;
(4) M is stable under pullback;
(5) finite coproducts exist;
(6) if m andn are inM thenm+n is in M .
(7) pushouts of morphisms inM are pullbacks;
(8) pushout-pullback decomposition holds: that is, given a diagram

A��
l
��

k // B //
r //

��

s
��

E��
v
��

C u
// D // w

// F

if the marked morphisms are inM , the whole rectangle is a pushout and the right
square is a pullback, then the left square is a pushout.

Lemma 8.2. An adhesive category with a strict initial object is an HLR-category, with
M the class of monomorphisms.

Proof. This follows immediately from Lemmas 4.1, 4.2, 4.3, and 4.6. �

Similarly, quasiadhesive categories can be seen as HLR-categories:

Lemma 8.3. A quasiadhesive category with a strict initial object is an HLR-category,
with M the class of regular monomorphisms.

Proof. Immediate by Lemmas 6.3 and 6.5, in addition to the “quasi” versions of Lem-
mas 4.3 and 4.6. �

In both Lemma 8.2 and 8.3, the strict initial object is needed only to guarantee exten-
sivity, which in turn is needed only in order for axioms (5) and (6) to hold.

The axioms listed above are enough to prove the local Church-Rosser theorem (cf.
Theorem 7.7), butnot the concurrency theorem (cf. Theorem 7.11). To prove the latter,
extra axioms had to be introduced in [11], such as the conclusion of the following lemma.
Interestingly, it is almost the dual of the main axiom of adhesive categories.
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Lemma 8.4 (Cube-pushout-pullback-lemma [11]). Given a cube in which all arrows in
the top and bottom faces are monomorphisms, if the top face is a pullback and the front
faces are pushouts, then the bottom face is a pullback if and only if the back faces are
pushouts.

Proof. Since the front faces are pushouts along monomorphisms, they are also pullbacks.
If the bottom face is a pullback, then the back faces are pushouts by stability of the

pushouts on the front faces. Suppose conversely that the back faces are pushouts; since
they are pushouts along monomorphisms, they are also pullbacks. One now simply “ro-
tates the cube”: since the front right and back left faces are pushouts, and the top and
back right faces are pullbacks, it follows by adhesiveness that the bottom square is a
pullback. �

Clearly, one can prove a version of Lemma 8.4 for quasiadhesive categories by re-
placing monomorphisms with regular monomorphisms. An HLR-category which has the
conclusion of Lemma 8.4 as an additional axiom is sometimes referred to as an HLR2-
category [11]. It is immediate, therefore, that any adhesive category with a strict initial
object is an HLR2-category (M =monomorphisms) and similarly, that any quasiadhesive
category with a strict initial object is an HLR2-category (M =regular monomorphisms).

The strongest axiom system for general rewriting is enjoyed by the so-called HLR2*-
categories [11]. These are HLR2-categories which, additionally, have the conclusion of
Lemma 4.5 as an axiom, that is, pushout complements of monomorphisms are, if they
exist, unique up to isomorphism. Finally, they satisfy an axiom known as the twisted-
triple-pushout condition. We believe that this axiom does not hold in arbitrary adhesive
or quasiadhesive categories, although it does hold, for instance, in any topos. Indeed, it
is possible to extend the definition of adhesive and quasiadhesive categories in a natu-
ral way so that the twisted-triple-pushout-condition holds. We treat the adhesive version
of the lemma below, the reader will obtain the quasiadhesive version by replacing ev-
ery occurrence of ‘adhesive’ with ‘quasiadhesive’ and ‘monomorphism’ with ‘regular
monomorphism’.

Lemma 8.5. If C is adhesive and, additionally, all pushouts are stable under pullback
thenC satisfies the twisted-triple-pushout condition: that is, given a diagram

A

(i)f

��

k // B

(iii )g

��

G
uoo

h
��

C

(ii)p

��

l // D

q

��

Hv
oo

E m
// F

with k, l andm monomorphisms,(i) is a pushout when(i)+(ii) a pushout,(ii) a pullback,
(iii) a pushout andu, h forming a pullback ofqgandqv.

Proof. First note that, using Lemma 4.3,(i)+(ii) is a pullback. Using the pullback version
of Lemma 1.1 it follows that(i) is a pullback. It is easy to verify that(iii) is a pullback.
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Consider diagram(iv) below. By assumption, the front right face is a pullback, while
the front left face is(i)+(ii) , a pushout.

A′

r

��

s
##G

GG
a

uullllllllllllllllll
##G

GG

G

h

��

u
uukkkkkkkkkkkkkkkkkk

A

p f

��

k
##F

FF

B
qg

��

X x2

##H
HHx1

uukkkkkkkk

Cp
kkk

uukkk
l
##F

FF H
vuukkkkkkkk

E
m ##

GGG
D

quukkkkkkk

F

(iv)

A′a
uullllllll s

##G
GG

r

��

A

f

��

k
##F

FF G

h

��

uuukkkkkkkk

B

g
��

Xx1
kkk

uukkkk
x2

##H
HH

C
l
##F

FF H
vuukkkkkkkk

D

(v)

Furthermore, the leftmost half of the bottom face is(ii) which is, by assumption, a pull-
back. We obtainX and morphismsx1 : X →C andx2 : X → H by taking the pullback
of l : C→ D andv : H → D. We can now complete the diagram with an objectA′, and
morphismsa : A′→ A, r : A′→ X ands : A′→G so that the back left face and the top face
are pullbacks. Using adhesivity, the back right face is a pushout.

We obtain diagram(v) by “cutting off” the bottom left corner of diagram(iv). The
front left face is(i), the front right face(iii) , which is, by assumption, both a pushout and
a pullback. The bottom and back right faces are pullbacks, since they were constructed as
such in diagram(iv). To see that the back left face is commutative, note thatl f a = gka=
gus= vhs= vx2r = lx1r and use the fact thatl is a monomorphism. It is also a pullback,
using the pullback version of Lemma 1.1. Using the fact that arbitrary pushouts are stable
under pullback, we can conclude that the back left face is a pushout. Summarizing, we
have assumed that the front right face is a pushout and deduced that both the back left and
right faces are pushouts. It follows from the pushouts version of Lemma 1.1 that the front
left face,(i), is a pushout. �

Finally, the following lemma has been used by Ehrig and König in their work on rewrit-
ing via borrowed contexts [12]. Here we prove that it holds in any adhesive category. A
quasiadhesive version of the lemma can be obtained in the obvious way.

Lemma 8.6. Given diagram (i) below with the marked morphisms monomorphisms,

A
��

m
��

f
// C
��

n
��

p
// E
��

l
��

B g
// D q

// F

suppose that the left square is a pushout and the exterior is a pullback. Then the right
square is a pullback.
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Proof. Suppose we have an objectX and morphismsα : X→ D andβ : X→ E such that
qα = lβ. We will show that there existsk : X→C such thatnk= α; thenpk= β follows
sincel is a monomorphism, while uniqueness follows sincen is a monomorphism. We
begin by constructing the following cube by taking pullbacks.

X3m′

wwooo
ooo f ′

!!BB
α3

��

X1

α1

��

g′
  AA

X2

α2

��

n′
vvmmmm

m
X

α
��

Am
nnn

vvnnn
f
!!D

DD

B
g !!

BB C
nvvmmmmmmm

D

Now qgα1 = qαg′ = lβg′; but the diagram in the statement of the lemma is a pullback,
so there is a unique morphismh : X1→ A such thatmh= α1 andp f h= βg′.

Note thatmα3 = α1m′= mhm′, and using the fact thatm is a monomorphism,α3 = hm′

(*). We shall use the fact that the top face of the cube is a pushout to derive the existence
of the required morphism. Indeed, we haveα2 f ′ = f α3 = f hm′ where we used (*) to
derive the last equality. Thus we get a uniquek : X→C such thatkg′ = f h andkn′ = α2.

It remains to show thatnk= α. Indeed, we havenkg′ = n f h= gmh= gα1 = αg′ and
nkn′ = nα2 = αn′. Using the fact thatg′ andn′ are jointly epimorphic yields the required
equality. �

9. CONCLUSIONS AND FUTURE WORK

We introduced the notions of van Kampen (VK) square and adhesive category, as well
as the more general quasiadhesive categories. VK squares are “well-behaved pushouts”,
and a category is adhesive when pushouts along monomorphisms are VK. Adhesive and
quasiadhesive categories are closely related to extensive categories.

Double-pushout (DPO) rewriting can be defined in an arbitrary adhesive category. We
introduced adhesive grammars, which are adhesive categories with a set of linear produc-
tions. Adhesive grammars have sufficient structure for the development of a rich rewriting
theory. In particular, we proved the local Church-Rosser and the so-called concurrency
theorem within the setting of adhesive grammars. We have also shown that adhesive cat-
egories satisfy many of the axioms [9, 11] which were proposed in order to prove these
theorems. Thus, we have arrived at a class of categories which supports such a theory of
DPO rewriting, however, we believe that adhesive categories are mathematically elegant
and less ad-hoc than previous proposals.

In order to back this claim and to further develop the theory of adhesive categories, we
have demonstrated a number of useful properties. For instance, subobject union is formed
as a pushout over the intersection, and subobject intersection distributes over subobject
union. We have provided some closure properties which allow the construction of new
adhesive categories from old. Any elementary topos is adhesive, but there are examples
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of adhesive categories which are not toposes. Adhesive categories include many well-
known notions of graph structures used in computer science and are instances of HLR2-
categories [11].

We believe that adhesive categories will be useful in the development of specific graph-
ical models of computation and the development of semantic techniques for reasoning
about such models. The rewriting theory needs to be developed further, with, for exam-
ple, the construction of canonical dependency relations from derivations [11].

Another direction for future work is to examine whether adhesive categories have
enough structure so that groupoidal relative pushouts [23] can be constructed in cospan
bicategories over adhesive categories. Such cospan bicategories provide a way of under-
standing graphs in a modular fashion and will provide a general class of models which
should include bigraphs [20] as examples. Some progress in this direction has already
been achieved [24].

The second author would like to thank Vladimiro Sassone for many discussions in the early stages
of this project. Thanks also go to the anonymous referees for reading early drafts and providing
many valuable comments and suggestions.
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[17] S. Lack and P. Sobociński. Adhesive categories. InProceedings of FOSSACS ’04, volume 2987 ofLNCS,
pages 273–288. Springer, 2004.
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