
Semantic Barbs and Biorthogonality

Julian Rathke, Vladimiro Sassone and Pawe l Sobociński?

ECS, University of Southampton

Abstract. We use the framework of biorthogonality to introduce a novel
semantic definition of the concept of barb (basic observable) for process
calculi. We develop a uniform basic theory of barbs and demonstrate
its robustness by showing that it gives rise to the correct observables
in specific process calculi which model synchronous, asynchronous and
broadcast communication regimes.

1 Introduction

Labelled transition systems and structural operational semantics [17] have been
the idiomatic approach to the semantics of communicating concurrent systems
for many years [9,13]. Such semantics naturally yield many notions of equivalence
based on traces or bisimulations. As communication patterns in these calculi
grew more complex, there was a need to justify the ad-hoc labelled transition
semantics being provided with respect to simpler, more canonical equivalences.

Following the seminal contribution of Berry and Boudol [3], calculi began to
be equipped with a reduction relation meaning that widely accepted techniques
from the theory of lambda-calculi, such as the definition of a contextually de-
fined reduction congruence, were able to be studied in the setting of calculi for
concurrency and mobility. However, even in the setting of CCS [13], reduction
congruence is coarser than standard bisimilarity; this led Milner and Sangiorgi
to introduce the concept of a basic observable of a process, which came to be
dubbed a barb [14]. Together with a reduction semantics, barbs yield a canonical
notion of process equivalence for most modern calculi.

Barbs are notable in that they are perhaps the most well-known concept of
formal concurrent semantics which, despite being frequently used, do not actu-
ally have a general formal definition. In [14], a barb is understood simply to be a
predicate on processes which captures the intuitive notion of basic observable. In
many other settings specific barbs are precisely defined but no account is taken
of whether these definitions are appropriate. For example, in the calculus, CCS,
the choice of barb as being the ability to synchronise on a given name is un-
contentious. However, even moving to such a simple setting as an asynchronous
version of CCS leads to questions about the suitability of certain synchronisa-
tions as barbs. In this setting, it is accepted [2] for instance that the ability to
synchronise as a receive action is not suitable as a barb. To date though, there
is no formal definition which justifies this.
? Research partially supported by EPSRC grant EP/D066565/1.

The goal of this paper is to provide an abstract, semantic definition of what
it means to be a barb. We aim to make the definition as general as possible,
whilst ensuring that we encompass the intuitive definitions of barbs in various
well-known examples. The benefits of this approach will be that in complex lan-
guages or formal systems of communication, we will have a canonical definition
with which to identify the basic patterns of interaction. The need for more thor-
ough foundational insights is becoming increasingly important with the advent
of complex communication patterns in calculi for mobility [5, 19] and biological
modelling [4].

A defining feature of our approach is that we obtain a notion of observable
for our calculi based solely on their reduction semantics. Moreover, the observ-
ables are required to be suitably minimal so as to allow them to be considered
basic. In this sense, our work is related to Leifer and Milner’s attempts to ob-
tain a labelled semantics from a reduction semantics [11], however we focus on
static capability for interaction between agents and imbue the framework with
a notion of ‘successful’ interaction which is key to understanding the nature of
observability.

Our definition of barb is based around the notion of a closure operator, which,
given a process (or a set of processes), will construct the set of all processes
which offer the immediate interactions of that process (or set of processes). For
example, if we take the process: a!p0 ‖ b?q0, (where a! and b? denote, respectively,
the ability to output on a channel a and the ability to receive on a channel b)
then its closure is the set of all processes of the form

a!p ‖ b?q ‖ r for any p, q, r

as these are the processes which offer both an a! and b? interaction. This closed
set is considered to represent the abstract concept of a a! and b? interaction.
Similarly, the closure of {a!p0, b?q0} is the set of all processes of the form

a!p ‖ r or b?q ‖ r

that is, all processes which offer an a! or a b? interaction. Similar ideas have been
used both in logic and computer science, for example in Girard’s phase semantics
of linear logic [8], Krivine’s realisability [6], Pitts’ >>-closure [16] and formal
concept theory [20]. In particular, we shall show how all of the aforementioned
examples fit within a basic general framework.

To achieve a decent account of minimality in the barbs we need to consider
the closed sets that represent the least possible interactions. In the examples
above, we should not consider either of these minimal as they are made up
of combinations of distinct interaction capabilities in CCS. To capture this we
make use of the notion of irreducibility from algebraic geometry, see [18] for an
introductory account. Indeed, we only consider those closed sets of processes
which cannot be decomposed into a combination of two separate smaller closed
sets. This certainly rules out the closure of {a!p0, b?q0} from being a barb, but
we also wish to rule out the closure of a!p0 ‖ b?q0. This is done in a similar,
and dual, way of considering the closed sets of contexts which this process can

2

successfully interact with and demanding that this closed set of contexts cannot
be decomposed either. In this example, the contexts which successfully interact
are of the form

a?p ‖ r or b!q ‖ r

and we see that these are not minimal in the sense suggested.
This use of irreducibility in both the closed sets of processes and the contexts

for them is, to our knowledge, novel and is a main contribution of the paper.
The remainder of the paper is arranged so that we present our general notion
of interaction frameworks and biorthogonality along with familiar examples of
such frameworks. We then tailor the setting to specifically allow us to study
interaction in processes and we introduce three paradigmatic example process
calculi. The definition of irreducibility and the main definition of barb is then
given. After this we study properties of barbs in example languages, including
full process languages such as π-calculus.

2 Biorthogonality

The notion of biorthogonality is the device underpinning our entire approach. It
is at the same time a conceptual and a technical tool; its strength resides in the
simplicity and elegance with which it captures mathematically –amongst other
things– the notion of test as relationship between processes and contexts. We will
use it to understand the concept and the role of ‘observation’ at a foundational
level. We shall omit the proofs in this section because all of the results are basic
and well-known, even if we are unaware of previous work which collected all
of the examples listed at the conclusion of this section as instances of a single
framework.

We assume the following basic ingredients:

– sets T, Γ and Π which we shall self-evidently refer to as terms, contexts and
processes, respectively;

– a function @: T×Γ → Π, representing the insertion of a term in a context
to yield a process;

– a subset ⊥ ⊆ Π of successful processes, which we think of as a unary predi-
cate.

Informally, it is we think of t @ γ ∈ ⊥ as stating that t passes the test (represented
by context) γ, and vice versa; we shall say that t is successful for γ and that
γ is successful for t. We shall usually write the shorthand form t ⊥ γ to mean
t @ γ ∈⊥. From these basic notions we derive the maps:

(−)⊥ : P(T) → P(Γ)
T 7→ { γ ∈ Γ : ∀t ∈ T. t ⊥ γ }

and
(−)⊥ : P(Γ) → P(T)
Γ 7→ { t ∈ T : ∀γ ∈ Γ. t ⊥ γ }.

Thus, given a set T of terms, T⊥ is the set of contexts which are successful
for every t ∈ T , and similarly, given a set Γ of contexts, Γ⊥ is the set of terms

3

which are successful for every γ ∈ Γ . The reader is asked to tolerate the abuse
of notation, justified by the symmetry of the definitions, as the type of the
argument to (−)⊥ will always be made clear.

The following lemma proves some basic properties of the functions, and
strengthens the intuition of their combination (−)⊥⊥ as a closure operation.

Lemma 1.

(i) T ⊆ U implies U⊥ ⊆ T⊥;
(ii) T ⊆ T⊥⊥;
(iii) T⊥ = T⊥⊥⊥ (and therefore (T⊥⊥)⊥⊥ = T⊥⊥).

This allows us to define the central notion of a biorthogonal set of terms.
Due to the symmetry in the definitions, one can also define a biorthogonal set
of contexts, we leave this fact implicit. The lemma which follows the definition
illustrates some intuitively equivalent formulations of biorthogonality.

Definition 2 (Biorthogonals). We shall call a subset T ′ of T a biorthogonal
if there exists T ⊆ T such that T ′ = T⊥⊥.

Lemma 3. The following are equivalent:

(i) T is a biorthogonal;
(ii) T = T⊥⊥;
(iii) there exists Γ ⊆ Γ such that T = Γ⊥.

The basic algebraic properties of biorthogonals are expressed by the following
two lemmas.

Lemma 4. T⊥⊥ is the smallest biorthogonal containing T , for all T ⊆ T.

Lemma 5. Biorthogonals are closed under arbitrary intersections. 1

Two sets of terms T and U are said to be logically congruent when T⊥ = U⊥.
Logical congruence is an equivalence relation. The remainder of this section is
devoted to illustrating several examples of the basic framework.

Example 6 (Girard’s phase semantics for linear logic [8]). Let 〈P, ·, 1〉 be a com-
mutative monoid with identity; let T = Γ = Π be P and @ be the action ‘·’.
Let ⊥ ⊆ P . Then P is a phase space and the biorthogonals are its facts.

Example 7 (Krivine’s realizability). For simplicity, let T be the set of terms of
the simply-typed lambda calculus, and Γ a set of stacks, see [6] for details.
Then let Π be the set of syntactic expressions 〈t | γ〉, for t ∈ T and γ ∈ Γ.
The expected reduction semantics reduction semantics on is defined on Π and
⊥ ⊆ Π is taken be left-closed with respect to it:

〈t | γ〉 ∈ ⊥ and 〈t′ | γ′〉 →∗ 〈t | γ〉 implies 〈t′ | γ′〉 ∈ ⊥.

Under the obvious interpretation of | as @, the biorthogonals are called truth
values. See also [12] for a recent application of this technique.
1 Biorthogonals are not in general closed under even finite unions, as we shall illustrate

in Example 19.

4

Example 8 (>>-closed relations). We’ll use Abadi’s ‘semantic’ interpretation [1]
of Pitts’ >>-closed relations [16]. Let A,B be cpos with bottom ⊥. Let 2 be
the poset {{⊥,>}, {⊥ v >}}, and let 2A (resp. 2B) denote the set of monotonic,
strict and continuous functions A → 2 (resp. B → 2). Let T = A × B, Γ =
2A × 2B , and Π = 2 × 2, and define @ : (A × B) × (2A × 2B) → 2 × 2 to be
the obvious evaluation function @((a, b), (f, g)) = (fa, gb). Let ⊥ be the equality
relation on 2. The biorthogonals are the >>-closed relations.

Example 9 (Formal concept theory). Introduced by Wille [20], this subject shares
our notion of frameworks for biorthogonality and was proposed as a way of
restructuring lattice theory to account for the interaction between what was
called objects and attributes. The notion of ‘concept’ corresponds to our no-
tion of biorthogonal. The goal of this research effort seems to be one of useful
representations of lattices and efficient computations on these.

Example 10 (Classical algebraic geometry). Let T be an n-dimensional affine
space over an algebraically closed field k (say kn). Let Γ be the ring k[x1, . . . , xn]
of polynomials with n variables. Let Π be the field k, and @ : kn×k[x1, . . . , xn] →
k be the evaluation map. Let ⊥ = {0}. Then the biorthogonals are the affine
varieties. Varieties which are irreducible, that is, cannot be written as a nontrivial
union of two other varieties, are of particular interest. We shall make use of
irreducibility in §5.

3 A refined model: ⊥ as an ideal

In preparation for applications of biorthogonality to sets of terms with richer
structure, we now refine our framework with a specialised notion of composition.
Recall that for 〈M, ·, 1〉 a commutative monoid, an ideal I is a subset of M closed
under the action of M , i.e., ∀i ∈ I ∀m ∈ M. i · m ∈ I. We shall write [M ′] to
mean the ideal generated by a set M ′ ⊆ M .

We shall now extend the basic framework as follows:

– T ⊆ Π and Γ ⊆ Π;
– there exists a binary operator ‖ and ε ∈ Π such that 〈Π, ‖, ε〉 is a commuta-

tive monoid, and for all t ∈ T and γ ∈ Γ we define t @ γ = t ‖ γ; moreover,
T and Γ are submonoids, ie ε ∈ T, ε ∈ Γ and for all t, t′ ∈ T, t ‖ t′ ∈ T and
for all γ, γ′ ∈ Γ, γ ‖ γ′ ∈ Γ;

– ⊥ is an ideal of 〈Π, ‖, ε〉.

Example 11 (Phase semantics for affine linear logic). With reference to Exam-
ple 6, observe that collapsing T = Γ = Π and additionally requiring ⊥ to be an
ideal, we obtain phase semantics for affine linear logic; that is, the logic obtained
from linear logic by introducing weakening.

The following lemma lists some basic properties of the refined framework.
Let ⊥Γ=⊥ ∩Γ and ⊥T=⊥ ∩T.

5

Lemma 12.

(i) For every T ⊆ T, we have ⊥Γ ⊆ T⊥;
(ii) for every Γ ⊆ Γ, we have ⊥T ⊆ Γ⊥;
(iii) every biorthogonal V ⊆ T is an ideal of T;
(iv) every biorthogonal Γ ⊆ Γ is an ideal of Γ.

Proof. (i) Obvious, since ⊥ is an ideal of Π, for any π ∈ ⊥Γ and t ∈ T we have
π ‖ t ∈ ⊥, so π ∈ T⊥. (ii) Is immediate by duality. (iii) For arbitrary t ∈ T,
v ∈ V , γ ∈ V ⊥, we have that t ‖ v ‖ γ ∈ ⊥ since v ‖ γ ∈ ⊥. (iv) Is immediate
by duality. ut

4 Idealised process calculi

Idealised process calculi, introduced here, will be the main examples of the ex-
tended framework defined in the previous section. Although the calculi we con-
sider do not cover the entire realm of process models systematically, they are
carefully chosen to span a significant spectrum of cases. In particular, our ide-
alised process calculi have only two constructs, action prefix and parallel com-
position. They are equipped with different reduction semantics which specifies
the communication regime used.

The set of ‘ordinary’ processes P can be generated freely by a simple gram-
mar, given in Fig 1 for some fixed countably infinite set of channel names A.
Basic actions a? and a! represent action/co-action synchronisation pairs à la
CCS. We consider the set of processes to be quotiented by structural congru-
ence ≡ which makes 〈P, ‖, ε〉 a commutative monoid. More concretely, ≡ is the
smallest congruence which includes the equations:

P ‖ Q ≡ Q ‖ P and P ‖ ε ≡ P.

Ordinary processes will form the set T of terms.
The set of contexts, denoted C, is obtained in a similar way. A typical context

is a finite parallel composition of Xs prefixed by a single name. Here, the syntactic
entity X represents success. Our contexts have a simple structure because we
shall always be interested in the top level structure of a term; indeed, we shall
test only for a process’s immediate capabilities for interaction. Finally, PX is the
set of extended processes. An extended process is a finite parallel composition
of ordinary processes, contexts and Xs. As done for P , we also quotient C and
PX by the structural congruence ≡.

In order to simplify notation, we shall often denote action prefixing with mere
juxtaposition and also write simply a! or a? to mean a!ε or a?ε, respectively.

Different communication regimes are specified with individual sets of reduc-
tion schemas over extended processes. The reduction semantics is obtained by
closing the reduction rules with respect to ‖ in the sense that if t → t′ then
t ‖ σ → t′ ‖ σ for any σ ∈ PX.

In the asynchronous case, instead of following the tradition of allowing an
output to prefix only the null process, we simply only include the reductions

6

P ::= ε | P ‖ P | M.P

M ::= a? | a! (a ∈ A)

C ::= ε | C ‖ C | MX

MX ::= MX

PX ::= PX ‖ PX | P | C | X

Fig. 1. Idealised process calculi: processes P and contexts C.

where this is the case. Thus in the asynchronous calculus a term of the form
a!.P where P 6= ε is operationally indistinguishable from ε as it cannot take
active part in any reduction.

Example 13 (Synchrony). The reduction rules are given by the schema below
where P and Q range over arbitrary extended processes.

a!P ‖ a?Q → P ‖ Q (a ∈ A)

Example 14 (Asynchrony). The reduction rules are given by the schema below
where P ranges over arbitrary extended processes.

a! ‖ a?P → P (a ∈ A)

Example 15 (Broadcast). The reduction rules are given by the schema below; I
is any finite (possibly empty) set while P and Qi range over extended processes.

a!P ‖
∏
i∈I

a?Qi → P ‖
∏
i∈I

Qi

In each of the cases, the three simple calculi described above fit within our
refined framework: we let T = P , Γ = C and Π be parallel compositions of
these. We define application to be parallel composition:

@ : P × C → Π

(t, γ) 7→ t ‖ γ.

In order to define the success predicate we make use of the extended processes
PX. We call an extended process (a member of PX) ‘spent ’ if has precisely one
X at top level - ie X is a parallel component. An extended process is deemed to
be successful if it reduces in one step to a spent extended process. In formulae:

π ∈ ⊥ iff ∃π′ ∈ PX. π′ spent ∧ π → π′.

As usual, we write p ⊥ π when p @ π = p ‖ π is a successful extended pro-
cess. Essentially, the definition of success ensures that a context has to either

7

engage the term (since a context which would reduce by itself via a non-trivial
interaction, using any of our three reduction schemas, would result in two in-
stances of X) or have an atomic parallel component which reduces by itself to
X (for instance, the context a!X in the broadcast paradigm). It is clear that in
all three examples ⊥T= ∅. In Examples 13 and 14, also ⊥Γ= ∅. In Example 15
⊥Γ= [{ a!X : a ∈ A }], since any a!X can reduce to X in one step.

We conclude this section by illustrating typical biorthogonals for the simple
calculi illustrated above. Recall that we use the square bracket notation to mean
the smallest ideal generated by the indicated set of terms.

Example 16 (Synchrony – cf Example 13). Biorthogonals for basic terms with
single communication capability are the set of all terms which have that im-
mediate capability. So we have {a!}⊥⊥ = ([a?X] ∪ ⊥)⊥ = [a!P], the set of
all terms ready to output on a. Symmetrically, {a?}⊥⊥ = [a?P]. In general,
starting with a single term, the biorthogonal yields all the terms that have
the same selection of immediate capabilities for communication. For instance
{a? ‖ b!c?}⊥⊥ = [a!X, b?X]⊥ = [a?P ‖ b!Q]. For sets of terms, the biorthogonal
is the smallest biorthogonal which contains all of the terms. In the case of Ex-
ample 13 this is simply the union of the biorthogonals of the individual terms.
However as hinted at previously and illustrated by the calculus of Example 19,
this need not be so, as the union of biorthogonals is in general not a biorthogonal.

Example 17 (Asynchrony – cf Example 14). We have again {a!}⊥⊥ = [a?X]⊥ =
[a!P]. However, since output actions a! cannot guard X in a reduction, we have
{a?}⊥ = ⊥Γ and therefore {a?}⊥⊥ = T.

Example 18 (Broadcast – cf Example 15). Since ⊥Γ = [{ a!X : a ∈ A }], we have
{a?}⊥⊥ = ⊥⊥Γ = T. Once again, {a!}⊥⊥ = [a!P].

5 Irreducibility and barbs

As indicated previously, irreducibility is an important concept of algebraic ge-
ometry. Here we shall apply the concept to biorthogonals, which in general are
not closed under finite unions:

Example 19. Consider the following reduction rules which capture an interaction
pattern reminiscent of the features of the join calculus [7]:

a?P ‖ a!P ′ → P ‖ P ′ (a ∈ A)
ab?P ‖ a!P ′ ‖ b!P ′′ → P ‖ P ′ ‖ P ′′ (a, b ∈ A)

Here the ab? prefix needs the presence of both a! and b! to reduce. Then
{a?X}⊥⊥ = [a!P]⊥ = [a?X] and similarly {b?X}⊥⊥ = [b!P]⊥ = [b?X]. However,
{a?X, b?X}⊥⊥ = [a!P ‖ b!Q]⊥ = [a?X, b?X, ab?X] is strictly larger than [a?X]∪
[b?X]. Thus we see that the union of the two biorthogonals [a?X] and [b?X] is
not itself a biorthogonal.

8

Definition 20 (Sum). Given biorthogonals V1 and V2, their sum V1 + V2 is
defined to be the smallest biorthogonal which contains both V1 and V2.

It is easy to verify that V1 + V2 = (V1 ∪ V2)⊥⊥ = (V ⊥
1 ∩ V ⊥

2)⊥. Thus,
intuitively, V1 + V2 consists of all the terms which pass the test suites of each of
V1 and V2. Sum + is clearly commutative and easily checked to be associative.
It has ∅⊥⊥ as the identity. Furthermore, the binary operations + and ∩ on
biorthogonals are related by De Morgan equations: V ∩W = (V ⊥ + W⊥)⊥ and
V + W = (V ⊥ ∩W⊥)⊥.

A sum V = V1 + V2 is said to be nontrivial when V 6= V1 and V 6= V2.

Definition 21 (Irreducibility). A biorthogonal is said to be irreducible if it
cannot be written as a nontrivial sum of two biorthogonals.

The following definition is one of the central contributions of this paper.

Definition 22 (Barb). A barb is defined to be an proper irreducible biorthog-
onal B, whose orthogonal B⊥ is also proper irreducible. For T ⊆ T any set of
terms, T is said to barb on B, written T↓B , if T⊥⊥ ⊆ B. In particular, a single
term t barbs on B when {t}⊥⊥ ⊆ B. A term t ∈ T is said to weakly barb on B,
written t⇓B , if there exists t′ such that t →∗ t′ and t′ ↓B .

The definition identifies barbs abstractly as ‘replete’ or ‘maximal’ sets of
terms that exhibit a given basic behaviour in tests (biorthogonality). Such be-
haviour must be nontrivial (properness), and ‘atomic’ (irreducibility). The irre-
ducibility condition on B⊥ means that barbs are testable by suitably atomic set
of contexts.

Definition 22 allows the immediate possibility of defining the standard notions
of (strong and weak) barbed bisimilarity and (strong and weak) barb congruence,
which provide canonical notions of equivalence. Note that there is a choice in how
one defines the congruence, one can either follow Milner and Sangiorgi’s original
definition [14] of the largest congruence contained in barbed bisimilarity, or to
take the largest congruence which is also a bisimulation. The latter equivalences
are sometimes described as dynamic, see [10,15].

The definition of barb which we have formulated is widely applicable; how-
ever, in any given framework, it may take some effort to identify the irreducible
biorthogonals. For this reason we now seek to find a straightforward characteri-
sation of the barbs in our range of example calculi. For now, in order to do this
we have tailored the success predicate towards handshaking synchronisation and
we shall also make further restrictions on the type of calculi considered. These
restrictions, while intuitive and natural, disallow some more complex examples
of interaction (eg Example 19), which will be the subject of future work.

6 Simple calculi

In this section we shall require additional structure on the algebra of biorthog-
onals. A calculus is said to be simple when its algebra of biorthogonals enjoys
the extra structure.

9

Definition 23. A biorthogonal V is said to be finitely generated (fg) when there
exist v1, . . . , vn ∈ V such that V = {v1, . . . , vn}⊥⊥.

In any framework, the sum of two fg biorthogonals is fg: if V = {v1, . . . , vk}⊥⊥
and W = {w1, . . . , wl}⊥⊥ then V + W = {v1, . . . , vk, w1, . . . , wl}⊥⊥.

Lemma 24. Any irreducible fg biorthogonal is generated by one of its elements.
Thus if V is fg and irreducible then there exists v ∈ V such that V = {v}⊥⊥.

Proof. Suppose that V is irreducible and fg. Then there exist v1, . . . , vn ∈ V
such that V = {v1, . . . , vn}⊥⊥. Indeed, clearly V = {v1}⊥⊥ + {v2, . . . , vn}⊥⊥.
By irreducibility, either V = {v1}⊥⊥ and we are finished or V = {v2, . . . , vn},
where we repeat the procedure. ut

In particular, if all biorthogonals are fg then all irreducible biorthogonals
can be generated by a single element. If biorthogonals are closed under binary
union, then the converse, that all single element generated biorthogonals are
irreducible, is also true.

Lemma 25. Suppose that biorthogonals are closed under finite union, in other
words V + W = V ∪W . Then any biorthogonal generated by a single element is
irreducible.

Proof. Suppose that V = {v}⊥⊥ = V1 + V2 = V1 ∪ V2. Then either v ∈ V1 or
v ∈ V2. In the first case V = {v}⊥⊥ ⊆ V1, meaning that V = V1; similarly, in
the second case V = V2. ut

We shall now show that the calculi of Examples 13, 14 and 15 have biorthog-
onals which are closed under unions. We shall need two technical lemmas.

Lemma 26. The examples satisfy the following dual properties:

(i) for all contexts γ ∈ Γ and terms t1, t2 ∈ T:

t1 ‖ t2 ⊥ γ iff t1 ⊥ γ or t2 ⊥ γ;

(ii) for all terms t ∈ T and contexts γ1, γ2 ∈ Γ:

t ⊥ γ1 ‖ γ2 iff t ⊥ γ1 or t ⊥ γ2.

Proof. The ‘if’ direction is obvious for both cases.
Suppose that t1 ‖ t2 ⊥ γ. If γ reduces to a spent process with no need for

interaction then clearly both t1 ⊥ γ and t2 ⊥ γ. Otherwise, since all reduction
rules of Examples 13 and 14 have at most two parallel components in the redex,
and γ has to provide at least one (since both t1 or t2 are ordinary processes and
thus have no occurrences of X), it follows that t1 ⊥ γ or t2 ⊥ γ. In Example 15,
it is enough to consider γ of the form a?X. Clearly then either t1 or t2 must
have output capability on a, and thus t1 ⊥ γ or t2 ⊥ γ.

Now suppose that t ⊥ γ1 ‖ γ2. Notice that γ1 ‖ γ2 reduces to a spent
process without interaction if and only if either γ1 or γ2 (or both) can do so
independently. Indeed, any interaction between γ1 and γ2 results in two instances
of X result in the reactum. Hence t must provide a part of the redex. ut

10

Proposition 27. The examples satisfy {t1 ‖ t2}⊥ = {t1}⊥ ∪ {t2}⊥, for any
terms t1 and t2. More generally, for T1 and T2 any sets of terms, (T1 ‖ T2)⊥ =
T⊥

1 ∪ T⊥
2 , where ‖ is extended to sets in the obvious pointwise manner.

Proof. Clearly the more general second statement implies the first. Also, it is
obvious that A⊥ ∪ B⊥ ⊆ (A ‖ B)⊥. Now suppose that π ∈ (A ‖ B)⊥. If, for
all a ∈ A, π ⊥ a, then π ∈ A⊥ and we are finished. Suppose then that there
exists a ∈ A such that not π ⊥ a. Then, by the assumption on π, for all b ∈ B,
π ⊥ a ‖ b. Lemma 26 implies that π ⊥ b. Thus π ∈ B⊥. ut

Scholium 28. The examples satisfy {γ1 ‖ γ2}⊥ = {γ1}⊥ ∪ {γ2}⊥, for all con-
texts γ1 and γ2. More generally, (Γ1 ‖ Γ2)⊥ = Γ⊥

1 ∪ Γ⊥
2 for all sets of contexts

Γ1 and Γ2.

Corollary 29. In the examples, biorthogonals are closed under finite unions.

Definition 30 (Simple calculi). We shall say that an idealised process calcu-
lus is simple when:

(i) V + W = V ∪W , for all biorthogonals V and W ;
(ii) every irreducible biorthogonal has a single generating element.

Proposition 31. The calculi introduced in Examples 13, 14 and 15 are simple.

Proof. Corollary 29 shows that the calculi satisfy (i). If V is a finitely generated
irreducible biorthogonal, then it is generated by a single element as shown in
Lemma 24. It remains to show that any irreducible biorthogonal is finitely gen-
erated, the proof of this fact is more involved and will appear in a fuller version
of this paper. ut

Proposition 32. In a simple idealised process calculus, the barbs coincide with
proper biorthogonals generated by a single term whose orthogonal is also proper
and generated by a single term.

Proof. By definition, barbs are proper irreducible biorthogonals B whose orthog-
onal B⊥ is also proper irreducible. We know that, by simplicity, any irreducible
biorthogonal has a single generating element. On the other hand, any biorthogo-
nal which is generated by a single term is irreducible by Lemma 25, thus if both
the biorthogonal and its orthogonal are proper and generated by a single term
then they are both irreducible, and the biorthogonal is a barb.

Remark 33. Several interesting and reasonable features of calculi fall outside
the framework of simple calculi. For instance, the ability of synchronising with
two separate processes as illustrated in Example 19, can mean that biorthog-
onals are not closed under binary unions. The requirement of irreducibility in
the definition of ‘simple’ above is necessary even for the simplest calculi. An
example below, written in the synchronous idealised language of Example 13,
demonstrates a non finitely generated reducible biorthogonal. This example is
useful because it shows that, in a finitary calculus, it is irreducibility that forces

11

finite generation for barbs. We also provide an example of a calculus which con-
tains non finitely generated irreducible biorthogonals. In this case, the calculus
contains non-finitary reduction rules.

Example 34 (Non finitely generated reducible biorthogonal). We use the idealised
synchronous language of Example 13 and let T = { ti : i ≥ 0 }; it holds that T⊥

is { [πi] : i ≥ 0 }, where we define each ti and πi as below:

ti =
∏
j<i

bj ! ‖ ai! πi = bi?X ‖
∏
j≤i

aj?X.

Consequently T⊥⊥ = { [ti] : i ≥ 0 }. We claim that T⊥⊥ is not finitely generated
but is reducible as we can express T⊥⊥ as T⊥⊥ = {t0}⊥⊥+{ ti : i ≥ 1 }⊥⊥ with
{t0}⊥⊥ 6= { ti : i ≥ 1 }⊥⊥.

Example 35 (Non finitely generated irreducible biorthogonals). Suppose that the
set of prefixes is

M ::= ai? | bi! | bω (i ∈ N)

and that there is an infinite reaction rule schema of the form:

ai?P ‖ bj !Q → P ‖ Q (i ≤ j ∨ j = ω).

For each i, {ai?}⊥⊥ = { bj !X : i ≤ j ∨ j = ω }⊥ = [{ akP : P ∈ T, k ≤ i }]. In
particular, there is an infinite ascending chain

{a0}⊥⊥ ⊂ {a1}⊥⊥ ⊂ . . .

Now the biorthogonal {bω}⊥ = { ai : i ∈ N }⊥⊥ is irreducible and not finitely
generated.

We are now in a position to show the barbs for each of our three main
examples. Before we do this, it is helpful to consider why certain biorthogonal are
not barbs. Firstly, any non irreducible biorthogonal is not a barb, for instance,
in the synchronous case {a?}⊥⊥ ∪ {b?}⊥⊥. Intuitively, this is so because the
biorthogonal does not capture a single set of capabilities for interaction, its
terms have either one type (a?) or the other (b?). An irreducible biorthogonal
may also fail to be a barb because its orthogonal is reducible, meaning that no
suitable single test exists for it – for instance, {a! ‖ b!}⊥ = {a?}⊥⊥ ∪ {b?}⊥⊥.
Intuitively, this is because each of the terms in the biorthogonal has two distinct
possibilities for interaction, here both a? and b?. Finally, when a biorthogonal
is not proper (it contains all the terms), it is not a barb. In this case, the term
does not have non-trivial observations (cf {a?}⊥⊥ in the asynchronous case).

We know because of Propositions 31 and 32 that in identifying barbs in our
simple calculi it is sufficient to examine biorthogonals of singletons:

Proposition 36 (Synchronous barbs). In Example 13, the barbs are:

12

1. for any a ∈ A, the processes which can output on a: {a!}⊥⊥;
2. for any a ∈ A, the processes which can input on a: {a?}⊥⊥.

Proof. Both {a!}⊥⊥ and {a?}⊥⊥ are proper biorthogonals with orthogonals
{a?X}⊥⊥ and {a!X}⊥⊥, respectively. Both are thus barbs by Proposition 32.

If the term has (immediate) capability to communicate on two separate chan-
nels then its orthogonal is reducible, hence it cannot be a barb. It thus suffices
to notice that {a! ‖ a!}⊥⊥ = {a!}⊥⊥ and {a? ‖ a?}⊥⊥ = {a?}⊥⊥. ut

Proposition 37 (Asynchronous barbs). For the calculus of Example 14, the
barbs are, for any a ∈ A, the processes which can output on a, {a!}⊥⊥.

Proof. As before, it suffices to check terms which have a communication capa-
bility on a single name. But {a!}⊥⊥ = {[a?X]}⊥ = [a!P], a proper biorthogonal,
while {a?}⊥⊥ =⊥⊥= T. ut

Proposition 38 (Broadcast barbs). For the calculus of Example 15, the
barbs are, for any a ∈ A, the processes which can output on a, {a!}⊥⊥.

Proof. Again, {a!}⊥⊥ = {[a?X]}⊥ = [a!P] while {a?}⊥⊥ = T. ut

7 Extension to full process calculi

We have presented a general notion of barb which behaves well in our idealised
calculi; this does not, however, allow us to characterise barbs in full process
calculi. In this section we remedy this by observing that since the nature of barbs
in their various settings is closely tied to the basic pattern of interaction between
processes, and the idealised calculi are sufficient to model these interactions, then
barbs in full process calculi can be obtained via translation in to the idealised
languages. We shall show that, given well-behaved translations, the biorthogonals
of an extended framework derived from a full process calculus are preserved
through translation.

Let us assume a process calculus C with an inert process ε and parallel com-
position ‖. This calculus can be construed as a testing framework by augmenting
it with X in an identical way to the idealised calculi. We will use P and C to
range over terms and contexts of this framework.

Definition 39 (Translations). An interaction-preserving translation into the
idealised calculus I consists of a pair of maps

[[]] : C → I [[]]−1 : I → C

which preserve ε, ‖ and X and moreover satisfy:

– [[]] is surjective
– [[[[P]]]]−1 is logically congruent to P .
– [[P]]@π ∈⊥ iff P@[[π]]−1 ∈⊥ and, dually, [[p]]−1@C ∈⊥ iff p@[[C]] ∈⊥.

13

Lemma 40. For any interaction-preserving translation, [[]]−1 is surjective up
to logical congruence.

Proposition 41 (Translation correctness). For any interaction-preserving
translation and any set of terms/contexts A of C, [[A⊥]] = [[A]]⊥.

This tells us that interaction-preserving translations preserve (irreducible) biorthog-
onals, thus barbs are preserved. To find the barbs of a full process calculus then,
it suffices to provide an interaction preserving translation and identify the barbs
in the idealised language. We give an example of such a translation for the π-
calculus below.

Example 42. We shall translate the π-calculus in to the synchronous idealised
calculus. We define the mapping [[]]−1 as a simple embedding which preserves,
ε,X and ‖ and

[[a?p]]−1 = a(n).ε [[a!p]]−1 = ān.ε

where n is a reserved fixed name and we include special cases of the translation
to preserve prefixed ticks. For the forward mapping, we also preserve ε,X and ‖:

[[ānP]] = a!ε [[!P]] = [[P]]
[[a(n)P]] = a?ε [[νnP]] =

∏
mi 6=n?,n! miε if [[P]] =

∏
I miε

and also allow for special cases to preserve prefixed ticks. Note that, as we are
interested solely in initial reductions, the role of replication, dynamic scoping
and dynamically received names do not impact upon the translation. We leave
it to the reader to check that this does indeed form an interaction preserving
translation.

8 Conclusions and future work

We have introduced a formal definition of the well-known notion of barb, a basic
observable of a process calculus. The definition relies only on the presence of a
suitable underlying reduction semantics and relies on biorthogonality, a simple
framework with deep roots in logic and computer science, and irreducibility, a
concept from algebraic geometry.

We have shown that our definition yields the commonly accepted observables
in idealised calculi for synchronous, asynchronous and broadcast communication.
The latter fact was made possible by a characterisation of barbs in a particular
class of simple calculi whose algebra of biorthogonals satisfies additional axioms.
We have also shown how to use our idealised calculi to compute the barbs for
standard calculi.

Finally, we have identified some synchronisation mechanisms which do not
fit within the framework of simple calculi, but which still fit into the general
framework. Our future research will concern understanding barbs in such calculi.

14

References

1. M. Abadi. >>-closed relations and admissibility. Mathematical Structures in Com-
puter Science, 10:313–320, 2000.

2. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous pi-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

3. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

4. L. Cardelli. Brane calculi: Interactions of biological membranes. In Computational
Methods in Systems Biology CMSB ’04, volume 3082 of LNCS, pages 257–280,
2005.

5. L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structures, FoSSaCS ’98. Springer Verlag, 1998.

6. V. Danos and J.-L. Krivine. Disjunctive tautologies as synchronisation schemes.
In Computer Science Logic CSL ’00, volume 1862 of LNCS, pages 292–301, 2000.

7. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Proceedings of Symposium on Principles of Programming Languages,
POPL’96, pages 372–385. ACM Press, 1996.

8. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–101, 1987.
9. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

10. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 151(2):437–486, 1995.

11. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In International Conference on Concurrency Theory Concur ’00, volume 1877 of
LNCS, pages 243–258. Springer, 2000.

12. P.-A. Melliès and J. Vouillon. Recursive polymorphic types and parametricity in
an operational framework. In Logic in Computer Science LICS ’05, pages 82–91.
IEEE, 2005.

13. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
14. R. Milner and D. Sangiorgi. Barbed bisimulation. In 9th Colloquium on Automata,

Languages and Programming, ICALP ’92, volume 623 of LNCS, pages 685–695.
Springer, 1992.

15. U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation
for CCS. Fundamenta Informaticae, XVI:171–199, 1992.

16. A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321–359, 2000.

17. G. D. Plotkin. A structural approach to operational semantics. Technical Re-
port DAIMI FN-19, Aarhus University, 1981. Reprinted in Journal of Logic and
Algebraic Programming 60–61 (2004) 17-139.

18. M. Reid. Undergraduate Algebraic Geometry, volume 12 of London Mathematical
Society Student Texts. Cambridge University Press, 1988.

19. J. Vitek and G. Castagna. A calculus of secure mobile computations. In IEEE
Workshop on Internet Programming Languages, 1998.

20. R. Wille. Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In I. Rival, editor, Ordered Sets, pages 445–470. Reidel, Dordrecht-Boston,
1982.

15

