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1
dpmms, University of Cambridge, United Kingdom

2 School of Computing and Mathematics, University of Western Sydney, Australia
3

ecs, University of Southampton, United Kingdom

Abstract. Adhesive categories are a class of categories in which pushouts
along monos are well-behaved with respect to pullbacks. Recently it has
been shown that any topos is adhesive. Many examples of interest to com-
puter scientists are not adhesive, a fact which motivated the introduc-
tion of quasiadhesive categories. We show that several of these examples
arise via a glueing construction which yields quasitoposes. We show that,
surprisingly, not all such quasitoposes are quasiadhesive and characterise
precisely those which are by giving a succinct necessary and sufficient con-
dition on the lattice of subobjects.

1 Introduction

Adhesive categories, introduced in [8], are a class of categories where pushouts
along monos exist and are well-behaved with respect to pullbacks. They cap-
ture several examples of interest to computer scientists, in particular presheaf
toposes. Amongst other applications, they have allowed the generalisation of sev-
eral aspects of the theory of graph transformations. Several results which before
were proved concretely at the level of the category of graphs and graph homo-
morphisms Graph have been generalised and shown to hold in any adhesive
category. Because adhesive categories also enjoy useful closure properties, such
theory is widely applicable.

Recently it has been shown by the second and the third authors that toposes
are adhesive categories [10]. This result, while perhaps not surprising, is useful
because topos theory is a well-established branch of mathematics with wide rele-
vance to diverse fields such as logic, geometry and topology. Adhesive categories
have less structure than toposes, meaning for example that they enjoy more clo-
sure properties (for instance, adhesive categories are closed under coslice). In
particular, there are adhesive categories which are not toposes.

Early in the development of the theory of adhesive categories it became clear
that the class of adhesive categories was too restrictive for several important ex-
amples, notably many arising from the theory of algebraic specifications. In such
categories the class of regular monos (the monos which arise as equalisers) differs
from the class of all monos. Since it is easy to show that all monos in an adhe-
sive category are regular, it is immediate that the examples are not instances of
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adhesive categories. However, it was also clear that pushouts along regular monos
enjoyed many of the properties which pushouts along monos enjoy in adhesive
categories – for instance such pushouts are also pullbacks and regular monos
are stable under pushout. The examples motivated the theory of quasiadhesive
categories in which pushouts along regular monos are well-behaved with respect
to pullbacks. An example of interest to computer scientists is the category of ter-
mgraphs [3]. There have been several other attempts at generalising the original
definition of adhesivity, notably adhesive HLR categories [5] and weak adhesive
HLR categories [6].

Here we return to some of the examples which first motivated the introduction
of quasiadhesive categories and show that they all arise as instances of a glueing
construction. As a consequence of this, we show that the categories are quasito-
poses. Roughly, quasitoposes are to toposes as quasiadhesive categories are to
adhesive categories, in the sense that much of the structure is assumed only of
regular monos (in a topos, as in an adhesive category, all monos are regular). In
fact, the nomenclature of topos theory motivated the name ‘quasiadhesive’.

The central result of the paper can be considered surprising: quasitoposes
are a generalisation of toposes roughly as quasiadhesive categories are a gener-
alisation of adhesive categories and since as mentioned previously, toposes are
adhesive, one could expect also that quasitoposes are quasiadhesive. As we shall
show, this is not the case. In fact, we shall characterise which quasitoposes are
quasiadhesive: precisely those where unions of regular subobjects are regular in
the subobject lattice. The proof of the main result is interesting in part because
it constructs a direct counterexample in any quasitopos in which the condition
fails. An example of a quasitopos which is not quasiadhesive is the category of
binary relations BRel, also known as the category of simple graphs.

Returning to our examples, we take advantage of the fact that they arise uni-
formly and exhibit a sufficient and necessary condition on the functor along which
gluing occurs for the resulting category to be quasiadhesive. This characterisation
allows us immediately to derive which of the categories are quasiadhesive. For in-
stance, the category of injective functions, Inj is a quasiadhesive quasitopos while
the quasitopos Spec of algebraic specifications is not quasiadhesive.

Structure of the paper. In §2 we recall the definitions of adhesive and quasiad-
hesive categories. In §3 we introduce our main motivating examples. We show
that these examples arise uniformly as a certain full subcategory of a category
obtained by Artin glueing in §4 and prove that such categories are quasitoposes.
We prove that a quasitopos is quasiadhesive if and only if unions of regular sub-
objects are regular in §5. Using this result, we show a necessary and sufficient
condition on the glueing functor which allows us to immediately show which of
the examples are quasiadhesive. We conclude in §6.

2 Preliminaries

Here we shall briefly recall the notions of adhesive and quasiadhesive categories
together with a few of their properties. Adhesive and quasiadhesive categories
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rely on the notion of a van Kampen (VK) square. Van Kampen squares are
pushouts which satisfy a certain axiomatic condition.

Definition 1. A van Kampen square is a pushout which satisfies the following:
for any commutative cube in which it is the bottom face
and which has the left and rear faces pullbacks, the front
and right faces are pullbacks if and only if the top face
is a pushout. Another way of stating the “only if” part
of the above condition is that such a pushout is required
to be stable under pullback.

C′
����

�

��

�� B′
����

�

��
A′

��

�� D′

��
C

���
��

�� B
���

��

A �� D

A category C is adhesive when it has pullbacks, pushouts along monos and such
pushouts are VK squares. All monos are regular in an adhesive category.

Lemma 2. Monos and regular monos coincide in any adhesive category.

Proof. See [9, Lemma 4.9]. ��

A category C is quasiadhesive when it has pullbacks, pushouts along regular
monos and such pushouts are VK squares. An adhesive category is a quasiadhe-
sive category where all the monos are regular, in this sense adhesive categories
can be regarded as “degenerate” quasiadhesive categories.

3 Motivating Examples

In this section we introduce several examples which fail to be adhesive. As we
shall see in Section 4, all of them can be seen as instances of a particular con-
struction and as a consequence all are quasitoposes.

Example 3 (Injective Functions). Let Inj be the category with
objects the injective functions m : X → Y in Set and arrows
commutative diagrams as illustrated to the right.

X
m

��

f �� X ′

m
��

Y g
�� Y ′

An object of Inj can be thought of as a set together with a chosen subset,
equivalently a set equipped with a unary predicate. The morphisms are those
functions which preserve the subset/predicate in the obvious way. The monos
are precisely those where g is an injective function. The regular monos are those
monos which reflect the predicate; this condition is easily seen to be equivalent
to requiring that the resulting diagram of monos in Set is a pullback.

Example 4 (Binary relations). The category of bi-
nary relations, BRel has as objects triples 〈V, E, m〉
with m : E → V × V an injective function. Arrows
are the obvious commutative diagrams:

E

m
��

fE �� E′

m′
��

V × V
fV ×fV

�� V ′ × V ′.
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It follows easily that BRel is equivalent to the category of graphs with at most
one edge from one vertex to another (ie { 〈V, E〉 | E ⊆ V × V }), and arrows
ordinary graph morphisms. Some authors refer to such objects as simple graphs.
As with Inj, the monos in BRel are easily seen to be the diagrams arising from
fV being injective. Again, the regular monos are those which reflect edges, or
equivalently pullback diagrams with all maps being monos.

The following example appeared in [4]. Fix an arbitrary nonempty set P of
predicates with an arity function ar : P → N. Given a set of atoms X , a predicate
P ∈ P , and x1, . . . , xarP ∈ X , the formal expression P (x1, . . . , xarP ) is called
an atomic formula over X . Let AFP (X) denote the set of atomic formulas.

Example 5 (Structures). Let StrP be the category where the objects are struc-
tures – pairs 〈X, Y 〉 where X is a set and Y ⊆ AFP(X). A structure mor-
phism 〈f, g〉 where f : X → X ′ and g : Y → Y ′ such that g(P (x1, . . . , xarP )) ≡
P (fx1, . . . , fxarP ) – that is, atomic formulas are preserved.

The monos are clearly those homomorphisms where the map on the underlying
sets is injective. The regular monos are those where also predicates are reflected,
in the obvious way.

Example 6 (Algebraic specifications). A signature is a quadruple Σ = 〈S, P, s, t〉
where S is a set of sorts, P is a set of operators, s : P → S∗ (where S∗ denotes the
free monoid over S) is a function giving the sorts of the domain of an operator and
and t : P → S is the function giving the sort of the codomain of an operator. We
write p : s1 × . . . × sk → s if s(p) = s1 . . . sk and t(p) = s. A signature morphism
f : Σ → Σ′ is a pair f = 〈fS, fP 〉 where fS : S → S′, fP : P → P ′ such that if
p : s1 × . . . × sk → s then fP (p) : fS(s1) × . . . × fS(sk) → fS(s). The category
Sig of signatures and signature morphisms is a presheaf topos – indeed, it is
isomorphic to the category of hypergraphs1 with edges restricted to having a
single target node (but an arbitrary finite number of source nodes).

A term σ(x1 : s1, . . . , xn : sn) : s over a signature Σ is the obvious formal
construction built up from the basic operators of Σ and composition which may
contain instances of variables xi : si. To avoid extra complexity, we shall assume
that variables appear at most once within a term. Each term has a unique sort
s determined by the codomain sort of the root operator in the syntax tree of
the term. An equation over a signature Σ is a formal expression of the form
σ1(x1 : s1, . . . , xn : sn) : s ≡ σ2(x1 : s1, . . . , xn : sn) : s.

An algebraic specification is a pair S = 〈Σ, E〉 where Σ is a signature and E
is a set of equations over Σ. An algebraic specification morphism f : S → S′ is
a pair f = 〈〈fS , fP 〉 , fE〉 where 〈fS , fP 〉 : Σ → Σ′ is a signature morphism and
fE : E → E′ is a function satisfying

fE ( σ1(x1 : s1, . . . , xn : sn) : s ≡ σ2(x1 : s1, . . . , xn : sn) : s ) =
fP (σ1)(x′1 : fS(s1), . . . , x′n : fS(sn)) : fS(s) ≡

fP (σ2)(x′1 : fS(s1), . . . , x′n : fS(sn)) : fS(s)

1 Some authors use the term ‘multigraphs’.
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for some injective renaming of variables xi 
→ x′i. The category of algebraic
specifications and algebraic specification morphisms is denoted Spec.

A mono is an algebraic specification morphism with an underlying signature
morphism that is injective (on both sorts and operators). A regular mono also
reflects equations, in the obvious way.

Example 7 (Safely marked Petri nets). A Petri net is a tuple N = 〈P, T, s, t〉
where P is a set of places, T is a set of transitions and s, t : T → P ∗ are,
respectively, the sources and targets of a transition. In other words, we think of
a net as a multi-graph. A net morphism f : N → N ′ is a pair f = 〈fP , fT 〉 where
fP : P → P ′, fT : T → T ′ such that s′fT = f∗

P s and t′fT = f∗
P t (sources and

targets of transitions are preserved). Such a choice of morphism can be useful
when deriving compositional labelled equivalences for nets, see for instance [13].
The category of Petri nets and morphisms is denoted PNet. It is easily seen
to be a presheaf topos. A marked place-transition net N is a pair 〈N, K, k〉
where N ∈ PNet, K is a set of tokens, and k : K → P is a mapping of tokens
to places. A place-transition net morphism f : N → N ′ is a pair f = 〈fN , fK〉
where fN : N → N ′ is a map of Petri nets and fK : K → K ′ is a function between
the sets of tokens satisfying k′fK = fP k (places of tokens are preserved). Let
PTNet be the category of marked place-transition nets and morphisms. A safely
marked place-transition net is a place-transition net where there is at most one
token on each place, that is, the function k : K → P is injective. Let SPTNet
be the full subcategory of PTNet consisting of safely marked nets.

A mono in SPTNet is a morphism of marked-nets which is injective on the
underlying net. A regular mono has the additional property that the marking is
reflected.

Lemma 8. The categories Inj (Example 3), BRel (Example 4), Str (Exam-
ple 5), Spec (Example 6), and SPTNet (Example 7) are not adhesive.

Proof. Immediate since the classes of monos and regular monos do not coincide
in any of these categories (cf Lemma 2). ��

4 Glueing

In this section we shall demonstrate that the examples discussed in §3 are formed
using a particular variant of a general construction known as Artin glueing [2].

More explicitly, we shall see that the examples given in §3 are actually certain
full subcategories of categories obtained by glueing. Using a well-known result,
categories obtained by Artin glueing are quasitoposes. Using the fact that also
the aforementioned full subcategories of quasitoposes are themselves quasito-
poses (Theorem 16) we know that the examples are quasitoposes.

We begin by recalling the definition of a quasitopos.

Definition 9. A category C is said to be a quasitopos when it satisfies all of
the following conditions:
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(i) it has finite limits and colimits;
(ii) it is locally cartesian closed;
(iii) it has a regular-subobject-classifier.

Quasitoposes and quasiadhesive categories share several basic properties, as we
outline below.

Proposition 10. The following hold in any quasitopos E and in any quasiad-
hesive category C:

(i) pushouts along regular monos are also pullbacks;
(ii) regular monos are stable under pushout;
(iii) unions of regular subobjects are effective2;

Proof. Quasitoposes: (i) and (ii) see [7, A2.6.2] and (iii) see [7, A1.4.3]. Quasiad-
hesive categories: (i) and (ii) see [9, Lemma 6.1]. Part (iii) is a straightforward
generalisation of [9, Theorem 5.1]. ��

In addition, quasitoposes admit a number of factorisation systems.

Proposition 11. In any quasitopos, every arrow can be factorised into an epi
followed by a regular mono or by a regular epi followed by a mono.

Proof. For the regular epi - mono factorisation see [7, Scholium 1.3.5]. For the
mono - regular epi factorisation one can use the dual of [7, Scholium 1.3.5] since
regular monos are stable under pushout. ��

Given categories C, D and a functor T : D → C, we write
C/T for the category with objects arrows f : C → TD for
C ∈ C, D ∈ D. An arrow in C/T is a pair 〈g, h〉 : f → f ′

consisting of an arrow g : C → C′ in C and h : D → D′ in D
such that (Th)f = f ′g.

C

f
��

g �� C′

f ′
��

TD
Th

�� TD′

Definition 12 (Artin glueing). A category Z is said to be obtained by Artin
glueing if it is the slice category C/T for some functor T : D → C where C and
D are quasitoposes.

We shall usually perform Artin glueing along a pullback-preserving functor
T : C → D. It is a well-known “folk” theorem3 that when C has finite lim-
its (and this will always be the case for us, since C will be a quasitopos) then
T also preserves all finite limits. The category obtained by glueing along such a
functor will in fact be a quasitopos; the following theorem is actually a special
case of a more general result of Carboni and Johnstone [2, Theorem 3.3]. We will
rely on the ‘if’ direction which was first shown by Rosebrugh and Wood [11].

2 Unions of subobjects are said to be effective when the union of two subobjects is
obtained by pushing out along their intersection.

3 See [2, Lemma 1.1] for a proof.
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Theorem 13. If C, D are quasitoposes then C/T is a quasitopos iff T preserves
pullbacks. ��

We shall denote by C�T the full subcategory of C/T with objects the monos
m : C → TD in C.4 The following lemma lists some properties of regular monos
in C/T and C�T .

Lemma 14. Suppose that C, D are quasitoposes and T : D → C preserves
pullbacks. Then:

(i) A map 〈g, h〉 in C/T is a regular mono iff g is a regular mono in C and h
is a regular mono in D.

(ii) A map 〈g, h〉 in C�T is a regular mono iff g is a regular mono in C, h is
a regular mono in D and the resulting square in C is a pullback diagram.

Proof. (⇒) Since T preserves pullbacks and C is finitely complete, T preserves
equalisers. In particular, this means that equalisers are constructed component-
wise in C/T . It is easy to check that the full subcategory C�T is closed with
respect to equalisers and the resulting square is a pullback.
(⇐) Suppose that g is a regular mono in C and that h is a regular mono in D.
Let α, β be the cokernel pair of g (obtained by pushing out g along itself in C)
and ϕ, ψ be a pair in D of which h is the equaliser. Since pushouts along regular
monos are also pullbacks in C (cf Proposition 10, (i)), it follows that g is the
equaliser of α and β. Using the fact that α and β are the cokernel pair, let f2 be
the unique map such that f2α = Tϕ.f1 and f2β = Tψ.f1 (see the first diagram
below). It follows that 〈g, h〉 is the equaliser of 〈α, ϕ〉 and 〈β, ψ〉 in C/T .

C

f
��

g �� C1

f1��

α ��

β
��C2

f2��
TD

Th
�� TD1

Tϕ ��

Tψ
�� TD2

C

f
��

g �� C1

f1��

Tϕ.f1 ��

Tψ.f1

�� TD2

��
TD

Th
�� TD1

Tϕ ��

Tψ
�� TD2

For C�T , let ϕ and ψ be a pair in D of which h is the equaliser. We shall
show that g is the equaliser of Tϕ.f1 and Tψ.f1. Indeed, suppose there is a map
x : X → C1 such that Tϕ.f1x = Tψ.f1x. Since T preserves equalisers, there is a
unique map y : X → TD such that Th.y = f1x. Using the fact that the square
is a pullback, there is a unique map z : X → C such that fz = y and gz = x.
It follows that 〈g, h〉 is the equaliser of 〈Tϕ.f1, ϕ〉 and 〈Tψ.f1, ψ〉 in C�T , as
illustrated in the second diagram above. ��

In Theorem 16 we shall show that if T is a pullback-preserving functor between
quasitoposes then also C�T is a quasitopos. Note that when C and D are toposes
4 One could also define C�T to be the full subcategory of C/T with objects the

regular monos. In that case, the conclusion of Theorem 16 would still hold and can
be proved using a modified version of Lemma 15. For the purposes of this paper the
precise definition used is a moot point since in all of our examples both C and D
are actually toposes.
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then C/T is also a topos; on the other hand, as will be demonstrated by the ex-
amples, C�T will usually be only a quasitopos. We first prove a technical lemma.

Lemma 15. In the following we assume that T : D → C preserves finite limits.

(i) If C and D are cartesian closed then also C�T is cartesian closed;
(ii) If C and D are locally cartesian closed then also C�T is locally cartesian

closed;
(iii) If C and D have finite colimits and C has regular epi - mono factorisations

then C�T has finite colimits;
(iv) If D is a quasitopos then C�T has a regular-subobject-classifier.

Proof. (i) It is well-known (see [2]) that with these assumptions C/T is cartesian
closed. The internal hom of C1 → TD1 and C2 → TD2 is the pullback P →
T [D1, D2] of [C1, C2] → [C1, TD2] along T [D1, D2] → [TD1, TD2] → [C1, TD2],
as illustrated below.

P ��

��

[C1, C2]

��
T [D1, D2] �� [TD1, TD2] �� [C1, TD2]

Clearly if C2 → TD2 is mono then so is [C1, C2] → [C1, TD2] and therefore also
P → T [D1, D2]. Since C�T is a full subcategory of the cartesian-closed category
C/T and is closed under exponentiation, it itself is cartesian-closed.
(ii) Suppose that C → TD is an object of C�T . Then (C�T )/(C → TD) =
(C/C)�T ′, where T ′ : D/D → C/C is given by first applying T to get D/D →
C/TD, and then pulling back along C → TD as in C/TD → C/C. Now C/C
and D/D are cartesian closed by assumption, and T ′ clearly preserves finite
limits, so (C/C)�T ′ is cartesian closed by (i), and so C�T is locally cartesian
closed.
(iii) It is well-known that in this case also C/T has finite colimits. The presence
of the regular epi - mono factorisation system in C ensures that C�T is a
reflective subcategory of C/T and so it too has finite colimits.
(iv) A regular subobject in C�T is a pullback square, as illus-
trated, in which the horizontal maps are regular mono. If D has
a regular-subobject-classifier W , then it is straightforward to
verify that TW → TW is a regular-subobject-classifier in C�T .

C′

��

�� C

��
TD′ �� TD

��

Theorem 16. If C, D are quasitoposes and T : D → C preserves pullbacks then
C�T is a quasitopos.

Proof. The proof follows using the results of Lemma 15 and applying the usual
reduction in the style of [2]. Indeed, if C, D are quasitoposes and T : D → C
preserves pullbacks then T1 : D → C/T 1 preserves finite limits (since it preserves
pullbacks and the terminal object) and so (C/T 1)�T1 is a quasitopos. But this
is just C�T . ��
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We have given a direct proof of Theorem 16. A shorter proof would use the
fact that the objects of C�T are the separated objects for the closure operator
corresponding to the fact that D is an open sub-quasitopos of C/T .

We shall now demonstrate that the examples of §3 are of the form D�T for spe-
cific choices of C, D and pullback-preservingT : D → C. Theorem 16 ensures that
suchcategories arequasitoposes, thus eliminating theneed for tediousdirectproofs.

Proposition 17. The categories Inj, BRel, Str, Spec and SPTNet are of
the form C�T for T : D → C a pullback-preserving functor between toposes.

Proof. Inj (cf Example 3): Let C,D = Set and let T be the identity functor. It
is immediate that Inj ∼= Set�T .
BRel (cf Example 4): Let C,D = Set and let TX = X × X . It is immediate
that BRel ∼= Set�T ; also, T preserves limits since it is representable – indeed,
TX ∼= Set(2, X).
Str (cf Example 5): Let T : Set → Set be defined TX =

∑
P∈P Xar(P ) ∼=∑

P∈P Set(ar(P ), X). Pullback preservation is immediate. Notice that there is
a bijection TX ∼= AFP(X), so to give a subset of atomic formulas is essentially
to give a mono with codomain TX ; hence it is easy to show that StrP � Set�T .

Spec (cf Example 6): Let T : Sig → Set be the free term
functor: a signature Σ = 〈S, P, s, t〉 is taken to the set TΣ of
all terms. The action on signature morphisms is canonical.

UΣ
q1 ��

q2 �� TΣ
p��

TΣ p
�� S∗ × S

Let S∗×S denote the set of nonempty words over S and p : TΣ → S∗×S be the
evident map which takes a term to its “type”. Define UΣ to be the illustrated
pullback diagram in Set. It follows that U : Sig → Set is a functor. Intuitively,
UΣ is the set of “well-typed” equations (consisting of two terms of the same
result sort and taking an equal number of variables, with each corresponding pair
agreeing on the sorts) between terms over Σ. It follows that Spec � Set�U , we
omit the proof of the fact that U preserves pullbacks;
SPTNet (cf Example 7): Let U : PNet → Set be the forgetful functor which
takes a Petri net to its set of places. It follows that SPTNet � Set�U . Using
the fact that limits are computed pointwise in PNet, U preserves them. ��

Corollary 18. The categories Inj, BRel, Str, Spec and SPTNet are qua-
sitoposes.

Proof. Immediate by Proposition 17 and Theorem 16. ��

5 Quasitoposes and Quasiadhesive Categories

In this section we shall characterise precisely which quasitoposes are quasiadhe-
sive. We begin by proving an important property of quasiadhesive categories –
regular monos are closed under union. This result forms one direction of a char-
acterisation of quasiadhesive quasitoposes, which appears as Theorem 21. The
proof itself is a step-by-step construction of a counterexample at an abstract
level and is followed by a concrete example in Corollary 20.
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Theorem 19. In quasiadhesive categories, binary unions of regular subobjects
are regular

Proof. Suppose that Z ∈ C and that U and V are two regular subobjects of
Z such that U ∪ V is not a regular subobject. We shall show that C cannot
be quasiadhesive by constructing an explicit counterexample cube. Let W and
X denote respectively U ∩ V and U ∪ V . Let X denote the smallest regular
subobject of Z which contains X , ie the join of U and V in the lattice of regular
subobjects of Z. This object can be obtained by factorising the map X → Z
into an epi followed by a regular mono. Some work is required to show that
this factorisation can be obtained in any quasiadhesive category, we omit the
details and only give a sketch: one first shows that X → Z admits a cokernel
pair; secondly, one can construct the equaliser X → Z of the cokernel pair by
pulling back, giving the regular mono part of the factorisation. Finally one uses
a standard argument to show that the map x : X → X given by the universal
property of equalisers is epi.

We obtain objects A and A by constructing the pushouts in the left dia-
gram below, where v = xv. Clearly v is regular mono by the usual cancellation
properties.

W

(†)π1

��

π2 �� V

v

��

v �� X

j2

��

q

��
U u

�� X

x
��

p
�� A

a
��

X j1
�� A

W

(‡)

π1 ��

π1

��

U
u ��

i2
��

X

q

��
id

��

U
i1

�� B

h
��

b
�� A

r
��

U
u

�� X

Note that (†) is a pushout by Proposition 10, (iii). All three pushouts are also
pullbacks by part (i) of the proposition, since all the horizontal morphisms in the
diagram are regular mono. The fact that the lower square is a pullback together
with the fact that x is not an isomorphism implies that a is not an isomorphism.

Now consider the second diagram above in which (‡) is a pushout and u = xu.
Using the fact that uπ1 = vπ2 the pushout of X and U along W is A and we obtain
a map b : B → A such that the upper right square commutes and bi1 = pu. By
the pasting properties of pushouts, this square is also a pushout. Let h : B → U
be the codiagonal (the unique map such that hi1 = hi2 = idU ) and let r be the
unique map which satisfies rq = idX and rb = uh. The outer rectangle is clearly
a pushout and thus the lower square is also a pushout, by cancellation.

Consider the first diagram below, it shows that the pullback of A → Z and
U → Z is the pushout B of U together with itself along W . To see this, let B′

denote this pullback and note that the pullback of U → Z along X → Z is just
U and similarly the pullback of U and V is W . Hence all the vertical faces of the
diagram are pullbacks and since pushouts along regular monos are stable under
pullback, the upper face of the cube must be a pushout diagram; hence B ∼= B′.
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In particular, we can erase all the primes from the diagram.

U
u��

i′
1

����������

W
π2 �� π1

����������

π1
��������������������
X ��

j1

��������
B′

b
′

��

h′
�� U

u′
��

V
�����

v
��������������

v ����������� U
u��

i′
2

��������������������
A �� Z

X

j2

��������������������

B

(�)h
����

b �� A

s
����

U

��

u
�� X

��
U

u′
�� Z

In the second diagram above, let s be the codiagonal. As we have established,
the outer region is a pullback and it is immediate that the lower square is a
pullback also – thus the upper square (	) must be a pullback by cancellation.
We claim that also that (	) is a pushout.

To see this, assume that there are maps f : A → C and g : U → C such that
fb = gh. Since h and s are epi (being codiagonals), it is enough to show that
there exists a map α : X → C such that αs = f . Note that by the construction
of A a morphism f : A → C corresponds to a pair of morphisms f1 = fj1 =
faq : X → C and f2 = fj2 : X → C. We shall show that we can take α to be f1;
to show f1s = f , it is enough to show that the two maps agree when precomposed
with j1 and j2; thus we need to show that f1 = f2. Clearly f1 and f2 agree when
restricted to V � X. Also f1u = fj1u = fbi2 = fabi2 = faqu = fj2u = f2u.
Thus they must agree on the union x : X � X of these subobjects. And x is epi
by construction, so f1 = f2.
Now consider the illustrated cube; the top and bottom faces
are both pushouts, the diagonal edges are regular mono and
three of the four vertical faces are pullbacks. But the front
face is not a pullback, because as we have observed previ-
ously, a : A → A is not an isomorphism.

B

b
		

��

h �� U u



��
A

a

��

r �� X

��
B

b
		

h �� U




A s
�� X

��

Note that, although we presented the proof of Theorem 19 above as a proof
by contradiction, the argument is in fact constructive: it shows that if C is
quasiadhesive then the mono a : A → A must be an isomorphism, and hence so
is x : X → X.

Corollary 20. The construction in the proof of Theorem 19 allows us to con-
clude that the category of binary relations BRel is not quasiadhesive. Indeed,
considering the objects of BRel as simple graphs, it is immediate that the two
vertices of a → b are regular subobjects but their union is not regular. The coun-
terexample constructed starting from these two subobjects is shown in Fig 1.

The following theorem is the main result of this section. It gives a sufficient and
necessary condition for a quasitopos to be quasiadhesive. The condition is easy
to state and usually straightforward to check – a quasitopos is quasiadhesive if
and only if regular subobjects are closed under binary unions.
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aa a′

a

b

a

b

aa a′

a a′

b

a a′

b

Fig. 1. A counterexample demonstrating that BRel is not quasiadhesive

Theorem 21. Let C be a quasitopos. Then the following are equivalent:

(i) C is quasiadhesive.
(ii) the class of regular subobjects of any object is closed under binary union.

Proof. (i) ⇒ (ii): Is immediate by the conclusion of Theorem 19 and Proposi-
tion 11.

(ii)⇒ (i): We give a brief sketch of a “direct” argument. A shorter but slightly
more technical proof relies on connections between quasiadhesivity and Artin
glueing in quasitoposes.
Consider the illustrated cube: since we can factorise
maps into a regular epi followed by a mono and van
Kampen squares are closed under pasting, it suffices to
consider the situation where f is a mono or f is a regular
epi. The case where f is a mono is straightforward; the
reasoning for the case where f is a regular epi is similar
to the proof of [10, Theorem 25].

C′

m′
����

�

��

f ′
�� B′

n′

����
�

��
A′

��

g′
�� D′

��
C

m ���
��
f �� B

n ���
��

A g
�� D

��

When are the hypotheses of Theorem 21 satisfied? Clearly, they hold if C is a
topos; in particular, the fact that toposes are adhesive is a consequence, since all
monos are regular and by the conclusion of Theorem 21 they are quasiadhesive. In
this sense, the above result is a generalisation of the main result of [10]. They also
hold if C is a Heyting algebra, where the only regular monos are isomorphisms.

Proposition 22. Heyting algebras are quasiadhesive. ��

Clearly, in other quasitoposes, it suffices to check the condition that unions of
regular subobjects are regular. We have seen that BRel does not satisfy the
condition and thus is not quasiadhesive. As our examples are of the form C�T ,
it is useful to understand how unions are computed in such categories.

Lemma 23. Unions of subobjects in in C/T and C�T are computed pointwise.
That is, the union of subobjects 〈C1 � C, D1 � D〉 and 〈C2 � C, D2 � D〉 of
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f : C � TD is 〈C1 ∪ C2 � C, D1 ∪ D2 � D〉, where the unions are formed in
C and D, respectively.

Proof. C/T is a quasitopos by Theorem 13; C�T is a quasitopos by Theo-
rem 16 and thus unions are effective in both the categories (Proposition 10, (iii)).
But all colimits in C/T are computed pointwise and
pullbacks are computed pointwise because T preserves
them. Because C�T is reflective in C/T , it suffices
to check that the map C1 ∪ C2 → T (D1 ∪ D2) is a
mono, but this follows easily since in the commutative
diagram below, C1 ∪C2 → C and C → TD are mono.

C1 ∪ C2

��

�� C

��
T (D1 ∪ D2) �� TD

��

Recall that in Theorem 16 we showed that for a pullback-preserving functors
T : D → C between quasitoposes, C�T is a quasitopos. The following result
characterises precisely those T for which C�T is also quasiadhesive.

Theorem 24. Suppose C, D are quasiadhesive quasitoposes and T : D → C is
pullback-preserving. Then C�T is quasiadhesive iff T preserves unions of regular
subobjects5.

Proof. (⇐). By Theorem 16, C�T is a quasitopos. Suppose that T preserves
unions of regular subobjects. For i ∈ {1, 2} suppose that we have regular subob-
jects of C → TD in C�T , as illustrated in the first diagram below. Their union is
calculated pointwise (Lemma 23), is illustrated in the second diagram. Because C
and D are quasiadhesive, the horizontal maps in the second diagram are regular.
Using part (ii) of Lemma 14, it suffices to show that the square is a pullback. We
show this directly, suppose there are α : X → C and β : X → T (D1 ∪ D2) such
that mα = Td.β. Using the assumption we can take T (D1 ∪ D2) = TD1 ∪ TD2
and pull back β to obtain a pushout diagram which decomposes X , as illustrated.

Ci

mi
��

ci �� C
m

��
TDi

Tdi

�� TD

C1 ∪ C2

m3 ��

c �� C
m

��
T (D1 ∪ D2)

Td
�� TD

X3

��������

��

�� X2 x2

��������

β2��
X1

β1��

x1 �� X

β

��
TD1 ∪ TD2

������
�� TD2

������

TD1 �� TD1 ∪ TD2

Using the fact that the subobject diagrams are pullbacks, we obtain hi : Xi → Ci

such that mihi = βi and cihi = αxi. Using the decomposition of X , we obtain a
unique map h : X → C such that hxi = jihi where ji : Ci → C1 ∪ C2. A routine
calculation confirms that ch = α and m3h = β.

5 That is, for D1 → D, D2 → D regular subobjects, T (D1 ∪ D1) = TD1 ∪ TD2 as
subobjects of TD.
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(⇒) Assume that the quasitopos C�T is quasiadhesive, then
unions of regular subobjects are regular by Theorem 21. Let
D1 → D and D2 → D be regular monos. They lead to corre-
sponding regular monos in C�T as illustrated in the diagram
for i = 1, 2.

TDi

(†)
��

�� TD

��
TDi

�� TD

The union results in the second diagram above, since
unions are computed pointwise (cf Lemma 23). Since the
union is a regular subobject, the square is a pullback and
thus T (D1 ∪ D2) = TD1 ∪ TD2.

TD1 ∪ TD2

��

�� TD

��
T (D1 ∪ D2) �� TD

��

Lemma 25. The category Inj of injective functions (cf Example 3) and the
category SPTNet of safely-marked nets(cf Example 7) are quasiadhesive. The
categories StrP where P has predicates of arity > 1 (cf Example 5) and Spec
(cf Example 6) are not quasiadhesive.

Proof. Using Theorem 24 and the fact that all of the examples are of the
form C�T (cf Proposition 17), it suffices to check whether T in each case pre-
serves unions of regular subobjects. For Inj, T = id and the condition is ob-
viously satisfied. Similarly, the condition clearly holds for the forgetful functor
U : PNet → Set since unions in the presheaf topos PNet are calculated “point-
wise”. Any polynomial functor T : Set → Set which contains powers ≥ 2 does
not preserve the union of the two injections of 1 → 2, thus StrP is not quasiad-
hesive when P has predicates of arity ≥ 2. Similarly, the functor U : Sig → Set
does not preserve unions, consider the signature 2 with a single sort and two
unary predicates and the signature 1 with a single sort and a single unary pred-
icate. There are two monos 1 → 2 but their union is not preserved by U . ��

In Theorem 24 we exhibited a necessary and sufficient condition on T for C�T
to be quasiadhesive. The following result shows that the category C/T obtained
by glueing is quasiadhesive if additionally T is cartesian and both C and D are
quasiadhesive.

Lemma 26. Let C and D be quasitoposes, and T : D → C a cartesian functor.
Then the quasitopos C/T is quasiadhesive iff both C and D are.

Proof. As observed in Lemma 14, a mono 〈m, n〉 : (A′, B′, f ′) → (A, B, f) in
C/T is regular iff both m and n are regular monos. Since unions of subobjects
are also constructed ‘component-wise’, it is easy to see that C/T inherits the
condition on unions of regular subobjects if both C and D satisfy it. Conversely,
if we have a counterexample to the condition in either C or D, we can obtain
one in C/T by applying the appropriate direct image functor to it, since both
these functors preserve regular monos. ��

6 Conclusions and Future Work

We have shown that several examples of interest to computer scientists are qua-
sitoposes obtained by using a variant of the Artin glueing construction. We
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characterised the quasitoposes which are quasiadhesive in terms of a condition
on the lattice of subobjects. We have refined this condition to the categories
which arise from of the aforementioned construction.

There are two clear directions for future work. Firstly, the fact that not all our
examples are quasiadhesive raises the question whether one can find a natural
class of categories with less structure and more liberal closure conditions than
quasitoposes while at the same time covering the basic properties satisfied by
adhesive and quasiadhesive categories; useful for applications of rewriting and
other related fields, for examples of such properties see for instance [9, 1, 12].
Secondly, as all of the examples in the present paper are quasitoposes, one could
directly evaluate the suitability of rewriting directly on objects in an arbitrary
quasitopos and study the resulting theories of parallelism and concurrency.
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13. Sobociński, P., Sassone, V.: A congruence for Petri nets. In: PNGT ’06. ENTCS,
vol. 127 (2), pp. 107–120. Elsevier, Amsterdam (2004)


	Introduction
	Preliminaries
	Motivating Examples
	Glueing
	Quasitoposes and Quasiadhesive Categories
	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


