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Process calculi like ACP, CCS, CSP and various flavours of the π-calculus are
popular specification formalisms for concurrent, distributed and possibly mo-
bile systems. The semantic theory of process calculi has been the subject
of extensive investigation for about twenty five years now, and several robust,
general principles and results applying to a variety of different formalisms have
been isolated in this field of concurrency theory. For instance, structural opera-
tional semantics has been successfully applied as a formal tool to establish re-
sults that hold for classes of process description languages. This has allowed
for the generalization of well-known results in the field of process algebra, and
for the development of a meta-theory for process calculi based on the realiza-
tion that many of the results in this field only depend upon general semantic
properties of language constructs. Another approach for the development of
a mathematical theory that can cover several key concepts in the theory of
process calculi is based on category theory. The main aim of this approach
is to develop a general mathematical framework within which one can study
notions of behavioural semantics for formalisms that, like process calculi, Petri
nets, bigraphs and graph grammars, have an underlying reduction-based op-
erational semantics. This issue of the Concurrency Column is devoted to a
paper by Pawel Sobocinski that presents the general agenda of this research
programme, puts it in the context of the classic study of behavioural seman-
tics for process calculi, and reports on some of his contributions to this line of
research. Enjoy it!

This column will be published soon after CONCUR 2004, the 15th Inter-
national Conference on Concurrency Theory, that was held in London in the
period 31 August–3 September 2004. This was the best attended CONCUR
conference to date, and its lively scientific programme witnessed the vitality of
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our research field. While waiting for a conference report to appear in a future
volume of the Bulletin, I encourage those of you who, like me, could not travel
to London for the whole week to check the programme of the main conference
and its satellite workshops at the URL http://www.doc.ic.ac.uk/concur2004/.

To have an idea of the difficult choices that the attendees of the pre-
conference workshops had to make, it suffices only to note that Rob van
Glabbeek, Chris Hankin, Andrew Pitts, Corrado Priami and Julian Rathke were
delivering invited talks concurrently in the morning session, and Rocco De
Nicola, Andrew Finney, Rob van Glabbeek, Roberto Gorrieri and Uwe Nest-
mann were speaking at the same time in the afternoon! Which talks would
you have chosen? As organizer of one of the workshops, I was left without a
choice, and maybe that was just as well.

P    

Paweł Sobocínski
IT University, Copenhagen

Abstract

This article is an overview of the recent developments of a theory orig-
inally introduced by Leifer and Milner: given a formalism with a reduction
semantics, a canonical labelled transition system is derived on which bisim-
ilarity as well as other other equivalences are congruences, provided that the
contexts of the formalism form the arrows of a category whichhas certain
colimits. We shall also attempt to provide a context for these developments
by offering a review of related work.

1 Introduction

We shall discuss an attempt to develop general mathematicaltechnology for the
study of the behavioural theory of computational formalisms with underlying
reduction-based operational semantics. Such formalisms include both syntactic
models, such as functional programming languages and process-calculi, as well
as graphical models such as Petri nets or bigraphs.

The basic technical idea is very simple and can be expressed fairly concisely
within a single paragraph: a formalism is equipped with a labelled transition sys-
tem (lts) semantics where the labels on the transitions out of any particular state
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are the smallest contexts which, when instantiated with theterm corresponding to
that state, can reduce. If the notion of “smallest” is well-behaved enough – in the
sense that it is defined via an appropriate universal property – the resulting synthe-
sised lts is very well-behaved. For instance, many popular lts-based equivalences
are congruences.

We shall begin by discussing an extension of Leifer and Milner’s theory of
reactive systems to a 2-categorical setting. This development is motivated by the
common situation in which the contexts of a reactive system contain non-trivial
algebraic structure with an associated notion of context isomorphism. Forgetting
this structure often leads to problems and we shall show thatthe theory can be
extended smoothly, retaining this useful information as well as the congruence
theorems. The results reported appeared first in the workshop paper [69] and its
journal version [71]. Technically, the generalisation includes defining the cen-
tral notion of groupoidal-relative-pushout (GRPO) (categorically: a bipushout in
a pseudo-slice category), which turns out to provide a suitable generalisation of
Leifer and Milner’s relative pushout (RPO). The congruencetheorems are then
reproved in this more general setting. We shall also outlinehow previously in-
troduced alternative solutions to the problem of forgetting the two-dimensional
structure can be reduced to the 2-categorical approach.

Secondly, we shall discuss how GRPOs are constructed in settings which are
general enough to allow the theory to be applied to useful, previously studied
examples. Indeed, GRPOs were first constructed in a categorywhose arrows cor-
respond closely to the contexts of a simple process calculuswith CCS-style syn-
chronisation. This construction was extended to the category of bunch contexts,
studied previously by Leifer and Milner. The constructionsuse the structure of
extensive categories [9]. An account of these translationsand constructions ap-
peared first the conference paper [70] and shall appear in theupcoming journal
version [73]

Finally, we shall argue that cospans provide an interestingnotion of “gener-
alised contexts”. In an effort to find a natural class of categories which allows
the construction of GRPOs in the corresponding cospan bicategory, we shall con-
sider the class of adhesive categories. As extensive categories have well-behaved
coproducts, so adhesive categories have well-behaved pushouts along monomor-
phisms. Adhesive categories also turn out to be a useful toolin the study and gen-
eralisation of the theory of double-pushout graph transformation systems, indeed,
such systems have a rich rewriting theory when defined over adhesive categories.
Adhesive categories were first introduced in the conferencepaper [44].

Armed with the theory of adhesive categories, we are able to construct GRPOs
in input-linear cospan bicategories. As an immediate application, the construction
shed light on as well as extend the theory of rewriting via borrowed contexts,
due to Ehrig and König [17]. Secondly, we shall examine the implications of the



construction for Milner’s bigraphs [34]. A detailed account of the construction
first appeared in the technical report [72].

All the original research mentioned in this article is presented in detail in the
author’s PhD dissertation [78].

2 Background

Our main source of inspiration shall be the field of process calculus, which is
concerned with foundations of concurrent and mobile computation. The field has
enjoyed wide popularity over the last 20 years, with severalsuccessful depth-first
research programs. The usual approach has been to define a relatively simple
(compared to industrial programming languages such as ML, Java or C) syntax-
based process languages, sometimes referred to as a processalgebras or process
calculi. These calculi are designed so that they exhibit some fundamental aspect
of computation, and research is then devoted to the study of the calculus’ be-
havioural theory, its “expressivity” and decidability aspects. The theory of such
calculi is often complicated, perhaps because of the various design decisions in-
volved in the design of a calculus. This fragmented picture makes it difficult to
extract generalised principles which are robust, meaning that they apply in several
different formalisms. As a result, the field has been described asbeing in a state
of flux [48].

The approach taken up in the research program outlined in this article is
breadth-first, in the sense that we are not directly interested in such notions as
synchronisation or mobility of code. Rather, we focus on developing a mathemat-
ical theory that can, to some extent, cover several basic concepts which have some
role to play in many process calculi. Such an approach can be criticised for being
too artificial; we are, after all be concerned with “man-made” things like process-
calculi, and not “natural” things such as concurrency or mobility. However, while
most of the benefits of the (future) full development of the theory discussed here
shall be reaped at the meta level (with process-calculusdesignersperhaps benefit-
ing from the insight derived from a general treatment several basic issues common
to many calculi) it could be argued that such a general approach may help in iso-
lating robust common principles of important sub-conceptsunder the umbrella of
concurrency or mobility.

In this sense, the approach outlined in this article is related to the development
of a domain theory for concurrency [62,59], which advocatesthe use of mathemat-
ics to guide the design of process calculi [60, 61], instead of the, more common,
reverse methodology of expending much effort on understanding particular ad-
hoc process languages with the use of mathematics. Similarly, the ideas presented
share the idea of finding an underlying formalism in which onecan study some of



the issues which occur in existing process languages with Milner’s work on action
calculi [52] and bigraphs [54], as well as with Gadducci and Montanari’s work
on tile models [26]. Differently from the first two of these, we do not introduce
a monolithic model into which we find encodings of other formalisms. The idea
is rather to build from bottom-up instead of top-down, i.e. start with basic struc-
tures and study their theory instead of starting with a powerful model which is
capable of subsuming other formalisms via encodings. In this facet, the approach
taken here is consistent with the mathematical tradition ofsimplifying complex
situations into a simple yet rich structure which is amenable to systematic study.

The original material outlined within this article is intended as a contribution
in the field of concurrency theory. Since much of it relies on using the language
and technology of category theory, parts of it may be considered to be in the field
of applied category theory. At all times care is taken to usestandardand well-
studied concepts: 2-categories [40], bicategories [5], bicolimits [79,39] and exten-
sive categories [9]. Indeed, by finding the right mathematical structures to model
concurrent (and other) computational phenomena one can usewell-understood
and elegant tools to solve problems, instead of developing specialised and ad-hoc
mathematics from scratch. The only novel categorical concepts discussed are the
classes ofadhesiveandquasiadhesivecategories [44]; we shall argue that they are
both natural from a mathematical point of view and useful forcomputer science.

3 Reaction semantics

By a reaction1 semantics we mean an unlabelled transition system, usuallygener-
ated by closing a small set ofreaction rulesunderreactive(evaluation) contexts.
An agentsp reactsinto an agentq when there has been an interaction (specific
to the calculus) insidep which, after its application, results in the agentq. The
actual technical mechanism of performing a reaction can be seen as an instance of
term rewriting; at least in examples where terms are syntactic and not quotiented
by exotic structural congruences.

The basic setup involving contexts (which organise themselves as a category,
with substitution as composition), rules and reactive contexts corresponds to a
mathematical structure: Leifer and Milner’s notion ofreactive system[48]. A re-
active system consists of an underlying categoryC with a chosen object 0 and a
collectionD of arrows ofC called reactive contexts2. The arrows with domain 0

1Many authors use the term ‘reduction’ instead of ‘reaction’. We shall use ‘reaction’ because
the word ‘reduction’ is related to the concept of termination, and termination is usually not an
interesting notion in concurrency theory.

2There are some additional constraints on the set of reactivecontexts which we do not specify
here.



are usually called terms or agents, other arrows are contexts; composition of ar-
rows is understood as substitution. Thus, for example, a term a : 0→ X composed
with a contextc : X→ Y yields a termca : 0→ Y.

The reaction rules are of the form〈l, r〉, wherel : 0 → C is the redex and
r : 0→ C is the reactum. Notice that the rules areground in that they are terms
and do not take parameters. One generates areaction relation B by closing
the reaction rules under all reactive contexts; we havep B q if, for somed ∈ D,
we havep = dl andq = dr. The advantage of a theory at least partly based in the
language of category theory is that the constructions and proofs are performed on
an abstract level, meaning that they are portable across a range of models.

In many cases, modern presentations of well-known process calculi have their
semantics formalised in terms of an underlying rewriting system. This includes
the more recent incarnations of CCS [51, 53]3, the Pi-calculus [55, 53, 68]4 and
the Ambient Calculus [10]5. These calculi are all syntax based, but have non-
trivial structural congruences associated with the syntax. Taking the terms and
contexts up to structural congruence clearly results in a setting where substitution
is associative. Moreover, they all have specialised notions of reactive contexts; in
CCS for instance, any context which has its hole under a prefixdoesnot preserve
reaction and thus, in our terminology, isnot reactive. Thus, all of these calculi can
be seen as instances of reactive systems.

4 Process equivalence

There have been various attempts at defining process equivalences starting with
the reaction semantics. The notion of process equivalence is of fundamental im-
portance, both theoretically and for practical reasons. For theorists, a natural con-
textual process equivalence is a starting point in the development of bisimulation-
based proof techniques, logical characterisations, modelchecking of restricted
classes and so forth. More practically, process equivalence may be used, for in-
stance, to check that a program adheres to its specification;assuming an a priori
encoding of both the program and the specification into a chosen formalism.

The idea of generating a process equivalence using contextual reasoning goes
back to the definitions of Morris-style process equivalences of the simply typed
and the untyped variants of the lambda calculus [3], as well as other functional
formalisms. In the field of process calculus and process algebra, such equivalences
are sometimes calledtestingequivalences [29].

3fundamental notion: synchronisation on names.
4fundamental notion: name passing, with the associated notion of scope extrusion. Early ex-

ploratory work in this field was done by Engberg and Nielsen [20].
5fundamental notion: spatial mobility of process code.



We shall now discuss some of developments in the quest of finding general
techniques for generating equivalences from reaction rules which are relatively
robust in that they are not specialised to a single process calculus. The first is the
notion of barbed congruenceby Milner and Sangiorgi [56]. In that article, the
authors first studyreduction bisimulationwhich involves comparing the internal
evolutions of processes. The equivalence this gives is verycoarse, and in order to
obtain something sensible, one has to close contextually (in one of two possible
ways, as we shall discuss later). Milner and Sangiorgi do this in CCS, obtaining
reduction congruence. The resulting process equivalence is coarser than bisimilar-
ity on the standard labelled transition system semantics, but the correspondence is
close. The reason for the mismatch is, essentially, that a congruence built up from
reactions does not distinguish certain processes with infinite internal behaviour.
To fix the congruence, Milner and Sangiorgi proposed adding an extra ad-hoc no-
tion of observable based on the underlying syntax of CCS. This extra notion of
observable is known as abarb. Their work has proven very influential and can be
repeated for other calculi [10,84,11,28], with the notion of barb chosen ad-hoc in
each calculus, using calculus-specific intuition.

An important study which develops a process equivalence based purely on
reactions is by Honda and Yoshida [31] who, based on intuitions from theλ-
calculus, build equational theories directly from rewrites requiring no a priori
specification of observables. They achieve this by using reduction and contex-
tual closure as well as the equating ofinsensitiveterms. These are terms which
can never interact with their environment or, in other words, can never contribute
to a reaction with a context. This elegant characterisationof a useful equivalence
which is robust across many formalisms and relies only on theunderlying reac-
tion semantics is close in spirit to the aims of the theory presented in this article.
The full investigation of the relationship between the two theories is an important
direction for future work.

As we’ve hinted earlier, starting with reduction bisimilarity, one can obtain a
sensible congruence in at least two ways which give, in general, different results.
First, Honda and Yoshida [31] advocate obtaining a congruence by considering
the largest congruence contained in bisimilarity which is also a bisimulation (or,
equivalently, postulating congruence in the definition of abisimulation relation
and then considering the resulting bisimilarity). Similarly, an earlier work by
Montanari and Sassone [58] obtains a congruence from bisimilarity6 by consid-
ering the largest congruent bisimulation, there calleddynamic bisimilarity. Al-
ternatively, Milner and Sangiorgi’s barbed congruence is defined as follows: two
processesp and q are barbed congruent if, given any contextc, c[p] and c[q]
are barbed bisimilar. This yields the largest congruence contained in bisimilarity.

6More precisely, weak bisimilarity on the lts semantics of CCS.



The first approach gives, in general, a finer congruence. Thisis because any rela-
tion which is both a congruence and a barbed bisimulation is clearly included in
barbed congruence. On the other hand, the reverse directionis not true in general
as barbed congruence may not be a barbed bisimulation.

Fournet and Gonthier [24] have confirmed that the barbed congruence in the
style of Milner and Sangiorgi coincides with the barbed congruence in the style
of Honda and Yoshida (usually called reduction equivalence) in the setting of the
Pi-calculus. In other process calculi, the situation is less clear.

Equivalences which are based on an underlying reduction system and are gen-
erated contextually have both advantages and disadvantages. Their chief advan-
tage is their naturality, in the sense that it is often relatively easy to justify their
correctness and appropriateness as notions of equivalence. A disadvantage of
barbed congruence in particular, is that the barbs, or observables, are a usually of
a rather ad-hoc syntactic nature, specific to each calculus.An important common
problem of contextually defined equivalences is that it is often very difficult to
prove directly that two process terms are equivalent. The main complication fol-
lows from the quantification over all contexts, usually an infinite number. Thus, in
order to prove equivalence directly, one has to construct a proof based on structural
induction; this, when possible, is usually a tedious and a complicated procedure.

We should note that contextually based equivalences based on reduction rules
naturally come instrongandweakvariants. A strong equivalence allows one to
distinguish processes which vary only in how they react internally, while weak
equivalences aim to abstract away from internal reaction. Although weak equiv-
alences are more suitable as a notion of observational equivalence, we shall con-
centrate our theoretical development on strong equivalences. We shall return to
the topic of weak equivalences later in the article.

5 Labelled transition systems

An elegant solution to the problem of universal quantification over the usually in-
finite set of contexts is to endow a process calculus with an appropriate labelled
transition system (lts) semantics. Before we explain what is meant by ‘appropri-
ate’ in this setting, we shall recall some of the basic theorybehind lts semantics.
Labelled transition systems have been a very popular tool intheoretical computer
science, not least because of their origins in classical automata theory. Indeed,
some process calculi, including the earlier variants of thewell known CCS [51],
have their semanticsa priori formalised in terms of an lts; the use of reduction
based semantics and structural congruence only becoming fashionable after Berry
and Boudol’s influential work [7] on the chemical abstract machine.

A labelled transition system consist of a set of statesS and a set of labelled



transitionsT. A transition has a domain state, a codomain state and a labelfrom
some, usually fixed, setA of “actions”. Technically, the set of transitions is usu-
ally considered to be a subset of the cartesian productS×A×S which brings with
it the usual restriction of there being at most one transition with labela between
any two states. Although the intuition may vary between applications, it is often
the case that a transition with labela from states to states′ means thats can par-
ticipate in an interaction which the symbola represents, and by doing so, evolve
into s′. Although our use of the term “interaction” is intentionally meant to be
vague, when there is an underlying reduction semantics suchan interaction could
be represented by a reaction.

Labelled transition system semantics facilitate a large number of equivalences
which vary depending on how much branching structure is taken into considera-
tion. Thus, one of the coarsest (relates most) is the trace preorder and associated
equivalence because no branching is taken into consideration. Park’s notion of
bisimilarity [63], adapted for labelled transition systems by Milner [51], is at the
other end of the spectrum [83], meaning that it examines all branching structure
and is the finest (relates least) of such equivalences. Bisimilarity is often denoted
∼.

The notion of bisimilarity has stimulated much research because it is canon-
ical from a number of perspectives. Firstly, it has a elegantly simple coinductive
definition, meaning that in order to prove that two states of an lts are bisimilar,
it is enough to construct a bisimulation which contains them. Secondly, it has
an elegant game-theoretic characterisation in terms of theso-called bisimulation
game. Thirdly, there is an elegant and simple logical characterisation in terms
of the well-known Hennessy-Milner logic [30]. Finally, there are two, so far
largely unrelated general approaches to bisimilarity. Thefirst is usually known
as the coalgebraic approach, where a bisimulation is sometimes defined as a spans
of coalgebra morphisms for some functor [67]. This is a very general approach
which recovers the notion of ordinary bisimulation for a particular endofunctor on
the category of sets, namelyP(A×X) whereA is the set of labels of the lts andP is
the power set. In order for the final coalgebra to exist [1,4],one needs to consider
the finite power setP f functor, which corresponds to the technical assumption of
requiring the lts to befinitely branching. Observational equivalence, when final
coalgebras exist, is sometimes taken to mean equality underthe unique mapping
to the final coalgebra. Span bisimilarity and observationalequivalence via the
map to the final coalgebra yield the same equivalence under certain assumptions
on the underlying endofunctor. The second general approachto bisimulation is
the open map approach [35], where a bisimulation is taken as aspan of so called
open maps in a category of transition systems and simulations. Open maps are
taken with respect to an ad-hoc underlying subcategory of open maps, which led
to the study of presheaf categories where such path categories are canonical via



the Yoneda embedding. This approach has lead to research on the aforementioned
domain theory for concurrency.

While all of the above form an impressive body of theory on bisimilarity, they
all start off with the following assumption: a predefined set of actionsA over
which the labelled transition systems are built in some, usually unspecified way.
Indeed, even the fact that the states of the lts correspond tothe terms of some
formalism is usually abstracted away.

A work in the general area of combining lts semantics with some notion of
syntax is the seminal paper by Turi and Plotkin [81] which combines the coal-
gebraic approach with structural operational semantics [64] (and in particular the
GSOS [8] format) in a comprehensive theory known asbialgebraic semantics.
Similar ideas have been pursued by Corradini, Heckel and Montanari [13], who
used a coalgebraic framework to define labelled transition systems on algebras.

The area of bialgebraic semantics is an exciting field with ongoing research
into extending the basic theory with the generation of new names [23, 22] and
equivalences other than bisimilarity [42, 41]. Such developments yield insights
into labelled transition systems and isolate SOS formats which guarantee con-
gruence properties in such settings. However, even in bialgebraic semantics, the
labels of the lts are assumed to come from some fixed ad-hoc setof observable
behaviours which one is meant to provide a priori for each setting.

6 Lts for reactive systems

We shall now consider the question of what constitutes an appropriate labelled
transition system for a formalism with an underlying reaction semantics and some
standard contextually-defined equivalence. Firstly, bisimilarity on such an lts
should be at leastsoundwith respect to the standard contextually-defined equiva-
lence, meaning that to prove that two terms are contextuallyequivalent it is enough
to show that they are bisimilar. In some cases, bisimilarityis alsocomplete(or
fully-abstract) with respect to the contextually-defined equivalence, meaning that
the two notions of process equivalence – bisimilarity and contextually-defined
equivalence – actually coincide, and one can always, in principle, find a bisimula-
tion for any two contextually equivalent processes.

Thus the chief advantage of such a suitable lts is that, in order to prove the
equivalence of two processes, one can use the power of coinduction and construct
a bisimulation which includes the two processes. This task is usually more attrac-
tive and easier then the messy structural inductions involved in proving contextual
equivalence defined using quantification over an infinite setof contexts.

There has been much research concerned with finding suitablelabelled tran-
sition system semantics for different reaction-based formalisms. Unfortunately,



from a theoretical point of view, the labels of such a semantics – if it exists –
may seem ad-hoc; they need to be tailored and locally optimised for each process
language under consideration. Indeed, the task of identifying a “natural” lts for
a particular calculus is often far from obvious, even when its semantics is well
understood. On the contrary, labelled transition systems are often intensional:
they aim at describing observable behaviours in a compositional way and, there-
fore, their labels may not be immediately justifiable in operational terms. For
example there are two alternative labelled transition system semantics for the Pi-
calculus [55], the early and the late version, each giving a different bisimulation
equivalence.

An additional benefit of full abstraction and a property of considerable impor-
tance in its own right iscompositionalityof lts bisimilarity (and of other useful lts
preorders and equivalences). A relation is compositional,in other words acon-
gruence, if whenever we havetRu then we havec[t]Rc[u] for any contextc[−] of
the underlying language. It can be argued that congruence should be a required
property of any reasonable notion of observational equivalence – if we prove that
a andb are indistinguishable then they certainly should behave equivalently in any
given environment.

Compositionality and coinduction work together: compositionality allows one
to use modular reasoning to simplify coinductive proofs. Indeed, compositional-
ity is highly desirable because it usually makes equivalence proofs considerably
simpler. In particular, it allows the familiar methods of equational reasoning, such
as substituting “equals for equals”, sound. As an example, consider two nontrivial
systems, each of which can be expressed as a parallel composition of two smaller
systems, in symbolsp ≡ q ‖ r and p′ ≡ q′ ‖ r ′. To show thatp ∼ p′, using
compositionality it is enough to show thatq ∼ q′ andr ∼ r ′.

It is a serious problem, then, that given an lts designed ad-hoc for a particular
calculus, bisimilarity is not automatically a congruence.Even when itis a congru-
ence, proving that it is can be a very difficult and technical task. For example, the
well-known Howe’s method [32] is a technique for proving that lts bisimilarity
is a congruence for certain languages with higher-order features. In the field of
process calculus, such proofs usually involve finding a close connection between
the labels of an lts and the syntactic contexts of the calculus.

Interestingly, from a historical perspective, labelled transition systems as a
way of formalising semantics of process calculi actually were usedbeforereaction
semantics. In particular, the original presentation [51] of Milner’s CCS formalised
the semantics with a labelled transition system presented with SOS-style rules. An
early paper by Larsen [45] identified the importance of congruence results for lts
based process equivalences. Starting with an lts, Larsen introduced the notion of
a context (itself an lts) which is capable of consuming the actions of a state in the
lts. By adding constructors (action prefix and nondeterministic choice) to the set



of contexts, he proved a congruence theorem for bisimilarity. This early work can
be seen as related to CCS-like calculi, since Larsen’s environments can be other-
wise understood as ordinary CCS contexts (with input-actions changed to output-
actions and vice-versa) – with the consumption of lts labelsby the context being
handled by CCS interaction. Even in the basic setting of CCS,it quickly became
apparent that the labelled transition systems is not the ideal technology with which
to define notions of observational equivalence. For instance, weak bisimilarity in
CCS isnot a congruence. Because, as we have demonstrated, compositionality
is a very useful property, Montanari and Sassone [57, 58] considered the largest
congruent bisimulation contained in weak bisimilarity. Alternatively, weak obser-
vational congruence [51] considers the largest congruencecontained in bisimilar-
ity (the difference is similar to the difference between Milner and Sangiorgi’s and
Honda and Yoshida’s approaches). These approaches became for some time ac-
cepted techniques for obtaining satisfactory notions of observational equivalence
in calculi. The advent of reaction semantics and congruences obtained from re-
actions have since arguably replaced these approaches as “canonical” methods of
obtaining an observational equivalence.

7 Weak equivalences

Another yardstick to measure the appropriateness of an lts for a formalism with
reactions is how the lts simulates internal reduction within terms. For example, in
CCS and many other calculi, there are “silent” transitions;traditionally labelledτ.
Suchτ transitions usually correspond closely to the underlying reaction semantics.

Havingτ labels as part of an lts allows one to define a notion ofweakbisimula-
tion and the resulting equivalence:weakbisimilarity. Roughly, weak bisimilarity
does not distinguish processes which differ only in internal behaviour as repre-
sented by theτ-labelled transitions. Such equivalences are considered to be more
useful from a practical point of view since it can be argued that any reasonable
notion of observational equivalence should not take internal behaviour into con-
sideration.

There are a number inequivalent ways [82] to define preciselywhat is meant
to be a weak equivalence and the appropriateness to any particular application
depends on the ad-hoc design of the particular lts. The techniques involved are
usually not specialised to bisimilarity and thus one may easily define a notion of
weak trace equivalence or a weak failures equivalence. One popular definition
pioneered by Milner [51] is allow a (non-τ) labela to be matched by a “weak”a,
which means a (possibly empty) sequence ofτ labels followed bya and followed
again by a (possibly empty) sequence off τs. A τ label is normally allowed to
be matched by any (possibly empty) string ofτs. As mentioned before, weak
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bisimilarity in CCS is not a congruence.
Weak equivalences have traditionally been difficult to handle in general cat-

egorical settings. Indeed, there is still no general approach based on coalgebras,
although there has recently been an attempt [50] to develop the theory in this di-
rection. The theory has been developed to a more satisfactory level in the field
of open maps [21], yet the general approach advocated there is, arguably, quite
technical. Surprisingly, the theory of weak bisimulation seems to be quite easily
and elegantly handled in the theory of reactive systems, seeJensen’s upcoming
PhD thesis [33].

8 Deriving bisimulation congruences

We have discussed attempts by Milner and Sangiorgi [56] and by Honda and
Yoshida [31] to identify general techniques at arriving at areasonable notion of
process congruence through contextual means. We have also discussed some of
the problems inherent in contextual definitions and discussed one solution to the
difficulties involved in quantifying over an infinite set of contexts, finding asuit-
ablelabelled transition system. A third development, which hasled in a direct line
to the the theory described in this article, is by Sewell [76]. Sewell’s idea is tode-
rive a labelled transition system directly from the reaction semantics so that useful
lts based equivalences, including bisimilarity, are automatically congruences.

Sewell’s approach involved a new way of obtaining a labelledtransition: the
labels of transitions from a particular term should be the contexts which allow the
term to react (that is, a rewrite of the term inside the context should be possible
in the underlying rewriting semantics). Moreover, the labels should be, in some
sense, thesmallestsuch contexts. The notion of smallest was elegantly expressed
in categorical terms by Leifer and Milner [48].

Leifer and Milner’s characterisation of the notion of smallest context utilises
the fact that contexts can be organised in a category as part of a reactive system.
First, the notion that a terma can be instantiated in a contextf and react can
be summed up by giving a commutativeredexsquare, as illustrated in Figure 1,



I4

I2

f ??~~~~~
α +3 I3

d__@@@@@

0
a

``AAAAA l

>>}}}}}

Figure 2: Redex square in a 2-category.

whered is somereactivecontext andl is the redex or a reaction rule.
Using Leifer and Milner’s characterisation, the contextf is the smallest such

context when the diagram is anidem pushout(IPO). Categorically, it means that it
is a pushout in the slice category overI4. Starting with an arbitrary redex square,
one obtains an IPO by constructing arelative pushout(RPO), which amounts to
constructing a pushout in the relevant slice category.

The advantages of such a definition is that we have the universal properties of
such contexts at our disposal. Indeed, Leifer and Milner [48] showed that a la-
belled transition system with labels being precisely the contexts which come from
IPOs is very well behaved. In particular, bisimilarity is a congruence. In his PhD
dissertation, Leifer [47] complemented this result by showing that trace equiv-
alence and failures equivalence are also congruences. In the examples treated
by Sewell, Leifer and Milner, bisimilarity on the labelled transition semantics
obtained using this approach have corresponded closely to the expected process
equivalences.

9 A 2-categorical approach

When applied naively, Leifer and Milner’s theory has proveninadequate in reac-
tive systems where contexts have non-trivial algebraic structure. In some cases,
IPOs do not give the expected labels in the lts [71], while in others, they do not ex-
ist [70]. The troublesome contexts often exhibit non-trivial automorphisms, which
naturally form a part of a 2-dimensional structure on the underlying categoryC.
It is important to notice that such situations are the norm, rather than the excep-
tion. Context isomorphisms arise naturally already in simple process calculi with
a parallel composition operator, where terms are considered up to structural con-
gruence which ensures that parallel composition is associative and commutative.
In more accessible terms, whereas Leifer and Milner consider categories where
the objects are “holes” and arrows are contexts, we shall consider2-categories
where the intuition for the objects and arrows is the same as for Leifer and Mil-
ner, but there is additional structure, the 2-cells. The suggested intuition that the



2-cells is a term isomorphism, in a loose sense, a “derivation” or “proof” of struc-
tural congruence. To give a redex square in this setting, it is not enough to say
that a in the context off equalsa redexl in a reactive contextd, one needs to
provide an explicit isomorphismα, as illustrated in Figure 2. It turns out that this
2-dimensional structure is crucial and solves many of the problems involved in
Leifer and Milner’s original theory. The idea of using 2-cells as part of the theory
of reactive systems was independently proposed by Sewell [77].

The suitable generalisations of IPO and RPO to this 2-dimensional setting,
dubbed GIPO and GRPO, were introduced in [69,71]. The associated categorical
notion is no longer a pushout in a slice category but rather a bipushout [39, 79]
in a pseudo-slice category. It turns out, however, that these extra complications
do not detract from the good behaviour of the resulting lts; bisimilarity as well as
trace and failures equivalences are congruences.

Leifer and Milner, aware of the problems which arise as a consequence of
discarding the 2-dimensional structure, have also introduced technology in order
to deal with these issues. The main developments have centered around Leifer’s
theory of functorial reactive systemsand Milner’s S-precategories[34]. These
solutions have a similar flavour: decorate the contexts by so-called “support sets”
which identify elements of the contexts so as to keep track ofthem under ar-
row composition. This eliminates any confusion about whichautomorphism to
choose since diagrams can now be commutative in only one way.Unfortunately,
such supported structures no longer form categories – arrowcomposition is par-
tial – which has the effect of making the theory laborious and based in part on set
theoretical reasoning and principles.

A translation which maps reactive systems on precategoriesto reactive sys-
tems on 2-categories in a way which ensures that the lts generated using the 2-
categorical approach is the same as the lts generated using the technology functo-
rial reactive systems or S-precategories was presented in [70,73]. The translation
derives a notion of isomorphism, specific to the particular structure in hand, from
the precategory’s support information. Such isomorphismsconstitute the 2-cells
of the derived 2-category. It can be argued that this yields an approach mathe-
matically more elegant and considerably simpler than precategories. Moreover,
while subsuming the previous theories, it appears that the 2-categorical theory is
more general: there is no obvious way of reversing the translation and obtaining
an S-precategory from a general 2-category.

There have been several applications of the theory of 2-categories to computer
science, see for example [6, 75, 80, 27, 12]. The 2-dimensional structure has been
typically used to model a small-step reduction relation, say in the simply-typed
lambda calculus. As in our examples, the objects of the 2-categories are types and
the arrows are terms. However, for us the 2-dimensional structure consists of iso-



morphisms between terms, in other words, structural congruence, and the rewrite
relation is external to the 2-category. Indeed, there is a fundamental problem in
modelling the rewrite relation as 2-cells in our examples, if we allow non-reactive
contexts (as, say, prefix in CCS or lambda abstraction in the lazy lambda calculus)
as arrows in the category. This is because the axioms of 2-categories ensure that
all arrows preserve reaction through horizontal composition with identity 2-cells;
otherwise known as “whiskering”. In symbols, ifα : f ⇒ g : X → Y is a 2-cell
then for anyh : Y→ Z we have thathα : h f ⇒ hg : X→ Z is a 2-cell.

10 Adhesive categories

One approach which aids in understanding constructions on structures such as
bigraphs at a general level is: find a natural class of categories which includes
many different notions of graphical structures used in computer science and at the
same time has enough structure which allows us to derive useful properties. This
leads us to the the classes of adhesive and quasiadhesive categories [44].

As is the case with the well-known class of extensive [46,74,9] categories, ad-
hesive categories have a simple axiomatic definition as wellas an elegant “equiv-
alence” of categories definition. Indeed, the idea behind the development of adhe-
sive categories was to find a class of categories in which pushouts along monomor-
phisms are “well-behaved” – meaning they satisfy some of theproperties of such
pushouts in the category of sets and functionsSet – in much the same way as
coproducts are “well-behaved” in extensive categories. Similarly, quasiadhesive
categories have well-behaved pushouts alongregular monos.

Adhesive categories include as examples many of the graphical structures used
in computer science. This includes ordinary directed graphs, typed graphs [2] and
hypergraphs [16], amongst others. The structure of adhesive category allows us
to derive useful properties. For instance, the union of two subobjects is calculated
as the pushout over their intersection, which corresponds well with the intuition
of pushout as generalised union.

We shall defer the discussion of how adhesive categories fit into the aforemen-
tioned 2-categorical theory of process congruences until the next section. Here we
shall discuss an immediate application of adhesive categories: one can develop a
rich generaltheory of double-pushout (dpo) rewriting [19] within adhesive cate-
gories. Dpograph rewriting was first introduced in order to formalise a way of
performing rewriting on graphs. It has been widely studied and the field can be
considered relatively mature [66,14,18].

In dpo rewriting, a rewrite rule is given as a spanL ← K → R. Roughly, the
intuition is thatL forms the left-hand side of the rewrite rule,R forms the right-
hand side andK, common to bothL andR, is the sub-structure to be unchanged
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Figure 3: Double pushout.

as the rule is applied. To apply the rule to a structureC, one first needs to find a
matchL → C of L within C. The rule is then applied by constructing the missing
parts (E, D and arrows), as illustrated in Figure 3, in a way which ensures that the
two squares are pushout diagrams. Once such a diagram is constructed we may
deduce thatC BD, that is,C rewrites toD.

Dpo rewriting is formulated in categorical terms and is therefore portable to
structures other than directed graphs. Indeed, there have been several attempts [16,
15] to isolate classes of categories in which one can performdpo rewriting and in
which one can develop the rewriting theory to a satisfactorylevel. In particular,
several axioms were put forward in [16] in order to prove a local Church-Rosser
theorem for such general rewrite systems. Additional axioms were needed to
prove a general version of the so-called concurrency theorem [43].

Using adhesive categories, one may defineadhesive grammarswhich are dpo
rewrite systems on adhesive categories. The rewriting theory of such grammars
is satisfactory; indeed, one may prove the local Church-Rosser theorem and the
concurrency theorem in the general setting without the needfor extra axioms. It
can thus be argued that adhesive categories provide a natural general setting for
dpo rewriting. For further details, the reader is referred to [44].

11 Cospans

Several constructions of RPOs have been proposed in the literature for particular
categories of models. For example, Leifer [47] constructedRPOs in a category of
action graphs, while Jensen and Milner did so in the precategory of bigraphs [54].
A construction of (G)RPOs in a general setting has so far beenmissing.

A general construction, provided that it covers several different models and
the techniques used are robust, is quite useful. The reasonsfor this include:

• it provides a general intuition of how to construct GRPOs in many different
settings, without having to provide model-specific constrictions and proofs;

• it allows the relating of different models as subcases of a more general set-
ting;
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• it allows one to vary the model within the specified constraints and retain
the construction.

We have discussed the modelling of the contexts of a formalism as arrows in
an arbitrary category. An interesting question thus arises; what is a reasonable,
general and elegant notion of context which nonetheless hasmore structure than
an arrow of an arbitrary category? Secondly, given a category C, how can one
canonically treat theobjectsas contexts, so that they form thearrowsof another
category? A concrete form of the second question could be: what is a graph
context? We argue that the notion of cospan is suitable. Given objectsI1 andI2 of
some categoryC, a cospan fromI1 to I2 is simply a diagram inC, as illustrated in
Figure 4, whereC is an object ofC and the arrows are arbitrary. We shall refer to
ι : I1 → C ando : I2 → C as, respectively, theinput andoutput interfaceof the
cospan. Note that, as it stands, the notion of cospan is symmetric, and the same
diagram forms a cospan fromI2 to I1 with o forming the input interface andι the
output interface.

The rough intuition is thatC corresponds to a “black box” computational en-
vironment, with some of its parts available throughI1 to its subcomponents, or
variables; and others available publicly throughI2, which can be used to embedC
in a larger system.

Given two cospans,I1
ιC
−→ C

oC
←− I2 and I2

ιD
−→ D

oD
←− I3, one can compose

them to obtain a cospan fromI1 to I3 by constructing the pushout, as illustrated
in Figure 5, and letting the input interface bepιC and the output interface beqoD.

Such composition has an identities, the identity cospan onI1 is I1
id
−→ I1

id
←− I1.

Cospans inC actually organise themselves as arrows of another category, or
more accurately, thebicategory Cospan�(C). This bicategory has the same ob-
jects asC but the arrows fromI1 to I2 are cospans and the 2-cells are cospan
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Figure 6: Example of a contextual system.

isomorphisms - isomorphismsf : C → C′ of C which preserve input and output
interfaces, that isf ι = ι′ and f o = o′.

A bicategory [5] can be described roughly as a 2-category where the horizon-
tal composition is associative and has identities up to an isomorphic 2-cell. Com-
position of cospans is not associative on the nose because composition uses the
pushout construction which is defined up to isomorphism. Theassociativity and
identity isomorphisms are required to satisfy the so-called coherence conditions
(including the famous Mac Lane pentagon for associativity [49]). It turns out that
the canonical isomorphisms obtained using the universal property of pushouts do
satisfy these conditions.

As an example of these concepts, consider the simple model ofa coffee vend-
ing machine, illustrated by the leftmost diagram of Figure 6. It has an output
interface consisting of two nodes, $ andC, which one can think of as a money
slot and the coffee out-tray. These are the parts of the coffee machine accessible
to the environment, the internal components, represented by S, are invisible. The
middle diagram represents a coffee drinker. He expects to see a money slot and a
coffee out-tray, which are his input interfaces. As the output interface of the cof-
fee machine and the input interface of the coffee drinker match, one may compose
them and obtain the system pictured in the rightmost diagram. (The input inter-
face of the vending machine and the output interface of the coffee drinker have
been omitted.)

12 Construction of GRPOs

We shall now discuss a result which ties together the threadswhich we have dis-
cussed so far. It is the central contribution of [78] and appeared first in the tech-
nical report [72]: the construction of GRPOs in input-linear cospan bicategories
over adhesive categories. By an input linear cospan, we meana cospan as in Fig-
ure 4 but where the input interfaceι is mono. Observe that this breaks the symme-
try of cospans: to give an input-linear cospan fromI1 to I2 is not the same thing as



to give an input-linear cospan fromI2 to I1. WhenC is an adhesive category, the
composition of two input-linear cospans inC gives an input-linear cospans: they
form the bicategory ILC(C).

Although technical in nature, the linearity condition doeshave an intuitive ac-
count. As alluded in the coffee drinker example, one can consider a cospan as
a “black box,” with an input interface and an output interface. The environment
cannot see the internals of the system and only interacts with it through the out-
put interface. The fact that the output interface need not belinear means that the
system is free to connect the output interface arbitrarily to its internal representa-
tion. For example, the coffee machine could have two extra buttons in its output
interface; the “café latte” button and the “cappuccino” button. The machine inter-
nals could connect both these buttons to the same internal trigger for coffee with
milk; the point is that the system controls its output interface and is able to equate
parts of it. On the other hand, the system cannot control whatis plugged into one
of its holes. Thus, an assumption of input-linearity is essentially saying that the
system does not have the right to assume that two components coming in through
the input interface are equal.

The construction arose from an effort to understand the structure of GRPOs in
categories of contexts where the contexts have graphical structure. Incidentally, it
is the non-trivial algebraic structure of such contexts that makes it essential to con-
sider 2-dimensional structure in of such categories; it is not enough to deal with
the “abstract” versions (where the contexts are quotientedby isomorphism) and
consider RPOs. The construction is the first construction ofGRPOs for general
class of models.

We shall conclude with a discussion of two of the immediate applications
of the construction. Firstly, using an insight of Gadducci and Heckel [25] we
notice that dpo graph rewriting systems can be seen as certain rewriting systems
on cospan categories over the category of directed graphs and homomorphisms
Graph, and thus can be seen as reactive systems. SinceGraph is an adhesive
category, we are able to derive labelled transition systemsfor a general class of
dpo graph rewriting systems.

One of the advantages of this technology is that it facilitates a transfer of con-
cepts between the theories and technologies of process algebra and graph rewrit-
ing. Indeed, it becomes possible to think of graph rewritingsystems as certain
calculi, with cospans of graphs providing a notion of context. Interestingly, the
construction of labelled transition systems captures and extends the borrowed con-
text approach of Ehrig and König [17] who also derive labelled transition systems
for double-pushout graph rewriting systems. Indeed, it becomes possible to see
their work as part of the framework of reactive systems and GRPOs. The transfer
of technology is in both directions, using Ehrig and König’scharacterisation of
labels, we are able to provide a pleasantly simple characterisation of GIPOs in our



setting.

Our second application shall consider Milner’s bigraphs [54]. Bigraphs were
introduced by Milner in his conference presentation [54] and later in the com-
prehensive technical report by Jensen and Milner [34]. Theyaim at modelling
systems with two orthogonal modes of connectivity. The firstmode is a physical
link structure, which may for instance correspond to a physical nesting of systems
similar to the nesting of process terms in the ambient calculus [10], or Alastair
living next door to Beatrice. The second mode of connectivity is a logical link
structure, which may correspond to processes knowing a reference to a resource
of an another process, as, for example a process in the Pi-calculus [55] knowing a
free name of another process, or Alastair knowing Beatrice’s email address. The
two sorts of connectivity are orthogonal in the sense that the physical separation
of processes should not have an effect on the ability to maintain logical links. Bi-
graphs are algebraic structures with an underlying carrierset. We shall see how the
category of bigraphs can be otherwise defined as a certain cospan bicategory over
an adhesive category (which, incidentally, gives an automatic notion of bigraph
homomorphism).

Considering input-linear cospans allows us to construct GRPOs, allowing the
derivation of well-behaved lts for reactive systems over input-linear bigraphs. It
turns out that there is a mismatch with Milner’s theory of RPOs for bigraphs. In-
deed, requiring input-linearity corresponds to taking a different notion of bigraph
then the one treated by Milner; it turns out that the categoryof bigraphs in Mil-
ner’s sense is actually isomorphic to a certain bicategory of output-linear cospans
over an adhesive category. As a consequence, it shall be interesting to investigate
whether a general construction of GRPOs can be given for output-linear cospans.

Cospans as well as spans have been used in computer science before. As pre-
viously mentioned, Gadducci and Heckel [25] have used cospans to shed light on
connections between dpo graph rewriting and standard rewriting theory. In an ef-
fort to study a general notion of “partial map”, Robinson andRosolini investigated
a particular class of span bicategories in [65]. Spans have also been studied by
Katis, Sabadini and Walters [37, 38] in an effort to generalise ordinary automata
theory in a modular way. Moreover, using the technology of traced monoidal
categories [36], they were able to include a “feedback” operation. Thus, as our
cospans can be thought of as generalised contexts, their spans can be thought of
as generalised automata. It is unclear at this stage what connection can be made
between the two theories.
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[44] S. Lack and P. Sobociński. Adhesive categories. InFoundations of Software Science
and Computation Structures FoSSaCS ’04, volume 2987 ofLNCS (Lecture Notes in
Computer Science), pages 273–288. Springer, 2004.

[45] K. G. Larsen. A context dependent equivalence between processes.Theoretical
Computer Science, 49:185–215, 1987.



[46] F. W. Lawvere. Some thoughts on the future of category theory. InCategory Theory,
volume 1488 ofLecture Notes in Mathematics, pages 1–13, Como, 1991. Springer-
Verlag.

[47] J. Leifer. Operational congruences for reactive systems. Phd thesis, University of
Cambridge, 2001.

[48] J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In International Conference on Concurrency Theory Concur ’00, volume 1877 of
LNCS (Lecture Notes in Computer Science), pages 243–258. Springer, 2000.

[49] S. Mac Lane and R. Paré. Coherence for bicategories and indexed categories.Jour-
nal of Pure and Applied Algebra, pages 59–80, 1985.

[50] D. Masulovic and J. Rothe. Towards weak bisimulation for coalgebras.Electronic
Notes in Theoretical Computer Science, 68(1), 2003.

[51] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[52] R. Milner. Calculi for interaction.Acta Informatica, 33(8):707–737, 1996.

[53] R. Milner. Communicating and Mobile Systems: the Pi-calculus. Cambridge Uni-
versity Press, 1999.

[54] R. Milner. Bigraphical reactive systems. InInternational Conference on Concur-
rency Theory Concur ’01, volume 2154 ofLNCS (Lecture Notes in Computer Sci-
ence), pages 16–35. Springer, 2001.

[55] R. Milner, J. Parrow, and D. Walker. A calculus of mobileprocesses, (Parts I and
II). Information and Computation, 100:1–77, 1992.

[56] R. Milner and D. Sangiorgi. Barbed bisimulation. In9th Colloquium on Automata,
Languages and Programming, ICALP92, volume 623 ofLNCS (Lecture Notes in
Computer Science), pages 685–695. Springer, 1992.

[57] U. Montanari and V. Sassone. Dynamic bisimulation. Technical report, Univerisità
di Pisa, 1990.

[58] U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for
CCS.Fundamenta Informaticae, XVI:171–199, 1992.

[59] M. Nygaard. Domain Theory for Concurrency. PhD thesis, BRICS, University of
Aarhus, 2003.

[60] M. Nygaard and G. Winskel. HOPLA - A higher-order process language. InIn-
ternational Conference on Concurrency Theory Concur ’02, volume 2421 ofLNCS
(Lecture Notes in Computer Science), pages 434–448. Springer, 2002.

[61] M. Nygaard and G. Winskel. Full abstraction for HOPLA. In International Confer-
ence on Concurrency Theory Concur ’03, volume 2761 ofLNCS (Lecture Notes in
Computer Science), pages 378–392. Springer, 2003.

[62] M. Nygaard and G. Winskel. Domain theory for concurrency. Theoretical Computer
Science, 316:152–190, 2004.



[63] D. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,
Conf. on Theoretical Computer Science, volume 104 ofLNCS (Lecture Notes in
Computer Science). Springer, 1981.

[64] G. D. Plotkin. A structural approach to operational semantics. Technical Report
FN-19, DAIMI, Computer Science Department, Aarhus University, 1981.

[65] E. P. Robinson and G. Rosolini. Categories of partial maps. Information and Com-
putation, 79, 1988.

[66] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997.

[67] J. J. M. M. Rutten. Universal coalgebra: a theory of systems.Theoretical Computer
Science, 249:3–80, 2000.

[68] D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.
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