
Adhesivity, Bigraphs and Bisimulation

Congruences

Pawe l Sobociński1
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Abstract. This paper is intended as a short informal summary of some
of the topics which arose at the Dagstuhl meeting held 6/06/04-11/06/04.
In particular, we shall summarise some of the content of talks by H.
Ehrig [1], F. Gadducci [2], O. H. Jensen [3], R. Milner [4], B. König [5],
V. Sassone [6] and the author [7]. The general areas include adhesive
categories and generalisations, contextual labelled transition semantics
for graph transformation systems via borrowed-contexts and GIPOs, and
bigraphs. We shall conclude with a summary of some of the discussions
which followed the aforementioned presentations.

1 Introduction

This article is an attempt to provide a brief summary of some of the wide range
of topics presented and discussed at the Dagstuhl Seminar 04241 “Graph Trans-
formations and Process Algebras for Modeling Distributed and Mobile Systems”.
We shall concentrate on the notions of adhesivity and reactive systems (in the
sense of Leifer and Milner [8]) and examine some of the implications for the
well-established theory of double-pushout (DPO) graph transformation [9, 10]
and the relatively recently introduced theory of bigraphs [11].

The theory of DPO graph transformation was introduced in the early Seven-
ties [9]. A line of research, the start of which can be attributed to Gadducci and
Heckel [12], has recently resulted in the introduction of process algebraic notions,
such as context, labelled transition systems and bisimilarity to the field [13, 14].
These latest developments also share the ancestry of Leifer and Milner’s ap-
proach [8] of deriving canonical labelled transition systems.

Another related line of recent work is the notion of adhesive categories and
weaker variations [15–17], which allow a simple categorical “universe” in which
one can perform double pushout rewriting and in which classical results such
as local Church-Rosser, the concurrency theorem and the parallelism theorems,
hold.

2 Adhesive, quasiadhesive and adhesive high-level

replacement categories

An adhesive category is one where, roughly, pushouts along monomorphisms are
“well-behaved”, where the paradigm for behaviour is given by the category of



sets. The idea is analogous to that of extensive categories [18], which have well-
behaved coproducts in a similar sense. Various notions of graphical structures
used in computer science form adhesive categories. Adhesive categories were
introduced in [19].

The notion of adhesivity is too strong for several relevant examples. These
examples motivate the study of quasiadhesive categories. Roughly, instead of
focusing on the behaviour of pushouts along arbitrary monomorphisms, quasi-
adhesive categories restrict attention to pushouts along regular monomorphisms.
Quasiadhesive categories, foreshadowed in [19], are introduced in [16]. Regular
monomorphisms are, in general, a proper subclass of the class of monomor-
phisms. One can parametrise the definition of adhesivity with respect to an ar-
bitrary class of monomorphisms, provided that the class satisfies certain axioms.
This approach yields the adhesive HLR categories, introduced in [17].

Here we shall recall the definitions of adhesive, quasiadhesive and adhesive
HLR categories as well as some of their properties. The three classes depend on
the notion of van Kampen squares, which we introduce below.

2.1 Van Kampen squares

Definition 1 (van Kampen square). A van Kampen (VK) square (i) is a
pushout which satisfies the following condition:
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given a commutative cube (ii) of which (i) forms the bottom face and the back
faces are pullbacks, the front faces are pullbacks if and only if the top face is a
pushout. Another way of stating the “only if” condition is that such a pushout
is required to be stable under pullback.

Lemma 1. In a VK square as in (i), if m is a monomorphism then n is a
monomorphism and the square is also a pullback.

2.2 Adhesive categories

Definition 2 (Adhesive category). A category C is said to be adhesive if

(i) C has pushouts along monomorphisms;



(ii) C has pullbacks;
(iii) pushouts along monomorphisms are VK-squares.

Example 1. Set is adhesive.

Example 2. The categories Pos, Top, Gpd and Cat are not adhesive.

Proposition 1.

(i) If C and D are adhesive categories then so is C×D;
(ii) If C is adhesive then so are C/C and C/C for any object C of C;
(iii) If C is adhesive then so is any functor category [X,C].

The closure conditions outlined in Proposition 1 ensure that categories of or-
dinary directed graphs, typed graphs [20] and hypergraphs [21], amongst others,
are adhesive categories.

The following two lemmas are used extensively in literature on graph trans-
formation.

Lemma 2. Monomorphisms are stable under pushout.

Lemma 3. Pushouts along monomorphisms are also pullbacks.

Lemma 4. Pushout complements of monos (if they exist) are unique up to
isomorphism. In other words, given two pushouts along mono m as illustrated
below, there exists an isomorphism ϕ : B → B′ such that n′ϕ = n and ϕf = f ′.
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Lemma 5. Monomorphisms are regular.

2.3 Quasiadhesive categories

For certain applications, including the theory of algebraic specifications, the
axioms of adhesive categories are too restrictive. Indeed many examples fail
to be adhesive, but are quasiadhesive. In this brief summary, we shall recall
the definition of quasiadhesive categories and present some of their theory. The
reader is directed to [16] for a more complete presentation.

Definition 3. A category C is said to be quasiadhesive if

(i) C has pushouts along regular monomorphisms;
(ii) C has pullbacks;
(iii) pushouts along regular monomorphisms are VK-squares.

Adhesive categories can be seen as “degenerate” quasiadhesive categories, as
explained by the following fact.



Proposition 2. The adhesive categories are precisely the quasiadhesive cate-
gories in which every monomorphism is regular.

The following lemma sums up a two important properties of regular monos
in quasiadhesive categories.

Lemma 6. The following hold in any quasiadhesive category C:

(i) regular monomorphisms are stable under pushout;

(ii) regular monomorphisms are closed under composition.

2.4 Adhesive high-level replacement categories

We have seen the definition of adhesive and quasiadhesive categories, which
share the central concept of a van Kampen square. Indeed, in adhesive cate-
gories all pushouts along monomorphisms are VK squares, while in quasiadhe-
sive categories it is the pushouts along regular monomorphisms which satisfy
this property.

The definition of “adhesivity” can be generalised so as to be parametrised
over a class of monomorphisms M. This was done in [17], resulting in the class
of adhesive high level replacement (adhesive HLR) categories. We present the
definition below.

Definition 4 (Adhesive HLR category). A category C with an associated
class of monomorphism M is an adhesive HLR category when:

– M is closed under composition: if f : A→ B and g : B → C are both in M
then gf : A→ C is in M;

– M is closed under decomposition: for any f : A→ B, and any g : B → C in
M, gf : A→ C in M implies that f : A→ B is in M;

– C has pushouts along M morphisms;

– C has pullbacks alongM morphisms;

– M morphisms are closed under pushouts;

– M morphisms are closed under pullbacks;

– pushouts alongM morphisms are VK-squares.

Clearly, adhesive categories are adhesive HLR categories whereM is the class
of all monomorphisms. Similarly, quasiadhesive categories are adhesive HLR
categories with M being the class of regular monomorphisms.

Adhesive HLR categories satisfy closure conditions analogous to the closure
conditions specified in Proposition 1.

An important new example of adhesive HLR categories is the category of
typed attributed graphs [22].



3 Applications to DPO Transformation

HLR categories [21] were originally introduced in order to generalise the theory
of DPO graph transformation systems to a suitable class of categories. Adhesive,
quasiadhesive and adhesive HLR categories can be seen as elegant replacements
for HLR categories; indeed, many of the axioms assumed in the theory of HLR
categories follow as simple lemmas in these categories. In [19] this was demon-
strated explicitly with the proof of the local Church-Rosser theorem and the
concurrency theorem in the setting of DPO systems over adhesive categories.
Ehrig et al. [17] extended the rich rewriting theory further by considering the
important new concepts of initial pushouts and critical pairs in the setting of
DPO systems over adhesive HLR categories.

4 Deriving bisimulation congruences

An important new development discussed extensively at the seminar has been
the application of Leifer and Milner’s theory of reactive systems and relative
pushouts (RPOs) [8] to DPO graph transformation systems. This work been
done independently by Ehrig and König [13] and by Sassone and Sobociński [14].

Both approaches define a “graph context” to be a cospan of graph mor-
phisms. Intuitively, a graph is assigned an input interface and an output inter-
face. A graph with an output interface can be substituted into a context if the
input interface of the context agrees with the output interface of the graph, the
composition is then performed via the pushout construction.

This “contextual interpretation” is useful when graphs are used to encode
a concurrent agent – indeed, in such situations it is not enough to study the
behaviour of the agent itself; it is necessary to experiment with the agent by
substituting it into contexts and observing the behaviour of the resulting sys-
tems. This, however, brings up the problem of how to reason about such “agents”,
in particular, when can two graphs be considered to be equivalent. Ehrig and
König, motivated by the approach of Leifer and Milner, derive a labelled tran-
sition system (lts) with labels being the so-called borrowed contexts. Moreover,
they prove that bisimilarity on the resulting lts is a congruence with respect
to all graph contexts. The intuition is the same as for Leifer and Milner, that
is, borrowed contexts are intuitively the smallest graph-contexts which allow
interaction, in the sense that the composition allows a rewrite to be performed.

Indeed, one can consider DPO systems as reactive systems over cospan cat-
egories, in sense of Leifer and Milner, in a very natural way [12, 14]. Conversely,
any reactive system over a cospan category can be considered as a certain “con-
textual” DPO rewriting system. It turns out that GRPOs can be constructed in
certain such cospan categories, and that the notion of borrowed context coincides
with GIPOs in such categories.



4.1 Borrowed contexts

To allow a graph to be substituted into an arbitrary graph context, one enriches
it with an interface; substitution is defined when the interface matches the input
interface of the context and the substitution is performed by pushout. All graph
morphisms in this section are assumed to be injective.

Definition 5. A graph with an interface is simply a graph G together with
a homomorphism J → G. A graph context is a cospan of graph morphisms
J → F ← K. The composition is performed by pushout, as illustrated below.

J

��

// F

��

Koo

G // G+

The resulting graph G+ has an output interface K obtained by composition of
the two rightmost morphisms in the above diagram.

In order to answer the question of what it means, operationally, for a context
to allow a graph to rewrite, consider the diagram below.
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Starting with a graph G with an interface oG : J → G, we compose with a
context J

ιF−→ F
oF←− K and obtain a graph G+ by constructing the pushout (4).

The resulting graph G+ allows a double-pushout rewrite – that is, starting with

a rewrite rule L
l
←− I

r
−→ R, we are able to construct pushouts (2) and (3)

to obtain a graph H . The basic idea of borrowed contexts, inherited from the
theory of relative pushouts, is that one constructs a labelled transition system
using the “smallest” contexts which allow reaction as labels. We recall give the
definition of the lts below.

Definition 6 (Rewriting with borrowed contexts). Assuming a fixed set P

of DPO productions (spans L
l
←− I

r
−→ R), define a labelled transition system

as follows

– states: graphs with output interfaces J → G;
– transitions: there is a transition from J → G to K → H with label J →

F ← K precisely when there exists a DPO production L ← I → R so that
regions (4), (2) and (3) are pushouts (the context allows a rewrite), and
additionally, (5) is a pullback and there exists an object D with morphisms
D → G and D → L making (1) a pushout.



A central result of [13] is the following.

Theorem 1. Bisimilarity on the resulting lts is a congruence with respect to all
graph contexts.

4.2 GIPOs and cospans

Here we shall recall the main results of [14] and expanded in [23]. The orig-
inal framework of reactive systems and relative pushouts [8] can be extended
smoothly to a 2-dimensional setting, so that the underlying category of a reactive
system is a 2-category or a bicategory. The notions of relative pushouts (RPO)
and idem-relative pushouts generalise to groupoidal-relative pushouts (GRPO)
and groupoidal-idem-relative pushout (GIPO) [24]. Categorically, a GRPO is a
bipushout in a pseudo-slice category. Roughly, a GIPO is a diagram which results
from the construction of a GRPO. As IPOs characterise the smallest contexts
which allow reaction in a categorical setting, so GIPOs characterise such con-
texts in a 2-categorical setting. The good behaviour of the labelled transition
systems generated using Leifer and Milner’s theory lifts to the 2-categorical set-
ting, in particular, one obtains congruence theorems for bisimilarity as well as
other equivalences, see [24, 23] for details.

Given an adhesive category C, we let ILC(C) denote the bicategory of input-

linear cospans, that is cospans I1
ι
−→ C

o
←− I2 where ι is mono. The following

theorem is the main result of [14].

Theorem 2. For any adhesive category C, ILC(C) has GRPOs.

There is a very close correspondence between GIPOs and borrowed contexts.
Indeed, if we restrict to linear cospans (both arrows of the cospan are mono),
we are in a position to compare the two approaches as the theory of borrowed
contexts requires the assumption of all morphisms being mono. The proof of the
following theorem can be found in [14, 23].

Theorem 3. The (concrete) labelled transition system generated using GIPOs
is equal to the labelled transition system generated using borrowed contexts.

As a consequence, one may view Theorem 1 as a corollary of the standard
congruence theorem for reactive systems. One also gets the congruence theorems
for other equivalences, such as failures equivalence and trace equivalence.

The existence of GIPOs in ILC(C) also allows one to extend the notion of
borrowed context, allowing non-injective output interfaces. This is presented in
detail in [14].

It turns out that the definition of borrowed contexts can be used to charac-
terise GIPOs in this general setting.

Proposition 3. Diagram (i) is a GIPO if and only if there exists an X and
isomorphisms ωl : A +I2 C → X and ωr : B +I3 D → X such that ω−1

r ωl = α



and so that in the resulting diagram (ii) we have:
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– region (1) is both a pullback and a pushout;
– regions (2) and (3) are pushouts;
– region (4) is a pullback.

It is this characterisation which is at the heart of Theorem 3 and which
allows us to relate borrowed contexts and GIPOs – in particular, it shows that
borrowed contexts arise from a general categorical categorical construction and
thus satisfy a universal property.

5 Bigraphs and weak bisimilarity

Here we give a brief overview of the presentation by Jensen [3]. The results shall
be published in Jensen’s upcoming PhD thesis [25].

The main idea is to extend the behavioural theory of bigraphs by allowing a
weak version of bisimilarity – that is, one which abstracts the internal behaviour
of agents and focuses solely on interactions with the environment. The results
presented are not specialised to bigraphs and generalise nicely to any reactive
system in the sense of Leifer and Milner, and therefore, we shall recall them in
that setting.

The inspiration for weak bisimilarity comes from traditional labelled transi-
tion systems in the field of process calculus which come equipped with a special
label τ – the intuition is that a τ labelled transition corresponds to a reaction
within the term with no outside interaction needed from the environment. Sup-
posing that the labels of the lts come from some set A, we can define, for an
arbitrary string a = a1 . . . an in L∗, a “weak” labelled transition b

a
⇒ b′ to mean

a sequence of transitions in which falls into the family τ∗a1τ
∗ . . . τ∗anτ∗. One

then defines weak bisimilarity and other weak equivalences by using such weak
transitions. Roughly, technically we are saturating the lts with τ labels, making
it impossible to distinguish two processes by their internal behaviour.



A similar process can be repeated in the setting of reactive systems.

•
a1 // •

a2 // • ... •
an // •

•

b

OO

l1

// •
d1

OO

•

r1

OO

l2

// •

d2

OO

. . .
•

ln

// •

dn

OO

Jensen proposes to consider a new lts defined as follows: b an...a1
I b′ if, for 1 ≤

n ≤ n, there exists a sequence of reaction rules 〈li, ri〉 ∈ R and reactive contexts
di so that bi

ai
I bi+1 in the ordinary transition system, bi = diri, b a1

I b1 and
b′ = bn. The resulting diagram of IPOs is illustrated above. Jensen also argues
that it is important to require that a2, . . . , an are reactive contexts.

The congruence theorems can be proved in a particularly simple and attrac-
tive way: consider two reactive systems over a category C with reaction rules R
and S. One can define RS as the set of reaction rules obtained by “composing”
the reaction relations as follows: given 〈r1, r2〉 ∈ R and 〈s1, s2〉 ∈ S, their com-
position is a family of reaction rules 〈pr1, qs2〉 ∈ RS, where p and q are required
to be reactive and the square below is required to be an IPO.

•
r1 // •

p // •

•

r2

OO

s1

// •

q

OO

•

s2

OO

Letting ε be the reaction relation consisting of the single rule {id, id}, one defines
R∗ = ε∪R∪RR∪ . . . It is now easy to check that Jensen’s weak lts is just the
“ordinary” lts over the new reactive system with R∗ as its reaction relation. In
particular, this implies the congruence theorems.

When stated in the generality of reactive systems, the results of Jensen’s
formulation apply to bigraphs as well as borrowed contexts – using the transla-
tion of double pushout transformation systems into reactive systems over cospan
bicategories.

6 Bigraphs and graphical formalisms for calculi

In a series of talks, Milner and Jensen [4] presented some of the theory of bi-
graphs. Bigraphs are a graphical system which falls within the framework of
Leifer and Milner’s reactive systems and has an associated behavioural theory



induced by RPOs. Their purpose is to bring together elements of foundational
calculi for concurrency and mobility, such as the Pi-calculus and the calculus
of mobile ambients. One of the advantages of a graphical presentation over a
syntactic presentation is that one often avoids or greatly simplifies structural
congruence relations, which are often largely subsumed by graph isomorphisms.

One of the chief features of bigraphs is the orthogonal treatment of a tree
topographical structure – often used to model physical structure – and a logical
link structure. Roughly, one may say that “where you are doesn’t affect with
whom you may talk to”.

Certain bigraphs can be considered as particular cospan bicategories. Thus,
one may to some extent apply Theorem 2 in order to derive the existence of
GRPOs; meaning that Milner’s construction of RPOs for bigraphs can be seen
as a special case of a more general construction. This is, however, not entirely
satisfactory as it appears that a construction of GRPOs for output-linear cospans
would be more appropriate to deal with some of the phenomena of bigraphs.
Another advantage of defining bigraphs as cospans is that their reactions can
be seen as DPO transformations – meaning that aspects of the theory of DPO
transformation systems can be applied to bigraphs.

In his presentation [2], Gadducci presented a graphical formalism in which
one may encode the pi-calculus [26, 27]. As opposed to bigraphs, Gadducci’s
encoding uses only ordinary (typed) graphs. It may prove interesting as future
work to ascertain to what extent one may use the technology of reactive systems
and (G)RPOs in order to analyse the behavioural theory of pi by studying this
encoding.

7 Conclusions

We have discussed aspects of adhesive, quasiadhesive and adhesive HLR cat-
egories and their relationship to the field of double-pushout transformation
systems. Moreover, we have compared the borrowed-context approach and the
GIPO approach of endowing such a system with a compositional labelled transi-
tion system semantics. We have briefly discussed a way of defining weak equiv-
alences in the setting of reactive systems with application to bigraphs, but also
to any reactive systems and in particular to “contextual” DPO transformation
systems, since these are reactive systems over cospan bicategories.

References

1. Ehrig, H.: Adhesive high-level replacement categories and systems: New abstract
framework for graph transforation. Dagstuhl Seminar 04241 Presentation. (2004)

2. Gadducci, F.: Graph rewiriting for calculi with name passing. Dagstuhl Seminar
04241 Presentation. (2004)

3. Jensen, O.H.: Bigraphs and weak bisimilarity. Dagstuhl Seminar 04241 Presenta-
tion. (2004)

4. Milner, R.: Bigraphs and mobile processes. Dagstuhl Seminar 04241 Presentation.
(2004)



5. König, B.: Deriving bisimulation congruences in the dpo approach to graph rewrit-
ing. Dagstuhl Seminar 04241 Presentation. (2004)

6. Sassone, V.: Coinductive reasoning for contextual graph rewriting. Dagstuhl Sem-
inar 04241 Presentation. (2004)
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