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Abstract

G-relative pushoutsg@RPOs) have recently been proposed by the authors as a
new foundation for Leifer and Milner’s approach to deriving labelled bisimulation
congruences from reduction systems. This paper develops the theGRRRDs
further, arguing that they provide a simple and powerful basis towards a compre-
hensive solution. As an example, we constr@BPOs in a category of ‘bunches
and wirings.” We then examine the approach based on Milner's precategories and
Leifer’s functorial reactive systems, and show that it can be recast in a much simpler
way into the 2-categorical theory GRPOs.

Introduction

Itis increasingly common for foundational calculi to be presentagdsction systems
Starting from their common ancestor, thecalculus, most recent calculi consist of a
reduction system together with a contextual equivalence (built out of basic observations,
viz. barbs). The strength of such an approach resides in its intuitiveness. In particular,
we need not invent labels to describe the interactions between systems and their possible
environments, a procedure that has a degree of arbitrariness (cf. early and late semantics
of thettcalculus) and may prove quite complex (cf. [5, 4, 3, 1]).

By contrast, reduction semantics suffer at times by their lack of compositionality,
and have complex semantic theories because of their contextual equivalences. Labelled
bisimulation congruences basedlahelled transition systen{6TS) may in such cases
provide fruitful proof techniques; in particular, bisimulations provide the power and
manageability of coinduction, while the closure properties of congruences provide for
compositional reasoning.

To associate an LTS with a reduction system involves synthesising a compositional
system of labels, so that silent movesYaactions) reflect the original reductions, labels
describe potential external interactions, and all together they yield a LTS bisimulation
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which is a congruence included in the original contextual reduction equivalence. Prov-
ing bisimulation is then enough to prove reduction equivalence.

Sewell [19] and Leifer and Milner [13, 11] set out to develop a theory to perform
such derivations using general criteria; a meta-theoeoiving bisimulation congru-
ences The basic idea behind their construction is to use contexts as labels. To exemplify
the idea, in a CCS-like calculus one would for instance derive a transition
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because terra.P in context— | a.Q reacts to becomB | Q; in other words, the context
is a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to use as labels.
The intuition is to take only thesmallest contexts which allow a given reaction to
occur. As well as reducing the size of the LTS, this often makes the resulting bisimu-
lation equivalence finer. Sewell's method is based on dissection lemmas which provide
a deep analysis of a term’s structure. A generalised, more scalable approach was later
developed in [13], where the notion of “smallest” is formalised in categorical terms as
arelative-pushou{RPOs). Both theories, however, do not seem to scale up to calculi
with non trivial structural congruencesAlready in the case of the monoidal rules that
govern parallel composition things become rather involved.

The fundamental difficulty brought about by a structural congruenisthat work-
ing up to= gives up too much information about terms for the RPO approach to work
as expected. RPOs do not usually exist in such cases, because the fundamental indica-
tion of exactly which occurrences of a term constructor belong to the redex becomes
blurred. A very simple, yet significant example of this is the catedgquy of bunch
contexts [13], and the same problems arise in structures such as action graphs [14] and
bigraphs [15].

In [17] we therefore proposed a framework in which term structure is not explicitly
guotiented, but the commutation of diagrams (i.e. equality of terms) is taken=p to
Precisely, to give a commuting diagramp = sg one exhibits a prooé of structural
congruence, which we represent as a 2-cell (constructed from the rules generating

and closed under all contexts).
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Since such proofs are naturally isomorphisms, we were led to congidategories,
i.e., 2-categories where all 2-cells are iso, and initiated the stugyrefative pushouts
(GRPOSs), as a suitable generalisation of RPOs from categor@s#tegories.

The purpose of this paper is to continue the development of the the@RBDs.
We aim to show that, while replacing RPOs at little further complicatior§cands§2),
GRPOs significantly advance the field by providing a convenient solution to simple, yet
important problems (cf§3 and84). The theory ofGRPOs promises indeed to be a
natural foundation for a meta-theory of ‘deriving bisimulation congruences.’



This paper presents two main technical results in support of our claims. Firstly, we
prove that the case of the already mentioned cateBaryof bunch contexts, problem-
atic for RPOs, can be treated in a natural way ugRPOs. Secondly, we show that the
notions of precategory and functorial reactive system can be dispensed with in favour
of a simplerGRPO-based approach.

The notion ofprecategonyis proposed in [11, 12] to handle the examples of Leifer
in [11], Milner in [15] and, most recently, of Jensen and Milner in [7]. It consists of a
category appropriately decorated by so-calledgport setswhich identifies syntactic
elements so as to keep track of them under arrow composition. Alas, such supported
structures are no longer categories — arrow composition is partial — which makes the
theory laborious, and bring us away from the well-known world of categories and their
theory. The intensional information recorded in precategories, however, allows one to
generate a category “above” where RPOs exist, as opposed to the category of interest
“below”, say C, where they do not. The category “above” is related twia a well-
behaved functor, used to map RPOs diagrams from the category “abote’wbere
constructing them would be impossible. These structures take the ndometafrial re-
active systemsnd give rise to a theory to generate a labelled bisimulation congruences
developed in [11].

The paper presents a technique for mapping precategoriescategories so that
the LTS generated usir@RPOs is the same as the LTS generated using the above men-
tioned approach. The translation derives from the precategory’s support information a
notion of homomorphism, specific to the particular structure in hand, which constitutes
the 2-cells of the derive@-category. We claim that this yields an approach mathemat-
ically more elegant and considerably simpler than precategories; besides generalising
RPOs directlyGRPOs seem to also remove the need for further notions.

Structure of the paper. In 81 we review definitions and results presented in [17];
82 shows that, analogously to the 1-dimensional case, trace and failures equivalence
are congruences provided that eno@®RPOs exist. Ir§3, we show that the category
of bunch contexts is naturally a 2-category whefePOs exist;84 shows how pre-
categories are subsumed by our notionGl#POs. The exposition ends with a few
concluding remarksgA recalls basic notions of 2-categories, and can be safely skipped
by those readers acquainted with the standard notations.

Most proofs in this extended abstract are either omitted or sketched. For these, the
interested reader should consult the full version [18].

1 Reactive Systems anG&RPOs

Lawvere theories [10] provide a canonical way to recast term algebras as categories.
For X a signature, the (free) Lawvere theory bnsayCs, has the natural numbers for
objects and a morphisn m — n, for t a n-tuple of m-holed terms. Composition is
substitution of terms into holes.

Generalising from term rewriting systems @g, Leifer and Milner formulated a
definition ofreactive systerfiL3], and defined a technique to extract labelled bisimula-
tion congruences from them.



In order to accommodate calculi with non trivial structural congruences, as ex-
plained in the Introduction, we refine their approach as follows.

Definition 1.1. A G-categoryis a 2-category where all 2-cells are isomorphisms.
A G-category is a thus a category enriched asgthe category of groupoids.
Definition 1.2. A G-reactive systenC consists of
1. aG-categoryC

2. a subcategor® of reactive contextst is required to be closed under 2-cells to
be and composition-reflecting,

3. adistinguished objette C
S
4. asetof pair®R C . C(l,C) x C(I,C) called thereaction rules

The reactive contexts are those contexts inside which evaluation may occur. By
composition-reflecting we mean thatl’ € D impliesd andd’ € D, while the closure
property means that givethe D andp: d = d’ in C impliesd’ € D. The reaction
relation—> is defined by taking

a——>dr ifthere exists(l,r), d e Danda: dl = a

As illustrated by the diagram below, this represents the fact that, up to structural con-
gruencea s the left-hand sidé of a reduction rule in a reaction conteskt

The notion of GRPO formalises the idea of a context being the “smallest” that en-
ables a reaction in @-reactive system, and is a conservative 2-categorical extension of
Leifer and Milner RPOs [13] (cf. [17] for a precise comparison).

For readers acquainted with 2-dimensional category th&RPOs are defined in
Definition 1.3. This is followed by an elementary presentation in Proposition 1.4 taken
from [17].

Definition 1.3 (GRPOSs). Letp: ca= db: W — Z be a 2-cell (see diagram below) in
a G-categoryC. A G-relative pushout(GRPO) forp is a bipushout [8] of the pair or
arrows(a, 1) : ca— cand(b,p) : ca— d in the pseudo-slice catego§)/Z.

Z
R
X
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Proposition 1.4. Let C be aG-category. A candidat&RPO forp: ca=- dbas in
diagram (1) is a tupléR, e, f,g,B,Y,8) such thadbe.gB.ya = p — cf. diagram ).

Z
g‘ 1
x e Reiy X*>R<—Y R+—R

\ ’ / (ii) :iii)

(i)
A GRPO forp is a candidate which satisfies a universal property. Namely, for any other
candidate(R ,€, f',d,B',y,d) there exists a quadruplé, ¢, p, ) whereh: R— R,
¢: € = heandy: hf = f' —cf. diagramif) — andt: g'h = g - diagram iii) — which
makes the two candidates compatible in the obvious way, i.e.

eegdey =y  Fegper =3  YbehBepa=p.

Such a quadruple, which we shall refer tonasdiating morphismmust beessentially
uniqgue Namely, for any other mediating morphisf',¢’, W', 1') there must exist a
uniquetwo cell&: h— h' which makes the two mediating morphisms compatible, i.e.:

Eeep =0 WeE M=y Tegi=t

Observe that whereas RPOs are defined up to isomorpGRRQs are defined up
to equivalence (since they are bicolimits).
The definition below plays an important role in the following development.

Definition 1.5 (GIPO). Diagram (1) of Definition 1.3 is said to beGxidem-pushout
(GIPO) if (Z,c,d,idz,p, 1¢, 14) is itsGRPO.

We recall in8B the essential properties GRPOs andsIPOs from [17].

Definition 1.6 (LTS). For C a G-reactive system whose underlying categ@rys a
G-category, defin&TS(C) as follows:

o the state&TS(C) are iso-classes of arrovia: | — X in C;

e there is a transitiorfa) 1, [@] if there exists a 2-celp, a rule(l,r) € R, and
d € D with & = dr and such that the diagram below iS#O.

/’\
5:\/
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Henceforward we shall abuse notation and leave out the square brackets when writing
transitions; ie. we shall write simpbyL» a instead of(a 11, [@].



Categories can be seen as a discteigategories (the only 2-cells are identities).
Using this observation, ea@tconcepts introduced above reduces to the corresponding
1-categorical concept. For instanceGBPO in a category is simply a RPO.

2 Congruence Results foiGRPOs

The fundamental property that endows the LTS derived from a reduction system with a
bisimulation which is a congruence is the following notion.

Definition 2.1 (RedexGRPQOs). A G-reactive systent is said tohave redexGRPOs
if every square (2) in its underlying-categoryC with | the left-hand side of a reaction
rule (I,r) € R, andd € D has aGRPO.

In particular, the main theorem of [17] is as follows.

Theorem 2.2 (cf. [17]). LetC be a reactive system whose underlyhgategoryC has
redexGRPOs. The largest bisimulation on GTS(C) is a congruence.

The next three subsections complement this result by proving the expected corre-
sponding theorems for trace and failure semantics, and by lifting them to the case of
weak equivalences. Theorems and proofs in this section follow closely [11], as they are
meant to show thabRPOs are as viable a tool as RPOs are.

2.1 Traces Preorder

Trace semantics [16] is a simple notion of equivalence which equates processes if they

can engage in the same sequences of actions. Even though it lacks the fine discriminat-

ing power of branching time equivalences, viz. bisimulations, it is nevertheless interest-

ing because many safety properties can be expressed as conditions on sets of traces.
We say that a sequendeg- - - f,, of labels of GTS(C) is a trace ofaif

f f
a_l>..._n>an+1

for someay,...,a,. The trace preordegy is then defined aa < b if all traces ofa
are also traces df.

Theorem 2.3 (Trace Congruence).<y is a congruence.

Proof. Assumea <y b. We prove thata Sy cbfor all contextsc € C. Suppose that
ca=a Lo &--an—"p an, 1.

We first prove that there exist a sequencejferl, ..., n,



wherea; = a, ¢; =¢, ¢iy1 =df, & =ca, and each square isalPO! Theith induc-
tion step proceeds as follows. Siri;_ei> a,1, there existy; : ficia; = dil;, for some
(li,r;) € R andd; € D, with &1 = dir;. SinceC has redexGIPOs (cf. Definition 2.1),
this can be split in twa@IPOs: a;: gigy = dili andp;: fici = dfg; (cf. diagram above).
Takea; 11 = dirj, and the induction hypothesis is maintained. In particular, we obtained
atrace

a=a; 2% a2 ani1
that, in force of the hypothess<; b must be matched by a corresponding tracb.of
This means that, far= 1,..,n, there exisGIPOsa; : gibi = gl/, for some(l{,r{) € R,
ande € D, once we tak®j 1 to begr{. We can then paste each of sulPOs together
with ;: fici = d/gi obtained above and, using Lemma B.3, conclude that there exist
GIPOsficibi = d/el/, as in the diagram below.

bj G
l o Ai B lfi which means cibii>di’ari’.

. 5. 5 .
€1 d

As cb = c1b,, in order to construct a traceh = 61i> i» En“ and complete
the proof, we only need to verify that for=1,...,n, we have that{er{ = ci;1bi1.
This follows at once, as ;1 = d andbi.1 = er]. O

2.2 Failures Preorder

Failure semantics [6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow the testing of when processes renounce the capability
of engaging in certain actions.

Formally, foraa state ofcTS(C), afailure of ais a pair(fy-- - fn, X), wherefy - - - f,
andX are respectively a sequence and a set of labels, such that:

o fi1.-..fpis atrace of, ai> i» ant1;

e an 1, the final state of the trace, $$able i.e.an 1 > ;

e an. 1 refusesx, i.e.an 1 2 forall x e X.
The failure preorders is defined as <; b if all failures of a are also failures db.
Theorem 2.4 (Failures Congruence).<s is a congruence.

Proof. Omitted.
O

1Since the fact is not likely to cause confusion, we make no notational distinction between the ai@ws of
(e.g. inGRPOs diagrams) and the states and labe(Sk8(C), where the latter are iso-classes of the former.




2.3 Weak Equivalences
Theorems 2.2, 2.3, and 2.4 can be extended to weak equivalences, as outlined below.

f
For f a label of GTS(C) define aweak transitiora— b to be a mixed sequence

of transitions and reductiorss—>*———* b, Observe that this definition essen-
tially identifies silent transitions in the LTS with reductions. As a consequence, care

has to be taken to avoid interference with transiti§#& synthesised fron6RPOs

and labelled by an equivalence. These transitions have essentially the same meaning
as silent transitions (i.e. no context involved in the reduction), and must therefore be
omitted in weak observations. This lead to consider the following definitions.

Definition 2.5 (Weak Traces and Failures). A sequencef; - - - f, of non-equivalence
labels of GTS(C) is a weak trace o if

f1 fn
a—»p» a;---ap_1 —> an

for someay, . ..,a,. The weak trace preorder is then defined accordingly.

A weak failureof a is a pair(fy--- fn, X), wheref;--- fy and X are respectively a
sequence and a set nbn-equivalencéabels, such thaf; --- f, is a weak trace o
reaching a final state which is stable and refuse$he weak trace preorder is defined
accordingly.

Definition 2.6 (Weak Bisimulation). A symmetric relations on GTS(C) is a weak
bisimulation if for alla $ b

f
a—»a fnotanequivalence, implids—» b witha b/
a—>a impliesb—>* b witha s b’

Using the definitions above Theorems 2.2, 2.3, and 2.4 can be lifted, respectively,
to weak traces, failures and bisimulation.

It is worth remarking that the congruence results, however, only hold for contexts
ce D, as itis well known that non reactive contexts (i.e. thosehereca—> cb does
not follow froma—-> b, as e.g. the CSS contegt= ¢y + —) do not preserve weak
equivalences. Alternative definitions of weak bisimulations are investigated in [11], and
they are applicablenutatis mutandiso GRPOs.

3 Bunches and Wires

The category of “bunches and wires” was introduced in [13] as a skeletal algebra of
shared wirings, abstracting over the notiomafnesn, e.g., ther calculus. Although
elementary, its structure is complex enough to lack RPOs.

A bunch context of typeny — nmy consists of an ordered set of;, trees of depth 1
containing exactlyng holes. Leaves are labelled from an alphakiet

Definition 3.1. The category obunch contextsBung has



e objects the finite ordinals, denote®, my, ...

e arrows are bunch contexts= (X, charroot): my — my, whereX is a finite car-
rier, root: mp+ X — my is a surjective function linking leaveXJ and holesify)
to their roots y), andchar: X — X is a leaf labelling function.

Composingcg: mp — mg andcy : mg — mp means filling themy holes ofc; with the
my trees ofcy. Formally,cico is (X, root char where

X =Xo+ X, root= root; (rooty +idy, ), char= [chap, cha#],

where+ and|_, ] are, resp., coproduct and copairing. Identities(@ré id) : mp — mo.

A homomorphismof bunch contextp : c = c¢’: mp — my is a functionp: X — X’
which respectsootandchat i.e.root p = rootandchaf p = char. Anisomorphism is a
bijective homomorphism. Isomorphic bunch contexts are equated, making composition
associative anBung a category.

A bunch context: my — my can be depicted as a stringmof nonempty multisets
on X + my, with the proviso that elementsy must appear exactly once in the string.
In the examples, we represent elementswhs numbered holes;.

As we mentioned before, RPOs do not exisBinng. Indeed, considefi) below
together with the two candidat€s) and (iii). It is easy to show that these have no
common “lower bound” candidate.

{K/ wl} {K%_w 1} {K%l N
{ 1} { 1} { 1}{K K}{ 1}
0 0

(i) (i) (iii )
The point here is that by taking the arrowsRiing up to isomorphism we lose infor-
mation abouthow bunch contexts equal each other. Diagr@mfor instance, can be
commutative in two different ways: th€in the bottom left part may corresponds either
to the one in the bottom right or to the one in the top right, according to whether we

read{K,—1} or {—1,K} for the top rightmost arrow. In order to track this information
we endowBung with its natural 2-categorical structure.

Definition 3.2. The 2-category of bunch conteXsin has:
e objects the finite ordinals (c8A), denotedmy, my, ...

e arrowsc = (x,charroot): mp — my consist of a finite ordinat, a surjective func-
tion root: my @ x — my and a labelling functiochar: x — X.

e 2-cellsp are isomorphisms between bunches’ carriers.



Composition of arrows and 2-cells is defined in the obvious way. Notice that siee
associative, composition Bun is associative. TherefolBun is aG-category.

Replacing the carrier s&t with a finite ordinalx allows us to avoid the unnecessary
burden of working in a bicategory, which would arise because sum on sets is only
associative up to isomorphism. Observe that this simplification is harmless since the
set theoretical identity of the elements of the carrier is irrelevant. We remark, however,
thatGRPOs are naturally a bicategorical notion and would pose no particular challenge
in bicategories.

Theorem 3.3. BunhasGRPOs.

Proof. Here we give a basic account of the construction 6GRPO, but omit the proof
of universality. In the following, we use only the fact thatin is an extensive [2]
category with pushouts.

Suppose that we have

/’\
’\/

In the following diagram all the rectangles are pullback®nd and all the outside
arrows are coproduct injections.

Iy X lo
Cl\L { \Lal
XcHXaGBXcHXI@XdHXC@XaHXa
CzT T Taz
XCZ Xd XaZ
dy d

Using the morphisms from the diagram above as building blocks, we can construct
bijectionsy: X¢ — X¢; B Xc,, 0 Xa, B Xe, — Xg aNdB: Xa B X, — X B Xq, such that

X DOPD X, Xa®Y=p. ()
Let root;, androot,, be the morphisms makin@ below

Mo Xa B Xo, 28, Mo X  Xay 52 5 Xy

100ty HXcy roota, —C1— My <-a— Mp

r N

My X, my

roote;

mg
AR
my
B
mo

(i) (i)
into a pushout diagram. We can defitteag, , chag, andchag, in the obvious way.

10



Now consider the diagram below:

® roof ©Xa,
Mo ® Xa & X, 2P, My @ X & X, 2 My & Xa,
m szeei
My Xadl
roota ®xc, mo@Xa@Xcho@Xl @qummz@xd
rooty éBxcl ($) JTOOfd
ml@xcl Wml@xc root ms.

Region (1) can be verified to be commutative using (3) while regidh commutes
sincep is a homomorphism. Using the pushout property, we get a unique function
h: my — mg. Thus we defingoot.,: mu & Xc, — Mg as[h,root:i]. It is easy to verify

that this function is surjective. O

Example 3.4. Lety: 2 — 2 be the function takind — 2 and2+— 1. We give below on
the right theGRPOs for the squares on the left.

1 1
{V W} {V T'KY}
{*1172}
— YK KM —
L , L ) N
Y
{K} % {K} %
0 0
1 1
{V "&} {K,—1} {KT_ \ {K,~1}
1 1 1 {-1} 1 {-1} 1
(K} {K} {K} {K}
0 0

4 2-categories vs precategories

Other categories which, besidBsing, lack RPOs include the closeshallow action
contextd11, 12] andbigraph context$15, 7]. The solution adopted by Leifer [12] and
later by Milner [15] is to introduce a notion ofwaell-supported precategorwhere the
algebraic structures at hand are decorated by finite “support sets.” The result is no longer
a category — since composition of arrows is defined only if their supports are disjoint
— but from any such precategory one can generate two categories which jointly allow
the derivation of a bisimulation congruence viduactorial reactive systemThese
categories are the so-calledck category, where support information is built into the
objects, and theupport quotientategory, where arrows are quotiented by the support

11



structure. The track category has enough RPOs and is mapped to the support quotient
category via a well-behavddnctor, so as to transport RPOs adequately.

In this section we present a translation from precategori€sdategories. The main
result shows that the LTS derived using precategories and functorial reactive systems is
identical to the LTS derived usingRPOs. We begin with a brief recapitulation of the
definitions from [12].

Definition 4.1. A precategoryA consists of the same data as a category. The composi-
tion operatomw is, however, a partial function which satisfies

1. for any arrowf : A— B, idgof andf oida are defined anatlgof = f = f oida;

2. foranyf :A—B,g:B—C, h:C— D, (hog)o f is defined iffho (go f) is
defined and thethog)o f =ho(go f).

Definition 4.2. Let Sets be the category of finite sets. well supported precategory
is a pair(A,|—1), whereA is a precategory ang- | : Arr A — Sets is the so-called
support function, satisfying:

1. go f is defined iffjg|N|f| = 0, and ifgo f is defined thergo f| = |g| U |f
2. |lida|=0.

’

For anyf : A— B and any injective functiop in Sets the domain of which contains
|f| there exists an arrow- f : A — B called thesupport translationof f by p. The
following axioms are to be satisfied.

1. p-ida=ida; 4. p-(gof)=p-gop-f;
2. idjg-f=1; 5 (p1opo)- f=p1-(po-f);
3. po|f| =pa|f|impliespo- f =p1-f; 6. |p-f|=p|f|

We illustrate these definitions giving a precategorical definition of bunches and
wiring (viz. 8 3).

Example 4.3 (Bunches).The precategory of bunch conteXsBun has objects and ar-
rows as inBung. However, differently fronBung, they are not taken up to isomorphism
here. The support af= (X, char,root) is X. Compositiorc;co = (X, chatroot): my —

mp of co: My — My andcy: My — b is defined ifXg N X, = 0 and, if so, we have
X = XpU Xz. Functionscharandroot are defined in the obvious way. The identity
arrows are the same as Bung. Given an injective functiop: X — Y, the support
translatiorp - cis (pX,charp~1,root(idm, +p~1)). It is easy to verify that this satisfies
the axioms of precategories.

The definitions below recall the construction of the track and the support quotient
categories from a well-supported precategory.

Definition 4.4. Thetrack of A is a categorﬁ with
e objects: pairgA M) whereA € A andM € Sety;

e arrows: (A, M) LN (B,N) wheref: A— Bisin A, M C N and|f| = N\M.

12



Composition of arrows is as iA. Observe that the definition ¢f| ensures that com-
position is total. We leave it to the reader to check that the data defines a category
(cf. [12]).

Definition 4.5. The support quotientof A is a categoryC with
e objects: as im\;

e arrows: equivalence classes of arrowsAgfwhere f andg are equated if there
exist a bijectivep such thap- f = g.

The support quotient is the category of interest, and it is the underlying category of
the reactive system under scrutiny.

Example 4.6 (Bunches).The support quotient o&-Bun is Buny.

There is an obvious functd¥: C — C, the support-quotienting functor. Hencefor-
ward we suppose that the precategérias a distinguished objett In the following
we use the typewriter font for objects and arrow€ofWe make the notational conven-
tion that anyA andf in C are such thalf (A) = AandF(f) = f.

Definition 4.7 (The LTS). The LTSFLTS®(C) has
e States: arrowa: 0 — nin C;

e Transitions:ia—< dr if and only if there exist, 1,c,d in C with (F(1),r) e R,
F(d) € D, and such that

Z
AN
X Y
a\I/I

is an IPO.

It is proved in [12] that the support-quotienting functersatisfies the properties
required for the theory of functorial reactive systems [11, 12]. Thus, for instance, if the
categoryC has enough RPOs, then the bisimulationFai S¢(C) is a congruence.

All the theory presented so far can be elegantly assimilated into the theory of
GRPOs. In [12], Leifer predicted instead of precategories, one could consider a bi-
categorical notion of RPO in a bicategory of supports. This is indeed the case, with
GRPOs being the bicategorical notion of RPO. However, working with ordinals for
support sets we can avoid the extra complications bicategories as in the &ase df
is worth noticing, however, that a bicategory of supports as above ang-tdategory
define below would be biequivalent [20]. In the following, we make use of a chosen
isomorphisnty: x — ord(x), as defined irgA.

Definition 4.8 (G-category of Supports). Given a well-supported precategaty the
G-category of support8 has

e objects: as in;
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e arrows:f: A— Bwheref: A— Bis an arrow ofA and|f| is an ordinal;

e 2-cells:p: f = gfor p a“structure preserving” support bijection, ige.f =gin
A.

Composition is defined as follows. Givdn A — B andg: B — C,
gop f =iz-goyig-f
where|f| L f|le |g| <2 |g| is the chosen coproduct diagrama@nd.

The following theorem guarantees that the LTS generated is the same as the one
generated with the more involved theory of functorial reactive systems.

Theorem 4.9. FLTS(A) = GTS(B).

Proof. It is enough to present translations betw&ROs inB and IPOs inC which
preserve the resulting label in the derived LTS. We present the translations, but omit the
straightforward proofs. Suppose tl{gtbelow

(Z,lal@]c|)

/ \ <Xia|>/ NY Ligll))
RNV

a (ptip)-

(1,0)
(i)
is aGIPO inB. Then we claim thaii) is an IPO inC. Note that(ii) is commutative

sincep is a structure-preserving support bijection.
Going the other way, suppose tt{gtbelow

(i)

(i)
is an IPO inC. Then(ii) is aGIPO inB wherep is

ta QDC Uty
—

ta-al & fto- ¢ “—% JalU el =1 Ud| "X i -1] & ftg-dl.
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Example 4.10 (Bunches).The 2-category of supports of the precategfrun is

Bun. Note that a “structure preserving” support bijection is a bunch homomorphism.
Indeed,p: (X,charroot) — (X’,chaf,root) if X’ = pX, chaf = charp~! androot =
root(id ®p~1) which is the same as sayiyar= chaf p androot= root (id &p).

5 Conclusion

We have extended our theory®RPOs initiated in previous work in order to strengthen
existing techniques for deriving operational congruences for reduction systems in the
presence of non trivial structural congruences. In particular, this paper has shown that
previous theories can be recast usiigeactive systems amdRPOs at no substantial
additional complexity. Also, we proved that the theory is powerful enough to handle
the examples considered so far in the literature. Therefore, we believe that it constitutes
a natural starting point for future investigations towards a fully comprehensive theory.

It follows from Theorem 4.9 thaG-categories are at least as expressive as well-
supported precategories. A natural consideration is whether a reverse translation may
exist. We believe that this is not the case, as gengedtegories appear to carry more
information than precategories.

Acknowledgement. The authors are indebted to the referees for their helpful com-
ments and suggestions.
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A Preliminaries

Throughout the paper we assume a moderate knowledge of category theory and re-
lated terminology. In this section we fix notations and recall the basic elements and
2-categories. For a thorough introduction the reader is referred to [9]

We useOrd to denote the category o finite ordinals. We assumel@nathas chosen
coproducts, namely the reader’s favourite definition of ordinal additionFor any
finite setx, let ord(x) be the finite ordinal of the same cardinality. We assume a chosen
isomorphismty : X — ord(x). There is an equivalence of categortesSet; — Ord. On
objects it sendg to ord(x), on morphisms : x — ytot, ft;1: ord(x) — ord(y).

A 2-categoryC is a category whose homsets are categories and, correspondingly,
whose composition maps are functors. Explicitly, a 2-catefiorgnsists of the follow-
ing.

e A class ofobjectsX,Y,Z,.. ..

e ForanyX,Y € C, a categoryC(X,Y). The objectsC(X,Y) are calledl-cells or
simply arrows, and denoted Hy. Y — X. Its morphisms are calle®-cells are
writtena: f = g: X — Y and drawn as

Composition inC(X,Y) is denoted by and referred to asertical composition.
Identity 2-cells are denoted [y : f = f.

e For eachX,Y,Z there is a functor: C(X,Y) x C(Y,Z) — C(X,Z), the so-called
‘horizontal composition, which we often denote by mere juxtaposition. Hori-
zontal composition is associative and adnijg as identities.

As a notation, we write f andga for, respectivelyals and1lga. We follow the
convention that horizontal composition binds tighter than vertical composition.

In 2-categories, the order of composition of 2-cells is not important. This is a conse-
guence of the horizontal composition being functorial and can be axiomatised with the
so calledmiddle-four interchange lawfor f,f’ f”: A— B andg,d’,g": B— C and
a:f=f,a: = 1" B:g=dandp: g =g’ we havel'a'«a = (' «B) (0’ «0).

As a consequence, given a diagram of 2-cells, there is at most one way to compose
them and obtain a composite 2-cell. This primitive operation is sometimes referred to
aspasting

Two objectsC, D of a 2-categoryC areequivalentwhen there are arrowls: C — D,

g:D — Cand 2-cellsx : idc = gf, B: fg=-idp. We refer tof andg as equivalences.
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B Basic Properties ofGRPOs

The next two lemmas explain the relationships betw@RRPOs andsIPOs.

Lemma B.1 GIPOs from GRPOSs). If (Z,c,d,u,a,n,) is a GRPO for (i) below, as
illustrated in (i), then (iii) is aGIPO.

d 4 d d z d c z d
X I Y X - Z<4d-Y X a Y
;\ /b\ ;\ o /b‘ ;\ /b
W W W

(i) (i) (iii)
Lemma B.2 (GRPOs from GIPOSs). If square (iii) above is aIPO, (i) has aGRPO,
and(Z,c,d,u,a,n, ) is a candidate for it as shown in (ii), the@,c,d,u,a,n, ) is a
GRPO for (i).

The following lemmas from [17] state the basic propertieSBPOs.
Lemma B.3. Suppose that diagrafii) below has aRPO.

a e a

U v W Uu—=>mV
b‘ a ld B ‘g bl Bae fa ‘Qe
X——Y——2 X———2Z

c

(i) (i)
1. If both squares ifi) areGIPOs then the rectangle @j is aGIPO
2. If the left square and the rectangle(fareGIPOs then so is the right square.

Lemma B.4. Suppose that diagra( below is aGIPO.

c z d c z d c ZN

X/g”\Y x/a’\Y 7N
N A A NA
(i) (i) (iii)

Then the regions obtained by pasting the 2-celigi)rand(iii) areGIPOs.

18



