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Abstract

G-relative pushouts (GRPOs) have recently been proposed by the authors as a
new foundation for Leifer and Milner’s approach to deriving labelled bisimulation
congruences from reduction systems. This paper develops the theory ofGRPOs
further, arguing that they provide a simple and powerful basis towards a compre-
hensive solution. As an example, we constructGRPOs in a category of ‘bunches
and wirings.’ We then examine the approach based on Milner’s precategories and
Leifer’s functorial reactive systems, and show that it can be recast in a much simpler
way into the 2-categorical theory ofGRPOs.

Introduction

It is increasingly common for foundational calculi to be presented asreduction systems.
Starting from their common ancestor, theλ calculus, most recent calculi consist of a
reduction system together with a contextual equivalence (built out of basic observations,
viz. barbs). The strength of such an approach resides in its intuitiveness. In particular,
we need not invent labels to describe the interactions between systems and their possible
environments, a procedure that has a degree of arbitrariness (cf. early and late semantics
of theπ calculus) and may prove quite complex (cf. [5, 4, 3, 1]).

By contrast, reduction semantics suffer at times by their lack of compositionality,
and have complex semantic theories because of their contextual equivalences. Labelled
bisimulation congruences based onlabelled transition systems(LTS) may in such cases
provide fruitful proof techniques; in particular, bisimulations provide the power and
manageability of coinduction, while the closure properties of congruences provide for
compositional reasoning.

To associate an LTS with a reduction system involves synthesising a compositional
system of labels, so that silent moves (orτ-actions) reflect the original reductions, labels
describe potential external interactions, and all together they yield a LTS bisimulation
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which is a congruence included in the original contextual reduction equivalence. Prov-
ing bisimulation is then enough to prove reduction equivalence.

Sewell [19] and Leifer and Milner [13, 11] set out to develop a theory to perform
such derivations using general criteria; a meta-theory ofderiving bisimulation congru-
ences. The basic idea behind their construction is to use contexts as labels. To exemplify
the idea, in a CCS-like calculus one would for instance derive a transition

a.P
−|ā.Q

I P |Q

because terma.P in context− | ā.Q reacts to becomeP |Q; in other words, the context
is a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to use as labels.
The intuition is to take only the “smallest” contexts which allow a given reaction to
occur. As well as reducing the size of the LTS, this often makes the resulting bisimu-
lation equivalence finer. Sewell’s method is based on dissection lemmas which provide
a deep analysis of a term’s structure. A generalised, more scalable approach was later
developed in [13], where the notion of “smallest” is formalised in categorical terms as
a relative-pushout(RPOs). Both theories, however, do not seem to scale up to calculi
with non trivial structural congruences. Already in the case of the monoidal rules that
govern parallel composition things become rather involved.

The fundamental difficulty brought about by a structural congruence≡ is that work-
ing up to≡ gives up too much information about terms for the RPO approach to work
as expected. RPOs do not usually exist in such cases, because the fundamental indica-
tion of exactly which occurrences of a term constructor belong to the redex becomes
blurred. A very simple, yet significant example of this is the categoryBun of bunch
contexts [13], and the same problems arise in structures such as action graphs [14] and
bigraphs [15].

In [17] we therefore proposed a framework in which term structure is not explicitly
quotiented, but the commutation of diagrams (i.e. equality of terms) is taken up to≡.
Precisely, to give a commuting diagramrp ≡ sq one exhibits a proofα of structural
congruence, which we represent as a 2-cell (constructed from the rules generating≡
and closed under all contexts).

k
p

//

q
²²

l
r

²²
m

ααα

s
// n

Since such proofs are naturally isomorphisms, we were led to considerG-categories,
i.e., 2-categories where all 2-cells are iso, and initiated the study ofG-relative pushouts
(GRPOs), as a suitable generalisation of RPOs from categories toG-categories.

The purpose of this paper is to continue the development of the theory ofGRPOs.
We aim to show that, while replacing RPOs at little further complication (cf.§1 and§2),
GRPOs significantly advance the field by providing a convenient solution to simple, yet
important problems (cf.§3 and§4). The theory ofGRPOs promises indeed to be a
natural foundation for a meta-theory of ‘deriving bisimulation congruences.’
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This paper presents two main technical results in support of our claims. Firstly, we
prove that the case of the already mentioned categoryBun of bunch contexts, problem-
atic for RPOs, can be treated in a natural way usingGRPOs. Secondly, we show that the
notions of precategory and functorial reactive system can be dispensed with in favour
of a simplerGRPO-based approach.

The notion ofprecategoryis proposed in [11, 12] to handle the examples of Leifer
in [11], Milner in [15] and, most recently, of Jensen and Milner in [7]. It consists of a
category appropriately decorated by so-called “support sets” which identifies syntactic
elements so as to keep track of them under arrow composition. Alas, such supported
structures are no longer categories – arrow composition is partial – which makes the
theory laborious, and bring us away from the well-known world of categories and their
theory. The intensional information recorded in precategories, however, allows one to
generate a category “above” where RPOs exist, as opposed to the category of interest
“below”, sayC, where they do not. The category “above” is related toC via a well-
behaved functor, used to map RPOs diagrams from the category “above” toC, where
constructing them would be impossible. These structures take the name offunctorial re-
active systems, and give rise to a theory to generate a labelled bisimulation congruences
developed in [11].

The paper presents a technique for mapping precategories toG-categories so that
the LTS generated usingGRPOs is the same as the LTS generated using the above men-
tioned approach. The translation derives from the precategory’s support information a
notion of homomorphism, specific to the particular structure in hand, which constitutes
the 2-cells of the derivedG-category. We claim that this yields an approach mathemat-
ically more elegant and considerably simpler than precategories; besides generalising
RPOs directly,GRPOs seem to also remove the need for further notions.

Structure of the paper. In §1 we review definitions and results presented in [17];
§2 shows that, analogously to the 1-dimensional case, trace and failures equivalence
are congruences provided that enoughGRPOs exist. In§3, we show that the category
of bunch contexts is naturally a 2-category whereGRPOs exist;§4 shows how pre-
categories are subsumed by our notion ofGRPOs. The exposition ends with a few
concluding remarks;§A recalls basic notions of 2-categories, and can be safely skipped
by those readers acquainted with the standard notations.

Most proofs in this extended abstract are either omitted or sketched. For these, the
interested reader should consult the full version [18].

1 Reactive Systems andGRPOs

Lawvere theories [10] provide a canonical way to recast term algebras as categories.
For Σ a signature, the (free) Lawvere theory onΣ, sayCΣ, has the natural numbers for
objects and a morphismt : m→ n, for t a n-tuple of m-holed terms. Composition is
substitution of terms into holes.

Generalising from term rewriting systems onCΣ, Leifer and Milner formulated a
definition ofreactive system[13], and defined a technique to extract labelled bisimula-
tion congruences from them.
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In order to accommodate calculi with non trivial structural congruences, as ex-
plained in the Introduction, we refine their approach as follows.

Definition 1.1. A G-categoryis a 2-category where all 2-cells are isomorphisms.

A G-category is a thus a category enriched overG, the category of groupoids.

Definition 1.2. A G-reactive systemC consists of

1. aG-categoryC

2. a subcategoryD of reactive contexts; it is required to be closed under 2-cells to
be and composition-reflecting,

3. a distinguished objectI ∈ C
4. a set of pairsR ⊆SC∈CC(I ,C)×C(I ,C) called thereaction rules.

The reactive contexts are those contexts inside which evaluation may occur. By
composition-reflecting we mean thatdd′ ∈ D impliesd andd′ ∈ D, while the closure
property means that givend ∈ D and ρ : d ⇒ d′ in C implies d′ ∈ D. The reaction
relation B is defined by taking

a B dr if there exists〈l , r〉 , d ∈ D andα : dl ⇒ a

As illustrated by the diagram below, this represents the fact that, up to structural con-
gruence,a is the left-hand sidel of a reduction rule in a reaction contextd.

I
l

²²

a

''OOOOOOOOO

C
α

d
// C′

The notion ofGRPO formalises the idea of a context being the “smallest” that en-
ables a reaction in aG-reactive system, and is a conservative 2-categorical extension of
Leifer and Milner RPOs [13] (cf. [17] for a precise comparison).

For readers acquainted with 2-dimensional category theory,GRPOs are defined in
Definition 1.3. This is followed by an elementary presentation in Proposition 1.4 taken
from [17].

Definition 1.3 (GRPOs). Let ρ : ca⇒ db: W → Z be a 2-cell (see diagram below) in
a G-categoryC. A G-relative pushout(GRPO) forρ is a bipushout [8] of the pair or
arrows(a,1) : ca→ c and(b,ρ) : ca→ d in the pseudo-slice categoryC/Z.

Z

X ρ

c >>}}}}
Y

d``AAAA

W
b

>>~~~~a

``AAAA
(1)
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Proposition 1.4. Let C be aG-category. A candidateGRPO for ρ : ca⇒ db as in
diagram (1) is a tuple〈R,e, f ,g,β,γ,δ〉 such thatδb•gβ•γa = ρ – cf. diagram (i).

Z

X

γ

e //

β

c
>>~~~~~~
R

δg

OO

Yfoo

d
``@@@@@@

W
b

>>~~~~~~a

``@@@@@@

(i)

R′

X

ϕ

e
//

e′
=={{{{{{{
R

ψh

OO

(ii)

Y
f

oo

f ′
aaCCCCCCC

Z

R′
τg′

OO

R

g
aaCCCCCCC

h
oo

(iii )

A GRPO forρ is a candidate which satisfies a universal property. Namely, for any other
candidate〈R′,e′, f ′,g′,β′,γ′,δ′〉 there exists a quadruple〈h,ϕ,ψ,τ〉 whereh: R→ R′,
ϕ : e′⇒ heandψ : h f ⇒ f ′ – cf. diagram (ii ) – andτ : g′h⇒ g – diagram (iii ) – which
makes the two candidates compatible in the obvious way, i.e.

τe•g′ϕ •γ′ = γ δ′ •g′ψ •τ−1 f = δ ψb•hβ•ϕa = β′.

Such a quadruple, which we shall refer to asmediating morphism, must beessentially
unique. Namely, for any other mediating morphism〈h′,ϕ′,ψ′,τ′〉 there must exist a
uniquetwo cell ξ : h→ h′ which makes the two mediating morphisms compatible, i.e.:

ξe•ϕ = ϕ′ ψ •ξ−1 f = ψ′ τ′ •g′ξ = τ

Observe that whereas RPOs are defined up to isomorphism,GRPOs are defined up
to equivalence (since they are bicolimits).

The definition below plays an important role in the following development.

Definition 1.5 (GIPO). Diagram (1) of Definition 1.3 is said to be aG-idem-pushout
(GIPO) if 〈Z,c,d, idZ,ρ,1c,1d〉 is its GRPO.

We recall in§B the essential properties ofGRPOs andGIPOs from [17].

Definition 1.6 (LTS). For C a G-reactive system whose underlying categoryC is a
G-category, defineGTS(C) as follows:

• the statesGTS(C) are iso-classes of arrows[a] : I → X in C;

• there is a transition[a] [ f ] I [a′] if there exists a 2-cellρ, a rule〈l , r〉 ∈ R , and
d ∈ D with a′ ∼= dr and such that the diagram below is aGIPO.

Z

X

f ??ÄÄÄ
ρ Y

d__???

I
a

__????
l

??ÄÄÄÄ

(2)

Henceforward we shall abuse notation and leave out the square brackets when writing

transitions; ie. we shall write simplya f I a′ instead of[a] [ f ] I [a′].
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Categories can be seen as a discreteG-categories (the only 2-cells are identities).
Using this observation, eachG-concepts introduced above reduces to the corresponding
1-categorical concept. For instance, aGRPO in a category is simply a RPO.

2 Congruence Results forGRPOs

The fundamental property that endows the LTS derived from a reduction system with a
bisimulation which is a congruence is the following notion.

Definition 2.1 (RedexGRPOs). A G-reactive systemC is said tohave redexGRPOs
if every square (2) in its underlyingG-categoryC with l the left-hand side of a reaction
rule 〈l , r〉 ∈ R , andd ∈ D has aGRPO.

In particular, the main theorem of [17] is as follows.

Theorem 2.2 (cf. [17]).LetC be a reactive system whose underlyingG-categoryC has
redexGRPOs. The largest bisimulation∼ onGTS(C) is a congruence.

The next three subsections complement this result by proving the expected corre-
sponding theorems for trace and failure semantics, and by lifting them to the case of
weak equivalences. Theorems and proofs in this section follow closely [11], as they are
meant to show thatGRPOs are as viable a tool as RPOs are.

2.1 Traces Preorder

Trace semantics [16] is a simple notion of equivalence which equates processes if they
can engage in the same sequences of actions. Even though it lacks the fine discriminat-
ing power of branching time equivalences, viz. bisimulations, it is nevertheless interest-
ing because many safety properties can be expressed as conditions on sets of traces.

We say that a sequencef1 · · · fn of labels ofGTS(C) is a trace ofa if

a f1 I · · · fn I an+1

for somea1, . . . ,an. The trace preorder.tr is then defined asa .tr b if all traces ofa
are also traces ofb.

Theorem 2.3 (Trace Congruence)..tr is a congruence.

Proof. Assumea .tr b. We prove thatca.tr cb for all contextsc∈ C. Suppose that

ca= ā1
f1 I ā2 · · · ān

fn I ān+1.

We first prove that there exist a sequence, fori = 1, . . . ,n,

·
αi

ai //

l i
²²

·
βigi

²²

ci // ·
fi

²²·
di

// ·
d′i

// ·
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wherea1 = a, c1 = c, ci+1 = d′i , āi = ciai , and each square is aGIPO.1 Theith induc-

tion step proceeds as follows. Sinceāi
fi I āi+1, there existsγi : ficiai ⇒ d̄i l i , for some

〈l i , r i〉 ∈ R andd̄i ∈ D, with āi+1 = d̄ir i . SinceC has redexGIPOs (cf. Definition 2.1),
this can be split in twoGIPOs:αi : giai ⇒ di l i andβi : fici ⇒ d′i gi (cf. diagram above).
Takeai+1 = dir i , and the induction hypothesis is maintained. In particular, we obtained
a trace

a = a1
g1 I a2 · · ·an

gn I an+1

that, in force of the hypothesisa .tr b must be matched by a corresponding trace ofb.
This means that, fori = 1, ..,n, there existGIPOsα′i : gibi ⇒ ei l ′i , for some〈l ′i , r ′i〉 ∈ R
andei ∈D, once we takebi+1 to beeir ′i . We can then paste each of suchGIPOs together
with βi : fici ⇒ d′i gi obtained above and, using Lemma B.3, conclude that there exist
GIPOs ficibi ⇒ d′i ei l ′i , as in the diagram below.

·
α′i

bi //

l ′i
²²

·
βigi

²²

ci // ·
fi

²²· e1
// ·

d′i
// ·

which means cibi
fi I d′i eir ′i .

As cb= c1b1, in order to construct a tracecb= b̄1
f1 I · · · fn I b̄n+1 and complete

the proof, we only need to verify that fori = 1, . . . ,n, we have thatd′i eir ′i = ci+1bi+1.
This follows at once, asci+1 = d′i andbi+1 = eir ′i .

2.2 Failures Preorder

Failure semantics [6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow the testing of when processes renounce the capability
of engaging in certain actions.

Formally, fora a state ofGTS(C), afailure of a is a pair( f1 · · · fn,X), wheref1 · · · fn
andX are respectively a sequence and a set of labels, such that:

• f1 · · · fn is a trace ofa, a f1 I · · · fn I an+1;

• an+1, the final state of the trace, isstable, i.e.an+1 6 B ;

• an+1 refusesX, i.e.an+1 6 x I for all x∈ X.

The failure preorder.f is defined asa .f b if all failures ofa are also failures ofb.

Theorem 2.4 (Failures Congruence)..f is a congruence.

Proof. Omitted.

1Since the fact is not likely to cause confusion, we make no notational distinction between the arrows ofC
(e.g. inGRPOs diagrams) and the states and labels ofGTS(C), where the latter are iso-classes of the former.
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2.3 Weak Equivalences

Theorems 2.2, 2.3, and 2.4 can be extended to weak equivalences, as outlined below.

For f a label ofGTS(C) define aweak transitiona
f
I b to be a mixed sequence

of transitions and reductionsa B∗ f I B∗ b. Observe that this definition essen-
tially identifies silent transitions in the LTS with reductions. As a consequence, care

has to be taken to avoid interference with transitionsequiI synthesised fromGRPOs
and labelled by an equivalence. These transitions have essentially the same meaning
as silent transitions (i.e. no context involved in the reduction), and must therefore be
omitted in weak observations. This lead to consider the following definitions.

Definition 2.5 (Weak Traces and Failures).A sequencef1 · · · fn of non-equivalence
labels ofGTS(C) is a weak trace ofa if

a
f1I a1 · · ·an−1

fnI an

for somea1, . . . ,an. The weak trace preorder is then defined accordingly.
A weak failureof a is a pair( f1 · · · fn,X), where f1 · · · fn andX are respectively a

sequence and a set ofnon-equivalencelabels, such thatf1 · · · fn is a weak trace ofa
reaching a final state which is stable and refusesX. The weak trace preorder is defined
accordingly.

Definition 2.6 (Weak Bisimulation). A symmetric relationS on GTS(C) is a weak
bisimulation if for alla S b

a f I a′ f not an equivalence, impliesb
f
I b′ with a′ S b′

a B a′ impliesb B∗ b′ with a′ S b′

Using the definitions above Theorems 2.2, 2.3, and 2.4 can be lifted, respectively,
to weak traces, failures and bisimulation.

It is worth remarking that the congruence results, however, only hold for contexts
c∈D, as it is well known that non reactive contexts (i.e. thosec whereca B cbdoes
not follow from a B b, as e.g. the CSS contextc = c0 +−) do not preserve weak
equivalences. Alternative definitions of weak bisimulations are investigated in [11], and
they are applicablemutatis mutandisto GRPOs.

3 Bunches and Wires

The category of “bunches and wires” was introduced in [13] as a skeletal algebra of
shared wirings, abstracting over the notion ofnamesin, e.g., theπ calculus. Although
elementary, its structure is complex enough to lack RPOs.

A bunch context of typem0 →m1 consists of an ordered set ofm1 trees of depth 1
containing exactlym0 holes. Leaves are labelled from an alphabetK .

Definition 3.1. The category ofbunch contextsBun0 has
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• objects the finite ordinals, denotedm0,m1, . . .

• arrows are bunch contextsc = (X,char, root) : m0 →m1, whereX is a finite car-
rier, root : m0+X→m1 is a surjective function linking leaves (X) and holes (m0)
to their roots (m1), andchar :X →K is a leaf labelling function.

Composingc0 : m0 → m1 andc1 : m1 → m2 means filling them1 holes ofc1 with the
m1 trees ofc0. Formally,c1c0 is (X, root,char) where

X = X0 +X1, root= root1(root0+ idX1), char= [char0,char1],

where+ and[ , ] are, resp., coproduct and copairing. Identities are( /0, !, id) : m0→m0.
A homomorphismof bunch contextsρ : c⇒ c′ : m0 →m1 is a functionρ : X → X′

which respectsrootandchar, i.e.root′ρ = rootandchar′ρ = char. An isomorphism is a
bijective homomorphism. Isomorphic bunch contexts are equated, making composition
associative andBun0 a category.

A bunch contextc: m0 →m1 can be depicted as a string ofm1 nonempty multisets
on K + m0, with the proviso that elementsm0 must appear exactly once in the string.
In the examples, we represent elements ofm0 as numbered holes−i .

As we mentioned before, RPOs do not exist inBun0. Indeed, consider(i) below
together with the two candidates(ii) and (iii) . It is easy to show that these have no
common “lower bound” candidate.

1

1

{K,−1}
@@¡¡¡¡¡¡¡¡¡

1

{K,−1}
^^>>>>>>>>>

0

{K}

@@¡¡¡¡¡¡¡¡¡
{K}

^^>>>>>>>>>

(i)

1

1

{K,−1}
@@¡¡¡¡¡¡¡¡¡ {−1}
// 1

{K,−1}

OO

1
{−1}

oo

{K,−1}
^^>>>>>>>>>

0

{K}

@@¡¡¡¡¡¡¡¡¡
{K}

^^>>>>>>>>>

(ii)

1

1

{K,−1}
@@¡¡¡¡¡¡¡¡¡{−1}{K}
// 2

{−1,−2}

OO

1
{K}{−1}
oo

{K,−1}
^^>>>>>>>>>

0

{K}

@@¡¡¡¡¡¡¡¡¡
{K}

^^>>>>>>>>>

(iii )

The point here is that by taking the arrows ofBun0 up to isomorphism we lose infor-
mation abouthow bunch contexts equal each other. Diagram(i), for instance, can be
commutative in two different ways: theK in the bottom left part may corresponds either
to the one in the bottom right or to the one in the top right, according to whether we
read{K,−1} or {−1,K} for the top rightmost arrow. In order to track this information
we endowBun0 with its natural 2-categorical structure.

Definition 3.2. The 2-category of bunch contextsBun has:

• objects the finite ordinals (cf.§A), denotedm0,m1, . . .

• arrowsc= (x,char, root) : m0→m1 consist of a finite ordinalx, a surjective func-
tion root : m0⊕x→m1 and a labelling functionchar :x→K .

• 2-cellsρ are isomorphisms between bunches’ carriers.
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Composition of arrows and 2-cells is defined in the obvious way. Notice that since⊕ is
associative, composition inBun is associative. ThereforeBun is aG-category.

Replacing the carrier setX with a finite ordinalx allows us to avoid the unnecessary
burden of working in a bicategory, which would arise because sum on sets is only
associative up to isomorphism. Observe that this simplification is harmless since the
set theoretical identity of the elements of the carrier is irrelevant. We remark, however,
thatGRPOs are naturally a bicategorical notion and would pose no particular challenge
in bicategories.

Theorem 3.3. BunhasGRPOs.

Proof. Here we give a basic account of the construction of aGRPO, but omit the proof
of universality. In the following, we use only the fact thatBun is an extensive [2]
category with pushouts.

Suppose that we have
m3

m1 ρ

c <<yyyy
m2

dbbEEEE

m0
l

<<yyyya

bbEEEE

In the following diagram all the rectangles are pullbacks inOrd and all the outside
arrows are coproduct injections.

xc1

c1
²²

l1 // xl

²²

xa1
l2oo

a1
²²

xc // xa⊕xc
ρ

// xl ⊕xd xc⊕xa
ρ

oo xaoo

xc2

c2
OO

d1

// xd

OO

xa2
d2

oo

a2
OO

Using the morphisms from the diagram above as building blocks, we can construct
bijectionsγ : xc → xc1⊕xc2, δ : xa2⊕xc2 → xd andβ : xa⊕xc1 → xl ⊕xa2 such that

xl ⊕δ.β⊕xc2.xa⊕ γ = ρ. (3)

Let rootc1 androota2 be the morphisms making(i) below

m0⊕xa⊕xc1

roota⊕xc1

²²

m0⊕β
// m0⊕xl ⊕xa2

p

rootl ⊕xa2// m2⊕xa2

roota2

²²
m1⊕xc1 rootc1

// m4

(i)

m3

m1

γ

c1 //

β

c
==zzzzzzz
m4

δc2

OO

m2a2oo

d
aaDDDDDDD

m0

l

==zzzzzzza

aaDDDDDDD

(ii)

into a pushout diagram. We can definecharc1, chara2 andcharc2 in the obvious way.
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Now consider the diagram below:

m0⊕xa⊕xc1

roota⊕xc1

²²

m0⊕xa⊕i
((PPPPPPPPPPPP

m0⊕β
// m0⊕xl ⊕xa2

(†)
m0⊕xl⊕i

''PPPPPPPPPPPP

rootl ⊕xa2 // m2⊕xa2

m2⊕i

²²

m0⊕xa⊕xc

(‡)roota⊕xc

²²

m0⊕ρ
// m0⊕xl ⊕xdrootl ⊕xd

// m2⊕xd

rootd
²²

m1⊕xc1 m1⊕i
// m1⊕xc rootc

// m3.

Region(†) can be verified to be commutative using (3) while region(‡) commutes
sinceρ is a homomorphism. Using the pushout property, we get a unique function
h: m4 → m3. Thus we definerootc2 : m4⊕ xc2 → m3 as[h, rootc i]. It is easy to verify
that this function is surjective.

Example 3.4. Let γ : 2→ 2 be the function taking1 7→ 2 and2 7→ 1. We give below on
the right theGRPOs for the squares on the left.

1

1 γ

{K,−1}
;;vvvvvvvvvv

1

{K,−1}
ccHHHHHHHHHH

0
{K}

;;wwwwwwwwww
{K}

ccGGGGGGGGGG

1

1

{K,−1}
;;vvvvvvvvvv {−1}{K}
// 2

{−1,−2}
OO

1
{K}{−1}
oo

{K,−1}
ccHHHHHHHHHH

0

γ
{K}

;;wwwwwwwwww
{K}

ccGGGGGGGGGG

1

1

{K,−1}
;;vvvvvvvvvv

1

{K,−1}
ccHHHHHHHHHH

0
{K}

;;wwwwwwwwww
{K}

ccGGGGGGGGGG

1

1

{K,−1}
;;vvvvvvvvvv {−1}
// 1

{K,−1}
OO

1
{−1}

oo

{K,−1}
ccHHHHHHHHHH

0
{K}

;;wwwwwwwwww
{K}

ccGGGGGGGGGG

4 2-categories vs precategories

Other categories which, besidesBun0, lack RPOs include the closedshallow action
contexts[11, 12] andbigraph contexts[15, 7]. The solution adopted by Leifer [12] and
later by Milner [15] is to introduce a notion of awell-supported precategory, where the
algebraic structures at hand are decorated by finite “support sets.” The result is no longer
a category – since composition of arrows is defined only if their supports are disjoint
– but from any such precategory one can generate two categories which jointly allow
the derivation of a bisimulation congruence via afunctorial reactive system. These
categories are the so-calledtrack category, where support information is built into the
objects, and thesupport quotientcategory, where arrows are quotiented by the support

11



structure. The track category has enough RPOs and is mapped to the support quotient
category via a well-behavedfunctor, so as to transport RPOs adequately.

In this section we present a translation from precategories toG-categories. The main
result shows that the LTS derived using precategories and functorial reactive systems is
identical to the LTS derived usingGRPOs. We begin with a brief recapitulation of the
definitions from [12].

Definition 4.1. A precategoryA consists of the same data as a category. The composi-
tion operator◦ is, however, a partial function which satisfies

1. for any arrowf : A→ B, idB◦ f and f ◦ idA are defined andidB◦ f = f = f ◦ idA;

2. for any f : A→ B, g : B→C, h : C→ D, (h◦g) ◦ f is defined iffh◦ (g◦ f ) is
defined and then(h◦g)◦ f = h◦ (g◦ f ).

Definition 4.2. Let Set f be the category of finite sets. Awell supported precategory
is a pair〈A, |− |〉, whereA is a precategory and| − | : ArrA→ Set f is the so-called
support function, satisfying:

1. g◦ f is defined iff|g|∩ | f |= /0, and ifg◦ f is defined then|g◦ f |= |g|∪ | f |;
2. | idA |= /0.

For anyf : A→B and any injective functionρ in Set f the domain of which contains
| f | there exists an arrowρ · f : A→ B called thesupport translationof f by ρ. The
following axioms are to be satisfied.

1. ρ · idA = idA; 4. ρ · (g◦ f ) = ρ ·g◦ρ · f ;
2. id| f | · f = f ; 5. (ρ1◦ρ0) · f = ρ1 · (ρ0 · f );
3. ρ0| f |= ρ1| f | impliesρ0 · f = ρ1 · f ; 6. |ρ · f |= ρ| f |.

We illustrate these definitions giving a precategorical definition of bunches and
wiring (viz. § 3).

Example 4.3 (Bunches).The precategory of bunch contextsA-Bun has objects and ar-
rows as inBun0. However, differently fromBun0, they are not taken up to isomorphism
here. The support ofc= (X,char, root) is X. Compositionc1c0 = (X,char, root) : m0→
m2 of c0 : m0 → m1 andc1 : m1 → m2 is defined ifX0∩X1 = /0 and, if so, we have
X = X0∪X1. Functionscharand root are defined in the obvious way. The identity
arrows are the same as inBun0. Given an injective functionρ : X → Y, the support
translationρ ·c is (ρX,charρ−1, root(idm0 +ρ−1)). It is easy to verify that this satisfies
the axioms of precategories.

The definitions below recall the construction of the track and the support quotient
categories from a well-supported precategory.

Definition 4.4. Thetrack of A is a categorŷC with

• objects: pairs〈A,M〉 whereA∈ A andM ∈ Set f ;

• arrows:〈A,M〉 f−→ 〈B,N〉 where f : A→ B is inA, M ⊆ N and| f |= N\M.

12



Composition of arrows is as inA. Observe that the definition of| f | ensures that com-
position is total. We leave it to the reader to check that the data defines a category
(cf. [12]).

Definition 4.5. Thesupport quotientof A is a categoryC with

• objects: as inA;

• arrows: equivalence classes of arrows ofA, where f andg are equated if there
exist a bijectiveρ such thatρ · f = g.

The support quotient is the category of interest, and it is the underlying category of
the reactive system under scrutiny.

Example 4.6 (Bunches).The support quotient ofA-Bun is Bun0.

There is an obvious functorF : Ĉ→ C, the support-quotienting functor. Hencefor-
ward we suppose that the precategoryA has a distinguished objectI . In the following
we use the typewriter font for objects and arrows ofĈ. We make the notational conven-
tion that anyA andf in Ĉ are such thatF(A) = A andF(f) = f .

Definition 4.7 (The LTS). The LTSFLTSc(C) has

• States: arrowsa: 0→ n in C;

• Transitions:a c I dr if and only if there exista,l,c,d in Ĉ with 〈F(l), r〉 ∈R ,
F(d) ∈ D, and such that

Z

X

c @@¡¡¡
Y

d^^>>>

I
a

^^>>>
l

@@¡¡¡

is an IPO.

It is proved in [12] that the support-quotienting functorF satisfies the properties
required for the theory of functorial reactive systems [11, 12]. Thus, for instance, if the
categoryĈ has enough RPOs, then the bisimulation onFLTSc(C) is a congruence.

All the theory presented so far can be elegantly assimilated into the theory of
GRPOs. In [12], Leifer predicted instead of precategories, one could consider a bi-
categorical notion of RPO in a bicategory of supports. This is indeed the case, with
GRPOs being the bicategorical notion of RPO. However, working with ordinals for
support sets we can avoid the extra complications bicategories as in the case ofBun. It
is worth noticing, however, that a bicategory of supports as above and theG-category
define below would be biequivalent [20]. In the following, we make use of a chosen
isomorphismtx : x→ ord(x), as defined in§A.

Definition 4.8 (G-category of Supports). Given a well-supported precategoryA, the
G-category of supportsB has

• objects: as inA;
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• arrows: f : A→ B where f : A→ B is an arrow ofA and| f | is an ordinal;

• 2-cells:ρ : f ⇒ g for ρ a “structure preserving” support bijection, i.e.ρ · f = g in
A.

Composition is defined as follows. Givenf : A→ B andg : B→C,

g◦B f = i2 ·g◦A i1 · f

where| f | i1−→ | f |⊕ |g| i2←− |g| is the chosen coproduct diagram inOrd .

The following theorem guarantees that the LTS generated is the same as the one
generated with the more involved theory of functorial reactive systems.

Theorem 4.9. FLTSc(A) = GTS(B).

Proof. It is enough to present translations betweenGIPOs inB and IPOs inĈ which
preserve the resulting label in the derived LTS. We present the translations, but omit the
straightforward proofs. Suppose that(i) below

Z

X

c
??ÄÄÄÄÄÄ

ρ Y

d
__??????

I
a

__??????? l

??ÄÄÄÄÄÄÄ

(i)

〈Z, |a|⊕ |c|〉

〈X, i1|a|〉

i2·c
88ppppppppp 〈

Y,ρ−1i1|l |
〉

(ρ−1i2)·dggOOOOOOOOOO

〈I , /0〉
i1·a

ffNNNNNNNNNN (ρ−1i1)·l

77oooooooooo

(ii)

is aGIPO inB. Then we claim that(ii) is an IPO inC. Note that(ii) is commutative
sinceρ is a structure-preserving support bijection.

Going the other way, suppose that(i) below

〈Z,N〉

〈X,L〉

c
::vvvvvvv

〈Y,M〉

d
ddIIIIIII

〈I ,K〉
l

::uuuuuuua

ddHHHHHHH

(i)

Z

X ρ

tc·c
??ÄÄÄÄÄÄ

Y

td·d
__??????

I
ta·a

__??????? tl ·l

??ÄÄÄÄÄÄÄ

(ii)

is an IPO inC. Then(ii) is aGIPO inB whereρ is

|ta ·a|⊕ |tc ·c| t−1
a ⊕t−1

c−→ |a|∪ |c|= |l |∪ |d| tl∪td−→ |tl · l |⊕ |td ·d|.
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Example 4.10 (Bunches).The 2-category of supports of the precategoryA-Bun is
Bun. Note that a “structure preserving” support bijection is a bunch homomorphism.
Indeed,ρ : (X,char, root)→ (X′,char′, root′) if X′ = ρX, char′ = charρ−1 androot′ =
root(id⊕ρ−1) which is the same as sayingchar= char′ ρ androot= root′(id⊕ρ).

5 Conclusion

We have extended our theory ofGRPOs initiated in previous work in order to strengthen
existing techniques for deriving operational congruences for reduction systems in the
presence of non trivial structural congruences. In particular, this paper has shown that
previous theories can be recast usingG-reactive systems andGRPOs at no substantial
additional complexity. Also, we proved that the theory is powerful enough to handle
the examples considered so far in the literature. Therefore, we believe that it constitutes
a natural starting point for future investigations towards a fully comprehensive theory.

It follows from Theorem 4.9 thatG-categories are at least as expressive as well-
supported precategories. A natural consideration is whether a reverse translation may
exist. We believe that this is not the case, as generalG-categories appear to carry more
information than precategories.

Acknowledgement. The authors are indebted to the referees for their helpful com-
ments and suggestions.
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A Preliminaries

Throughout the paper we assume a moderate knowledge of category theory and re-
lated terminology. In this section we fix notations and recall the basic elements and
2-categories. For a thorough introduction the reader is referred to [9]

We useOrd to denote the category o finite ordinals. We assume thatOrd has chosen
coproducts, namely the reader’s favourite definition of ordinal addition⊕. For any
finite setx, let ord(x) be the finite ordinal of the same cardinality. We assume a chosen
isomorphismtx : x→ ord(x). There is an equivalence of categoriesF : Setf →Ord . On
objects it sendsx to ord(x), on morphismsf : x→ y to ty f t−1

x : ord(x)→ ord(y).

A 2-categoryC is a category whose homsets are categories and, correspondingly,
whose composition maps are functors. Explicitly, a 2-categoryB consists of the follow-
ing.

• A class ofobjectsX,Y,Z, . . ..

• For anyX,Y ∈ C, a categoryC(X,Y). The objectsC(X,Y) are called1-cells, or
simply arrows, and denoted byf : Y → X. Its morphisms are called2-cells, are
written α : f ⇒ g: X →Y and drawn as

X

f

((

g

66α Y.

Composition inC(X,Y) is denoted by• and referred to as ‘vertical’ composition.
Identity 2-cells are denoted by1f : f ⇒ f .

• For eachX,Y,Z there is a functor. : C(X,Y)×C(Y,Z)→ C(X,Z), the so-called
‘horizontal’ composition, which we often denote by mere juxtaposition. Hori-
zontal composition is associative and admits1idX as identities.

As a notation, we writeα f andgα for, respectively,α1f and1gα. We follow the
convention that horizontal composition binds tighter than vertical composition.

In 2-categories, the order of composition of 2-cells is not important. This is a conse-
quence of the horizontal composition being functorial and can be axiomatised with the
so calledmiddle-four interchange law: for f , f ′, f ′′ : A→ B andg,g′,g′′ : B→C and
α : f ⇒ f ′, α′ : f ′⇒ f ′′, β : g⇒ g′ andβ′ : g′⇒ g′′ we haveβ′α′ •βα = (β′ •β)(α′ •α).
As a consequence, given a diagram of 2-cells, there is at most one way to compose
them and obtain a composite 2-cell. This primitive operation is sometimes referred to
aspasting.

Two objectsC, D of a 2-categoryC areequivalentwhen there are arrowsf : C→D,
g : D→C and 2-cellsα : idC ⇒ g f , β : f g⇒ idD. We refer tof andg as equivalences.
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B Basic Properties ofGRPOs

The next two lemmas explain the relationships betweenGRPOs andGIPOs.

Lemma B.1 (GIPOs from GRPOs). If 〈Z,c,d,u,α,η,µ〉 is a GRPO for (i) below, as
illustrated in (ii), then (iii) is aGIPO.

Z′

X α′

c′ >>~~~~
Y

d′__@@@@

W
a

``AAAA
b

>>~~~~

(i)

Z′

X

c′ >>~~~~
c // Z

η µ
u
OO

Ydoo

d′__@@@@

W
α

a

``AAAA
b

>>~~~~

(ii)

Z

X α

c >>}}}}
Y

d``AAAA

W
a

``AAAA
b

>>~~~~

(iii )

Lemma B.2 (GRPOs from GIPOs). If square (iii) above is aGIPO, (i) has aGRPO,
and〈Z,c,d,u,α,η,µ〉 is a candidate for it as shown in (ii), then〈Z,c,d,u,α,η,µ〉 is a
GRPO for (i).

The following lemmas from [17] state the basic properties ofGRPOs.

Lemma B.3. Suppose that diagram(ii) below has aGRPO.

U
a //

b

²²

V

d

²²

e // W

g

²²

X

α

c
// Y

β

f
// Z

(i)

U
a //

b

²²

V

ge

²²

X
f c

//

βa• f α

Z

(ii)

1. If both squares in(i) areGIPOs then the rectangle of(i) is aGIPO

2. If the left square and the rectangle of(i) areGIPOs then so is the right square.

Lemma B.4. Suppose that diagram(i) below is aGIPO.

Z

X α

c >>}}}}
Y

d``AAAA

W
a

``AAAA
b

>>~~~~

(i)

Z

X α

c >>}}}}
Y

d``AAAA

W

a``AAAA
a′

OO

ε b

>>~~~~

(ii)

Z

X α

c >>}}}}
Y

d

``AAAA

d′pp

ε``AAAA

W
a

``AAAA
b

>>~~~~

(iii )

Then the regions obtained by pasting the 2-cells in(ii) and(iii) areGIPOs.
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