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Abstract

We show that considering labelled transition systems as relational presheaves
captures several recently studied examples in a general setting. This ap-
proach takes into account possible algebraic structure on labels. We show
that left (2-)adjoints to change-of-base functors between categories of rela-
tional presheaves with relational morphisms always exist and, as an appli-
cation, that weak closure (in the sense of Milner) of a labelled transition
system can be understood as a left adjoint to a change-of-base functor.
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1. Introduction

A famous application of coalgebra [3, 4] is as an abstract setting for
the study of labelled transition systems (LTS). Indeed, an LTS with label
set A is a coalgebra for the functor P(A × −). LTSs are thus the objects
of the category of coalgebras for this functor. The arrows, in concurrency
theoretical terminology, are functional bisimulations. This category of coal-
gebras (modulo size issues) has a final object that gives a canonical notion
of equivalence, although other approaches are available in general1. Or-
dinary bisimulations can be understood as spans of coalgebra morphisms.
The coalgebraic approach has been fruitful: amongst many notable works
we mention Turi and Plotkin’s elegant approach to structural operational
semantics congruence formats via bialgebras [50].

In another influential approach, Winskel and Nielsen [52] advocated the
use of presheaf categories as a general semantic universe for the study of la-
belled transition systems. Morphisms turn out to be functional simulations,
functional bisimulations can be characterised as open maps with respect to
a canonical (via the Yoneda embedding) choice of path category [24]. Ordi-
nary bisimulations are then spans of open maps, with some side conditions.

1See [48] for an overview of the notions that appear in the literature.
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Both the coalgebraic approach and the presheaf approach have generated
much subsequent research and have found several applications that we do
not account for here. Concentrating on the theory of labelled transition
systems, there are some limitations to both approaches. For example both
take for granted that the set of labels A is monolithic and has no further
structure. In fact, several labelled transition systems have sets of labels
that are monoids [9] or even categories [30, 16, 35]. Such examples are more
challenging to capture satisfactorily with the aforementioned approaches
but some progress has been made—for instance, Bonchi and Montanari [7]
captured labelled transition systems on reactive systems (in the sense of
Leifer and Milner [30]) as certain coalgebras on presheaves.

There is also a mismatch between notions typically studied by concur-
rency theorists or researchers in the operational semantics of concurrent
languages and the morphisms in categories of coalgebras or in presheaves.
From the point of view of process theory, the morphisms in the aforemen-
tioned categories are not the notions typically studied: functional simu-
lations and functional bisimulations2 instead of ordinary simulations and
ordinary bisimulations.

Finally, and perhaps most importantly, the most natural notions of
equivalence in applications are often weak (in the sense of Milner) and these
tend to be technically challenging to capture in the coalgebra or presheaf
settings. One can think of weak bisimulation as ordinary bisimulation on
a labelled transition system that has been “saturated” with the silent τ -
actions, but this is just another way of saying that τ is made the identity
of a monoid of actions. We will develop this idea in Section 6. Because the
coalgebraic and presheaf approaches were not designed with a view to ac-
commodate such algebraic structure on the set of labels, some work has to be
performed in order to talk about weak equivalences, see for example [47, 15].

This paper proposes the universe of relational presheaves3 as an abstract
setting for the study of labelled transition systems. Relational presheaves are
lax functors [28] (or, equivalently, morphisms of bicategories [5]) Cop → Rel,
where Rel is the 2-category of relations with objects sets, arrows relations,
and 2-cells inclusions of relations (in particular, the hom-categories are par-
tial orders—some authors refer to such 2-categories as locally partially or-
dered). The applications that we study in this paper are related to the pre-
vious use of relational presheaves and enriched category theory in automata
theory [41, 25, 26]. Relational presheaves have been called by various other

2Although Hughes and Jacobs [21] and Hasuo [18, 19] have also studied simulations
coalgebraically—the latter using oplax morphisms on coalgebras in Kleisli categories; these
are conceptually closely related to morphisms between relational presheaves. Recently,
Levy [31] has considered similarity coalgebraically using the notion of relators, which also
have some technical similarities with relational presheaves.

3Using Rosenthal’s terminology [41].
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names: specification structures [1], relational variable sets [17], dynamic
sets [49], with several applications in Computer Science and related fields.
Functors to Rel as a way of giving semantics to flowcharts were considered
as early as 1972 by Burstall [11].

The typical examples of C that we shall consider will be monoids (i.e.
categories with one object) and categories of contexts, in the sense of Leifer
and Milner [30, 45]. Ordinary A-labelled transition systems can be seen
as instances of the former by considering the free monoid A∗. A more
interesting example where the label set is a non-free monoid is the LTS
considered in [9] or the LTSs that arise from expressions in the algebra of
Span(Graph) [27]. Weak derived LTS for reactive systems in the sense
of Jensen [23], are examples of relational presheaves for C a category of
contexts. Tile logics [16] can also be seen as relational presheaves where
C is not merely a monoid: here the vertical composition of tiles gives the
algebraic structure on the tile transitions.

There are two different, natural choices for morphisms between relational
presheaves. One, suggested by the connection with enriched category the-
ory, is to take functional oplax natural transformations, which Rosenthal
refers to as rp-morphisms [41, Definition 3.3.2]. Indeed, the category of re-
lational presheaves and rp-morphisms R(C) is equivalent to the category
of categories enriched over the free quantaloid on C [41, Theorem 3.3.1].
In our examples rp-morphisms turn out to be functional simulations. Here,
change-of-base functors u∗ always have left-adjoints and they have right-
adjoints whenever u satisfies the weak factorisation lifting property [36].
One consequence is that R(C) has limits that are computed pointwise.

A second choice for morphisms is to also consider all (ie not necessar-
ily functional) oplax natural transformations, which Rosenthal refers to as
generalized rp-morphisms [41, Definition 3.3.3]: in our examples these turn
out to be ordinary simulations. They have been studied to a lesser extent
and are the morphisms on which we shall focus in this paper. Following
Rosenthal, we denote the 2-category of relational presheaves and general-
ized rp-morphisms by R∗(C). Given relational presheaves h, h′ ∈ R∗(C),
morphisms h→ h′ organise themselves in a sup-lattice, with the order inher-
ited from Rel, and joins are preserved by composition, in other words R∗(C)
is a quantaloid [41, Proposition 3.3.2]. The mathematical universe of rela-
tional presheaves with relational morphisms is rich. Most importantly, some
familiar constructions from the concurrency theory literature can be charac-
terised as adjunctions. For example, we shall show that the weak-closure of
a labelled transition system is actually a left (2-)adjoint to a change-of-base
functor. In this sense, this paper continues the programme of [51] in that
category theory is used to clarify and distill constructions commonly used
in the study of models of concurrency.

Explicitly, the contributions of this paper are:
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(i) the insight that the theory of relational presheaves and (generalized)
rp-morphisms is a suitable mathematical universe for the study of la-
belled transition systems whose sets of labels bear algebraic structure.

(ii) the proof that the construction of left adjoints to change-of-base func-
tors in R(C) ([36]) works also in the larger 2-category of relational
presheaves and generalized rp-morphisms R∗(C) (Theorem 5.1). This
fact does not seem to have been noticed before.

(iii) as an application of this result, we show how weak-closure of an LTS
can be considered as a left 2-adjoint to a suitable change-of-base func-
tor. This construction can be viewed as an instance of a general math-
ematical theory of weak simulations.

A previous conference version of this article appeared in [46]. In this ex-
tended version we add Theorem 5.1, together with a more thorough ex-
position of examples and the constructions that appeared in the original
conference version.

Related work. Quantaloids have previously been used in the study of process
equivalence by Abramsky and Vickers [2]. Simulations and bisimulations
have been investigated in the setting of categories enriched over quantaloids
by Schmitt and Worytkiewicz [44]. The fact that simulations are oplax
natural transformations in a relational setting was previously observed by
Jürgen Koslowski [29] and Ichiro Hasuo [18, 19].

2. Examples

In order to motivate the more abstract developments we start here with
a sightseeing tour of examples of labelled transition systems that will turn
out to be relational presheaves.

Example 2.1 (Ordinary labelled transition systems). A labelled transition
system is a triple (X,A, T ) where T ⊆ X × A × X. The set X is called
the statespace, A is a monolithic set of atomic actions and T is a set of
transitions. We usually write x

a−→ x′ for (x, a, x′) ∈ T .
One way to describe such a structure using the coalgebraic approach is to

use the functor P(A×−), where P is the (covariant) powerset endofunctor
on Set. An LTS with label set A is a coalgebra for the P(A × −) Set-
endofunctor, i.e. a function

h : X → P(A×X). (1)

There are several examples where the set A has more structure, in par-
ticular, when it’s a monoid or even the set of arrows of a category. We list
some of these examples below.
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Example 2.2 (Weak labelled transition systems). Consider a special “silent”
action τ that we intend to be unobservable. Define a weak LTS to be
(X,A + {τ}, T ) where the set T of transitions is reflexive-transitive closed
wrt the τs, i.e. it is closed under the rules below

P
τ−→ P

P
τ−→ Q Q

a−→ R R
τ−→ S

P
a−→ S

(2)

It is easy to show that bisimilarity and weak bisimilarity, in the sense of
Milner, coincide on a weak LTS. A weak LTS can be obtained from an LTS
with τ -labels via reflexive-transitive τ -closure. In this paper we shall show
that this construction arises as a left adjoint to a change-of-base functor
(Corollary 6.1).

Example 2.3 (Monoidal structure on labels). An LTS with monoidal struc-
ture on labels is (X,M, T ) where M is a monoid with multiplication ⋆ and
unit ι, and where the set T of transitions is closed under the following two
rules:

P
ι−→ P

P
a−→ Q Q

b−→ R

P
a⋆b−−→ R

(3)

Notice that such LTSs are actually examples of categories, with objects
the states, identities ι, and composition given by ⋆. See [9, 10] for recent
examples of such LTS in concurrency theory literature.

Labelled transition systems with a monoidal structure on labels have
been called non-deterministic M -dynamics [41, Definition 4.1.1] and they
have received attention in applications of enriched category theory to au-
tomata theory.

Example 2.4 (Contexts as labels). The contexts-as-labels approach was in-
troduced by Leifer and Milner [30], and developed further in [42, 43, 23, 6, 7].
It is a general setting for the study of labelled transition systems in process
calculi such as CCS [32] and the π-calculus [14, 34]. In those calculi there
is an underlying reduction semantics and the labelled semantics is closely
related: the labels can be understood to represent minimal contexts that
allow a reductions to occur. See [38, 39] for a detailed analysis of the rela-
tionship between reduction and labelled semantics in concrete calculi. The
generality of Leifer and Milner’s approach allows one to consider intuitions
and constructions from process calculi in models that are not obviously syn-
tactic; for example the theory of reactive systems serves as the foundation
of the behavioural theory of bigraphs [33].

Here we give only a very brief summary of Leifer and Milner’s theory of
reactive systems: suppose that C is a small category with objects interfaces
and arrows contexts; see [45] for a number of concrete examples. There is a
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chosen object 0 that serves as the ground interface, arrows with domain 0
are then the ground terms.

Given a set of reaction-rules R, a family of pairs of arrows ri, r
′
i : 0 → Xi

indexed by some set I, one generates a reaction relation ◃ by closing
the rules with respect to reactive contexts: the arrows of a subcategory D
of C that is composition reflecting (if g ◦ f is in D then both f is in D and
g is in D).

c ◃ c′
def
= ∃ d in D, i ∈ I, (ri, r

′
i) ∈ R. c = d ◦ ri ∧ c′ = d ◦ r′i

The collection R = (C, 0, D, R) is called a reactive system.
Given a reactive system R, one can derive an LTS that has transitions

of the form t
c−→ t′ where t : 0 → X, c : X → Y , t′ : 0 → Y such that

c ◦ t ◃ t′ and c is the smallest context that makes this reduction possible.
The notion of smallest is typically captured via a universal property, in C,
of relative (local) pushouts. In symbols:

t
c−→ t′

def
= ∃d in D, i ∈ I, (ri, r

′
i) ∈ R, c ◦ t = d ◦ ri, t′ = d ◦ r′i,

Y

X

c
>>~~~~~

Xi

d
``AAAAA

0
t

``@@@@@ ri

>>|||||

is a pushout diagram in C/Y.

Jensen [23, Definition 3.18] introduced the notion of weak bisimilarity for
reactive systems (see also [8]), a construction that for every reactive system
R with local pushouts, gives a reactive system W(R). The intuition is that
reactions of R are “closed under composition” to form reactions in W(R):
for example (r, r′) and (s, s′) in R are composed to (p ◦ r, q ◦ s′) in W(R)
where p ◦ r′ = q ◦ s give a local pushout. This composition is iterated, and
“identity” reactions, or nullary compositions, (r, r) are added to W(R) for
all ground terms r. Bisimilarity on the LTS derived from W(R) acts as a
kind of weak bisimilarity in examples. We omit the details here and just
mention two properties that are satisfied by this LTS:

1. u
id−→ u for all u ∈ C,

2. if u
a−→ v and v

b−→ w then u
b◦a−−→ w.

Both are a consequence of [23, Lemma 3.2] and rely on the properties of
local pushouts.

Example 2.5 (Tile systems). Tile systems [16] are family of models that
generalise several kinds of rule-based computational systems, notably in-
cluding SOS operational semantics [37].
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The theory of tile systems is founded on double categories, in which the
vertical dimension can be viewed as (double) labelled transitions between the
arrows of the horizontal category, considered as the statespace. This vertical
dimension forms a category, and hence this labelled transition system is
closed under composition and has identities.

More concretely, one can view the double cell below—in which s and t
are arrows of the horizontal category (states) while a and b are arrows of

the vertical category (labels)—as a transition s
b−→
a
t.

k
a

��

s //

α

l
b

��
m

t
// n

Of particular interest to us are the following facts: for each s : k → l in
the horizontal category there is a double cell

k
idk ��

s //

ids

l
idl��

k s
// l

where idk, idl are the identity arrows of the vertical category; written in

transition form this is the transition s
idl−−→
idk

s. Moreover, given two cells

k
a

��

s //

α

l
b

��
m
c ��

t //

β

n

d��
p

u
// q

their pasting is also a double cell: from the point of view of labelled transition

systems, whenever s
b−→
a
t and t

d−→
c
u, then also s

d◦b−−→
c◦a

u.

3. LTSs: from coalgebras to relational presheaves

It is typical to consider an LTS as a coalgebra (1) for the P(A × −)
endofunctor on set. This approach emphasises the statespace but wraps the
set of labels A within the definition of the functor. In our examples the labels
have an algebraic structure that arises from composition of transitions, so
in order to consider possible extra structure of A we need to bring the labels
out as first class citizens so:

h : X → P(A×X)

h′ : X → P(X)A

h′′ : A→ P(X)X

(4)
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That is, to give a standard P(A × −) coalgebra is to give an A-indexed
family of P(−) coalgebras.

For the sequel, it makes sense to use the fact that P is a monad, and in
particular we can use the composition in the Kleisli category Kl(P).4 We
can replace the conclusion of (4) by:

h : A→ Kl(P)(X,X) (5)

If A is a monoid, then h should preserve the structure in some way. But
monoids are exactly one-object categories. So for a general category C, (5)
generalises to a mapping

h : C → Kl(P) (6)

We shall now elucidate what properties the mapping (6) ought to satisfy.
Of course, Kl(P) is another name for Rel, the locally partially ordered
2-category with objects sets, arrows relations and 2-cells inclusions.

A natural choice for (6) is that of relational presheaf, that is a lax functor
from Cop to Rel:

h : Cop → Rel (7)

The laxness here means that:

h(b);h(a) ⊆ h(a; b) idh(x) ⊆ h(idx) (8)

We take as morphisms of φ : h→ h′ of relational presheaves Cop → Rel
the oplax natural transformations [17, 36], Rosenthal [41, Definition 3.3.3]
calls them generalized rp-morphisms. To give such a morphism is to give,
for each C ∈ C, a relation φC : h(C) � / / h′(C) such that the (lax) naturality
condition is satisfied for each f : D → C in C, ie:

hC
φC� //

hf_
��

h′C

h′f_
��

hD

⊆

φD

� // h′D

(9)

The 2-category with objects relational presheaves and morphisms as above
will be denoted R∗(C). The subcategory with functional morphisms, that
is, those φ : h → h′ where φC in (9) is a function5 for all C ∈ C, will be
denoted R(C).

Returning to our motivational examples, consider C to be a category
with one object, ie a monoid (M,⋆, ι). We will write R∗(M) to emphasise
that we are considering the one object case.

4Jacobs, Hasuo and Sokolova have used coalgebras in Kleisli categories in order to con-
sider trace semantics coalgebraically [22, 20]. Hasuo studied a general notion of simulation
as lax morphism of coalgebras in Kleisli categories [18, 19].

5These are Rosenthal’s rp-morphisms.
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Proposition 3.1. To give an LTS with a monoidal structure on labels (Ex-
ample 2.3) is to give a relational presheaf, i.e. an object of R∗(M). Mor-
phisms of R∗(M) are precisely the simulations between such LTSs.

Proof. To give a functor h from M to Rel is to pick a set Xh, and for each
a ∈ M , a relation ha : Xh

� // Xh: now the required LTS has Xh as its
statespace, and its set of transitions is R ⊂ X × A×X where (x, a, y) ∈ R
precisely when (y, x) ∈ ha. It is easy to verify that the laxness conditions (8)
mean exactly that the LTS is closed under the rules (3). Thus to give such
an LTS is also to give a functor from M to Rel.

Now, given two relational presheaves h, h′ : M → Rel, to give a mor-
phism φ : h → h′ is to give a relation φ : Xh

� // Xh′ that satisfies the
inclusion illustrated below, for each a ∈M . Here the contravariance of h, h′

plays a role.

Xh
φ� //

ha_
��

Xh′

h′a_
��

Xh

⊆

φ
� // Xh′

Indeed, in the diagram above, for (y, x′) ∈ ha;φ means that x
a−→ y and

xφx′ for some x ∈ X. Using the laxness condition, we must have also that
(y, x′) ∈ φ;h′a, and this means that there exists y′ with x′

a−→ y′ and yφy′.
This is precisely the condition on φ being a simulation.

The category R(M) has been called M–Dyn, with the objects called
non-deterministic M -dynamics [41, Definition 4.1.1].

Any ordinary LTS (Example 2.1) can be considered a relational presheaf
by taking C = A∗ and considering the LTS of traces. Not all relational
presheaves in R∗(A∗) are ordinary labelled transition systems in the sense
of Example 2.1. For instance, in a general relational presheaf in R∗(A∗)

there can be transitions p
ϵ−→ q for p ̸= q and transitions p

ab−→ p′ without an

intermediate p′′ such that p
a−→ p′′ and p′′

b−→ p′.
In fact, ordinary LTSs with labels in A form the full subcategory of

R∗(A∗) with objects the ordinary (not lax) functors, which we will refer to
as LTS(A).

Proposition 3.2. To give an ordinary LTS with label set A (Example 2.1)
is to give a functor (A∗)op → Rel. Let LTS(A) denote the corresponding full
subcategory of R∗(A∗). The morphisms of LTS(A) are thus the simulations.

Taking a reactive system R with category of contexts C, the derived LTS
on W(R) [23] is a relational presheaf. This is a direct consequence of [23,
Lemma 3.22].
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Proposition 3.3. Given a reactive systems R with a category of contexts
C that has all local pushouts, the derived LTS on W(R) (Example 2.4) is
an object of R∗(C).

Proof. Consider the derived LTS h on W(R). It can be considered as a
relational presheaf as follows: each object is X ∈ C sent to the set of ground
terms t : 0 → X. Arrows c : X → Y are sent to the relation { (t′, t) | t c−→ t′ }.
The properties of h given in Example 2.4 ensure that (8) is satisfied.

The contexts as labels example is somewhat similar to non-deterministic
A -dynamics ([41, Definition 4.2.1]) in that categories of contexts often re-
semble algebraic theories in the sense of Lawvere. Here we do not require
either that that products exist in C or are preserved by the functor to Rel.

Similarly, taking C to be the product of the vertical category of any
tile system with itself allows (the LTS generated by) any tile system to be
considered as a relational presheaf.

Proposition 3.4. Consider the labelled transition system obtained from a
tile system (Example 2.5). Then the labelled transition system is an object
of R∗(V × V), where V is the vertical category of the tile system.

Proof. An object (k, l) ∈ V ×V is sent to the set { s : k → l | s in H} where
H is the horizontal category. An arrow (a : k → m, b : l → n) in V × V

is sent to the relation { (t, s) |
k

a ��

s //
α
l
b��

m
t

// n
}. The properties highlighted in

Example 2.5 ensure that (8) is satisfied.

Propositions 3.3 and 3.4 concern relational presheaves that have indexing
categories that are not merely monoids. Roughly speaking, such relational
presheaves send each object of the indexing category to a statespace with
sort given by the object. Morphisms of relational presheaves then give a
natural notion of a sort-respecting simulation.

4. Relational presheaves as labelled transition systems

We have shown how several examples of LTS can be considered as rela-
tional presheaves. Going in the other direction, the familiar Grothendieck
construction instantiated to relational presheaves yields categories, which
we can consider as LTSs. The intuition given at the end of the previous
section is that relational presheaves send an object to a statespace with sort
given by that object. The Grothendieck construction forgets sorts and al-
lows us to consider the relational presheaf as a transition system on a global
statespace.

Definition 4.1. Let h : Cop → Rel be a relational presheaf. Then the
labelled transition system Γ(h) has:
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states: pairs (C, x) where C ∈ C and x ∈ h(C)

transitions: (C, x)
f−→ (D, y) if C

f−→ D is in C and x ∈ h(f)(y).

As a consequence of (8), Γ(h) is closed under the rules of (3). Indeed, if
C has one object then Γ(h) is an LTS with a monoidal structure on labels,
in the sense of Example 2.3.

Proposition 4.2. Morphisms φ : h → h′ are in a 1-1 correspondence with
simulations from Γ(h) to Γ(h′).

Niefield [36] amongst other authors have studied R(C) and we can use
some of the rich theory of relational presheaves to yield insights about the
examples that we have identified. An example is the following result.

Proposition 4.3. Limits exist and are computed pointwise in R(C).

Proof. Corollary 3.2 in [36].

Categories R∗(C) of relational presheaves with relational morphisms
have received less attention in the literature. They are locally partially-
ordered 2-categories, with natural transformations ordered pointwise by in-
clusion, thus inheriting their 2-categorical structure from that of Rel—these
are the modifications [28] in this simple setting. It is well-known that the
hom-posets of R∗(C) are complete suplattices and this fact generalises the
observation that simulations are closed under unions. Sups commute with
composition and so R∗(C) are themselves examples of quantaloids [41]. We
will concentrate on R∗(C) in the remainder of the paper.

5. Change of base

In this section we show that change-of-base functors between categories
of relational presheaves and relational morphisms have left adjoints. The
construction is the same as in categories of relational presheaves and func-
tional morphisms, given for example in [36]. The novelty here is that we
show that the universal property also holds wrt the larger universe of rela-
tional morphisms.

Given a functor p : C → D, the change-of-base 2-functor p∗ : R∗(D) →
R∗(C) is defined as follows:

- on objects: a relational presheaf g ∈ R∗(D) is mapped to the relational
presheaf gp ∈ R∗(C).

- on arrows: a (relational) natural transformation φ : g → g′ is mapped

to φp : gp→ g′p where (φp)c
def
= φpc.

11



- on 2-cells: if φd ⊆ ψd for all d ∈ D then clearly (φp)c ⊆ (ψp)c for all
c ∈ C.

Theorem 5.1. Given a functor p : C → D, the change-of-base 2-functor
p∗ : R∗(D) → R∗(C) has a left 2-adjoint Σp : R∗(C) → R∗(D).

Proof. The construction of Σp : R∗(C) → R∗(D) is as follows:

- On objects, given h ∈ R∗(C) and d ∈ D, let:

Σp(h)(d)
def
=

⨿
c∈C, pc=d

hc.

Given v : d′ → d in D, ((c, x), (c′, x′)) ∈ Σp(h)(v) exactly when there
is an arrow u : c′ → c in C with pu = v and (x, x′) ∈ h(u).

- On arrows, given φ : h � // h′ in R∗(C) we define

Σp(φ)d
def
=

⨿
c∈C, pc=d

φc : Σp(h)(d) � // Σp(h
′)(d) (10)

- On 2-cells, if φc ⊆ ψc for all c ∈ C then evidently from (10) also
Σp(φ)d ⊆ Σp(ψ)d.

Notice that
(p∗Σph)c = (Σph)pc =

⨿
c′∈C, pc′=pc

hc′

Now for each h ∈ R∗(C), we can define ηh : h→ p∗Σph in R∗(C) to be, at
each c, the (graph of the) obvious injection hc→

⨿
c′∈C, pc′=pc hc

′. To check
that η is 2-natural it suffices to note that, for any φ : h → h′ in R∗(C) the
diagram below obviously commutes:

hc
(ηh)c //

φc

��

⨿
c′, pc′=pc hc

′

⨿
c′, pc′=pc φc

��

h′c
(ηh′ )c

//
⨿

c′, pc′=pc h
′c′

On 2-cells there is nothing to verify.
We now verify that η satisfies the universal property of units. Suppose

that α : h � // p∗g for some g ∈ R∗(D).

hc
(ηh)c //

αc

((RRRRRRRRRRRRRRRRR
⨿

c′, pc′=pc hc
′

βpc

��
gpc

(11)
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Define β : Σph → g in R∗(D) at d to be the relation βd :
⨿

c:pc=d hc
� // gd

that precomposed with each coproduct injection hc (where pc = d) is αc.
Then clearly the diagram above commutes.

If also β′ : Σph → g satisfies (11) then it follows that at each injection
it must agree with α; since relations from a coproduct are defined by their
value on their injections this means that β = β′.

6. Weak labelled transition systems

Consider an LTS with silent τ labels. Closing wrt the rules in (2), consid-
ering τ as the identity of a monoid of actions and forming the traces yields a
labelled transition systems on which strong and weak equivalences coincide.
This kind of weak-closure of an LTS is technically somewhat similar to the
approaches advocated in [40] and [15]. Here we shall make this construction
precise and characterise it with a universal property. In particular we will
show that weak-closure is actually the left adjoint to a change-of-base func-
tor, making this example an application of the construction in the proof of
Theorem 5.1.

Let Aτ
def
= A+ {τ}. There is a function Aτ → A∗ that sends each a ∈ A

to itself (considered as a word of length one) and τ to ϵ. This extends to a
morphism from the free monoid

u : A∗
τ → A∗ (12)

that yields a change-of-base functor

u∗ : R∗(A∗) → R∗(A∗
τ ).

In terms of LTSs, it is easy to see that u∗ acts on objects by closing a
transition system with actions in A∗ by the following rule, and on arrows
(simulations) as identity.

P
ϵ−→ Q

P
τ−→ Q

(13)

The left adjoint Σu : R∗(A∗
τ ) → R∗(A∗) can be obtained by following

the construction in the proof of Theorem 5.1. It can be understood in this
particular case as first closing an LTS wrt to rules (2) and then renaming τ
to ϵ.

Corollary 6.1. There is a 2-adjunction

R∗(A∗
τ )

Σu
**

⊥ R∗(A∗)

u∗
jj

(14)

where Σu can be understood on objects as closing an LTS wrt to the rules (2)
and renaming τ to ϵ. On arrows Σu acts as identity .
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The definition of Σu gives us a concise way to capture weak simulation—
a relation φ : h � // h′, where h, h′ ∈ R∗(A∗

τ ) is a weak simulation precisely
when it is defines an arrow φ : Σuh

� // Σuh
′ in R∗(A∗).

Proposition 6.2. The category of (ordinary) labelled transition systems
with label set Aτ and weak simulations is the category with

• objects those of LTS(Aτ ) (the full subcategory of R∗(A∗
τ ) with objects

ordinary functors) and

• morphisms h to h′ given by R∗(A∗)(Σu(h),Σu(h′)).

Restricting to the subcategories with functional morphisms, u defined
in (12) satisfies the weak factorisation lifting property and hence u∗ also has
a right adjoint Πu : R(A∗

τ ) → R(A∗) [36, Theorem 4.1]. In terms of LTS
terminology, Πu maps an ordinary LTS L = (X,Aτ , T ) to the following LTS
with labels in A:

states: those x ∈ X for which x
τ−→ x in L

transitions: the non-τ transitions of L.

Πu(h) can thus be understood as the largest τ -reflexive sub-LTS, restricted
to the non-τ actions. It is not difficult to verify that the Πu defined in this
way is a right adjoint to u∗.

7. Conclusions and future work

We have observed that several examples of labelled transition systems,
especially when there is algebraic structure on labels, can be considered as
relational presheaves. The morphisms between such LTSs are simulations
and the resulting categories of LTSs have rich structure due to their math-
ematical status. As an example, we characterised weak closure as a left
adjoint to a change-of-base functor.

There are several future directions. The theory of bisimulation needs
to be developed: in the examples that we have examined bisimulations are
those morphisms that remain morphisms when reversed via the underlying
involution in Rel, it remains to be seen whether this view is fruitful in
the wider, general picture. For example, it is of interest that functional
bisimulations in our examples can be characterised as maps in R∗(C), that
is, those 1-cells which have a right adjoint in the 2-categorical sense.

There are several other settings in which there is an obvious monoidal
structure on labels. One example is reversible transition systems where stan-
dard constructions [12, 13] may be characterised as universal when viewed
as relational presheaves.

14



Morphisms in R∗(C), change-of-base functors and their adjoints give a
general approach to defining simulations (amongst other equivalences), mor-
phisms and canonical constructions in models where such notions have not
been obvious; for example in the theory of reactive systems. Finally, Rel
can be generalised to Span and other (bi)categories, yielding more gen-
eral notions of labelled transition systems. Another possibility would be to
consider Kleisli categories on monads other than P; for instance the subdis-
tribution monad D for probabilistic notions of transition systems, following
Hasuo [18, 19].
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