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Abstract. PROPs and Lawvere categories are related notions adapted
to the study of algebraic structures borne by an object in a category,
but whereas PROPs are symmetric monoidal, Lawvere categories are
cartesian. This paper formulates the connection between the two notions
using Lack’s technique for composing PROPs via distributive laws. We
show Lawvere categories can be seen as resulting from a distributive law
of two PROPs — one expressing the algebraic structure in linear form
and the other expressing the ability of copying and discarding variables.

1 Introduction

PROPs [28] are symmetric monoidal categories with objects the natural num-
bers. In the last two decades, they have become increasingly popular as an
environment for the study of diagrammatic formalisms from diverse branches
of science in a compositional, resource sensitive fashion. Focussing on computer
science, they have recently featured in algebraic approaches to Petri nets [11, 35],
bigraphs [12], quantum circuits [15], and signal flow graphs [5, 7, 1, 20].

PROPs describe both the syntax and the semantics of diagrams, with the
interpretation expressed as a PROP morphism [[·]] : Syntax→ Semantics. Typ-
ically, Syntax is freely generated by a signature Σ of operations with arbitrary
arity/coarity and can be composed sequentially and in parallel. Thus diagram
syntax—which we refer to as Σ-terms—is inherently 2-dimensional: the term
structure is that of directed acyclic graphs, rather than trees, as in the famil-
iar case of operations with coarity 1. A crucial aspect is linearity : variables in
Σ-terms cannot be copied nor discarded.

It is often useful to axiomatise the equivalence induced by [[·]] by means of a
set of equations E, and then study the theory (Σ,E). For PROPs, completeness
proofs typically provide a serious challenge, involving the retrieval of a normal
form for Σ-terms modulo E. The difficulty can be drastically reduced by ex-
ploiting certain operations on PROPs: an example of this modular methodology
is provided by [5, 7], where the PROP operations of sum and composition are
crucial for giving a sound and complete axiomatization of signal flow diagrams.

Sum is just the coproduct in the category of PROPs. Whenever two PROPs
T1 and T2 can be presented by the theories (Σ1, E1) and (Σ2, E2), then their
sum T1 + T2 is presented by the disjoint union (Σ1 ]Σ2, E1 ] E2).



Composition of PROPs is more subtle, as it requires certain compatibility
conditions between the structure of T1 and T2. Lack [25] describes this oper-
ation formally by means of distributive laws, seeing PROPs as monads in the
2-categorical sense of Street [36]. In a nutshell, a distributive law λ : T1 ; T2 →
T2 ; T1 of PROPs is a recipe for moving arrows of T1 past those of T2. The
resulting PROP T2 ; T1 enjoys a factorisation property: every arrow in T2 ; T1
decomposes as one of T2 followed by one of T1. The graph of λ can be seen as a

set of directed equations Eλ := (
∈T1−−→ T2−→) ≈ (

T2−→ T1−→) and T2 ; T1 is presented
by the theory (Σ1 ]Σ2, E1 ] E2 ] Eλ).

This work uses distributive laws of PROPs to characterise Lawvere cate-
gories4, a well known class of structures adapted to the study of categorical
universal algebra. The essential difference with PROPs is that Lawvere cate-
gories express cartesian theories (Σ,E), i.e. where Σ only features operations
with coarity 1 and E may include non-linear equations. Our starting observa-
tion is that the Lawvere category LΣ on a cartesian signature Σ exhibits a
factorisation property analogous to the one of composed PROPs: arrows can

always be decomposed as
∈Cm−−−→ ∈TΣ−−−→, where Cm is the PROP of commutative

comonoids, generated by a copy 1 → 2 and a discard 1 → 0 operation, and TΣ
is the PROP freely generated by Σ. This factorisation represents cartesian Σ-
terms by their syntactic tree — the TΣ-part — with the possibility of explicitly
indicating variable-sharing among sub-terms — the Cm-part. This simple obser-
vation leads us to the main result of the paper: for any cartesian signature Σ,
there is a distributive law of PROPs λ : TΣ ; Cm → Cm ; TΣ which is presented
by equations that express the naturality of copier and discarder; the resulting
composed PROP Cm ; TΣ is the Lawvere category LΣ.

By a quotient construction on distributive laws, it follows immediately that
the above theorem holds more generally for any cartesian theory (Σ,E) where
the set of axioms E only contains linear equations. For instance the Lawvere
category of commutative monoids LMn can be obtained by means of PROP
composition, while the one LGr of abelian groups cannot, because of the non-
linear axiom x× x−1 = 1. Obviously, one can still formulate LGr as the quotient
of the composite LMn by adding this equation, see Example 4.6 below.

As a side remark, we observe that, by taking the sum Cm + TΣ, rather than
the composition, we are able to capture a different, well-known representation for
cartesian Σ-terms, namely term graphs, which are acyclic graphs labeled over Σ.
With respect to the standard tree representation, the benefit of term graphs is
that the sharing of any common sub-term can be represented explicitly, making
them particularly appealing for efficient rewriting algorithms, see e.g. [34] for a
survey on the subject. As shown in [16], Σ-term graphs are in 1-1 correspondence
with the arrows of the free gs-monoidal category generated by Σ, a concept
that actually amounts to forming the sum of PROPs Cm + TΣ. Thus the only

4 Usually called Lawvere theories in the literature: i.e. finite product categories with
set of objects the natural numbers, where product on objects is addition [27, 23]. In
order to keep the exposition uniform, we reserve the word theory for presentations
and refer to the presentation (Σ,E) of a Lawvere theory as a cartesian theory.
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difference between term graphs and the representation of terms given by Cm ; TΣ
is in the validity of naturality of copier and discarder. Intuitively, a term where
a resource is explicitly copied is not identified with the term where two copies
appear separately: in short, copying is not natural.

Related Works. The motto “cartesian terms = linear terms + copying and dis-
carding” inspired several papers exploiting the role of Cm in Lawvere categories,
see e.g. [14, 26, 16]. In our work, Lawvere categories feature as a distinguished
example of a construction, PROP composition, that is increasingly important in
many recent research threads [6, 5, 20, 32]. The significance of this exercise is
two-fold. First, it gives a deeper understanding of the nature of Lawvere cate-
gories and how they formally relate to PROPs, by showing the provenance of the
natural copy-discard structure. Second, our result provides a canonical means of
defining a distributive law for freely generated PROPs, showing that the result
of composition is a familiar algebraic notion and enjoys a finite axiomatisation.

The following construction, reported by Baez in [2], is close in spirit to our
work. There is pseudo-adjunction between symmetric monoidal and categories
with finite products

SMCat
L

,,⊥ FPCat
R

ll

where R is the evident forgetful functor and L adds to any object of C ∈ SMCat
a natural copy-discard structure: natural diagonals and projections. Baez [2]
states an equivalence between RL(C) and C⊗Cm, with the tensor ⊗ defined by
SMCat[C1⊗C2,C3] ' SMCat[C1,SMCat[C2,C3]]. Indeed, our main construction,
as well as being a distributive law, is also an instance of a tensor or Kronecker
product of symmetric monoidal theories; a concept that has been explored in
some detail in the cartesian setting of Lawvere theories, see e.g. [22].

Our work restricts attention to PROPs TΣ ∈ SMCat freely generated by a
cartesian signature Σ: in this case, it is enough to add a copy-discard structure
for the object 1 and RL(TΣ) coincides with PROP composition Cm ; TΣ. Our
perspective exploiting distributive laws has the advantage of providing a finite
presentation in terms of the naturality axioms.

It is also worth mentioning that the relationship between symmetric monoidal
and cartesian structures is central in the categorical semantics of linear logic; in
this perspective, the presence of Cm allows to interpret the structural rules of
contraction and weakening — see e.g. [24, 30].

Prerequisites and notation. We assume familiarity with the basics of category
theory (see e.g. [29, 10]), the definition of symmetric strict monoidal category [29,
33] (often abbreviated as SMC) and of bicategory [10, 3]. We write f ; g : a→ c
for composition of f : a → b and g : b → c in a category C, and C[a, b] for the
hom-set of arrows a → b. It will be sometimes convenient to indicate an arrow

f : a→ b of C as x
f∈C−−−→ y or also

∈C−−→, if names are immaterial. For C an SMC,
⊕ is its monoidal product, with unit object I, and σa,b : a ⊕ b → b ⊕ a is the
symmetry associated with a, b ∈ C.
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(t1 ; t3)⊕ (t2 ; t4) = (t1 ⊕ t2) ; (t3 ⊕ t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) idn ; c = c = c ; idm
(t1 ⊕ t2)⊕ t3 = t1 ⊕ (t2 ⊕ t3) id0 ⊕ t = t = t⊕ id0

σ1,1 ; σ1,1 = id2 (t⊕ idz) ; σm,z = σn,z ; (idz ⊕ t)

Fig. 1. Axioms of symmetric strict monoidal categories for a PROP T .

2 PROPs

Our exposition is founded on symmetric monoidal theories: specifications for
algebraic structures borne by objects in a symmetric monoidal category.

Definition 2.1. A (one-sorted) symmetric monoidal theory (SMT) is a pair
(Σ,E) consisting of a signature Σ and a set of equations E. The signature Σ
is a set of generators o : n → m with arity n and coarity m. The set of Σ-
terms is obtained by composing generators in Σ, the unit id : 1 → 1 and the
symmetry σ1,1 : 2 → 2 with ; and ⊕. This is a purely formal process: given Σ-
terms t : k → l, u : l→ m, v : m→ n, one constructs new Σ-terms t ; u : k → m
and t⊕ v : k + n→ l + n. The set E of equations contains pairs (t, t′ : n→ m)
of Σ-terms with the same arity and coarity.

The categorical concept associated with symmetric monoidal theories is the
notion of PROP (product and permutation category [28]).

Definition 2.2. A PROP is a symmetric strict monoidal category with objects
the natural numbers, where ⊕ on objects is addition. Morphisms between PROPs
are strict symmetric identity-on-objects monoidal functors: PROPs and their
morphisms form the category PROP. We call a sub-PROP a sub-category of a
PROP which is also a PROP; i.e. the inclusion functor is a PROP morphism.

The PROP T freely generated by an SMT (Σ,E) has as its set of arrows
n → m the set of Σ-terms n → m taken modulo the laws of symmetric strict
monoidal categories — Fig. 1 — and the smallest congruence (with respect to ;
and ⊕) containing the equations t = t′ for any (t, t′) ∈ E.

There is a natural graphical representation for arrows of a PROP as string
diagrams, which we now sketch, referring to [33] for the details. A Σ-term n→
m is pictured as a box with n ports on the left and m ports on the right.
Composition via ; and ⊕ are rendered graphically by horizontal and vertical
juxtaposition of boxes, respectively.

t ; s is drawn st t⊕ s is drawn t
s

. (1)

In any SMT there are specific Σ-terms generating the underlying symmetric
monoidal structure: these are id1 : 1 → 1, represented as , the symmetry

σ1,1 : 1 + 1 → 1 + 1, represented as , and the unit object for ⊕, that is,
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id0 : 0→ 0, whose representation is an empty diagram . Graphical represen-
tation for arbitrary identities idn and symmetries σn,m are generated according
to the pasting rules in (1).

Example 2.3.

(a) We write (ΣM , EM ) for the SMT of commutative monoids. The signature
ΣM contains a multiplication : 2→ 1 and a unit : 0→ 1. Equations

EM assert associativity (A1), commutativity (A2) and unitality (A3).

= (A1) = (A2) = (A3)

We call Mn the PROP freely generated by the SMT (ΣM , EM ).
(b) We also introduce the SMT (ΣC , EC) of cocommutative comonoids. The sig-

nature ΣC consists of a comultiplication : 1→ 2 and a counit : 1→
0. EC is the following set of equations.

= (A4) = (A5) = (A6)

We call Cm the PROP freely generated by (ΣC , EC). Modulo the white vs.
black colouring, string diagrams of Cm can be seen as those of Mn “reflected
about the y-axis”. This observation yields Cm ∼= Mnop.

(c) The PROP B of (commutative/cocommutative) bialgebras is generated by
the theory (ΣM]ΣC , EM]EC]B), where B is the following set of equations.

= (A7)

= (A9)

= (A8)

= (A10)

Remark 2.4 (Models of a PROP). The assertion that (ΣM , EM ) is the SMT of
commutative monoids—and similarly for other SMTs appearing in our exposition—
can be made precise using the notion of model (sometimes also called algebra)
of a PROP. Given a strict symmetric monoidal category C, a model of a PROP
T in C is a symmetric strict monoidal functor F : T → C. Then LinMod(T ,C)
is the category of models of T in C and natural transformations between them.

Turning to commutative monoids, there is a category Monoid(C) whose ob-
jects are the commutative monoids in C, i.e., objects x ∈ C equipped with
arrows x ⊕ x → x and I → x, satisfying the usual equations. Given any model
F : Mn → C, it follows that F(1) is a commutative monoid in C: this yields
a functor LinMod(Mn,C) → Monoid(C). Saying that (ΣM , EM ) is the SMT of
commutative monoids means that this functor is an equivalence natural in C.
We shall not focus on models as they are not central in our developments and
refer the reader to [19, 25] for more information.
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Example 2.3 only shows PROPs freely generated from an algebraic specifi-
cation. However, one can also define PROPs in a more direct manner, without
relying on SMTs. Two basic examples will be useful for our exposition:

– the PROP F whose arrows n → m are functions from n to m, where n =
{0, 1, . . . , n− 1}.

– the PROP P whose arrows n → m exist only if n = m, in which case they
are the permutations on n.

This kind of definition is often useful as a different, more concrete perspective on
PROPs that arise from symmetric monoidal theories. For instance, F is presented
by the theory of commutative monoids, in the sense that F and Mn are isomorphic
PROPs: once can consider a string diagram t ∈ Mn[n,m] as the graph of a
function of type {1, . . . , n} → {1, . . . ,m}. For instance, ⊕ : 2 → 2

describes the function f : {1, 2} → {1, 2}mapping both elements to 1. By duality,
Cm ∼= Fop , that is, Fop is presented by the theory of commutative comonoids.

Similarly, P provides a concrete description of the theory (∅, ∅) with empty
signature and no equations. It is the initial object in the category PROP.

3 PROP composition

A basic operation on SMTs (Σ,E) and (Σ′, E′) is to take their sum (Σ]Σ′, E]
E′). In PROP, the PROP generated by (Σ ]Σ′, E ]E′) is the coproduct T +S
of the PROP T generated by (Σ,E) and S, generated by (Σ′, E′).

The sum T +S is the least interesting way of combining theories, because there
are no equations that express compatibility between the algebraic structures in T
and S. This is a standard pattern in algebra: e.g. a ring is given by a monoid and
an abelian group, subject to equations that ensure that the former distributes
over the latter. Similarly, the equations of bialgebras (Example 2.3) describe the
interplay of a monoid and a comonoid. Ordinary functions, which can always be
decomposed as a surjection followed by an injection, are another example.

In [25] Lack shows how these phenomena can be uniformly described as the
operation of composing PROPs. The conceptual switch is to understand PROPs
as monads, and their composition as a distributive law. These monads live in a
certain bicategory [3], as in the classical work by Street [36]5.

Definition 3.1. A monad on an object x of a bicategory B is a 1-cell F : x→ x
with 2-cells ηF : idx → F and µF : F ; F → F (called the unit and the multi-
plication respectively) making the following diagrams–in which we suppress the
associativity isomorphisms—commute.

5 Actually, Street worked in a 2-category, but the same theory can be developed in
any bicategory with the obvious, minor modifications [25, §3.1].
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F

id ++

FηF// F ; F
µF ��

FηFFoo

idssF
(2)

F ; F ; F
µFF ��

FµF // F ; F
µF��

F ; F µF // F
(3)

A morphism between monads x
F−→ x and x

G−→ x is a 2-cell θ : F → G making
the following diagrams commute6.

idx

ηF ��
ηG

""F θ // G
(4)

F ; F
µF ��

θθ // G ; G
µG��

F θ // G
(5)

An epimorphic monad morphism is called a monad quotient.

For B = Cat, the above definition yields the standard notion of monad as
an endofunctor with a pair of natural transformations. Something interesting
happens for the case of the bicategory B = Span(Set) whose objects are sets, 1-
cells are spans of functions (with composition defined by pullback) and 2-cells are
span morphisms: monads in Span(Set) are precisely the small categories. Indeed,

a monad (F , η, µ) there consists of a span Ob
dom←−−− Ar

cod−−→ Ob , which yields a
set Ob of objects, one Ar of arrows and domain/codomain maps Ar ⇒ Ob . The
unit η : id → F is a span morphism associating an identity arrow to each object
(below left). The multiplication µ : F ; F → F is a span morphism defining

composition for any two arrows a
f−→ b

g−→ c in Ar (below right).

Ob
id
||

η

��

id
""

Ob Ob

Ar
dom

bb
cod

<<

Pp1
vv

µ

zz

p2
((

Ardom

vv
cod

((
Ardom

vv
cod

((
Ob Ob Ob

Ar
dom

jj

cod

55

By thinking of categories as monads, one can define the composition of categories
with the same set of objects as monad composition by a distributive law in
Span(Set). This phenomenon is studied in [31].

Definition 3.2. Let (F , ηF , µF ), (G, ηG , µG) be monads in a bicategory B on
the same object. A distributive law of F over G is a 2-cell λ : F ; G → G ; F
in B making the following diagrams—in which we again omit associativity—

6 A notion of morphism can be defined also between monads on different objects, like
in [36]. We will not need that level of generality here.
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commute.

F
FηG
��

ηGF

##
F ; G λ // G ; F

G
ηFG
OO

GηF

;;

F ; G ; G
FµG
��

λG // G ; F ; G Gλ // G ; G ; F
µGF
��

F ; G λ // G ; F

F ; F ; G
µFG
OO

Fλ
// F ; G ; F

λF
// G ; F ; F

GµF
OO (6)

A distributive law λ : F ; G → G ; F yields a monad G ; F with the following unit
and multiplication:

ηG ;F : id
ηF−−→ F ηGF−−−→ G ; F

µG ;F : G ; F ; G ; F GλF−−−→ G ; G ; F ; F µGFF−−−−→ G ; F ; F GµF−−−→ G ; F
(7)

Let us verify how the abstract definition works for the case of categories. Pick

categories C and D with the same set Ob of objects, seen as monads Ob
domC←−−−

ArC
codC−−−→ Ob and Ob

domD←−−− ArD
codD−−−→ Ob in Span(Set). A distributive law

λ : C ; D→ D ; C is a span morphism

vv

λ

zz

((
ArC

domC

ww
codC

''

ArD
domD

ww
codD

''
Ob Ob Ob

ArD
domD

gg

codD

77

ArC
domC

gg

codC

77

.

hh 66

mapping composable pairs a
∈C−−→ ∈D−−→ b to composable pairs a

∈D−−→ ∈C−−→ b. As
described in (7), λ allows to define a monad structure on D ; C. That means, λ

yields a category D ; C whose arrows a→ b are composable pairs a
∈D−−→ ∈C−−→ b of

arrows of D, C and composition is defined as(
a
f∈D−−−→ g∈C−−→ b

)
;

(
b
f ′∈D−−−→ g′∈C−−−→ c

)
:=

(
a
f∈D−−−→ λ(

g∈C−−→ f ′∈D−−−→)
g′∈C−−−→ c

)
.

PROPs are understood as monads in the same sense that small categories
are. The difference is that one needs to refine the bicategory of interest, in order
for the composition of PROPs-monads to yield another PROP-monad and not
an arbitrary small category. These refinements are in two steps. First, one takes
the bicategory Span(Mon) whose 1-cells are spans in the category of monoids,
instead of sets. This accounts for the monoidal structure — in fact, monads
in Span(Mon) are small strict monoidal categories. The second refinement has
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the purpose of correctly account for the symmetry structure of PROPs: one
takes the bicategory Bimod(Span(Mon)) whose objects are small strict monoidal
categories and 1-cells are the bimodules in Span(Mon). PROPs are then monads
on the object P of Bimod(Span(Mon)).

We shall gloss over further details about the exact formalisation of this obser-
vation, as it is out of the scope of this paper — we refer to [25] and [37, § 2.4] for
the detailed definitions. The simpler setting of composition of mere categories
should provide enough guidance to follow the rest of our exposition.

It is important for our purposes to remark how composition works for PROPs
T1, T2 generated by SMTs, say (Σ1, E1) and (Σ2, E2). The PROP T1 ; T2 induced
by a distributive law λ : T2 ; T1 → T1 ; T2 will also enjoy a presentation by gener-
ators and equations, consisting of the sum (Σ1]Σ2, E1]E2) plus the equations
Eλ arising from the the distributive law. The set Eλ is simply the graph of λ,

now seen as a set of directed equations (
∈T2−−→ ∈T1−−→) ≈ (

∈T1−−→ ∈T2−−→) telling how
Σ2-terms modulo E2 distribute over Σ1-terms modulo E1. In fortunate cases,
it is possible to present Eλ by a simpler, or even finite, set of equations, thus
giving a sensible axiomatisation of the compatibility conditions expressed by λ.
This is the case for both examples considered below.

Example 3.3.

(a) The PROP F of functions can be described as the composite of PROPs
for surjections and injections. Let In be the PROP whose arrows n → m
are injective functions from n to m. The PROP Su of surjective functions is
defined analogously. There is a distributive law λ : In ; Su→ Su ; In defined by

epi-mono factorisation: it maps a composable pair
∈In−−→ ∈Su−−→ to a composable

pair
∈Su−−→ ∈In−−→ [25]. The resulting PROP Su ; In is isomorphic to F because any

function in F can be uniquely factorised (up-to permutation) as a surjection
followed by an injection. In more syntactic terms, using the isomorphism
F ∼= Mn, this result says that Mn is the composite Mu ; Un, where Mu ∼= Su is
the PROP freely generated by the SMT ({ }, {(A1), (A2)}) and Un ∼= In

by the SMT ({ }, ∅). The distributive law λ : In ; Su → Su ; In is then

presented by the remaining equation (A3) of Mn, which indeed describes
how the generator of Un can be moved past the one of Mu.

(b) The composition of Cm and Mn yields the PROP B of commutative bialge-
bras. First, because Mn ∼= F and Cm ∼= Fop , we can express a distributive law
λ : Mn ; Cm→ Cm ; Mn as having the type F ; Fop → Fop ; F. This amounts to

saying that λ maps cospans n
f∈F−−→ g∈F←−− m to spans n

p∈F←−− q∈F−−→ m. Defining
this mapping via (chosen) pullback in F satisfies the conditions of distribu-
tive laws [25]. One can now read the equations arising by the distributive
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law from pullback squares in F. For instance:

1 1
$$

2

::

0

dd
�� +3 2

::

$$
0

0

dd ::

0

:: yields ; = ;

where the second diagram is obtained from the pullback by applying the
isomorphisms F ∼= Mn and Fop ∼= Cm. In fact, Lack [25] shows that the equa-
tions presenting Cm ; Mn arise from (those of Cm+Mn and) just four pullback
squares, yielding equations (A7)-(A10). Therefore, Cm ; Mn is isomorphic to
the PROP B of bialgebras encountered in Example 2.3. Furthermore, these
PROPs have a “concrete” descriptions as Fop ; F. In the terminology of [3],
one can see Fop ; F as the classifying category of the bicategory Span(F),
obtained by identifying the isomorphic 1-cells and forgetting the 2-cells.

There is a tight relationship between distributive laws and factorisation sys-
tems. Distributive laws of small categories are in 1-1 correspondence with so-
called strict factorisation systems [31], in which factorisations must be specified
uniquely on the nose, rather than merely up-to isomorphism. Distributive laws
of PROPs correspond instead to a more liberal kind of factorisation system, for
which decompositions are up-to permutation. As this perspective will be useful
later, we recall the following result from Lack [25].

Proposition 3.4 ([25], Theorem 4.6). Let S be a PROP and T1, T2 be sub-

PROPs of S. Suppose that each arrow n
f∈S−−→ m can be factorised as n

g1∈T1−−−−→ g2∈T2−−−−→
m uniquely up-to permutation, that is, for any other decomposition n

h1∈T1−−−−→ h2∈T2−−−−→
m of f , there exists permutation

p∈P−−→ such that the following diagram commutes.

g2

%%
g1
99

h1

//
p
OO

h2

// .

Then there exists a distributive law λ : T2 ; T1 → T1 ; T2, defined by associating

to a composable pair
f∈T2−−−→ g∈T1−−−→ the factorisation of f ; g, yielding S ∼= T1 ; T2.

Quotient of a distributive law

Definition 3.1 introduced the notion of quotient θ : F → G of a monad F : the idea
is that the monad G is obtained by imposing additional equations on the algebraic
theory described by F . As one may expect, distributive laws are compatible with
monad quotients, provided that the law preserves the newly added equations.
This folklore result appears in various forms in the literature: [9] gives it for
distributive laws of endofunctors over monads and [4, 8] for distributive laws of
monads. All these references concern distributive laws in Cat. For our purposes,
it is useful to state the result for arbitrary bicategories.
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Proposition 3.5. Suppose that λ : F ; H → H ; F is a distributive law in a
bicategory B, θ : F → G a monad quotient and λ′ : G ; H → H ; G another 2-cell
of B making the following diagram commute.

F ; H θH //

λ
��

G ; H
λ′

��
H ; F Hθ // H ; G

(8)

Then λ′ is a distributive law of monads.

Proof. The diagrams for compatibility of λ′ with unit and multiplication of G
commute because θ is a monad morphism and (8) commutes. For compatibility
of λ′ with unit and multiplication of H, one needs to use commutativity of (8)
and the fact that θ is epi.

We remark that Proposition 3.5 holds also in the version in which one quo-
tients the monad H instead of F . It is now useful to instantiate the result to the
case of distributive laws of PROPs.

Proposition 3.6. Let T be the PROP freely generated by (Σ,E) and E′ ⊇ E be
another set of equations on Σ-terms. Suppose that there exists a distributive law

λ : T ; S→ S ; T such that, if E′ implies c = d, then λ(
c∈T−−−→ e∈S−−→) = λ(

d∈T−−−→ e∈S−−→
). Then there exists a distributive law λ′ : T ′ ; S→ S ; T ′ presented by the same
equations as λ, i.e., Eλ′ = Eλ.

Proof. There is a PROP morphism θ : T → T ′ defined by quotienting string dia-
grams in T by E′. This is a monad quotient in the bicategory Prof(Mon) where
PROPs are monads. We now define another 2-cell λ′ : T ′ ; Cm→ Cm ; T ′ as fol-

lows: given
e∈T ′−−−→ c∈Cm−−−→, pick any

d∈T−−−→ such that θ(d) = e and let
c′∈Cm−−−−→ d′∈T−−−→

be λ(
d∈T−−−→ c∈Cm−−−→). Define λ′(

e∈T ′−−−→ c∈Cm−−−→) as
c′∈Cm−−−−→ θ(d′)∈T ′−−−−−−→. λ′ is well-defined

because, by assumption, if θ(d1) = θ(d2) then E′ implies that d1 = d2 and thus

λ(
d1−→ c−→) = λ(

d2−→ c−→).
Now, λ, λ′ and θ satisfy the assumptions of Proposition 3.5. In particular,

(8) commutes by definition of λ′ in terms of λ and θ. The conclusion of Proposi-
tion 3.5 guarantees that λ′ is a distributive law. By construction, λ′ is presented
by the same equations as λ.

We will see an application of Proposition 3.6 in the next section (Lemma 4.8).

4 Lawvere theories as composed PROPs

This section introduces and characterises Lawvere categories via a certain class
of distributive laws of PROPs. As mentioned in the introduction, Lawvere cat-
egories are closely related to PROPs: the essential difference is that, whereas
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a Lawvere category is required to be a category with finite products — hence-
forth called a cartesian category, a PROP may carry any symmetric monoidal
structure, not necessarily cartesian.

Just as PROPs, Lawvere categories can be also freely obtained by generators
and equations. By analogy with symmetric monoidal theories introduced in § 2,
we organise this data as a cartesian theory : it simply amounts to the notion of
equational theory that one typically finds in universal algebra, see e.g. [13].

Definition 4.1. A (one-sorted) cartesian theory (Σ,E) consists of a signature
Σ = {o1 : n1 → 1, . . . , ok : nk → 1} and a set E of equations between cartesian
Σ-terms, which are defined as follows:
– for each i ∈ N, the variable xi is a cartesian term;
– suppose o : n → 1 is a generator in Σ and t1, . . . , tn are cartesian terms.

Then o(t1, . . . , tn) is a cartesian term.
The Lawvere category L(Σ,E) freely generated by (Σ,E) is the category whose

objects are the natural numbers and arrows n → m are lists 〈t1, . . . , tm〉 of
cartesian Σ-terms quotiented by E, such that, for each ti, only variables among
x1, . . . , xn appear in ti. Composition is by substitution:(

n
〈t1,...,tm〉−−−−−−→ m

)
;

(
m
〈s1,...,sz〉−−−−−−→ z

)
= n

〈s1[ti/xi|1≤i≤m],...,sz [ti/xi|1≤i≤m]〉−−−−−−−−−−−−−−−−−−−−−−−−→ z

where t[t′/x] denotes the cartesian term t in which all occurrences of the variable
x have been replaced with t′.
L(Σ,E) is equipped with a product × which is defined on objects by addition

and on arrows by list concatenation and suitable renaming of variables:(
n
〈t1,...,tm〉−−−−−−→ m

)
×
(
z
〈s1,...,sl〉−−−−−−→ l

)
= n+ z

〈t1,...,tm,s1[xi+m/xi|1≤i≤l],...,sl[xi+m/xi|1≤i≤l]〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m+ l.

We use notation ovar(t) for the list of occurrences of variables appear-
ing (from left to right) in t and, more generally, ovar(t1, . . . , tm) for the list
ovar(t1) :: · · · :: ovar(tm). Also, |l| ∈ N denotes the length of a list l. We say
that a list 〈t1, . . . , tm〉 : n→ m is linear if each variable among x1, . . . , xn appears
exactly once in ovar(t1, . . . , tm).

Our first observation is that Lawvere categories are PROPs.

Proposition 4.2. L(Σ,E) is a PROP.

Proof. Let × act as the monoidal product, 0 as its unit and define the symmetry
n + m → m + n as the list 〈xn+1, . . . , xn+m, x1, . . . , xn〉. It follows that L(Σ,E)

equipped with this structure satisfies the laws of symmetric strict monoidal cat-
egories, thus it is a PROP.

As a side observation, note that the unique PROP morphism P → L(Σ,E)

given by initiality of P in PROP sends p : n→ n to 〈xp−1(1), . . . , xp−1(n)〉.

12



Remark 4.3. In spite of Proposition 4.2, cartesian theories are not a subclass of
symmetric monoidal theories: in fact, the two concepts are incomparable. On
the one hand, a symmetric monoidal theory (Σ,E) is cartesian if and only if
all generators in Σ have coarity 1 and, for all equations t = s in E, t and s
are Σ-terms with coarity 1. Under these conditions, there is a canonical way
to interpret any Σ-term n → m as a list of m cartesian Σ-terms on variables
x1, . . . , xn. Below, o ranges over Σ:

: 1→ 1 7→ 〈x1〉 : 2→ 2 7→ 〈x2, x1〉

o : n→ 1 7→ 〈o(x1, . . . , xn)〉.

The inductive cases are defined using the operations ; and ⊕ on lists given
in Definition 4.1. Note that Σ-terms always denote (lists of) linear cartesian
terms. This explains why, conversely, not all the cartesian theories are symmet-
ric monoidal: their equations possibly involve non-linear Σ-terms, which are not
expressible with (symmetric monoidal) Σ-terms. The subtlety here is that, in
a sense, we can still simulate a cartesian theory on signature Σ with a sym-
metric monoidal theory, which however will be based on a larger signature Σ′,
recovering the possibility of copying and discarding variables by the use of ad-
ditional generators. This point will become more clear below, where we will see
how copier and discharger, i.e., the cartesian structure, can be mimicked with
the use of the PROP Cm.

Example 4.4. The SMT (ΣM , EM) of commutative monoids is cartesian. It gen-
erates the Lawvere category LΣM,EM

whose arrows n→ m are lists 〈t1, . . . , tm〉
of elements of the free commutative monoid on {x1, . . . , xn}.

The example of commutative monoids is particularly instructive for sketching
our approach to Lawvere categories as composed PROPs. First, note that the
Lawvere category LΣM,EM

includes the PROP Mn freely generated by (ΣM , EM).
Indeed, any string diagram of Mn can be interpreted as a list of terms following
the recipe of Remark 4.3. For instance,

: 4→ 3 is interpreted as 〈 (x2, (x1, x3)), x4, 〉 : 4→ 3

As we observed above, string diagrams of Mn can only express linear terms.
What makes LΣM,EM

more general than Mn is the ability to copy and discard
variables. Indeed, just as any monoidal category in which ⊕ is the cartesian prod-
uct, LΣM,EM

comes equipped with canonical choices of a “copy” and “discard”
operation

cpy(n) := 〈x1, . . . , xn, x1, . . . , xn〉 : n→ 2n dsc(n) := 〈 〉 : n→ 0 n ∈ N

natural in n, which satisfy some expected equations: copying is commutative
and associative; copying and then discarding is the same as not doing anything
— see e.g. [18, 14].
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How can we mimic the copy and discard structure in the language of PROPs?
First, for each n > 1 one can define cpy(n) and dsc(n) in terms of cpy(1) and
dsc(1), which can therefore be regarded as the only fundamental operations7.
Also, the equations that they satisfy can be synthesised as saying that cpy(1)
acts as the comultiplication and dsc(1) as the counit of a commutative comonoid
on 1. Therefore, they are none other than the generators of the PROP Cm:

: 1→ 2 : 1→ 0.

Our approach suggests that a copy of Mn and of Cm “live” inside LΣM,EM
. We

claim that these two PROPs provide a complete description of LΣM,EM
, that

means, any arrow of LΣM,EM
can be presented diagrammatically by using Mn

and Cm. For instance,

〈 (x2, (x1, x4)), x1, 〉 : 4→ 3 corresponds to

2 Mn2 Cm

: 4→ 3

Observe that the diagram is of the factorised form
∈Cm−−−→ ∈Mn−−−→. Intuitively, Cm

is deputed to model the interplay of variables — in this case, the fact that x1
is copied and x3 is deleted — and Mn describes the syntactic tree of the terms.
Of course, to claim that this factorisation is always possible, we need additional
equations to model composition of factorised diagrams. For instance:

〈 (x1, x2), x1〉 ; 〈x1, (x1, x2)〉 = 〈 (x1, x2), ( (x1, x2), x1)〉.

;
?
=

The second equality holds if we assume the equation (A8) of the SMT of bialge-
bras. Thus the example suggests that composition by substitution in LΣM,EM

can
be mimicked at the diagrammatic level by allowing the use of bialgebra equa-
tions, which as we know from Example 3.3.(b) present the composite PROP
Cm ; Mn. Therefore, the conclusive conjecture of our analysis is that LΣM,EM

must be isomorphic to Cm ; Mn and can be presented by equations (A1)-(A10).
We now generalise and make formal the above approach. Our main result is

the following.

Theorem 4.5. Suppose that (Σ,E) is an SMT which is also cartesian and let
T(Σ,E) be its freely generated PROP. Then L(Σ,E)

∼= Cm ; T(Σ,E), where distributive
law T(Σ,E) ; Cm→ Cm ; T(Σ,E) yielding L(Σ,E) is presented by equations

7 For n = 0, both operations are equal to the identity on 0.
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o = (Lw1) o =
o

o
(Lw2)

for each o ∈ Σ.

Before moving to the proof of Theorem 4.5, we show its significance by re-
visiting some well-known theories in terms of our result.

Example 4.6.

(a) If we instantiate Theorem 4.5 to the theory (ΣM , EM ) of commutative
monoids (Example 2.3), then (Lw1)-(Lw2) are the bialgebra equations (A7)-
(A10). The result that B ∼= Cm ; Mn (Example 3.3.(b)) is now an immediate
consequence of Theorem 4.5 and tells us that the Lawvere category of com-
mutative monoids can be considered as the PROP of bialgebras.

(b) In the case of monoids, the resulting Lawvere category is precisely a compos-
ite PROP, because all the equations only affect the linear part of the theory,
that means, the generating cartesian theory is also an SMT. As observed
in Remark 4.3, this is not true in general: for instance, the cartesian the-
ory (ΣG, EG) of abelian groups extends the one (ΣM , EM ) of commutative

monoids with an inverse operation : 1 → 1 and a non-linear equation

(x, (x)) = . In such cases, Theorem 4.5 still yields useful infor-
mation about the structure of the resulting Lawvere category. For instance,
it means that L(ΣG,EG) is isomorphic to the PROP Cm ; TΣG,EM quotiented
by the above non-linear equation, which is rendered in string diagrams as:

= .

Interestingly, the result of this quotient is isomorphic to the PROP of integer
matrices, see e.g. [37, §3.5] and its models in a symmetric monoidal category

are the Hopf algebras [17], with playing the role of the antipode.

(c) In [21] Fritz presents the category of finite sets and probabilistic maps us-
ing generators and equations. The resulting Lawvere category LProb can be
decomposed following the scheme of Theorem 4.5: there is a linear part
(ΣP , EP ) of the theory — given by binary convex combinations ΣP =

{ � : 2 → 1 | λ ∈ [0, 1]} and suitable associativity and commuta-
tivity laws in EP , a commutative comonoid structure, and the two inter-
act according to (Lw1)-(Lw2). This interaction yields a composite PROP

Cm ; T(ΣP ,EP ) which, quotiented by non-linear equations 0 = and

� = , yields LProb. 8

8 In fact, the Lawvere category in [21] has finite coproducts, while our LProb is based
on finite products. This is just a matter of co-/contra-variant presentation of the
same data: one can switch between the two by “vertical rotation” of diagrams.
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Remark 4.7. It is instructive to observe how Theorem 4.5 translates to models of
theories. We recalled what is a model for a PROP in Remark 2.4; there is an anal-
ogous notion for Lawvere categories. A model for a Lawvere category L(Σ,E) is a
cartesian category C together with a cartesian (i.e., finite-products preserving)
functor L(Σ,E) → C: models of L(Σ,E) in C and natural transformations between
them form a category CartMod(L(Σ,E),C). Now, for (Σ,E) and T(Σ,E) as in The-
orem 4.5, we have that models of L(Σ,E) in C cartesian are the same as models of
T(Σ,E) in C, now seen more abstractly as a symmetric monoidal category. That
means, there is an equivalence LinMod(T(Σ,E),C) ' CartMod(L(Σ,E),C).

The rest of the section is devoted to proving Theorem 4.5. First we observe
that, by the following lemma, it actually suffices to check our statement for SMTs
with no equations. This reduction has just the purpose of making computations
in L(Σ,E) easier, by working with terms instead of equivalence classes.

Lemma 4.8. If the statement of Theorem 4.5 holds in the case E = ∅, then it
holds for any cartesian SMT (Σ,E).

Proof. Let (Σ,E) be a cartesian SMT and TΣ, T(Σ,E) be the PROPs freely gen-
erated, respectively, by (Σ, ∅) and (Σ,E). By assumption, Theorem 4.5 holds for
(Σ, ∅), yielding a distributive law λ : TΣ ; Cm→ Cm ; TΣ. A routine check shows
that λ preserves the equations of E, whence Proposition 3.6 gives a distributive
law λ′ : T(Σ,E) ; Cm→ Cm ; T(Σ,E) with the required properties.

In the sequel, let us abbreviate LΣ,∅ as LΣ. By virtue of Lemma 4.8, we shall
prove Theorem 4.5 for LΣ and by letting TΣ be the PROP freely generated by
(Σ, ∅). We shall obtain the distributive law TΣ ; Cm → Cm ; TΣ from the recipe

of Proposition 3.4, by showing that any arrow of LΣ decomposes as
∈Cm−−−→ ∈TΣ−−−→.

We now give some preliminary lemmas that are instrumental for the definition
of the factorisation and the proof of the main result. We begin by showing how
string diagrams of Cm and TΣ are formally interpreted as arrows of LΣ.

Lemma 4.9.

– Cm is the sub-PROP of LΣ whose arrows are lists of variables. The inclusion
of Cm in LΣ is the morphism Φ : Cm→ LΣ defined on generators of Cm by

7→ 〈x1, x1〉 : 1→ 2 7→ 〈〉 : 0→ 1.

– TΣ is the sub-PROP of LΣ whose arrows are linear terms. The inclusion of
TΣ in LΣ is the morphism Ψ : TΣ → LΣ defined on generators of TΣ by

o 7→ 〈o(x1, . . . , xn)〉 : n→ 1 (o : n→ 1) ∈ Σ.

Proof. First, it is immediate to verify that lists of variables are closed under
composition, monoidal product and include all the symmetries of LΣ: therefore,
they form a sub-PROP. The same holds for linear terms.
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We now consider the first statement of the lemma. There is a 1-1 correspon-

dence between arrows n
f∈LΣ−−−−→ m that are lists of variables and functions m→ n:

the function for f maps k, for 1 ≤ k ≤ m, to the index l of the variable xl ap-
pearing in position k in f . This correspondence yields an isomorphism between
the sub-PROP of LΣ whose arrows are lists of variables and Fop . Composing

this isomorphism with Cm
∼=−→ Fop yields Φ as in the statement of the lemma.

For the second statement, faithfulness is immediate by the fact that arrows
of TΣ are Σ-terms modulo the laws of SMCs, with no additional equations. One
can easily verify that Ψ : TΣ → LΣ identifies the linear terms in LΣ following the
observations in Remark 4.3.

Henceforth, for the sake of readability we shall not distinguish between Cm
and the isomorphic sub-PROP of LΣ identified by the image of Φ, and similarly
for TΣ and Ψ . Lemma 4.9 allows us to use LΣ as an environment where Cm and
TΣ interact. The following statement guarantees the soundness of the interaction
described by (Lw1)-(Lw2).

Lemma 4.10. Equations (Lw1) and (Lw2) are sound in LΣ.

Proof. We first focus on (Lw1). Following the isomorphisms of Lemma 4.9,

o ∈ TΣ[n, 1] is interpreted as the arrow 〈o(x1, . . . , xn)〉 ∈ LΣ[n, 1] and

∈ Cm[0, 1] as 〈〉 ∈ LΣ[1, 0]. The left-hand side of (Lw1) is then the compos-

ite 〈o(x1, . . . , xn)〉 ; 〈〉 ∈ LΣ[n, 0], which is equal by definition to 〈〉 ∈ LΣ[n, 0].
Therefore, the left- and right-hand side of (Lw1) are the same arrow of LΣ.

It remains to show soundness of (Lw2). Following Lemma 4.9, the left-hand
side o ; is interpreted in LΣ as 〈o(x1, . . . , xn)〉 ; 〈x1, x1〉 and the right-

hand side as 〈x1, . . . , xn, x1, . . . , xn〉 ; 〈o(x1, . . . , xn), o(xn+1, . . . , xn+n)〉. By def-
inition, both composites are equal to 〈o(x1, . . . , xn), o(x1, . . . , xn)〉 in LΣ. There-
fore, (Lw2) is also sound in LΣ.

It is useful to observe that (Lw1)-(Lw2) allows us to copy and discard not
only the generators but arbitrary string diagrams of TΣ.

Lemma 4.11. Suppose d is a string diagram of TΣ. Then the following
holds in TΣ + Cm quotiented by (Lw1)-(Lw2).

d =
d

d
(Lw3) d = (Lw4)

Proof. The proof is by induction on d . For (Lw3), the base cases of

and follow by the laws of SMCs (Figure 1). The base case of o , for o a
generator in Σ, is given by (Lw2). The inductive cases of composition by ; and
⊕ immediately follow by induction hypothesis. The proof of (Lw4) is analogous.

We can now show the factorisation lemma.

17



Lemma 4.12. Any arrow n
f∈LΣ−−−−→ m has a factorisation n

ĉ∈Cm−−−→ d̂∈TΣ−−−→ m
which is unique up-to permutation.

Proof. Since the cartesian theory generating LΣ has no equations, n
f−→ m is

just a list of cartesian Σ-terms 〈t1, . . . , tm〉. The factorisation consists in replac-
ing all variables appearing in 〈t1, . . . , tm〉 with fresh ones x1, . . . , xz, so that
no repetition occurs: this gives us the second component of the decomposi-

tion as a list of linear terms z
d̂∈TΣ−−−→ m. The first component ĉ will be the

list n
ovar(t1,...,tm)∈Cm−−−−−−−−−−−−→ z of variables originally occurring in f , so that post-

composition with d̂ yields 〈t1, . . . , tm〉. It is simple to verify uniqueness up-to
permutation of this factorisation.

We now have all the ingredients to conclude the proof of our main statement.

Proof (Theorem 4.5). Using the conclusion of Lemma 4.12, Proposition 3.4 gives
us a distributive law λ : TΣ ; Cm→ Cm ; TΣ such that LΣ ∼= Cm ; TΣ. It remains
to show that (Lw1)-(Lw2) allow to prove all the equations arising from λ. By

Proposition 3.4, λ maps a composable pair n
d∈TΣ−−−→ c∈Cm−−−→ m to the factorisation

n
c′∈Cm−−−−→ d′∈TΣ−−−−→ m of d ; c in LΣ, calculated according to Lemma 4.12. The

corresponding equation generated by λ is d ; c = c′ ; d′, with d, c, c′, d′ now seen
as string diagrams of TΣ + Cm. The equational theory of LΣ ∼= Cm ; TΣ consists
of all the equations arising in this way plus those of TΣ + Cm. What we need to
show is that

the string diagrams d ; c and c′ ; d′ are equal modulo the
equations of TΣ + Cm and (Lw1)-(Lw2).

(†)

Since our factorisation is unique up-to permutation, it actually suffices to
show a weaker statement, namely that

there exists a factorisation n
c′′∈Cm−−−−→ d′′∈TΣ−−−−→ m of d ; c

in LΣ such that the string diagrams d ; c and c′′ ; d′′ are
equal modulo the equations of TΣ+Cm and (Lw1)-(Lw2).

(‡)

Statement (‡) implies (†) because, by uniqueness of the factorisation c′ ; d′

up-to permutation, there exists
p∈P−−→ such that d′ = p ; d′′ and c′′ = c′ ; p in LΣ.

Since p is an arrow of both sub-PROPs TΣ and Cm, the first equality also holds
in TΣ and the second in Cm. So c′ ; d′ = c′ ; p ; d′′ = c′′ ; d′′ in TΣ + Cm.

Therefore, we turn to a proof of (‡). We describe a procedure to transform

the string diagram
d∈TΣ−−−→ c∈Cm−−−→ into the form

c′′∈Cm−−−−→ d′′∈TΣ−−−−→ by only using the
equations in TΣ + Cm plus (Lw1)-(Lw2). Lemmas 4.9 and 4.10 guarantee that
d ; c = c′′ ; d′′ as arrows of LΣ.

1. First, there is a preparatory step in which we move all symmetries to the
outmost part of the string diagram d ; c, to ease the application of (Lw1)-
(Lw2). By definition, d only contains components of the kind o : k → 1,
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for o ∈ Σ, : 2 → 2 and : 1 → 1. Using naturality (Fig. 1), we can

move all symmetries to the left of components o .

o =⇒ o o =⇒ o
The result is a string diagram p ; d̄ ; c′, where p only contains components

and — i.e., it is a string diagram of P — and d̄ is a string diagram

of TΣ where does not appear.

c0d0 =⇒ p c0d̄

We then perform a symmetric transformation on the string diagram c. By

definition, c contains components : 1 → 2, : 0 → 1, : 2 → 2

and : 1 → 1. By naturality, we can move all symmetries to the

right of any component and .

=⇒ =⇒

=⇒ =⇒

The result is a string diagram p ; d̄ ; c̄ ; p′, where c̄ is a string diagram of Cm

in which does not appear and p′ is a string diagram of P.

p c0d̄ =⇒ p p0d̄ c̄

2. We now make d̄ and c̄ interact. First note that, since d̄ does not contain
and all generators o ∈ Σ have coarity 1, d̄ must the ⊕-product d̄1 ⊕ . . .⊕ d̄z
of string diagrams d̄i : ki → 1 of TΣ.

p p0d̄ c̄ =

d̄z

d̄2

d̄1

p p0c̄

For analogous reasons, c̄ is also a ⊕-product c̄1⊕. . .⊕ c̄z where, for 1 ≤ i ≤ z,

c̄i = or c̄i = . (9)

We thus can present c̄ as follows:

d̄z

d̄2

d̄1

p p0c̄ =

d̄z

d̄2

d̄1 c̄1

c̄2

c̄z

p p0 .
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We are now in position to distribute each d̄i over the corresponding c̄i.
Suppose first c̄i satisfies the left-hand equality in (9). By assumption, all
the equations of TΣ + Cm, (Lw1) and (Lw2) hold. Thus, by Lemma 4.11,
also (Lw3) holds. Starting from d̄i ; c̄i, we can iteratively apply (Lw3) to

obtain a string diagram of shape
∈Cm−−−→ ∈TΣ−−−→:

d̄i

⇒ d̄i

d̄i

⇒
d̄i

d̄i

d̄i

⇒ · · · ⇒

d̄i

d̄i

d̄i

2 Cm 2 T⌃

.

In the remaining case, c̄i satisfies the right-hand equality in (9). Then, one

application of (Lw1) also gives us a string diagram of shape
∈Cm−−−→ ∈TΣ−−−→.

d̄i ⇒
2 Cm 2 T⌃

Applying the above transformations for each d̄i ; c̄i yields a string diagram

of the desired shape
c′′∈Cm−−−−→ d′′∈TΣ−−−−→.

d̄z

d̄2

d̄1 c̄1

c̄2

c̄z

p p0 =⇒ p p0

c00 2 Cm d00 2 T⌃

.

Observe that all the transformations that we described only used equations in
TΣ +Cm, (Lw1) and (Lw2). This concludes the proof of (‡) and thus of the main
theorem.
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