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Abstract

Groupoidal relative pushouts (GRPOs) have recently been proposed by the authors as a new
foundation for Leifer and Milner’s approach to deriving labelled bisimulation congruences
from reduction systems. In this paper, we develop the theoryof GRPOs further, proving
that well-known equivalences, other than bisimulation, are congruences. To demonstrate
the type of category theoretic arguments which are inherentin the 2-categorical approach,
we construct GRPOs in a category of ‘bunches and wirings.’ Finally, we prove that the
2-categorical theory of GRPOs is a generalisation of the approaches based on Milner’s
precategories and Leifer’s functorial reactive systems.

Introduction

It has become increasingly common to view modern foundational process calculi
as being, at their core,reduction systems. Starting from their common ancestor,
the λ-calculus, most recent calculi consist of a reduction system together with a
contextual equivalence (built out of basic observations, viz. barbs). The strength of
such an approach resides in its intuitiveness. In particular, we need not invent labels
to describe the interactions between systems and their possible environments, a
procedure that may present a degree of arbitrariness, (cf. early and late semantics
of theπ calculus) and may prove quite complex (cf. [5,4,3,1], for instance).

By contrast, reduction semantics suffer at times by their lack of compositional-
ity, and have complex semantic theories because contextualequivalences usually
involve quantification over an infinite set of contexts. Labelled bisimulation con-
gruences based onlabelled transition systems(LTS) may in such cases provide
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fruitful proof techniques; in particular, bisimulations provide the power and man-
ageability of coinduction, while the closure properties ofcongruences provide for
compositional reasoning.

A well-behaved LTS associated with a reduction system should involve a compo-
sitional system of labels, with silent moves (orτ-actions) reflecting the original
reductions and labels describing potential external interactions. Ideally, the result-
ing bisimulation should be a congruence, and should be at least included in the
original contextual reduction equivalence. Proving bisimilarity is then enough to
prove reduction equivalence.

Sewell [24] and Leifer and Milner [14,12] set out to develop atheory to perform
such derivations using general criteria; a meta-theory ofderiving bisimulation con-
gruences. The basic idea behind their construction is to use contextsas labels. To
exemplify the idea, in a CCS-like calculus one would for instance derive a transition

a.P
−|ā.Q

I P |Q

because terma.P in context− | ā.Q reacts to becomeP | Q; in other words, the
context is a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to use as labels.
The intuition is to take only the ‘smallest’ contexts which allow a given reaction to
occur. As well as reducing the size of the LTS, this often makes the resulting bisim-
ulation equivalence finer and often closer to operational intuitions. Sewell’s method
is based on dissection lemmas which provide a deep analysis of a term’s structure.
A generalised, more scalable approach was later developed in [14], where the no-
tion of ‘smallest’ is formalised in categorical terms as arelative-pushout(RPOs).
More precisely, as we shall see, a context is selected as a label for the transition sys-
tem if it makes a certain categorical diagram be a pushout. Both theories, however,
do not seem to scale up to calculi with non trivialstructural congruences. Already
in the case of the monoidal rules that govern parallel composition, things become
rather involved.

The fundamental difficulty brought about by a structural congruence≡ is that work-
ing up to≡ loses too much information about terms for the RPO approach to work
as expected. RPOs do not usually exist in such cases, becausethe fundamental
indication of exactly which occurrences of a term constructor belong to the redex
becomes blurred when terms are quotiented by≡. A very simple, yet significant ex-
ample of this is the categoryBun of bunch contexts considered in [14], and similar
problems arise in structures such as action graphs [15] and bigraphs [17].

In [19,21] we therefore proposed a framework in which term structure is not ex-
plicitly quotiented, but the equality of terms is taken up to≡. Precisely, to give
rp≡ sqone must exhibit a proofα of structural congruence. Thinking of terms as
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arrows in categories where objects represent term arities (e.g. as induced by a sig-
natureΣ), the equationrp≡ sqcan be recast categorically as a commuting diagram
together with a 2-cellα (constructed from the rules generating≡ and closed under
all contexts), as in the diagram below.

k
p

//

q
��

l
r
��

m

ααα

s
// n

Since such proofs are naturally isomorphisms, we were led toconsidergroupoid-
enrichedcategories (G-categoriesfor short), i.e., 2-categories where all 2-cells are
iso, and initiated the study ofG-relative pushouts(GRPOs), as a suitable gener-
alisation of RPOs from categories to G-categories. The ideaof using 2-cells to
represent generalised structural congruence was first suggested by Sewell [23].

The purpose of this paper is to continue the development of the theory of GRPOs.
We aim to show that, while adding little further complication (cf. §2 and §3), GR-
POs advance the field by providing a convenient solution to simple, yet important
problems (cf. §4 and §5). GRPOs indeed promise to be part of anelegant founda-
tion for a meta-theory of ‘deriving bisimulation congruences.’

This paper presents two main technical results in support ofour claims. Firstly,
we prove that the case of the aforementioned categoryBun of bunch contexts,
problematic for RPOs, can be treated in a natural way using GRPOs. Secondly,
we show that the notions of precategory and functorial reactive system, theories
introduced to deal with the problems solved by GRPOs, can be encompassed in the
GRPO-based approach.

The notion ofprecategoryis proposed in [12,13] inspired by the examples of Leifer
in [12], Milner in [17] and, most recently, of Jensen and Milner in [8]. It consists
of a category appropriately decorated by so-called ‘support sets’ which identify
syntactic elements so as to keep track of them under arrow composition. Such sup-
ported structures are no longer categories – arrow composition is partial – which
bring us away from the well-known world of categories and their established the-
ory, and requires an ad-hoc development. The intensional information recorded in
precategories, however, allows one to generate a category ‘above’ where RPOs ex-
ist, as opposed to the category of interest ‘below,’ sayC, where they do not. The
category ‘above’ is related toC via a well-behaved functor, used to map RPOs
diagrams from the category ‘above’ toC, where constructing them would be im-
possible. (Here ‘well-behaved’ means that the functor satisfies technical conditions
which guarantee the transport of relevant properties toC.) These structures take the
name offunctorial reactive systems, and give rise to a theory developed in [12] to
generate labelled bisimulation congruences.
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This paper presents a technique for mapping precategories to G-categories so that
the LTS generated using GRPOs is the same (i.e., it hasexactlythe same labels)
as the LTS generated using the above mentioned approach. Thetranslation derives
from the precategory’s support information a notion of homomorphism, specific
to the particular structure in hand, which constitutes the 2-cells of the derived G-
category. We claim that this yields a mathematically elegant approach, potentially
more general and in principle more direct than precategories, in that it allows for
arbitrary structural isomorphisms to be considered, and fits well within existing
category theory, with no need for new frameworks. In particular, one advantage of
G-categories is that one may apply standard categorical constructions without trans-
lations or alterations. Further supporting evidence for GRPOs is provided in [22],
where we apply their theory to graphs and graph rewriting. Itremains to be seen,
of course, whether future developments, e.g. for the analysis of specific LTSs ob-
tained through our constructions, will point towards the need of additional structure
on G-categories.

Structure of the paper. In §2 we review definitions and results presented in our
previous work [19,21]; §3 shows that, analogously to the 1-dimensional case, trace
and failures equivalence are congruences provided that enough GRPOs exist. In
§4, we show that the category of bunch contexts is naturally a2-category where
GRPOs exist; §5 shows how precategories are subsumed by our notion of GRPOs.
The exposition ends with a few concluding remarks; §1 recalls basic notions of 2-
categories, and can be safely skipped by those readers acquainted with the standard
notations.

An extended abstract of this work appeared as [20]. Here we additionally develop
the theory of weak operational congruences, and illustratethe role of the notion of
extensive category in the construction of GRPOs inBun.

1 Preliminaries

Throughout the paper we assume a moderate knowledge of category theory and
related terminology. In this section we fix notations and recall the basic elements of
2-categories we need to state our definitions and prove our results. For a thorough
introduction to 2-categories, the reader is referred to [10]

We useOrd to denote the category of finite ordinals. The objects of thiscategory
are the natural numbers 0,1,2, . . . . The morphisms fromm to n are the all the func-
tions from them-element set[m] = {1, 2, . . .m} to [n] = {1, 2, . . .n}. Composition is
the usual compositions of functions. The category is skeletal, in that we haven∼= n′

if and only if n = n′. We assume thatOrd has chosen coproducts, namely ordinal
addition⊕. One possible way to define this is to let, on objects,m⊕n = m+ n,
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while on arrows, givenf : m→m′ andg : n→ n′, let f +g : m+n→m′+n′ be the
function( f +g)(x) = f (x) for 1≤ x≤mand( f +g)(x) = g(x−m)+m′ otherwise.
Intuitively, f +g is constructed by puttingf andg side by side.

For any finite setx, let ord(x) be the finite ordinal of the same cardinality and
tx : x→ ord(x) be a chosen isomorphism. There is an equivalence of categories
F : Setf →Ord , whereSetf denotes the category of finite sets. On objects it sends
x to ord(x); on morphisms, it mapsf : x→ y to ty f t−1

x : ord(x)→ ord(y).

A 2-categoryC is a category where homsets (that is the collections of arrows be-
tween any pair of objects) are categories and, correspondingly, whose composition
maps are functors. Explicitly, a 2-categoryB consists of the following.

• A class ofobjects X,Y,Z, . . ..

• For anyX,Y ∈ C, a categoryC(X,Y). The objectsC(X,Y) are called1-cells, or
simply arrows, and denoted byf : X→Y. Its morphisms are called2-cells, are
writtenα : f ⇒ g: X→Y and drawn as

X
f

((

g
66

�� ��
�� α Y.

Composition inC(X,Y) is denoted by• and referred to as ‘vertical’ compo-
sition. Identity 2-cells are denoted by1f : f ⇒ f . Isomorphic 2-cells are occa-
sionally denoted asα : f ∼= g. As an example of vertical composition, consider
2-cellsα : f ⇒ g andβ : g⇒ h as below.

X

f

  
�� ��
�� αg //

>>

h

�� ��
�� β

Y

They can be composed, yieldingβ •α : f ⇒ h.

• For eachX,Y,Z there is a functor. : C(Y,Z)×C(X,Y)→C(X,Z), the so-called
‘horizontal’ composition, which we often denote by mere juxtaposition.Hori-
zontal composition is associative and admits1idX as identities. As an example,
consider 2-cellsα : f ⇒ f ′ andβ : g⇒ g′, as illustrated below.

X
f

((

f ′
66

�� ��
�� α Y

g
((

g′
66

�� ��
�� β Z

They can be composed horizontally, obtainingβα : g f ⇒ g′ f ′.

As a notation, we writeα f andgα for, respectively,α1f and1gα. We follow the
convention that horizontal composition binds tighter thanvertical composition.
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In 2-categories, the order of composition of 2-cells is not important. This is a conse-
quence of the horizontal composition being a functor, and can be axiomatised with
the so calledmiddle-four interchange law: for f , f ′, f ′′ : X→Y andg,g′,g′′ : Y→Z
andα : f ⇒ f ′, α′ : f ′⇒ f ′′, β : g⇒ g′ andβ′ : g′⇒ g′′, as illustrated by

X

f

  
�� ��
�� α

>>

f ′′

�� ��
�� α′

f ′ //Y

g

  
�� ��
�� β

>>

g′′

�� ��
�� β′

g′ //Z

we have
β′α′ •βα = (β′ •β)(α′ •α).

As a consequence, it can be shown that a diagram of 2-cells defines at most one
composite 2-cell; that is, all the possible different ways to combine together ver-
tical and horizontal composition, yield the same composite2-cell. This primitive
operation is referred to aspasting.

In order to illustrate the notion of pasting, we shall consider the following diagrams.

B

q

��

h

��
??

??
??

?

A

00p
����{� β

f
44

g

JJ
???? �#
α

C

rnn

????[cγ
D

A
g
����

f ???? �#
α h

��

����{� β

B C
q

//
p

oo D

E

t

OO

s

NN

����{� γ

PP

u

???? �#δ

The left diagram features 2-cellsα : f ⇒ g, β : qg⇒ p andγ : rh⇒ q. They can
be pasted together uniquely to obtain a 2-cellrh f ⇒ p. This 2-cell can be written
as eitherβ •qα•γ f : rh f ⇒ p, or equally,β •γg• rhα : rh f ⇒ p. Now consider the
right diagram with 2-cellsα : f ⇒ pg, β : h⇒ qg, γ : pt⇒ s andδ : qt⇒ u. There
is no way of composing these 2-cells.

The canonical example of a 2-category isCat, the 2-category of categories, functors
and natural transformations.

Two objectsC, D of a 2-categoryC areequivalentwhen there are arrowsf :C→D,
g : D→C and isomorphic 2-cellsα : idC⇒ g f , β : f g⇒ idD. We refer tof andg
as equivalences.

2 Reactive Systems and GRPOs

Lawvere theories [11] provide a canonical way to recast termalgebras as categories,
and open the way to the categorical treatment of related notions. ForΣ a signature,
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the (free) Lawvere theory onΣ, sayCΣ, has the natural numbers for objects and a
morphismt : m→ n, for t an-tuple ofm-holed terms. Composition is substitution of
terms into holes. For instance, forΣ the signature for arithmetics, term(−1×x)+
−2 is an arrow 2→ 1 (two holes yielding one term) while〈3,2×y〉 is an arrow 0→
2 (a pair of terms with no holes). Their composition is the term (3× x)+ (2× y),
an arrow of type 0→ 1.

Generalising from term rewriting systems onCΣ, Leifer and Milner formulated a
definition ofreactive system[14], and defined a technique to extract labelled bisim-
ulation congruences from them. In order to accommodate calculi with non trivial
structural congruences, as explained in the Introduction,we refine their approach
as follows.

Definition 1 A G-categoryis a 2-category where all 2-cells are isomorphisms.

A G-category is a thus a category enriched overGp, the category of groupoids.

We shall adopt the convention of not indicating the direction of 2-cells when work-
ing with G-categories. This will considerably simplify notation while not causing
much confusion; our 2-cellsα : p⇒ q will always be isomorphic.

Definition 2 A G-reactive systemC consists of

(1) a G-categoryC,
(2) a collectionD of arrows ofC which shall be referred to as thereactive con-

texts; it is required to be closed under 2-cells and reflect composition,
(3) a distinguished object 0∈C,
(4) a set of pairsR ⊆

S

C∈C C(0,C)×C(0,C) called thereaction rules.

The reactive contexts are those contexts inside which evaluation may occur. By
composition-reflecting we mean thatdd′ ∈ D impliesd ∈ D andd′ ∈ D, while the
closure property means that givend ∈ D andα : d⇒ d′ in C impliesd′ ∈ D. The
reaction relation B is defined by taking

a B a′ if there exists〈l , r〉 , d ∈ D andρ : dl⇒ a, ρ′ : a′⇒ dr

As illustrated by the diagram below, this represents the fact that, up to structural
congruence (as witnessed byρ), a is the left-hand sidel of a reaction rule in a
reactive contextd, while a′ is, up to structural congruence (witnessρ′), the corre-
sponding right-hand sider of the reaction rule in the reactive contextd.

0

l
��

a

&&L
LLLLLLLLLLL

C
ρ

d
//C′

0
r
��

a′

&&L
LLLLLLLLLLL

C
ρ′

d
//C′
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The setR of reaction rules is, therefore, a set of base rules with which one gen-
erates the reaction relation B by closure under suitable contexts. For pragmatic
reasons, we choose not to stipulate thatR is to be closed under structural congru-
ence; that is, in our formalism, under 2-cells. More precisely, we do not require that
〈l ′, r ′〉 ∈ R if there exist〈l , r〉 ∈R and 2-cellsα : l ⇒ l ′, β : r⇒ r ′. Indeed, modern
process calculi often have very simple reaction rules and the closure under struc-
tural congruence comes at the point of defining the reaction relation. For example,
the standard textbook definition of CCS [16] lists the singlereaction rule

a.P+P′ ||| a.Q+Q′ B P |||Q

without listing, additionally, all of its structurally congruent variants. It is easy to
check that, if we did choose to impose this condition (R closed under 2-cells)
then the reaction relation B, as well as the canonical labelled transition system
(Definition 10) would remain unchanged.

The notion of GRPO formalises the idea of a context being the ‘smallest’ that en-
ables a reaction in a G-reactive system, and is a conservative 2-categorical extension
of Leifer and Milner’s RPOs [14] (cf. [19,21] for a precise comparison).

For readers acquainted with 2-dimensional category theory, GRPOs are defined in
Definition 3. This is spelled out in elementary categorical terms in Proposition 4,
taken from [19,21].

Definition 3 (GRPOs) Let ρ : ca⇒ db: W→ Z be a 2-cell (cf. diagram below) in
a G-categoryC. A G-relative pushout(GRPO) forρ is a bipushout (cf. [9]) of the
pair of arrows(a,1) : ca→ c and(b,ρ) : ca→ d in the pseudo-slice categoryC/Z.

Z

X ρ

c >>}}}}
Y

d``AAAA

W
b

>>}}}}a
``AAAA

(1)

Proposition 4 Let C be a G-category. A candidate GRPO forρ : ca⇒ db as in
diagram (1) is a tuple〈R,e, f ,g,β,γ,δ〉 such thatδb•gβ •γa = ρ – cf. diagram (i).

Z

X
γ

e //

β

c

>>~~~~~~~~~~~
R

δ
g

OO

Yfoo

d

__@@@@@@@@@@@

W

b

??~~~~~~~~~~~

a

``@@@@@@@@@@@

(i)

R′

X
ϕ

e
//

e′
??~~~~~~~~~~
R

ψ
h

OO

(ii)

Yf
oo

f ′
__???????????

Z

R′
τ

g′

OO

R

g

__???????????

h
oo

(iii )
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A GRPO forρ is a candidate which satisfies a universal property (viz. to be the
‘smallest’ such candidate). Namely, for any other candidate 〈R′,e′, f ′,g′,β′,γ′,δ′〉
there exists a quadruple〈h,ϕ,ψ,τ〉 whereh: R→R′, ϕ : e′⇒ heandψ : h f⇒ f ′ –
cf. diagram (ii ) – andτ : g′h⇒ g – diagram (iii ) – which makes the two candidates
compatible after the obvious pasting, i.e.

τe•g′ϕ•γ′ = γ δ′ •g′ψ•τ−1 f = δ ψb•hβ •ϕa = β′.

Such a quadruple, which we shall refer to asmediating morphism, must beessen-
tially unique, that is unique up to a unique iso. Namely, for any other mediating
morphism〈h′,ϕ′,ψ′,τ′〉 there must exist auniquetwo cell ξ : h→ h′ which makes
the two mediating morphisms compatible, i.e.:

ξe•ϕ = ϕ′ ψ•ξ−1 f = ψ′ τ′ •g′ξ = τ

Observe that whereas RPOs are defined up to isomorphism, GRPOs are defined up
to equivalence, as they are bicolimits.

The definition below plays an important role in the followingdevelopment.

Definition 5 (GIPO) Diagram (1) of Definition 3 is said to be aG-idem-pushout
(GIPO) if 〈Z,c,d, idZ,ρ,1c,1d〉 is its GRPO.

The next two lemmas explain the relationships between GRPOsand GIPOs.

Lemma 6 (GIPOs from GRPOs) If 〈Z,c,d,u,α,η,µ〉 is a GRPO for (i) below, as
illustrated in diagram (ii), then (iii) is a GIPO.

Z′

X α′

c′
??~~~~~~~~~

Y

d′
__@@@@@@@@@

W

a

``@@@@@@@@@ b

??~~~~~~~~~

(i)

Z′

X

c′
??~~~~~~~~~

c //Z
η µ

u

OO

Ydoo

d′
__@@@@@@@@@

W

αa

``@@@@@@@@@ b

??~~~~~~~~~

(ii)

Z

X α

c

>>~~~~~~~~~
Y

d

``@@@@@@@@@

W

a

``@@@@@@@@@ b

??~~~~~~~~~

(iii )

Lemma 7 (GRPOs from GIPOs) If square (iii) above is a GIPO, (i) has a GRPO,
and〈Z,c,d,u,α,η,µ〉 is a candidate for it as shown in (ii), then〈Z,c,d,u,α,η,µ〉
is a GRPO for (i).

The following technical lemmas from [19,21] state the basicproperties of GRPOs,
upon which the congruence theorems below rest.
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Lemma 8 Suppose that diagram (ii ) below has a GRPO.

U a //

b

��

V

d

��

e //W

g

��

X

α

c
//Y

β

f
//Z

(i)

U a //

b

��

V

ge

��

X f c
//

βa• f α

Z

(ii)

(1) If both squares in (i) are GIPOs then the rectangle of (i) is a GIPO;
(2) If the left square and the rectangle of (i) are GIPOs then so is the right square.

Lemma 9 Suppose that diagram (i) below is a GIPO.

Z

X α

c

>>~~~~~~~~~
Y

d

``@@@@@@@@@

W

a

``@@@@@@@@@ b

??~~~~~~~~~

(i)

Z

X α

c

>>~~~~~~~~~
Y

d

``@@@@@@@@@

W

a@@@@

``@@@@

a′

OO

b

??~~~~~~~~~
ε

(ii)

Z

X α

c

>>~~~~~~~~~
Y

d@@@@

``@@@@
d′

pp

ε

W

a

``@@@@@@@@@ b

??~~~~~~~~~

(iii )

Then the regions obtained by pasting the 2-cells in (ii ) and (iii ) are GIPOs. Note that
the proof relies on the fact thatε is, in both diagrams (i) and (ii ), an isomorphism.

The previous lemma in particular implies that the followingdefinition of labelled
transition system derived from a G-reactive system is well defined.

Definition 10 (LTS) For C a G-reactive system whose underlying categoryC is a
G-category, define GTS(C) as follows:

• the states GTS(C) are iso-classes of arrows[a] : 0→ X in C;

• for a,a′ : 0→ X and f : X→ Z, there is a transition[a]
[ f ]

I [a′] if f a B a′

via a GIPO; that is, if there exists a reaction rule〈l , r〉 ∈ R , a reactive context
d ∈ D, and 2-cellsρ : f a⇒ dl andρ′ : dr⇒ a′ such that diagram (2) below is a
GIPO.

Z

X

f
??������
ρ Y

d
__??????

0
a

__?????? l

??������

(2)

Notice that this amounts to consider anf -labelled transition froma only if f is the
‘smallest’ context – in the technical sense defined by the universal property of GR-
POs – to induce a particular reaction ina. The role ofρ is absolutely fundamental
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here: by determining the correspondence (isomorphism) betweena anddl, it deter-
mines exactly the ‘location’ of the redex being reduced, and therefore the reaction
being fired. We will remark again on this with specific examples in later sections.

Henceforth we shall abuse notation and leave out the square brackets when writ-

ing transitions; i.e. we shall write simplya f
I a′ instead of[a]

[ f ]
I [a′]. Note

that, taking into account the conclusions of Lemma 9, this abuse is quite harmless.

Indeed, from a transition[a]
[ f ]

I [a′], we can conclude thatf a B a′ (working
with the “concrete” underlying representatives) and that there exists a reaction rule
〈l , r〉 ∈ R and a GIPOρ : f a⇒ dl with dr ∼= a′. In particular, it does not matter
which representatives of equivalence classes one starts with.

Categories can be seen as a discrete G-categories, where theonly 2-cells are the
identities. Using this observation, each G-concept introduced above reduces to the
corresponding 1-categorical concept. For instance, a GRPO(resp. GIPO) in a cate-
gory is exactly a RPO (resp. IPO) of [14].

3 Congruence Results for GRPOs

The following notion is the precondition needed to prove thecongruence theorem.

Definition 11 (Redex GRPOs)A G-reactive systemC is said to haveredex GR-
POsif its underlying G-categoryC has GRPOs for all squares like (2), wherel is
the left-hand side of a reaction rule〈l , r〉 ∈ R , andd ∈ D.

Observe that this means that there exists a GRPO for each possible interaction be-
tween a term and a context. We are therefore able to determinea ‘smallest’ labelf
to capture each of them in GTS(C). The main theorem of [19,21] is then expressed
as follows.

Theorem 12 (cf. [19,21])Let C be a G-reactive system which has redex GRPOs.
Then the largest bisimulation∼ on GTS(C) is a congruence.

The next three subsections complement this result by proving the expected corre-
sponding theorems for trace and failure semantics, and by lifting them to the case
of weak equivalences. Theorems and proofs in this section follow closely [12], as
they are meant to show that GRPOs are as viable a tool as RPOs are.
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3.1 Traces Preorder

Trace semantics [18] is a simple notion of equivalence whichequates processes if
they can engage in the same sequences of actions. Even thoughit lacks the fine
discriminating power of branching time equivalences, viz.bisimulations, it is nev-
ertheless interesting because many safety properties can be expressed as conditions
on sets of traces.

We say that a sequencef1 · · · fn of labels of GTS(C) is a trace ofa if

a f1 I · · ·
fn I an+1

for somea1, . . . ,an. The trace preorder.tr is then defined asa .tr b if all traces of
a are also traces ofb.

Theorem 13 (Trace Congruence).tr is a congruence.

PROOF. Assumea .tr b. We shall prove thatca .tr cb for all contextsc ∈ C.
Suppose that

ca= ā1
f1 I ā2 · · · ān

fn I ān+1.

We first prove that there exists a sequence, fori = 1, . . . ,n,

·

αi

ai //

l i

��

·

βigi

��

ci // ·

fi

��
·

di

// ·
d′i

// ·

wherea1 = a, c1 = c, ci+1 = d′i , āi = ciai, and each square is a GIPO.1 The ith

induction step proceeds as follows. Since ¯ai
fi I āi+1, there existsγi : ficiai⇒ d̄i l i ,

for some〈l i , r i〉 ∈ R and d̄i ∈ D, with āi+1 = d̄ir i. SinceC has redex GIPOs (cf.
Definition 11), this can be split in two GIPOs:αi : giai ⇒ di l i andβi : fici ⇒ d′i gi

(cf. diagram above). Takeai+1 = dir i , and the induction hypothesis is maintained.
In particular, we obtain a trace

a = a1
g1 I a2 · · ·an

gn I an+1

and, by the inductive hypothesis,a.tr b must be matched by a corresponding trace
of b. This means that, fori = 1, ..,n, there exist GIPOsα′i : gibi ⇒ ei l ′i , for some
〈l ′i , r

′
i〉 ∈ R andei ∈D, once we takebi+1 to beeir ′i . We can then paste each of such

1 Since the fact is not likely to cause confusion, we make no notational distinction between
the arrows ofC (e.g. in GRPOs diagrams) and the states and labels of GTS(C), where the
latter are iso-classes of the former.

12



GIPOs together with the correspondingβi : fici⇒ d′i gi obtained above (i = 1, . . . ,n)
and, using Lemma 8, conclude that there exist GIPOsficibi ⇒ d′i ei l ′i , as in the
diagram below,

·

α′i

bi //

l ′i
��

·

βigi

��

ci // ·

fi

��
· ei

// ·
d′i

// ·

which means cibi
fi I d′i eir ′i .

As cb= c1b1, in order to construct a tracecb= b̄1
f1 I · · ·

fn I b̄n+1 and complete
the proof, we only need to verify that fori = 1, . . . ,n, we have thatd′i eir ′i = ci+1bi+1.
This follows at once, asci+1 = d′i andbi+1 = eir ′i .

3.2 Failures Preorder

Failure semantics [6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow to test when processes deplete the capability of
engaging in certain actions.

Formally, foraa state of GTS(C), afailureof a is a pair( f1 · · · fn,X), wheref1 · · · fn
andX are respectively a nonempty sequence and a set of labels, such that:

• f1 · · · fn is a trace ofa, a f1 I · · ·
fn I an+1;

• an+1, the final state of the trace, isstable, i.e.an+1 6 B ;
• an+1 refuses X, i.e.an+1 6

x I for all x∈ X.

The failure preorder.f is defined asa .f b if all failures ofa are also failures ofb.

Theorem 14 (Failures Congruence).f is a congruence.

PROOF.

Assumea .f b to prove thatca.f cb for all contextsc∈ C. The proof extends the
previous one of Theorem 13.

Let ( f1 · · · fn,X), n> 0, be a failure ofca. We proceed exactly as above to determine

a matching tracecb= b̄1
f1 I · · ·

fn I b̄n+1. In addition, we contextually need to
prove that̄bn+1 is stable and refusesX, exploiting the corresponding hypothesis on
ān+1.

First, we claim thatan+1 is stable. In fact, were it not, it would follow fromcn+1∈D

(which equalsd′n) that also ¯an+1 = cn+1an+1 B. But this is impossible, since
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ān+1 is stable. Secondly,an+1 refuses both

Y ={g | there exists a GIPOδg : xcn+1⇒ dg, for x∈ X, d ∈D} and
Z ={g | there exists a 2-cellεg : dg⇒ cn+1, for d ∈ D},

which can be seen as follows. Ifan+1
g

I for g ∈ Y, then there exists a GIPO
α : gan+1⇒ d′l , for some rule〈l , r〉, which could be pasted together withδg to yield
a GIPOxcn+1an+1⇒ dd′l , which is impossible since it means that ¯an+1

x I, for
x∈ X. Similarly, if an+1

g
I for g∈ Z, pasting the corresponding GIPO withεg,

we see that ¯an+1 B, contradicting the hypothesis that ¯an+1 is stable.

If follows then from the hypothesisa .f b thatbn+1 is stable and refusesY∪Z. It
is then easy to complete the proof by transferring stabilityandX-refusal tob̄n+1.
First, suppose that̄bn+1 B. This means that there exists a 2-celldl ⇒ b̄n+1.
SinceC has redex-GRPOs, we can factorcn+1 out and obtain from this a GR-
POsα : gbn+1⇒ d′l together with a 2-celld′′g⇒ cn+1. But this would mean that
bn+1

g
I, for g∈ Z, which is a contradiction.

Suppose finally that̄bn+1
x I, for x ∈ X. Again, by definition of the transition

relation, and exploiting the existence of redex-GRPOs, we find GRPOsxcn+1⇒
d′′g andgbn+1⇒ d′l , which mean thatbn+1

g
I, for g∈Y.

3.3 Weak Equivalences

Theorems 12, 13, and 14 can be extended to weak equivalences,as below.

For f a label of GTS(C) define aweak transition a
f
I b to be a mixed sequence

of transitions and reductionsa B∗
f

I B∗ b. Observe that this definition
identifies silent transitions in the LTS with reductions. Asa consequence, care has

to be taken to avoid interference with transitions of the kind equi
I, synthesised

from GRPOs and labelled by an equivalence. These transitions have essentially the
same meaning as silent transitions (i.e. no context involved in the reduction), and
must therefore be omitted in weak observations. The following lemma makes the
reasoning above precise.

Lemma 15 Suppose thatC is a G-reactive system. Ifa e I b with e an equiva-
lence, then there existsb′ such thata B b′. Moreover,b′ = e′b, wheree′ is the
pseudo-inverse ofe.

PROOF. Suppose thatρ : dl⇒ f a is a GIPO andf is an equivalence, that is, there
exist isomorphismsα : idX⇒ g f andβ : f g⇒ idY. Thenα−1a•gρ : gdl⇒ a and it
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remains to show thatgd∈D. But βd : f gd∼= d and sinceD is closed under 2-cells,
f gd∈ D. Thengd∈D sinceD is composition-reflecting.

We may now consider the weak counterparts of the preorders and equivalences
studied earlier.

Definition 16 (Weak Traces and Failures)A sequencef1 · · · fn of non-equivalence
labels of GTS(C) is a weak trace ofa if

a
f1
I a1 · · ·an−1

fn
I an

for somea1, . . . ,an. The weak trace preorder is then defined accordingly.

A weak failureof a is a pair( f1 · · · fn,X), where f1 · · · fn andX are respectively a
sequence and a set ofnon-equivalencelabels, such thatf1 · · · fn is a weak trace of
a reaching a final state which is stable and refusesX. The weak trace preorder is
defined accordingly.

Definition 17 (Weak Bisimulation) A symmetric relationS on GTS(C) is a weak
bisimulation if for alla S b

a f
I a′ f not an equivalence, impliesb

f
I b′ with a′ S b′;

a B a′ impliesb B∗ b′ with a′ S b′.

Using the definitions above Theorems 12, 13, and 14 can be lifted, respectively, to
weak traces, failures and bisimulation.

It is worth remarking that the congruence results, however,only hold for contexts
c∈D, as it is well known that non reactive contexts – i.e. thosec whereca B cb
does not follow froma B b, as e.g. the CCS contextc= −+c0, do not preserve
weak equivalences. Alternative definitions of weak bisimulations are investigated
in [12], and they are applicable mutatis mutandis to GRPOs.

4 Bunches and Wires

In this section we consider an example of a simple G-category, recasting in the
present framework the notion of bunch context first due to Leifer and Milner [14].
We will recall the notion of extensive category [2] and proceed to construct GRPOs
in the G-category of bunches. The construction will only make use of the fact that
Ord , the category whose objects are the node sets of our bunches,is extensive and
has pushouts.

15



4.1 Category of Bunch Contexts

The category of ‘bunches and wires’ was introduced in [14] asa skeletal algebra
of shared wirings, abstracting over the notion ofnamesin, e.g., theπ-calculus.
Although elementary, its relevance resides in representing the simplest possible
form of naming. In any case, its structure is complex enough to lack RPOs.

A bunch context of typem0→ m1 consists of an ordered set ofm1 trees of depth
one containing exactlym0 holes. Leaves are labelled from an alphabetK . These
data representm1 bunches of unspecified controls (the leaves), together withm0

places (the holes) where further bunch contexts can be plugged to. Before illustrat-
ing this graphically, let us proceed with the formal definition of Leifer and Milner’s
category of bunch contexts.

Definition 18 Let m0 andm1 be finite ordinals. Aconcrete bunch context c: m0→
m1 is a tuplec = 〈X,char, rt〉, whereX is a finite carrier,rt : m0 + X → m1 is
a surjective function linking leaves (X) and holes (m0) to their roots (m1), and
char : X→ K is a leaf labelling function.

Given concrete bunch contextsc0 : m0→ m1 andc1 : m1→ m2, we can compose
them to obtain a concrete bunch contextc1c0 : m0→ m2. Roughly, this involves
‘plugging’ them1 trees ofc0 orderly intom1 holes ofc1; leaves and holes ofc0 are
‘wired’ to the roots ofc1, alongsidec1’s leaves. Formally,c1c0 is (X, rt,char) with

X = X0+X1, rt = rt1(rt0+ idX1), char = [char0,char1],

where+ and[ , ] are respectively coproduct and copairing.

A homomorphismof concrete bunch contextsρ : c⇒ c′ : m0→ m1 is a function
ρ : X→ X′ which respectsrt andchar, i.e.rt′ρ = rt andchar

′ρ = char. An isomor-
phism is a bijective homomorphism.

Definition 19 The category ofbunch contextsBun0 has

• objects the finite ordinals (cf. §1), written asm0,m1, . . .
• arrows fromm0 to m1 are isomorphism classes[a] : m0→m1 of concrete bunch

contexts.

Given an objectm0, the identity is (the isomorphism class of)〈 /0, !, id〉 : m0→m0.
Isomorphic bunch contexts are equated, making compositionassociative andBun0

a category

The pictures below illustrate the concept of bunch context.The leftmost diagram
represents a bunch context[a] : 0→ 2 withX = 3,char(1)= char(3) = K, char(2)=
L, rt(1) = 1 andrt(2) = rt(3) = 1. The middle diagram represents a bunch context
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[b] : 2→ 2 with X = {∗}, char(∗) = M, rt(1) = rt(∗) = 1 andrt(2) = 1.

11
11

11

��
��
��

K L K

[a] : 0→ 2

��
��

��

11
11

11

[−1] M [−2]

[b] : 2→ 2

��
��
��

11
11

11

11
11

11

��
��
��

M K L K

[ba] : 0→ 2

The final diagram represents[ba] : 0→ 2, the result of composinga andb.

A bunch context[c] : m0 → m1 can alternatively be depicted as a string ofm1

nonempty multisets onK +m0 (the bunches of leaves and holes connected to the
same root), with the proviso that elementsm0 must appear exactly once in the string.
In the examples, we represent elements ofm0 as numbered holes−i . For instance,
the three pictures above can be written respectively as{K}{L,K}, {−1,M}{−2},
and{M,K}{L,K}.

As we mentioned before, RPOs do not exist inBun0. Indeed, consider diagram (i)
below.

1

1

{K,−1}
@@��������

1

{K,−1}
^^========

0
{K}

@@��������
{K}

^^========

(i)

The following diagrams show two candidate RPOs (ii ) and (iii ) which are easily
proved not to have a common ‘lower bound’ candidate.

1

1

{K,−1}

<<yyyyyyyyyyyyyyy
{−1} //1

{K,−1}

OO

1{−1}oo

{K,−1}

bbEEEEEEEEEEEEEEE

0

{K}

<<yyyyyyyyyyyyyyy

{K}

bbEEEEEEEEEEEEEEE

(ii)

1

1

{K,−1}

<<yyyyyyyyyyyyyyy
{−1}{K} // 2

{−1,−2}

OO

1{K}{−1}oo

{K,−1}

bbEEEEEEEEEEEEEEE

0

{K}

<<yyyyyyyyyyyyyyy

{K}

bbEEEEEEEEEEEEEEE

(iii )

The point here is that by taking the arrows ofBun0 up to isomorphism we lose
information abouthowbunch contexts equal each other. Diagram (i), for instance,
can be commutative in two different ways: theK in the bottom left part may corre-
spond either to the one in the bottom right or to the one in the top right, according
to whether we read{K,−1} or {−1,K} for the top rightmost arrow. The point is
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therefore exactly whichoccurrencesof K correspond to each other. The fundamen-
tal contribution of G-categories is to equip our structuresof interest with an explicit
mechanism (viz. the 2-cells) to track such correspondences. Fed into the categori-
cal machinery of relative pushouts, this gives GRPOs the power to ‘locate’ reaction
beyond the blurring effect of a structural congruence (in this case, the commutation
of elements inside a multiset). To illustrate our ideas concretely, let us grantBun0

its natural 2-categorical structure.

Definition 20 The 2-category of bunch contextsBun has:

• objects the finite ordinals (cf. §1), denotedm0,m1, . . .
• arrowsc = (x,char, rt) : m0→m1 consist of a finite ordinalx, a surjective func-

tion rt : m0⊕x→m1 and a labelling functionchar : x→ K .
• 2-cellsρ are isomorphisms between bunches’ carriers which preservethe struc-

ture, that is respectchar andrt.

Composition of arrows and 2-cells is defined in the obvious way. Notice that since
⊕ is associative, composition inBun is associative. ThereforeBun is a G-category.

Replacing the carrier setX with a finite ordinalx allows us to avoid the unnecessary
burden of working in a bicategory, which would arise becausesum on sets is only
associative up to isomorphism. Observe that this simplification is harmless since the
set-theoretical identity of the elements of the carrier is irrelevant. We remark, how-
ever, that GRPOs are naturally a bicategorical notion and would pose no particular
challenge in that setting. In particular, in [22] we use a bicategorical framework in
order to apply the theory of GRPOs to derive bisimulation congruence for generic
graph rewriting systems.

4.2 Extensive Categories

When constructing GRPOs, we have tried to use general categorical constructions
defined using universal properties. This not only simplifiesthe proofs, freeing one
from unnecessary set-theoretical detail but also makes them more robust in that the
proofs lift relatively easily to other models.

In particular, in the proof of Theorem 24 below, we use only the fact thatOrd is
an extensive [2] category with pushouts. An extensive category can be thought of
roughly as a category where coproducts are in many ways ‘well-behaved,’ where
the paradigm for good behaviour comes from the category of sets and functions.
For the reader’s convenience we reproduce a definition below.

Definition 21 A categoryC is extensivewhen

(1) it has finite coproducts,
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(2) it admits pullbacks along injections of binary coproducts,
(3) given a commutative diagram

C1

g1

��

c1 //C

f
��

C2
c2oo

g2

��

A i1
//A+B Bi2

oo

where the bottom row is a coproduct, the two squares are pullbacks if and only
if the top row is a coproduct diagram.

In order to provide the reader with some intuition for the good behaviour of co-
products in extensive categories, we recall below some properties of extensive cat-
egories. Notice that these simply express expected properties of coproducts inSet,
the category of sets and functions.

Lemma 22 Let C be an extensive category. Then,

(i) sums are disjoint; that is, the pullback of the two injections of a binary co-
product is the initial object,

(ii) coproduct injections are mono,

(iii) if A
i1−→ C

i2←− B and A′
i′1−→ C

i2←− B are coproduct diagrams, then there
exists a unique isomorphismϕ : A→ A′ such that i′1ϕ = i1,

(iv) suppose thatϕ : A+C→ B+C is an isomorphism such thatϕi2 = i2 : C→
B+C; then there exists a unique isomorphismψ : A→ B so thatϕ = ψ+C,

PROOF. We begin by proving (i) and (ii ). In the following diagram, the bottom
row and the top row are coproduct diagrams,

0

!
��

! //B

i2
��

Bidoo

id
��

A i1
//A+B Bi2

oo

and the two squares are clearly commutative. Using the definition of extensivity,
the two squares are, therefore, pullbacks. The left square being a pullback means
that coproducts are disjoint. The fact that the right hand side is a pullback implies
that i2 is mono. By a similar argument,i1 is also mono.
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We shall now proceed with (iii ). Consider the following diagram,

X
a′

��
@@

@@
@@

@
a

����
��

��
�

A
i1

��
>>

>>
>>

> A′
i′1

��~~
~~

~~
~

0

!
��

??
??

??
??

!

OO

C 0

!

OO

!
~~~~

~~
~~

~~

B

i2

OO

using part (i), we deduce that the two lower regions are pullbacks. Let theupper

region be a pullback. Using extensivity, 0
!
−→ A

a
←− X and 0

!
−→ A′

a′
←− X are

coproduct diagrams, and therefore, it follows thata anda′ are isomorphisms. Let
ϕ = a′a−1, which satisfiesi′1ϕ = i1, as required. Given another suchϕ′, we have
i′1ϕ = i1 = i′1ϕ. We can now use part (ii ) to deduce thati′1 is mono, and therefore,
thatϕ = ϕ′.

It remains to prove (iv). Consider the diagram below, where

X

ψ′
��

f
//A+C

ϕ
��

C
i2oo

id
��

B i1
//B+C Ci2

oo

the right square can be verified to be pullback, using the factthatϕ is mono. Sup-
pose that the left-square is a pullback. Note thatψ′ is an isomorphism, since it is a
pullback of an isomorphism. Using extensivity, the resulting top row is a coprod-
uct diagram, and using part (iii ), we can deduce that there exists an isomorphism
ϕ : A→ X such thatf ϕ = i1 : A→ A+C. Lettingψ = ψ′ϕ, we obtainϕ = ψ +C.
The fact thati1 : B→ B+C is mono implies uniqueness.

Examples of extensive categories includeSet, and more generally any topos. The
category of topological spaces and continuous functionsTop is extensive. Any cat-
egory with freely generated coproducts is extensive [2].

The following simple fact will prove useful for us later in this section. It holds in
any category, that is, it does not require the assumption of extensivity.

Proposition 23 Suppose that the diagram (i), below, is a pushout. Then diagram (ii)
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is also a pushout.

A
f
��

g
//C

f ′

��

B
g′

//D

(i)

A+E

f+idE
��

g+idE //C+E

f ′+idE
��

B+E
g′+idE

//D+E

(ii)

4.3 Construction of GRPOs

Theorem 24 Bun has GRPOs.

PROOF. The proof is divided into two parts. In the first part we give the construc-
tion, and in the second part we verify that the universal property holds.

4.4 Construction of GRPO

Suppose that we have an isomorphic 2-cellρ : ca⇒ dl as illustrated below.

m3

m1 ρ

c
==zzzzzzzz

m2

d
aaDDDDDDDD

m0

l

==zzzzzzzz
a

aaDDDDDDDD

The intuition here is that, for an ‘agent’a and a left hand sidel of some reaction
rule, we are given bunch contextsc andd so thatca is dl, up to ρ (in symbols,
ca∼=ρ dl). We shall find the smallest upper bound ofa andl which ‘respects’ρ.

Using ρ : xa⊕ xc→ cc⊕ xd and the injections into the chosen coproduct inOrd
(which in the diagrams below we leave unlabelled, or denote generically withi1 and
i2), we take four pullbacks obtaining the following diagram. Due to the extensivity
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of Ord , each ofl i , ai, di andci wherei ∈ {1,2} is a coproduct injection.

xcl

c1

��

l1 // xl

��

xla
l2oo

a1

��
xc // xa⊕xc

ρ
// xl ⊕xd xc⊕xa

ρ
oo xaoo

xdc

c2

OO

d1
// xd

OO

(i)

xadd2
oo

a2

OO

Here, one can think ofxdc as the nodes common to bunch contextsd andc, when
ca is translated, viaρ, to dl. Similarly,xcl are the nodes common toc andl , xla are
the nodes common tol anda, whilexad are the nodes common toa andd. We shall
show thatxcl andxad form the nodes of the minimal candidate.

Let xe = xcl, xf = xad andxg = xdc. Using the morphisms from the diagram above
as building blocks, we can construct bijectionsγ : xc→ xe⊕xg, δ : xf ⊕xg→ xd and
β : xa⊕xe→ xl ⊕xf such that

xl ⊕δ.β⊕xg.xa⊕ γ = ρ, (3)

more precisely,γ = [c1,c2]
−1, δ = [d2,d1] andβ is the following composition,

xa⊕xe
[a2,a1]

−1⊕xe
−→ xf ⊕xla⊕xe

xf⊕[l2,l1]
−→ xf ⊕xl

tw
−→ xl ⊕xf

wheretw : xf ⊕ xl → xl ⊕ xf is the ‘twist’ isomorphism. Letrte and rt f be mor-
phisms making (ii ) below a pushout diagram.

m0⊕xa⊕xe

rta⊕xe

��

m0⊕β
//m0⊕xl ⊕xf

rtl ⊕xf //m2⊕xf

rt f

��
m1⊕xe

rte
//m4

(ii)

m3

m1

γ
e //

β

c

=={{{{{{{{{{
m4

δ
g

OO

m2foo

d

aaCCCCCCCCCC

m0

l

=={{{{{{{{{{
a

aaCCCCCCCCCC

(iii )

We can then definechare, char f andcharg (from γ, δ, charc andchard) so as to form
bunch contextse, g and f which make(iii) above a candidate GRPO. Notice that
the commutativity of (ii ) implies thatβ is a bunch homomorphism.

It remains to definertg and prove thatγ andδ are bunch homomorphisms.
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Consider the diagram (iv), below.

m0⊕xa⊕xe⊕xg

(†)rta⊕xe⊕xg

��

m0⊕β⊕xg
//m0⊕xl ⊕xf ⊕xg

rtl ⊕xf⊕xg
//m2⊕xf ⊕xg

m2⊕δ
//

rt f ⊕xg

��

m2⊕xd

rtd

��

m1⊕xe⊕xg

m1⊕γ−1

��

rte⊕xg
//m4⊕xg

rtg

''
m1⊕xc

rtc
//m3

(iv)

The exterior of (iv) is commutative sinceρ is a bunch homomorphism, this can
be verified by precomposing withm0⊕ xa⊕ γ : m0⊕ xa⊕ xc→ m0⊕ xa⊕ xe⊕ xg

and using (3). Now, since (ii ) is a pushout, an application of Proposition 23 yields
that (†) is a pushout. We obtain a morphismrtg : m4⊕ xg→ m3 which makes the
remaining regions of (iv) commute – implying thatγ andδ are bunch homomor-
phisms. We can deduce thatrtg is epi sincertg . rt f ⊕xg = rtd .m2⊕δ, rtd is epi and
m2⊕δ is an isomorphisms.

Thus, diagram(ii) is indeed a candidate GRPO for the 2-cellρ : ca⇒ dl.

4.5 Verification of the Universal Property

Suppose that〈m5, r,s, t,β′,γ′,δ′〉 is another candidate GRPO forρ, i.e.δ′l • tβ′ •γ′a=
ρ. A diagram chase shows that the diagram (v), below, is commutative.

xt

i2
��

i2 // xs⊕xt
δ′ // xd

i2

��

xr ⊕xt

γ′−1

��
xc i2

// xa⊕xc ρ
// xl ⊕xd

(v)

Sincexg with mapsc2 : xg→ xc andd1 : xg→ xd is a pullback ofρi2 : xc→ xl ⊕xd

andi2 : xd→ xl ⊕xd – cf. (i) –, there exists a monomorphismk: xt → xg such that

23



γ′−1i2 = c2k andδ′i2 = d1k.

xu
w //

j

��

xr

i1
��

xr ⊕xt

γ′−1

��xg c2
// xc

(vi)

xt

id

��

k // xg

c2

��

xu
j

oo

w

��
xt

γ′−1i2
// xc xr

γ′−1i1
oo

(vii)

Take the pullback(vi). Using extensivity,xu
j
−→ xg

k
←− xt is a coproduct diagram,

as shown by(∇), where the square on the right hand side is(vii). The commutative
square on the left hand side can be verified to be a pullback sincec2, being a co-
product injection in an extensive category, is mono. We shall show thatxu is the set
of nodes of a mediating bunch contextu : m4→m5.

Let τ denote the isomorphism[ j,k] : xu⊕xt → xg. By the definition ofτ, the com-
posites at the bottom edges of diagrams (viii ) and (ix), below, act as the identity on
the second injections (xt). Applying part (iv) of Lemma 22,

xr

��

ϕ
// xe⊕xu

��

xr ⊕xt
γ′−1

// xc
γ

// xe⊕xg
xe⊕τ−1

//

(viii)

xe⊕xu⊕xt

xf ⊕xu

��

ψ
// xs

��
xf ⊕xu⊕xt

xf⊕τ
// xf ⊕xg

δ //

(ix)

xd
δ′−1

// xs⊕xt

we obtain isomorphismsϕ andψ so that diagrams (viii ) and (ix) are pullbacks.

The commutativity of these pullback diagrams implies that

xe⊕ τ.ϕ⊕xt .γ′ = γ (4)

andδ′.ψ⊕xt .xf ⊕ τ−1 = δ. These two equations, together with those which relate
ρ to β, γ, δ andβ′, γ′,δ′, give

xl ⊕ψ.β⊕xu.xa⊕ϕ = β′. (5)
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Now consider diagram (x), below.

m0⊕xa⊕xe⊕xu

rta⊕xe⊕xu
��

m0⊕xa⊕ϕ−1

))TTTTTTTTTTTTTTTT

m0⊕β⊕xu
//m0⊕xl ⊕xf ⊕xu

rtl ⊕xf⊕xu
//

m0⊕xl⊕ψ

))SSSSSSSSSSSSSS

(z)

m2⊕xf ⊕xu

m2⊕ψ
��

m1⊕xe⊕xu

m1⊕ϕ−1

��

m0⊕xa⊕xr
rta⊕xr

ttjjjjjjjjjjjjjjjj

m0⊕β′
//m0⊕xl ⊕xs

(‡)

rtl ⊕xs //m2⊕xs

rts

��
m1⊕xr

rtr
//m5

(x)

The commutativity of region (z) follows from equation (5). Region (‡) is commu-
tative becauseβ′ is a bunch homomorphism. Thus, the entire diagram is commuta-
tive. The commutativity of (x) implies that the outside of diagram (xi) is commu-
tative. Applying the conclusion of Proposition 23 to diagram (ii ) implies that the
inner region is a pushout diagram, and therefore, that thereexists a unique mor-
phismrtg : m4⊕xg→m3 which renders regions (*) and (**) commutative.

m0⊕xa⊕xe⊕xu

rta⊕xe⊕xu
��

m0⊕β⊕xu
//m0⊕xl ⊕xf ⊕xu

rtl ⊕xf ⊕xu
//m2⊕xf ⊕xu

rt f ⊕xu

��

m2⊕ψ
//m2⊕xs

rts

��

m1⊕xe⊕xu

m1⊕ϕ−1

��

rte⊕xu //

(∗)

m4⊕xu

(∗∗)

rtu

''
m1⊕xr

rtr
//m5

(xi)

Thusu: m4→m5 is a bunch context. Regions (*) and (**) of (xi) imply thatϕ : r⇒
ue andψ : u f ⇒ s, respectively, are homomorphisms. To see thatτ : tu⇒ g is a
homomorphism, consider diagram (xii), below.

m1⊕xc

m1⊕γ

++

rtc

��

m1⊕γ′
//m1⊕xr ⊕xt

rtr ⊕xt

��

m1⊕ϕ⊕xt //m1⊕xe⊕xu⊕xt

rte⊕xu⊕xt

����

m1⊕xe⊕τ
//m1⊕xe⊕xg

rte⊕xg

��

m3 m5⊕xt
rttoo m4⊕xu⊕xt

rtu⊕xt
oo

m4⊕τ
//m4⊕xg

rtg

jj

(xii)

The two rectangles on the left are commutative sinceγ′ andϕ are homomorphisms.
Using (4), the top row is equal tom1⊕ γ. Using the fact thatγ is a homomorphism
(the commutativity of the outside region) and the surjectivity of the marked arrow
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in the above diagram, we conclude thatrtg .m4⊕τ = rtt . rtu⊕xt . Thus〈u,ϕ,ψ,τ〉 is
a mediating morphism.

Now consider any other mediating morphism〈u′,τ′,ϕ′,ψ′〉. We have that

xe⊕ τ′.ϕ′⊕xt .γ′ = γ, (6)

δ′.ψ′⊕xt .xf ⊕ (τ′)−1 = δ andxl ⊕ψ′.β⊕xu′.xu⊕ϕ′ = β′.

Using (4) and (6), we havexe⊕ τ.ϕ⊕ xt .γ′ = γ = xe⊕ τ′.ϕ′⊕ xt .γ′ and therefore
xe⊕ τ.ϕ⊕ xt = xe⊕ τ′.ϕ′⊕ xt . Precomposing with the second injectioni2 : xt →
xr ⊕xt allows us to deduceτi2 = τ′i2 : xt → xg. Thus we have coproduct diagrams

xu
τi1−→ xg

τi2←− xt andxu′
τ′i1−→ xg

τi2←− xt . Using part (iii ) of Lemma 22, we obtain a
unique isomorphismξ : xu→ xu′ such thatτ′i1ξ = τi1, and thereforeτ′.ξ⊕xt = τ.

Now, using (4) and (6) again,xe⊕τ′.ϕ′⊕xt = γ.(γ′)−1 = xe⊕τ.ϕ⊕xt = xe⊕τ′.xe⊕
ξ⊕xt .ϕ⊕xt , from which followsϕ′⊕xt = (x⊕ξ.ϕ)⊕xt. A straightforward appli-
cation of part (iv) of Lemma 22 yields thatϕ′ = x⊕ξ.ϕ. Similarly, one may derive
ψ.xf ⊕ξ−1 = ψ′.

We remark again that the proof relies nicely on the fact thatOrd is an extensive
category with pushouts, and it goes through unchanged for any other such category.

Examples.Let γ : 2→ 2 be the function taking 17→ 2 and 27→ 1. We give below
on the right the GRPOs for the squares on the left.

1

1 γ

{K,−1}

<<yyyyyyyyyyyyyyy
1

{K,−1}

bbEEEEEEEEEEEEEEE

0

{K}

<<yyyyyyyyyyyyyyy

{K}

bbEEEEEEEEEEEEEEE

1

1

{K,−1}

<<yyyyyyyyyyyyyyy
{−1}{K} //2

{−1,−2}

OO

1{K}{−1}oo

{K,−1}

bbEEEEEEEEEEEEEEE

0

γ
{K}

<<yyyyyyyyyyyyyyy

{K}

bbEEEEEEEEEEEEEEE

1

1 1

{K,−1}

<<yyyyyyyyyyyyyyy
1

{K,−1}

bbEEEEEEEEEEEEEEE

0

{K}

<<yyyyyyyyyyyyyyy

{K}

bbEEEEEEEEEEEEEEE

1

1

{K,−1}

<<yyyyyyyyyyyyyyy
{−1} //1

{K,−1}

OO

1{−1}oo

{K,−1}

bbEEEEEEEEEEEEEEE

0

1
{K}

<<yyyyyyyyyyyyyyy

{K}

bbEEEEEEEEEEEEEEE

Of course, the ambiguity inBun0 about ‘how’ the diagrams commute – which
ultimately leads toBun0 failing to have RPOs – is resolved here by the explicit
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presence of1 or γ. And in both cases, GRPOs exist.

5 2-categories vs precategories

Other categories which, besidesBun0, lack RPOs include the closedshallow action
contexts[12,13] andbigraph contexts[17,8]. The solution adopted by Leifer [13]
and later by Milner [17] is to introduce a notion of awell-supported precategory,
where the algebraic structures at hand are decorated by finite ‘support sets.’ The
result is no longer a category – since composition of arrows is defined only if their
supports are disjoint – but from any such precategory one cangenerate two cate-
gories which jointly allow the derivation of a bisimulationcongruence via afuncto-
rial reactive system. These categories are the so-calledtrack category, where sup-
port information is built into the objects, and thesupport quotientcategory, where
arrows are quotiented by the support structure. The track category has enough RPOs
and is mapped to the support quotient category via a ‘well-behaved’functor, so as
to transport RPOs adequately. We remark that Jensen and Milner [7] have recently
simplified the theory by developing their arguments internally in precategories, in
order to bypass working with the track category.

In this section we present a general translation from arbitrary precategories to G-
categories. Our main result shows that the LTS derived usingprecategories and
functorial reactive systems is identical to the LTS derivedusing GRPOs. We be-
gin with a brief recapitulation of the definitions from [13],to which the reader is
referred for motivations and details.

Definition 25 A precategoryA consists of the same data as a category. The com-
position operator◦ is, however, a partial function which satisfies:

(1) for any arrowf : A→B, idB◦ f and f ◦ idA are defined and idB◦ f = f = f ◦ idA;
(2) for any f : A→ B, g : B→C, h : C→ D, (h◦g)◦ f is defined iffh◦ (g◦ f ) is

defined and then(h◦g)◦ f = h◦ (g◦ f ).

Definition 26 Let Setf be the category of finite sets. Awell supported precategory
is a pair〈A, |−|〉, whereA is a precategory and|−| is a map from the arrows ofA
to Setf , the so-called support function, satisfying:

(1) g◦ f is defined iff|g| ∩ | f |= /0, and ifg◦ f is defined then|g◦ f |= |g| ] | f |;
(2) | idA |= /0.

For anyf : A→B and any injective functionρ in Setf the domain of which contains
| f | there exists an arrowρ · f : A→ B called thesupport translationof f by ρ. The
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following axioms are to be satisfied.

1. ρ · idA = idA; 4. ρ · (g◦ f ) = ρ ·g◦ρ · f ;

2. id| f | · f = f ; 5. (ρ1◦ρ0) · f = ρ1 · (ρ0 · f );

3. ρ0| f |= ρ1| f | impliesρ0 · f = ρ1 · f ; 6. |ρ · f |= ρ| f |.

We illustrate these definitions giving a precategorical definition of bunches and
wiring (cf. §4).

Example 27 (Bunches)The precategory of bunch contextsA-Bun has objects as
in Bun0. However, differently fromBun0, arrows are concrete bunch contexts,
they are not isomorphism classes. The support ofc = (X,char, rt) is X. Compo-
sition c1c0 = (X,char, rt) : m0→m2 of c0 : m0→m1 andc1 : m1→m2 is defined
if X0∩X1 = /0 and, if so, we haveX = X0]X1. Functionschar andrt are defined in
the obvious way. The identity arrows are the same as inBun0. Given an injective
functionρ : X→Y, the support translationρ ·c is (ρX,char ρ−1, rt(idm0 +ρ−1)). It
is easy to verify that this satisfies the axioms of precategories.

The definitions below recall the construction of the track and the support quotient
categories from a well-supported precategoryA. The track has the support infor-
mation built into the objects. On the contrary, the support quotient consists of iso-
morphism classes of arrows with respect to support translation. Both constructions
yield categories relevant toA. The track category, in particular, is concrete enough
to admit RPOs in important cases. We shall question shortly the relationship be-
tween these constructions and our notion of G-categories.

Definition 28 Thetrack of A is a categorŷC with

• objects: pairs〈A,M〉 whereA∈ A andM ∈ Setf ;

• arrows:〈A,M〉
f
−→ 〈B,N〉 where f : A→ B is in A, M ⊆ N and| f |= N\M.

Composition of arrows is as inA. Observe that the definition of| f | ensures that
composition is total. We leave it to the reader to check that the data defines a cate-
gory (cf. [13]).

Definition 29 Thesupport quotientof A is a categoryC with

• objects: as inA;
• arrows: equivalence classes of arrows ofA, where f andg are equated if there

exist a bijectiveρ such thatρ · f = g.

Example 30 (Bunches)The support quotient ofA-Bun is Bun0.

There is an obvious functorF : Ĉ→ C, thesupport-quotienting functor. There is
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a straightforward way of defining a reactive system over a well-supported precate-
gory, akin to the definition of G-reactive system for a G-category (Definition 2).

Definition 31 A reactive systemA over a well-supported precategoryA consists
of

(1) a collectionD of arrows ofA, the reactive contexts; it is required to be closed
under support translation and to be composition-reflecting,

(2) a distinguished object 0∈A,
(3) a set of pairsR ⊆

S

A∈A A(0,A)×A(0,A) called the reaction rules. These
are required to be pointwise closed under support translation, that is, given
〈l , r〉 ∈ R and support translationsρ, ρ′ whose domains contain respectively
|l | and|r|, we require that〈ρ · l ,ρ′ · r〉 ∈ R .

In the following we use the typewriter font for objects and arrows of Ĉ. We make
the notational convention that anyA andf in Ĉ are such thatF(A)= AandF(f) = f .

Definition 32 Let A be a reactive system over a well-supported precategoryA. Let
Ĉ andC be the corresponding track and support quotient. The LTS FLTSc(A) has

• States: arrowsa: 0→ X in C;
• Transitions:a f

I dr if and only if there exista,l,f,d in Ĉ with 〈l,r〉 ∈ R ,
d ∈ D, and such that

Z

X

f

@@��������
Y

d

^^>>>>>>>>

0

a

^^>>>>>>>> l

@@��������

is an IPO inĈ.

It is proved in [13] that the support-quotienting functorF satisfies the conditions
required by the theory of functorial reactive systems [12,13]. Thus, if the category
Ĉ has enough RPOs, then the bisimulation on FLTSc(A) is a congruence.

All the theory presented so far can be elegantly assimilatedinto the theory of GR-
POs. In [13], Leifer predicted that instead of precategories, one could consider a
bicategorical notion of RPO in a bicategory of supports. This is indeed the case,
with GRPOs being the bicategorical notion of RPO. However, working with or-
dinals for support sets we can avoid bicategories and, as in the case ofBun, stay
within the realm of 2-categories. It is worth noticing, however, that a bicategory of
supports as above and the G-category we introduce below would be biequivalent
(in the sense of, e.g., [25]). In the following, we make use ofa chosen isomorphism
tx : x→ ord(x), as defined in §1.

Definition 33 (G-Category of Supports) Given a well-supported precategoryA,
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the G-category of supportsB has

• objects – as inA;
• arrows –f : A→ B where f : A→ B is an arrow ofA and| f | is an ordinal;
• 2-cells –ρ : f ⇒ g for ρ a ‘structure preserving’ support bijection, i.e.ρ · f = g

in A.

Composition is defined as follows. Givenf : A→ B andg : B→C,

g◦B f = i2 ·g◦A i1 · f

where| f |
i1−→ | f |⊕ |g|

i2←− |g| is the chosen coproduct diagram inOrd . Given an
arrow f in A, we usef̃ = t| f | · f in B, the ‘canonical representative’ off in B. To
simplify the notation in the following we writet f for t| f |. Observe that, with these

conventions,t f : | f | → | f̃ |.

Notice that the translation can be easily extended to reactive systems. That is, start-
ing with a reactive systemA over a well-supported precategoryA, one uses the
translation of Definition 33 to obtain a G-reactive systemB over the G-category
of supportsB. Observe that such structure gives a concise representation of both
the quotient, via the 2-structure, and the support, with no need to include the latter
explicitly in the objects. The following theorem guarantees that the LTS generated
is the same as the one generated with the theory of functorialreactive systems.

Theorem 34 Let A be a reactive system over a well-supported precategoryA,
and letB and B be respectively the G-reactive system and G-category obtained
as above. Then,FLTSc(A) = GTS(B).

PROOF. Let Ĉ be the track ofA. It is enough to present a translation between
GIPOs inB and IPOs in̂C which preserves the resulting label in the derived LTS.
Suppose that(i) below is a GIPO.

Z

X

c

??���������
ρ Y

d

__?????????

0

a

__????????? l

??���������

(i)

〈Z,N〉

〈X,ρi1|a|〉

ρi2·c
;;xxxxxxxx

〈Y, i1|l |〉

i2·d
ccFFFFFFFF

〈0, /0〉
ρi1·a

ccFFFFFFFF i1·l

;;xxxxxxxx

(ii)

Then we claim that(ii) above is an IPO in̂C, for N = |l |⊕ |d| andi1, i2 injections
into coproducts inOrd . (Observe that thei’s in the two sides of the diagram refer
to different coproducts; we trust this will not cause confusion.) Note that(ii) is
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commutative sinceρ is by definition a structure-preserving support bijection and,
therefore,ρ(i2 ·c◦ i1 ·a) = i2 ·d◦ i1 · l .

Suppose that〈〈R,M〉 ,e, f ,g〉 is a candidate for(ii) . We then show how to findβ,
γ andδ such that〈R, ẽ, f̃ , g̃,β,γ,δ〉 is a candidate GRPO for(i). This amounts to
require thatβ, γ, andδ are such that their pasting composite yieldsρ, and that each
of them is a structure-preserving bijection.

Let β represent the following composite

|a|⊕ |ẽ|
[ρi1,t−1

e ]
−−−−−→ |ρi1 ·a| ] |e|= |i1 · l | ] | f |

[i1i−1
1 , i2t f ]

−−−−−−→ |l |⊕ | f̃ |,

and similarly letγ andδ be respectively

|c|
ρi2
−−→ |ρi2 ·c|= |g◦e|= |e| ] |g|

[i1te, i2tg]
−−−−−→ |ẽ|⊕ |g̃|

and

| f̃ |⊕ |g̃|
[t−1

f ,t−1
g ]

−−−−−→ | f | ] |g|= |g◦ f |= |i2◦d|
i−1
2
−−→ |d|

It is easy to check that the pasting ofγ, β andδ as in the GRPO diagram yields
ρ. We show thatγ is a structure-preserving bijection The argument for the other
morphisms is similarly trivial. Sinceρi2 · c = g◦ e we have([i1tei2tg]ρi2) · c =
[i1te, i2tg] · (g◦e) and soγ ·c= g̃◦ ẽ.

Indeed,〈R, ẽ, f̃ , g̃,β,γ,δ〉 is a candidate GRPO for(i). Thus there existsh: Z→ R
and 2-cells (structure-preserving support bijections)ϕ : ẽ⇒ hc, ψ : hd⇒ f̃ and
τ : g̃h⇒ idZ.

From the existence ofτ and the definition of well-supported category, we can de-
duce that|g̃| = |g|= /0 and|h|= /0. Note thatτ = id, since there is only one endo-
function on/0. We can therefore conclude that alsoM = N andg̃ = g.

〈R,N〉

〈X, i1|a|〉

e

99tttttttttttt

ρi2·c
// 〈Z,N〉

h

OO

〈Y, i1|l |〉i2·d
oo

f
ddJJJJJJJJJJJ

(i)

〈Z,N〉

〈R,N〉

g

OO

〈Z,N〉
h

oo

id

ddHHHHHHHHHHH

(ii)

We also get immediately that(ii) above commutes. We show that the left triangle of
(i) commutes, the proof for the right one is similar. From the definition of GRPO,
we have that idc = τc• g̃ϕ•γ = gϕ•γ which then implies thatϕ = γ−1. Using the
definition ofγ, ρi2•ϕ• te = id which amounts to saying that the triangle is commu-
tative.
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Uniqueness in̂C easily follows from essential uniqueness inB (which is in this
case the same as uniqueness, since there is only one endofunction on the/0).

Going the other way, suppose that(iii) below

〈Z,N〉

〈X,L〉

c
<<yyyyyyyyyy

〈Y,M〉

d
bbEEEEEEEEEE

〈0,K〉
l

<<yyyyyyyyyy
a

bbEEEEEEEEEE

(iii )

Z

X ρ

c̃

??���������
Y

d̃

__?????????

0
ã

__????????? l̃

??���������

(iv)

is a RPO. Then(iv) is a GRPO whereρ is

|ã|⊕ |c̃|
[t−1

a ,t−1
c ]

−→ |a| ] |c|= |l | ] |d|
[i1tl , i2td]
−→ |l̃ |⊕ |d̃|

It is trivial to show that thatρ is structure-preserving, i.e.ρ · (c̃ã) = d̃ l̃ . Now con-
sider a candidate〈R,e, f ,g,β,γ,δ〉 for (ii ), above. Since the pasting composite ofγ,
β andδ yieldsρ, we have thatt−1

c γ−1i2 ·g= t−1
d δi2 ·g= g′. LetV = N\|g′|. Lete′ =

t−1
c γ−1i1 ·eand f ′ = t−1

d δi1 · f . It is easy but tedious to check that〈〈R,V〉 ,e′, f ′,g′〉
is a candidate for (i). By assumption, there exists an arrowh: 〈Z,N〉 → 〈R,V〉
which satisfieshc= e′, hd = f ′ andg′h = f ′. This can be translated in the by-now
standard way into a mediating morphism〈h,ϕ,ψ,τ〉 whereτ is again the unique
endofunction on the/0. Uniqueness again follows by laborious, yet not challenging,
work.

Example 35 (Bunches)The 2-category of supports of the precategoryA-Bun is
Bun. Note that a ‘structure preserving’ support bijection is exactly a bunch homo-
morphism. Indeed,ρ : (X,char, rt)⇒ (X′,char

′, rt′) if X′ = ρX, char
′ = char ρ−1

andrt
′= rt(id⊕ρ−1) which is the same as sayingchar = char

′ ρ andrt = rt
′(id⊕ρ).

In other words, our general construction translating from well-supported precate-
gories to G-categories applied to the particular case of ‘bunches and wirings,’ ex-
tractsBun out ofA-Bun. This confirms the results obtained by Leifer and Milner on
this specific subject, and supports our claim of appropriateness of the structures we
have introduced. It is worth remarking how in Definition 33 precategories’ support-
translation isomorphisms are subsumed in G-categories as 2-cells. Further study is
of course necessary to verify the usefulness of GRPOs in the presence of more
complex terms. The results we obtained recently in the case of graph rewriting and
bigraphs are indeed encouraging [22].
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6 Conclusion

We have extended our theory of GRPOs initiated in previous work in order to
strengthen existing techniques for deriving operational congruences for reduction
systems in the presence of non trivial structural congruences. In particular, this pa-
per has shown that previous theories can be recast using G-reactive systems and
GRPOs at no substantial additional complexity. Also, we proved that the theory is
powerful enough to encompass several examples considered in the literature, as a
precise consequence of the fact that any precategory or functorial reactive system
yields a corresponding G-category in a direct, systematic way. Therefore, we be-
lieve that it constitutes a natural starting point for future investigations towards a
fully comprehensive theory, which we started to explore further in [22].

It follows from Theorem 34 that G-categories are at least as expressive as well-
supported precategories. A natural consideration is whether a reverse translation
may exist. We believe that this is not the case, as general G-categories appear to
carry more information than precategories. This may turn out to have an impact in
dealing with complex structural congruences, such the one arising from the repli-
cation axiomP≡ P | !P.
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