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Abstract

Groupoidal relative pushouts (GRPOs) have recently bempoged by the authors as a new
foundation for Leifer and Milner’s approach to deriving ¢dlled bisimulation congruences
from reduction systems. In this paper, we develop the thebi3RPOs further, proving
that well-known equivalences, other than bisimulatiorg @ongruences. To demonstrate
the type of category theoretic arguments which are inherethite 2-categorical approach,
we construct GRPOs in a category of ‘bunches and wiringsalii, we prove that the
2-categorical theory of GRPOs is a generalisation of theagghes based on Milner's
precategories and Leifer’s functorial reactive systems.

Introduction

It has become increasingly common to view modern foundatiprocess calculi
as being, at their coreeduction systemsStarting from their common ancestor,
the A-calculus, most recent calculi consist of a reduction systegether with a
contextual equivalence (built out of basic observations,harbs). The strength of
such an approach resides in its intuitiveness. In particwianeed not invent labels
to describe the interactions between systems and theiibp@snvironments, a
procedure that may present a degree of arbitrariness,didf. @xd late semantics
of thertcalculus) and may prove quite complex (cf. [5,4,3,1], fatance).

By contrast, reduction semantics suffer at times by theik laf compositional-
ity, and have complex semantic theories because contextu@alences usually
involve quantification over an infinite set of contexts. Liddxk bisimulation con-
gruences based dabelled transition system@&TS) may in such cases provide
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fruitful proof techniques; in particular, bisimulationsopide the power and man-
ageability of coinduction, while the closure propertiecohgruences provide for
compositional reasoning.

A well-behaved LTS associated with a reduction system shimwblve a compo-
sitional system of labels, with silent moves (oactions) reflecting the original
reductions and labels describing potential external autgons. Ideally, the result-
ing bisimulation should be a congruence, and should be at lraluded in the
original contextual reduction equivalence. Proving bifanity is then enough to
prove reduction equivalence.

Sewell [24] and Leifer and Milner [14,12] set out to develofhaory to perform
such derivations using general criteria; a meta-theodeoiving bisimulation con-
gruencesThe basic idea behind their construction is to use conextabels. To
exemplify the idea, in a CCS-like calculus one would foramgte derive a transition

-laQ
aP

»P|Q

because terma.P in context— | a.Q reacts to becomP | Q; in other words, the
context is a trigger for the reduction.

The first hot spot of the theory is the selection of the rigigigers to use as labels.
The intuition is to take only thesmallestcontexts which allow a given reaction to
occur. As well as reducing the size of the LTS, this often rsdke resulting bisim-
ulation equivalence finer and often closer to operatiortaltions. Sewell's method
is based on dissection lemmas which provide a deep analyaiteom’s structure.
A generalised, more scalable approach was later develogdd], where the no-
tion of ‘smallest’ is formalised in categorical terms asekative-pushou{RPOS).
More precisely, as we shall see, a context is selected agktalthe transition sys-
tem if it makes a certain categorical diagram be a pushouh Beories, however,
do not seem to scale up to calculi with non trivéatuctural congruencesAlready
in the case of the monoidal rules that govern parallel coitipasthings become
rather involved.

The fundamental difficulty brought about by a structuralgruence= is that work-
ing up to= loses too much information about terms for the RPO approaciotk

as expected. RPOs do not usually exist in such cases, betteusendamental
indication of exactly which occurrences of a term constiubelong to the redex
becomes blurred when terms are quotienteetbg very simple, yet significant ex-
ample of this is the categoBun of bunch contexts considered in [14], and similar
problems arise in structures such as action graphs [15] igmagdhs [17].

In [19,21] we therefore proposed a framework in which termmctre is not ex-
plicitly quotiented, but the equality of terms is taken up=toPrecisely, to give
rp = sqone must exhibit a proai of structural congruence. Thinking of terms as



arrows in categories where objects represent term argigs &s induced by a sig-
naturez), the equatiomp = sqcan be recast categorically as a commuting diagram
together with a 2-celtr (constructed from the rules generatiagand closed under

all contexts), as in the diagram below.

k—p>|
q a
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r

Since such proofs are naturally isomorphisms, we were ledmsidergroupoid-
enrichedcategories@-categoriedor short), i.e., 2-categories where all 2-cells are
iso, and initiated the study d@&-relative pushout§GRPOSs), as a suitable gener-
alisation of RPOs from categories to G-categories. The afeasing 2-cells to
represent generalised structural congruence was firsestegjby Sewell [23].

The purpose of this paper is to continue the developmenteofitbory of GRPOs.
We aim to show that, while adding little further complicaticf. 82 and §3), GR-
POs advance the field by providing a convenient solutionrtgok, yet important
problems (cf. 84 and 85). GRPOs indeed promise to be part efeyant founda-
tion for a meta-theory of ‘deriving bisimulation congruesc

This paper presents two main technical results in suppoduofclaims. Firstly,

we prove that the case of the aforementioned cateaony of bunch contexts,
problematic for RPOs, can be treated in a natural way usin@@&R Secondly,
we show that the notions of precategory and functorial readystem, theories
introduced to deal with the problems solved by GRPOs, camberepassed in the
GRPO-based approach.

The notion ofprecategorys proposed in [12,13] inspired by the examples of Leifer
in [12], Milner in [17] and, most recently, of Jensen and Miinn [8]. It consists

of a category appropriately decorated by so-cal&gpport setswhich identify
syntactic elements so as to keep track of them under arroypasition. Such sup-
ported structures are no longer categories — arrow comosg partial — which
bring us away from the well-known world of categories andrtkstablished the-
ory, and requires an ad-hoc development. The intensiof@imation recorded in
precategories, however, allows one to generate a categiooyé’ where RPOs ex-
ist, as opposed to the category of interest ‘below,” €ayvhere they do not. The
category ‘above’ is related t@ via a well-behaved functor, used to map RPOs
diagrams from the category ‘above’ 4 where constructing them would be im-
possible. (Here ‘well-behaved’ means that the functosfias technical conditions
which guarantee the transport of relevant propertié3.Jd hese structures take the
name offunctorial reactive systemsand give rise to a theory developed in [12] to
generate labelled bisimulation congruences.



This paper presents a technique for mapping precategori@scategories so that
the LTS generated using GRPOs is the same (i.e., iekastlythe same labels)
as the LTS generated using the above mentioned approaclrafséation derives
from the precategory’s support information a notion of hamoophism, specific
to the particular structure in hand, which constitutes tleel®s of the derived G-
category. We claim that this yields a mathematically elegg@proach, potentially
more general and in principle more direct than precategpitethat it allows for
arbitrary structural isomorphisms to be considered, amsdwill within existing
category theory, with no need for new frameworks. In paliclone advantage of
G-categories is that one may apply standard categoricateanions without trans-
lations or alterations. Further supporting evidence folPGR is provided in [22],
where we apply their theory to graphs and graph rewritingerttains to be seen,
of course, whether future developments, e.g. for the aisatfsspecific LTSs ob-
tained through our constructions, will point towards thechef additional structure
on G-categories.

Structure of the paper. In 82 we review definitions and results presented in our
previous work [19,21]; 83 shows that, analogously to themethsional case, trace
and failures equivalence are congruences provided thatggnGRPOs exist. In
84, we show that the category of bunch contexts is naturaflycategory where
GRPOs exist; 85 shows how precategories are subsumed bytom nof GRPOS.
The exposition ends with a few concluding remarks; 81 redaisic notions of 2-
categories, and can be safely skipped by those readersiatagbaith the standard
notations.

An extended abstract of this work appeared as [20]. Here wianally develop
the theory of weak operational congruences, and illusthegeole of the notion of
extensive category in the construction of GRPOBum.

1 Preliminaries

Throughout the paper we assume a moderate knowledge ofocatdgeory and
related terminology. In this section we fix notations anahgbe basic elements of
2-categories we need to state our definitions and prove suttse For a thorough
introduction to 2-categories, the reader is referred t$ [10

We useOrd to denote the category of finite ordinals. The objects of ¢higgory
are the natural numbers 2, .... The morphisms frormto n are the all the func-
tions from them-element sefm| = {1, 2,...m} to[n] = {1, 2,...n}. Composition is
the usual compositions of functions. The category is skkletthat we have = n’/

if and only if n = n’. We assume thard has chosen coproducts, namely ordinal
addition®. One possible way to define this is to let, on objeotsh n = m+n,



while on arrows, giverf :m—m' andg:n—n', let f +g: m+n— m +n’ be the
function(f +g)(x) = f(x) for 1 <x <mand(f +g)(x) = g(x—m) +m otherwise.
Intuitively, f + g is constructed by putting andg side by side.

For any finite sek, let ord(x) be the finite ordinal of the same cardinality and
tx: X — ord(x) be a chosen isomorphism. There is an equivalence of cagsgori
F: Setr — Ord, whereSet; denotes the category of finite sets. On objects it sends
x to ord(x); on morphisms, it map$é: x — ytotyft, 1: ord(x) — ord(y).

A 2-categoryC is a category where homsets (that is the collections of arfosv
tween any pair of objects) are categories and, correspglylimhose composition
maps are functors. Explicitly, a 2-categdyconsists of the following.

e A class ofobjects XY,Z,....

e ForanyX,Y € C, a categoryC(X,Y). The objects(X,Y) are calledl-cells or
simply arrows, and denoted Hy. X — Y. Its morphisms are calleg-cells are
writtena: f = g: X — Y and drawn as

Composition inC(X,Y) is denoted by. and referred to asvertical compo-
sition. Identity 2-cells are denoted Hy: f = f. Isomorphic 2-cells are occa-
sionally denoted aa: f = g. As an example of vertical composition, consider
2-cellsa : f = gandf:g= has below.

f

TR

X—+—Y

N

h

They can be composed, yieldiga : f = h.

e ForeachX,Y,Z thereis a functor: C(Y,Z) x C(X,Y) — C(X,Z), the so-called
‘horizontal composition, which we often denote by mere juxtapositidiori-
zontal composition is associative and adnlitg as identities. As an example,
consider 2-cellsr : f = f andf: g= ¢, as illustrated below.

f 9
/_\ A
X \ga/v\g/s/z
They can be composed horizontally, obtaingeg: gf = ¢’ f'.

As a notation, we writex f andga for, respectivelynls and1ga. We follow the
convention that horizontal composition binds tighter thiartical composition.



In 2-categories, the order of composition of 2-cells is ng@ortant. This is a conse-
guence of the horizontal composition being a functor, amdbsaaxiomatised with
the so calleaniddle-four interchange lawior f, f’, f”: X —Y andg,g,g": Y - Z
anda: f=f',a’: f'= f",B: g=d andf': d = ¢’, as illustrated by

e /iw\
xSyl g 37
W \W/

f// g

we have

B/G/OBG = (B/OB)(G/OG>.
As a consequence, it can be shown that a diagram of 2-celisededit most one
composite 2-cell; that is, all the possible different waysombine together ver-
tical and horizontal composition, yield the same compagitell. This primitive
operation is referred to gmsting

In order to illustrate the notion of pasting, we shall coesitthe following diagrams.

e [ET A

B<—C—>D

o
Kmﬂ %EJ

The left diagram features 2-celts: f = g, 3: qg= p andy:rh = g. They can

be pasted together uniquely to obtain a 2-celi = p. This 2-cell can be written
as eitheBeqaeyf : rhf = p, or equally,Beygerha : rhf = p. Now consider the
right diagram with 2-cellst : f = pg,B:h=-qg, y: pt=sandd: gt = u. There

is no way of composing these 2-cells.

The canonical example of a 2-categorgist, the 2-category of categories, functors
and natural transformations.

Two object<C, D of a 2-categoryC areequivalenwwhen there are arrowis: C — D,
g: D — C and isomorphic 2-cella : idc = gf, B: fg=-idp. We refer tof andg
as equivalences.

2 Reactive Systems and GRPOs

Lawvere theories [11] provide a canonical way to recast tdgabras as categories,
and open the way to the categorical treatment of relatedm®tiForz a signature,



the (free) Lawvere theory on, sayCs, has the natural numbers for objects and a
morphismt : m— n, fort an-tuple ofm-holed terms. Composition is substitution of
terms into holes. For instance, farthe signature for arithmetics, terfa-1 x x) +
—2isan arrow 2— 1 (two holes yielding one term) whik, 2 x y) is an arrow 0—

2 (a pair of terms with no holes). Their composition is theméB x x) + (2 x y),

an arrow of type G- 1.

Generalising from term rewriting systems @x, Leifer and Milner formulated a
definition ofreactive systerfl4], and defined a technique to extract labelled bisim-
ulation congruences from them. In order to accommodateikalith non trivial
structural congruences, as explained in the Introductenrefine their approach
as follows.

Definition 1 A G-categoryis a 2-category where all 2-cells are isomorphisms.
A G-category is a thus a category enriched d8er the category of groupoids.

We shall adopt the convention of not indicating the direttd 2-cells when work-
ing with G-categories. This will considerably simplify mtion while not causing
much confusion; our 2-cells: p = q will always be isomorphic.

Definition 2 A G-reactive syster@ consists of

(1) a G-category,

(2) a collectionD of arrows ofC which shall be referred to as theactive con-
texts it is required to be closed under 2-cells and reflect conjposi

(3) adistinguished object@ C,

(4) asetof pairkR. C JcecC(0,C) x C(0,C) called thereaction rules

The reactive contexts are those contexts inside which atralumay occur. By
composition-reflecting we mean thdd’ € D impliesd € D andd’ € D, while the

closure property means that givdre D anda: d = d’ in C impliesd’ € D. The

reaction relation—> is defined by taking

a—p>a ifthere exists(l,r), d e Dandp: dl = a,p’: d = dr

As illustrated by the diagram below, this represents thé tfzat, up to structural
congruence (as witnessed py, a is the left-hand sidé of a reaction rule in a
reactive context, while & is, up to structural congruence (witngs$, the corre-
sponding right-hand sideof the reaction rule in the reactive contekt

0
a l a
p p’
d

C CT>C/

-
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The set® of reaction rules is, therefore, a set of base rules with kwvbigce gen-
erates the reaction relatier—> by closure under suitable contexts. For pragmatic
reasons, we choose not to stipulate tRais to be closed under structural congru-
ence; that s, in our formalism, under 2-cells. More prdgjsee do not require that
(I";r"y € R ifthere exist(l,r) € R and 2-cellx: 1 = 1", 3:r =r’. Indeed, modern
process calculi often have very simple reaction rules aectckhsure under struc-
tural congruence comes at the point of defining the reacttation. For example,
the standard textbook definition of CCS [16] lists the sirrgkction rule

aP+P |aQ+Q—>P|Q

without listing, additionally, all of its structurally cgnuent variants. It is easy to
check that, if we did choose to impose this conditicg €losed under 2-cells)
then the reaction relation—>, as well as the canonical labelled transition system
(Definition 10) would remain unchanged.

The notion of GRPO formalises the idea of a context being shellest’ that en-
ables areaction in a G-reactive system, and is a conses\&atategorical extension
of Leifer and Milner’'s RPOs [14] (cf. [19,21] for a precisenaparison).

For readers acquainted with 2-dimensional category th&RPOs are defined in
Definition 3. This is spelled out in elementary categorieairts in Proposition 4,
taken from [19,21].

Definition 3 (GRPOSs) Letp: ca= db: W — Z be a 2-cell (cf. diagram below) in
a G-categoryC. A G-relative pushou(GRPO) forp is a bipushout (cf. [9]) of the
pair of arrows(a, 1) : ca— cand(b,p) : ca— d in the pseudo-slice categoy/Z.

orhng
X p Y

&N
A b
w

Proposition 4 Let C be a G-category. A candidate GRPO forca=- db as in
diagram (1) is a tupléR e, f,g,3,y,d) such thadbegBe«ya = p — cf. diagram ).

b A e

X—e—R+—Ff—Y

2 P / (il (il

A —a—N

R



A GRPO forp is a candidate which satisfies a universal property (viz.edhe
‘smallest’ such candidate). Namely, for any other candidgt, €, ', g, p',y,d)
there exists a quadrup(g, ¢, y, 1) whereh: R— R, ¢: € = heandy: hf=f'—
cf. diagram {i) — andt: g’h = g— diagram i ) — which makes the two candidates
compatible after the obvious pasting, i.e.

Teegdey =y JegPet 1f=5  yYbehBeda=Pp.
Such a quadruple, which we shall refer tonasdiating morphispmust beessen-
tially unique that is unique up to a unique iso. Namely, for any other nietdja

morphism(h’,¢’, 0/, T') there must exist aniquetwo cell&: h — h’ which makes
the two mediating morphisms compatible, i.e.:

Eeep =0 Y=y  Tegf=t
Observe that whereas RPOs are defined up to isomorphism, &&edefined up
to equivalence, as they are bicolimits.
The definition below plays an important role in the followitdgvelopment.

Definition 5 (GIPO) Diagram (1) of Definition 3 is said to be@-idem-pushout
(GIPO) if (Z,c,d,idz,p, 1, 1q) is its GRPO.

The next two lemmas explain the relationships between GRIPASIPOS.

Lemma 6 (GIPOs from GRPOs) If (Z,c,d,u,a,n, ) isa GRPO for (i) below, as
illustrated in diagram (ii), then (iii) is a GIPO.

(i) (i) (iii)

Lemma 7 (GRPOs from GIPOs) If square (iii) above is a GIPO, (i) has a GRPO,
and(Z,c,d,u,a,n, is a candidate for it as shown in (ii), thei@,c,d,u,a,n, W
is a GRPO for (i).

The following technical lemmas from [19,21] state the basaperties of GRPOs,
upon which the congruence theorems below rest.



Lemma 8 Suppose that diagrami )Y below has a GRPO.

Uu—=a—v—2 u—=>=a—
X——Y— X——
(i) (i)

(1) If both squares ini are GIPOs then the rectangle ofié a GIPO,;
(2) If the left square and the rectangle gfdre GIPOs then so is the right square.

N%<

Lemma 9 Suppose that diagram) pelow is a GIPO.

NG N N
ANV AR SN AN 4

(i) (i) (iii )

Then the regions obtained by pasting the 2-cellg Jragd {ii ) are GIPOs. Note that
the proof relies on the fact thais, in both diagramsi) and {i), an isomorphism.

The previous lemma in particular implies that the followohefinition of labelled
transition system derived from a G-reactive system is wadihetd.

Definition 10 (LTS) For C a G-reactive system whose underlying categong a
G-category, define GTE) as follows:

e the states GTE) are iso-classes of arrovia]: 0 — X in C;

e fora,@:0— X andf : X — Z, there is a transitiofg] 1, [@]if fa—>4a
via a GIPO; that is, if there exists a reaction rdgler) € X, a reactive context
d e D, and 2-cellp : fa=-dl andp’: dr = & such that diagram (2) below is a

GIPO. .
i .
X P Y
A

Notice that this amounts to consider &tabelled transition frona only if f is the
‘smallest’ context — in the technical sense defined by thearsal property of GR-
POs — to induce a particular reactionanThe role ofp is absolutely fundamental

10



here: by determining the correspondence (isomorphismydmeia anddl, it deter-
mines exactly thelocation of the redex being reduced, and therefore the reaction
being fired. We will remark again on this with specific exansptelater sections.

Henceforth we shall abuse notation and leave out the squaockdis when writ-
ing transitions; i.e. we shall write simply—"—» & instead offal SN [@]. Note
that, taking into account the conclusions of Lemma 9, thissabs quite harmless.
Indeed, from a transitiofa] HLII [@], we can conclude thdta—> & (working
with the “concrete” underlying representatives) and thaté exists a reaction rule
(I,r) € ® and a GIPOp : fa=-dl with dr 2 &' In particular, it does not matter
which representatives of equivalence classes one stdts wi

Categories can be seen as a discrete G-categories, whewalyh2-cells are the
identities. Using this observation, each G-concept intoed above reduces to the
corresponding 1-categorical concept. For instance, a GREXp. GIPO) in a cate-
gory is exactly a RPO (resp. IPO) of [14].

3 Congruence Results for GRPOs

The following notion is the precondition needed to provedbegruence theorem.

Definition 11 (Redex GRPOs)A G-reactive systen€ is said to haveedex GR-
POsif its underlying G-categonfC has GRPOs for all squares like (2), whérie
the left-hand side of a reaction ruler) € X, andd € D.

Observe that this means that there exists a GRPO for eaclblgasseraction be-
tween a term and a context. We are therefore able to detearigmallest’ labelf

to capture each of them in GTS). The main theorem of [19,21] is then expressed
as follows.

Theorem 12 (cf. [19,21])Let C be a G-reactive system which has redex GRPOs.
Then the largest bisimulation on GTS(C) is a congruence.

The next three subsections complement this result by pgavie expected corre-
sponding theorems for trace and failure semantics, andtinglithem to the case
of weak equivalences. Theorems and proofs in this sectibowfelosely [12], as
they are meant to show that GRPOs are as viable a tool as RBOs ar

11



3.1 Traces Preorder

Trace semantics [18] is a simple notion of equivalence wbipnates processes if
they can engage in the same sequences of actions. Even thdagks the fine
discriminating power of branching time equivalences, Bigimulations, it is nev-
ertheless interesting because many safety propertiessoaxpbessed as conditions
on sets of traces.

We say that a sequendg- - - f, of labels of GT$C) is a trace of if

f f
a_lp..._”>an+l

for someay, ..., a,. The trace preordefy is then defined aa < b if all traces of
a are also traces df.

Theorem 13 (Trace Congruence)<y is a congruence.

PROOF. Assumea < b. We shall prove thata < cb for all contextsc € C.
Suppose that

Ca:aii; a_za_nl; a_n+1~
We first prove that there exists a sequencej ferl, ..., n,

. a'l . CI .
|,‘/ [of] g|i Bi lf,
1
. 3 . 4 .

wherea; = a, ¢; =¢, ¢.1=d/, & =ca;, and each square is a GIPOTheith

induction step proceeds as follows. Sira.‘:ef'—_>_§i+1, there existy; : ficia = dil;,

for some(l;,ri) € R andd; € D, with g1 = dir;. SinceC has redex GIPOs (cf.
Definition 11), this can be split in two GIPOs;: gia; = dili andBi: fici = d/g;

(cf. diagram above). Taka .1 = dirj, and the induction hypothesis is maintained.
In particular, we obtain a trace

a= alip a2...ani> an+1
and, by the inductive hypotheses <, b must be matched by a corresponding trace
of b. This means that, for=1,..,n, there exist GIPOsi: gib; = gl/, for some

(I{,r]) € R ande € D, once we takdj 1 to begr{. We can then paste each of such

1 Since the fact is not likely to cause confusion, we make natimial distinction between
the arrows ofC (e.g. in GRPOs diagrams) and the states and labels of G)T 8/here the
latter are iso-classes of the former.

12



GIPOs together with the correspondigg fici = d/g; obtained above & 1,...,n)
and, using Lemma 8, conclude that there exist GIF@®; = d/el/, as in the
diagram below,

b e
' b i Iay!
1 o @L B lﬁ which means cijbj —» digr;.
!
Ci ’ q

As cb=c;by, in order to construct a tracd = 51% oy 5n+1 and complete
the proof, we only need to verify that foe=1,...,n, we have thatfer{ = ¢ 1bj ;1.
This follows at once, as+1 = d andbj11 = er;.

3.2 Failures Preorder

Failure semantics [6] enhances trace semantics with lehbitanch-inspecting power.
More precisely, failure sets allow to test when processesetke the capability of
engaging in certain actions.

Formally, foraa state of GT8C), afailure of ais a pair(fy - - - fn, X), wherefy - - - f,
andX are respectively a nonempty sequence and a set of labelstlsatc

o f1---fyis atrace of, atty ... fny ant1;
e a,.1, the final state of the trace, $table i.e.an 1 A~ ;
e an, refuses Xi.e.apn, 1 A forall x € X.

The failure preorders; is defined as <; b if all failures ofa are also failures ab.

Theorem 14 (Failures Congruence)<; is a congruence.

PROOF.

Assumea <; b to prove thata <; cbfor all contextsc € C. The proof extends the
previous one of Theorem 13.

Let(f1---fn,X),n>0, be afailure ota We proceed exactly as above to determine

a matching traceb= 51 iy iy 6n+1- In addition, we contextually need to
prove that,. 1 is stable and refuses, exploiting the corresponding hypothesis on

ant1.

First, we claim thaf, 1 is stable. In fact, were it not, it would follow fro, 1 € D
(which equald)) that alsoan 1 = chr180:1 —>. But this is impossible, since

13



an. 1 is stable. Secondly,, 1 refuses both

Y ={g | there exists a GIP@y: Xth+1 = dg, for xe X, d € D} and
Z ={g | there exists a 2-cetly: dg= Cn,1, for d € D},

which can be seen as follows. a1 -2 for g € Y, then there exists a GIPO
a: ganr1= d'l, for some rul€l, r), which could be pasted together wiito yield

a GIPOXcy1an+1 = dd'l, which is impossible since it means ttegt.; —=», for

x € X. Similarly, if a1 —2 9 for g € Z, pasting the corresponding GIPO W)
we see thaa, 1 —>, contradicting the hypothesis that, ; is stable.

If follows then from the hypothesis <¢ b thatby 1 is stable and refusesuZ. It
is then easy to complete the proof by transferring stabditg X-refusal toby. 1.
First, suppose thdt,,1 —>. This means that there exists a 2-o#ll= by 1.
Since C has redex-GRPOs, we can factpy. 1 out and obtain from this a GR-
POsa: gb,.1 = d'l together with a 2-celd’g = ¢, 1. But this would mean that
bni1 9 5 for g € Z, which is a contradiction.

Suppose finally thalb,,1 —X, for x € X. Again, by definition of the transition
relation, and exploiting the existence of redex-GRPOs, we GRPOxG, 11 =
d”g andgbn.1 = d’l, which mean thab,, 1 —2», forgeY.

3.3 Weak Equivalences

Theorems 12, 13, and 14 can be extended to weak equivalescesiow.

f
For f a label of GT$C) define aveak transition a—» b to be a mixed sequence

of transitions and reductiors—>*—p—>* b. Observe that this definition
identifies silent transitions in the LTS with reductions. #sonsequence, care has
to be taken to avoid interference with transitions of thedkf¥“», synthesised
from GRPOs and labelled by an equivalence. These transitiave essentially the
same meaning as silent transitions (i.e. no context inebirghe reduction), and
must therefore be omitted in weak observations. The fohgWwemma makes the
reasoning above precise.

Lemma 15 Suppose tha€ is a G-reactive system. £ b with e an equiva-

lence, then there exist$ such thata —> b'. Moreover,b/ = €b, where€ is the
pseudo-inverse

PROOF. Suppose thah: dl = fais a GIPO and is an equivalence, that is, there
existisomorphisma :idx = gf andB: fg=-idy. Thena—la«gp: gdl = aandit

14



remains to show thagd € D. But3d : fgd = d and sincéD is closed under 2-cells,
fgd € D. Thengd € D sinceD is composition-reflecting.

We may now consider the weak counterparts of the preordetsguivalences
studied earlier.

Definition 16 (Weak Traces and Failures) A sequencdj - - - f, of non-equivalence
labels of GT$C) is a weak trace o4 if

fl fn
a:> al"'ani:L:»an

for someay, ..., a,. The weak trace preorder is then defined accordingly.

A weak failureof ais a pair(fy--- fn,X), wheref; --- f, andX are respectively a

sequence and a setwbn-equivalencéabels, such that; - - - f,, is a weak trace of

a reaching a final state which is stable and refuse3he weak trace preorder is
defined accordingly.

Definition 17 (Weak Bisimulation) A symmetric relations on GTSC) is a weak
bisimulation if for alla $ b

f
a—»a fnotanequivalence, impligs— b witha s b;
a—>a impliesb—p*b' witha Sb'.

Using the definitions above Theorems 12, 13, and 14 can ld lifespectively, to
weak traces, failures and bisimulation.

It is worth remarking that the congruence results, howewas hold for contexts
ce D, as itis well known that non reactive contexts —i.e. thoadereca——> cb
does not follow froma—> b, as e.g. the CCS context= — + cp, do not preserve
weak equivalences. Alternative definitions of weak bisitiohs are investigated
in [12], and they are applicable mutatis mutandis to GRPOs.

4 Bunches and Wires

In this section we consider an example of a simple G-categepasting in the
present framework the notion of bunch context first due tddreind Milner [14].
We will recall the notion of extensive category [2] and pred¢o construct GRPOs
in the G-category of bunches. The construction will only make of the fact that
Ord, the category whose objects are the node sets of our bunslesensive and
has pushouts.
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4.1 Category of Bunch Contexts

The category of ‘bunches and wires’ was introduced in [144 akeletal algebra
of shared wirings, abstracting over the notionnafmesin, e.g., therrcalculus.
Although elementary, its relevance resides in represgritie simplest possible
form of naming. In any case, its structure is complex enoodahdk RPOs.

A bunch context of typeng — m; consists of an ordered set wh, trees of depth
one containing exactlyny holes. Leaves are labelled from an alphafigtThese

data representy bunches of unspecified controls (the leaves), together mwth
places (the holes) where further bunch contexts can be etutyg Before illustrat-
ing this graphically, let us proceed with the formal defmtiof Leifer and Milner’s

category of bunch contexts.

Definition 18 Let mp andnmy be finite ordinals. Aconcrete bunch context eng —
m is a tuplec = (X,char,rt), whereX is a finite carrier,rt: mp+X — my is
a surjective function linking leaves<j and holes ifyp) to their roots ), and
char: X — K is a leaf labelling function.

Given concrete bunch contexts: mgp — my andci: My — np, we can compose
them to obtain a concrete bunch contexty: my — nmp. Roughly, this involves
‘plugging’ themy trees ofcy orderly intomy holes ofcy; leaves and holes @ are
‘wired’ to the roots ofcy, alongside;’s leaves. Formallyeico is (X, rt, char) with

X =Xo+ X1, rt = rtq(rto+idy, ), char = [charp, charq],
where+ and[_, | are respectively coproduct and copairing.
A homomorphisnof concrete bunch contexfs: c = ¢’: mp — my is a function
p: X — X’ which respectst andchar, i.e.rt’p = rt andchar’ p = char. An isomor-
phism is a bijective homomorphism.

Definition 19 The category obunch context8ung has

e objects the finite ordinals (cf. 81), written &g, my, ...
e arrows frommy to m; are isomorphism classéa : mp — my of concrete bunch
contexts.

Given an objectny, the identity is (the isomorphism class @@),!,id) : mg — m.
Isomorphic bunch contexts are equated, making composiieaciative an8ung
a category

The pictures below illustrate the concept of bunch contélke leftmost diagram

represents a bunch contéat: 0 — 2 with X = 3, char(1) = char(3) =K, char(2) =
L, rt(1) = 1 andrt(2) = rt(3) = 1. The middle diagram represents a bunch context
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[b] : 2 — 2 with X = {x}, char(x) = M, rt(1) = rt(x) = 1 andrt(2) = 1.

ANV AV AN

K L K

[@a:0—2 b]:2—2 [ba :0— 2
The final diagram representsal : 0 — 2, the result of composingandb.

A bunch contextc|: my — my can alternatively be depicted as a stringnof
nonempty multisets o + my (the bunches of leaves and holes connected to the
same root), with the proviso that elememsmust appear exactly once in the string.
In the examples, we represent elementewfs numbered holes;. For instance,

the three pictures above can be written respectivelkasL,K}, {—1,M}{—2},
and{M,K}{L,K}.

As we mentioned before, RPOs do not exisBumg. Indeed, consider diagram (

below.
1
{K7_V N(7_l}
1 1
SN
0
(i)

The following diagrams show two candidate RP@} &nd {ii ) which are easily
proved not to have a common ‘lower bound’ candidate.

1

1
1

{—1,—2} {K=a)

{KT—l} N

1—{-1}—1—{-1}—1 1-{-1HK} =2 {KH{-1} 51

{K} {K} {K} {K}
0 0
(i) (iii )
The point here is that by taking the arrowsBiding up to isomorphism we lose
information abouhow bunch contexts equal each other. Diagramfér instance,
can be commutative in two different ways: tian the bottom left part may corre-

spond either to the one in the bottom right or to the one inapeaight, according
to whether we readK, —1} or {—1,K} for the top rightmost arrow. The point is
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therefore exactly whicbccurrence®f K correspond to each other. The fundamen-
tal contribution of G-categories is to equip our structwisterest with an explicit
mechanism (viz. the 2-cells) to track such correspondetaasinto the categori-
cal machinery of relative pushouts, this gives GRPOs thesptwviocate reaction
beyond the blurring effect of a structural congruence (is thse, the commutation
of elements inside a multiset). To illustrate our ideas cetaty, let us granBung

its natural 2-categorical structure.

Definition 20 The 2-category of bunch contex@sin has:

e objects the finite ordinals (cf. §1), denoted, my, ...

e arrowsc = (X, char,rt): mp — nmy consist of a finite ordinat, a surjective func-
tionrt: mp® X — my and a labelling functiomhar: x — X.

e 2-cellsp are isomorphisms between bunches’ carriers which preskeevstruc-
ture, that is respechar andrt.

Composition of arrows and 2-cells is defined in the obvioug. \Watice that since
@ is associative, composition Bun is associative. Therefoigun is a G-category.

Replacing the carrier s&t with a finite ordinalx allows us to avoid the unnecessary
burden of working in a bicategory, which would arise becasiga on sets is only
associative up to isomorphism. Observe that this simplifioas harmless since the
set-theoretical identity of the elements of the carrierrislévant. We remark, how-
ever, that GRPOs are naturally a bicategorical notion angldyoose no particular
challenge in that setting. In particular, in [22] we use abagorical framework in
order to apply the theory of GRPOs to derive bisimulationgraence for generic
graph rewriting systems.

4.2 Extensive Categories

When constructing GRPOs, we have tried to use general gataoonstructions
defined using universal properties. This not only simpliffesproofs, freeing one
from unnecessary set-theoretical detail but also makes there robust in that the
proofs lift relatively easily to other models.

In particular, in the proof of Theorem 24 below, we use onky féct thatOrd is
an extensive [2] category with pushouts. An extensive @ategan be thought of
roughly as a category where coproducts are in many ways-tetlaved, where
the paradigm for good behaviour comes from the category tsfaed functions.
For the reader’s convenience we reproduce a definition below

Definition 21 A categoryC is extensivavhen

(1) it has finite coproducts,
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(2) it admits pullbacks along injections of binary coprotiiic
(3) given a commutative diagram

CL—2—C—2-C

[k

where the bottom row is a coproduct, the two squares areguiithif and only
if the top row is a coproduct diagram.

In order to provide the reader with some intuition for the dgdehaviour of co-
products in extensive categories, we recall below somegpti@s of extensive cat-
egories. Notice that these simply express expected prep@itcoproducts iset,
the category of sets and functions.

Lemma 22 LetC be an extensive category. Then,

(i) sums are disjoint; that is, the pullback of the two injeas of a binary co-
product is the initial object,
(i) coproduct injections are mono,
(i) if A 2% C <2 B and A % C <2 B are coproduct diagrams, then there
exists a unique isomorphispn: A — A’ such that|$ =i,
(iv) suppose thap : A+C — B+ C is an isomorphism such thét, =i : C —
B+ C; then there exists a unique isomorphigmA — B so that) = ) +C,

PROOF. We begin by provingif and {i). In the following diagram, the bottom
row and the top row are coproduct diagrams,

and the two squares are clearly commutative. Using the tdefnof extensivity,
the two squares are, therefore, pullbacks. The left squairgla pullback means
that coproducts are disjoint. The fact that the right hade & a pullback implies
thati, is mono. By a similar argumernit, is also mono.
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We shall now proceed withi(). Consider the following diagram,

N
1N
A

using part (), we deduce that the two lower regions are pullbacks. Leupyer

region be a pullback. Using extensivity, 8- A <%~ X and 0—— A’ <&~ X are
coproduct diagrams, and therefore, it follows thanda’ are isomorphisms. Let
¢ = aa~1, which satisfies}¢ = i1, as required. Given another sugh we have
i’;]q) ; i1 ;i’lqn. We can now use parti) to deduce thai; is mono, and therefore,
thato =¢'.

It remains to proveiy). Consider the diagram below, where

X A+C C
w’l f Jid
B B+C C

the right square can be verified to be pullback, using thetfetih is mono. Sup-
pose that the left-square is a pullback. Note thais an isomorphism, since it is a
pullback of an isomorphism. Using extensivity, the resigittop row is a coprod-
uct diagram, and using paiii{), we can deduce that there exists an isomorphism
¢ : A— Xsuchthatf¢ =i;: A— A+C. Lettingy = /¢, we obtaing = y+C.

The fact that; : B— B+ C is mono implies uniqueness.

Examples of extensive categories incluskef and more generally any topos. The
category of topological spaces and continuous functi@psis extensive. Any cat-
egory with freely generated coproducts is extensive [2].

The following simple fact will prove useful for us later inishsection. It holds in
any category, that is, it does not require the assumptiontehsivity.

Proposition 23 Suppose that the diagram (i), below, is a pushout. Then diadii)
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is also a pushout.

A—3-cC A+E— 9 oL E
fl lf/ f+J|I,dE f/+lldE

(i) (i)

4.3 Construction of GRPOs

Theorem 24 Bun has GRPOs.

PROOF. The proof is divided into two parts. In the first part we give tonstruc-
tion, and in the second part we verify that the universal priypholds.

4.4 Construction of GRPO

Suppose that we have an isomorphic 2-pelta=- dl as illustrated below.

/\
\/

The intuition here is that, for an ‘agerd’and a left hand side of some reaction
rule, we are given bunch contextsaandd so thatca is dl, up top (in symbols,
ca=, dl). We shall find the smallest upper boundeadnd| which ‘respectsp.

Using p : Xa ® X; — Cc @ Xg and the injections into the chosen coproducOrd
(which in the diagrams below we leave unlabelled, or deneteegcally withi; and
i2), we take four pullbacks obtaining the following diagranuelo the extensivity
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of Ord, each ofl;, &, d; andc; wherei € {1,2} is a coproduct injection.

Xel 1 X 12 Xia

C1 a1

Xe —— Xa B Xo —P— X D X —P— X B Xa —— Xa

] | ;

Xdc " Xd 5 Xad
(i)

Here, one can think ofy. as the nodes common to bunch contekendc, when
cais translated, vi@, todl. Similarly, x; are the nodes common ¢tandl, X, are
the nodes common fcanda, while x;4 are the nodes common &andd. We shall
show thatx, andxaq form the nodes of the minimal candidate.

Let Xe = X1, Xf = Xad aNdXxg = X4c. Using the morphisms from the diagram above
as building blocks, we can construct bijectigns — Xe®Xg, 0: Xt ©Xg — Xg and
B: Xa®Xe — X ®X¢ such that

X ®O.LDXgXa DY =P, 3)
more preciselyy = [c1,¢p] 71, & = [dp, d1] andp is the following composition,

allo Xi®[l2,l
Xa @ Xe 2Ty o xa@xe "B xp @y M x @ xg

wheretw : Xs & X — X @ X is the ‘twist’ isomorphism. Lette andrts be mor-
phisms makingi{) below a pushout diagram.

Mo © Xa & Xe T8 My & X ® X6 X0 mp @ x¢ r?g
/9’\
rta ®Xe ree e—>rT|l4<—f mp
’7 \B/
My ® Xe — my mo

(ii)) (iii)
We can then definehare, chars andcharg (fromy, d, charc andcharg) so as to form
bunch contextg, g and f which make(iii) above a candidate GRPO. Notice that

the commutativity ofif) implies thatf3 is a bunch homomorphism.

It remains to definetg and prove thay andd are bunch homomorphisms.

22



Consider the diagramv), below.

Mo B Xa ® Xe @ Xg 2P my x4 @ %t X X Py @ xp @ xg 220 mp @ xg

| (T) rtf
t

(iv)

The exterior of V) is commutative sinc@ is a bunch homomorphism, this can
be verified by precomposing witlg © Xa BY : Mo D Xa B Xe — Mo D Xa D Xe D Xg
and using (3). Now, sincei] is a pushout, an application of Proposition 23 yields
that (1) is a pushout. We obtain a morphisi: my © xg — mg which makes the
remaining regions ofiy) commute — implying thay andd are bunch homomor-
phisms. We can deduce tha§ is epi sincertg. rtf ©Xg = rtq .M ® 9, rtq is epi and

mp & O is an isomorphisms.

Thus, diagrantii) is indeed a candidate GRPO for the 2-gelica=- dlI.

4.5 \Vfrification of the Universal Property

Suppose thaims,r,s,t,',y,d) is another candidate GRPO fori.e.d'l o tf' e ya=
p. A diagram chase shows that the diagragn lfelow, is commutative.

X2 xamx—9  ixg
izl
Xr & X i2

-

(V)

Sincexg with mapsc; : Xg — X andd : Xg — Xq is a pullback opiz : X — X © Xg
andiz : Xg — X ©Xg — cf. (i) —, there exists a monomorphidmx — Xg such that
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v~ 1lis = cok anddis = dik.

Xy w X X —K 3 Xg
[ |
j Xr D % id [ w
Xg Co XC Xt y’71i2 XC y’71i1 Xr
(vi) (vii)

Take the pullbackvi). Using extensivityx, 4, Xg L X is a coproduct diagram,
as shown by[0), where the square on the right hand sidé/i§. The commutative
square on the left hand side can be verified to be a pullbaclke sin being a co-

product injection in an extensive category, is mono. Wel taiw thatx is the set

of nodes of a mediating bunch contextm, — ms.

Let T denote the isomorphisfij, K] : X, & % — Xg. By the definition oft, the com-
posites at the bottom edges of diagrawig Y and {x), below, act as the identity on
the second injections4). Applying part (v) of Lemma 22,

X L Xe B X
l
Xe 5% —Y oYX @ Xg X X ¥ B
(viii)
Xf DXy v Xs
l \
Xt B Xy X —IT s B Xg—3 X I DX

(ix)

we obtain isomorphismg andy) so that diagrams/{ii) and {x) are pullbacks.

The commutativity of these pullback diagrams implies that
Xe®T.ODX.Y =Y (4)

andd.P@x.xf @11 = 8. These two equations, together with those which relate
ptoB,y, dandp,y,¥, give

X DYLBXXa DO =P (5)
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Now consider diagranx{, below.

10  Xa 6 Xe & Xey s g (X, X Xy PP Mo & Xt & X,
rta@xe@xul DX 0X) DYDY MY
My & Xe B Xy Mo @ Xa ® X~ 15 @ @ X628 my & s
ml@q)ll y/ ) lrts
My ® X Mg

()

The commutativity of regior¥) follows from equation (5). Region (%) is commu-
tative becaus@’ is a bunch homomorphism. Thus, the entire diagram is commuta
tive. The commutativity ofX) implies that the outside of diagrami) is commu-
tative. Applying the conclusion of Proposition 23 to diagréi) implies that the
inner region is a pushout diagram, and therefore, that teeists a unique mor-
phismrtg : My © Xy — Mg which renders regions (*) and (**) commutative.

Mo ®PBO Xy rt) &Xs Xy m ey
Mo B XaBXeDXy——MoDX BXt DXy—— M DXt SXy—— M B Xs
rta @Xe@xul rty @Xul ()
My © Xe DXy e My & Xy rts
- . AmS
(xi)

Thusu: my — mg is a bunch context. Regions (*) and (**) ofif imply that¢: r =
ueandy: uf = s, respectively, are homomorphisms. To see thatu=- g is a
homomorphism, consider diagramiif, below.

M ey
My B Xe ——— My & % % T2 111 6 X @ Xy B Xt ———— M1 B Xe B Xg
1 may | L 1 u M X
rte rty DXt rte ©Xu®Xt hrte DXg
Mg rt‘ M B X M B Xy B X —— My g
rtg
(xii)

The two rectangles on the left are commutative siiead¢ are homomorphisms.
Using (4), the top row is equal toy @ y. Using the fact thayis a homomorphism
(the commutativity of the outside region) and the surjestiof the marked arrow
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in the above diagram, we conclude thigt my © T = rt¢ . rty ®x. Thus(u, ¢, P, T) is
a mediating morphism.

Now consider any other mediating morphigsm, T/, ¢’, ’). We have that
X ©T.9' Ox.Y =Y, (6)
W Oxx®(T) t=0andx oYW BOxyXu® P =P

Using (4) and (6), we haviee & 1.0 & X%.Y = Y= X% D T.¢' & x.Y and therefore
XeDT.0 DX = XD T.¢' ® x%. Precomposing with the second injectipn x —

X @ X allows us to deducei> = T'i> : X — Xg. Thus we have coproduct diagrams
Xy 2 Xg 2 % andxy —> Xq <2 %. Using part {ii ) of Lemma 22, we obtain a
unique isomorphisrg : x, — Xy such that’i;& = ti;, and therefora’ . ® x = T.

Now, using (4) and (6) agaite ©T.¢' BX% = V.(Y) 1 =X DT.0 DX =X DT XD
& D .9 B X, from which followsd’ D x = (X &.9) ® x. A straightforward appli-
cation of part (iv) of Lemma 22 yields thét = x® &.¢. Similarly, one may derive

bxiogt=1.

We remark again that the proof relies nicely on the fact @at is an extensive
category with pushouts, and it goes through unchanged footer such category.

Examples.Lety: 2 — 2 be the function taking & 2 and 2— 1. We give below
on the right the GRPOs for the squares on the left.

{K,—1}
1
y
{K} {K} {K} K}
0 0
1 1
{K,—1} y {K,—1} {K,Tl} {K,—1}
|
1 1 1 1—{-1—1—{-1}1—1
1
{K} {K} {K} {K}
0 0

Of course, the ambiguity iBung about ‘how’ the diagrams commute — which
ultimately leads tdBung failing to have RPOs — is resolved here by the explicit
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presence ol ory. And in both cases, GRPOs exist.

5 2-categories vs precategories

Other categories which, besidgsng, lack RPOs include the closstiallow action
contextg12,13] andbigraph context$17,8]. The solution adopted by Leifer [13]
and later by Milner [17] is to introduce a notion ofagell-supported precategoyy
where the algebraic structures at hand are decorated by fauipport sets.” The
result is no longer a category — since composition of arrevekefined only if their
supports are disjoint — but from any such precategory onegeaerate two cate-
gories which jointly allow the derivation of a bisimulaticongruence via functo-
rial reactive systemThese categories are the so-calliedtk category, where sup-
port information is built into the objects, and teepport quotientategory, where
arrows are quotiented by the support structure. The traeigoay has enough RPOs
and is mapped to the support quotient category via a ‘wdibaked’ functor, so as
to transport RPOs adequately. We remark that Jensen anémlilhhave recently
simplified the theory by developing their arguments intdyna precategories, in
order to bypass working with the track category.

In this section we present a general translation from ahyitprecategories to G-
categories. Our main result shows that the LTS derived ugregategories and
functorial reactive systems is identical to the LTS derivsthg GRPOs. We be-
gin with a brief recapitulation of the definitions from [13§ which the reader is
referred for motivations and details.

Definition 25 A precategoryA consists of the same data as a category. The com-
position operatos is, however, a partial function which satisfies:

(1) foranyarrowf : A— B, idgof andf oida are defined and ghf = f = foida;
(2) foranyf:A—B,g:B—C,h:C— D, (hog)o f is defined iffho (go f) is
defined and thefhog)o f =ho(go f).

Definition 26 Let Set; be the category of finite sets.well supported precategory
is a pair(A,|—|), whereA is a precategory and-| is a map from the arrows df

to Set;, the so-called support function, satisfying:

(1) go fis defined iff|g|N|f| =0, and ifgo f is defined thergo f| = |g| W |f|;
(2) |ida] = 0.

For anyf : A— B and any injective functiop in Set; the domain of which contains
| f| there exists an arrow- f : A — B called thesupport translatiorof f by p. The
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following axioms are to be satisfied.

1. p-ida =ida; 4.p-(gof)=p-gop-f;
2.idyg-f =1, 5. (p1opo)- f=p1-(po-f);
3. polf| = pa|f|impliespo- f =p1-f; 6. |p-f|=p]f]|.

We illustrate these definitions giving a precategoricalmdgdin of bunches and
wiring (cf. 84).

Example 27 (Bunches)The precategory of bunch conteX@sBun has objects as
in Bung. However, differently fromBung, arrows are concrete bunch contexts,
they are not isomorphism classes. The suppox of (X, char,rt) is X. Compo-
sition c1cp = (X, char,rt): mg — mp of cp: My — My andcy: My — mp is defined

if XoNX1 =0and, if so, we havX = Xgw X;. Functionshar andrt are defined in
the obvious way. The identity arrows are the same d&ung. Given an injective
functionp: X — Y, the support translatiop- cis (pX,char p~1, rt (idm, +p~1)). It

is easy to verify that this satisfies the axioms of precaiegor

The definitions below recall the construction of the tracll #me support quotient
categories from a well-supported precategéryThe track has the support infor-
mation built into the objects. On the contrary, the suppadt@gnt consists of iso-
morphism classes of arrows with respect to support translaBoth constructions
yield categories relevant th. The track category, in particular, is concrete enough
to admit RPOs in important cases. We shall question shdrdyr¢lationship be-
tween these constructions and our notion of G-categories.

Definition 28 Thetrackof A is a categor)@ with

e oObjects: pairgA, M) whereA € A andM € Sets;
e arrows:(A,M) LN (B,N) wheref: A— BisinA, M C N and|f| = N\M.

Composition of arrows is as iA. Observe that the definition of | ensures that
composition is total. We leave it to the reader to check thatlata defines a cate-

gory (cf. [13]).

Definition 29 Thesupport quotiendf A is a categoryC with

e Objects: as im;

e arrows: equivalence classes of arrowsAgfwheref andg are equated if there
exist a bijectivep such thap- f =g.

Example 30 (Bunches)The support quotient o&-Bun is Bun.

There is an obvious functd#: C — C, the support-quotienting functoiThere is
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a straightforward way of defining a reactive system over a-sighported precate-
gory, akin to the definition of G-reactive system for a G-gaty (Definition 2).

Definition 31 A reactive system\ over a well-supported precategatyconsists
of

(1) acollectionD of arrows ofA, the reactive contexts; it is required to be closed
under support translation and to be composition-reflecting

(2) adistinguished object@ A,

(3) a set of pairsR. C Uacs A(0,A) x A(0,A) called the reaction rules. These
are required to be pointwise closed under support trapslathat is, given
(I,r) € R and support translations p’ whose domains contain respectively
|I| and|r|, we require thatp-1,p’-r) € R.

In the following we use the typewriter font for objects andoars of C. We make
the notational convention that aaynds in C are such thaff (A) = AandF (f) = f.

Definition 32 LetA be areactive system over a well-supported precategobet
C andC be the corresponding track and support quotient. The LTSSKIA) has

e States: arrowa: 0 — X in C;

e Transitions:a—— dr if and only if there exist,1,f,d in C with (1,r) € R,
d € D, and such that

I
N A

It is proved in [13] that the support-quotienting functersatisfies the conditions
required by the theory of functorial reactive systems [3,Thus, if the category
C has enough RPOs, then the bisimulation on FI(RS is a congruence.

is an IPO inC.

All the theory presented so far can be elegantly assimilatedhe theory of GR-
POs. In [13], Leifer predicted that instead of precategorae could consider a
bicategorical notion of RPO in a bicategory of supports.sTikiindeed the case,
with GRPOs being the bicategorical notion of RPO. Howeverrkimg with or-
dinals for support sets we can avoid bicategories and, dseicdse oBun, stay
within the realm of 2-categories. It is worth noticing, haweg that a bicategory of
supports as above and the G-category we introduce belowdwimibiequivalent
(in the sense of, e.g., [25]). In the following, we make usa ohosen isomorphism
ty: X — ord(x), as defined in 8§1.

Definition 33 (G-Category of Supports) Given a well-supported precategady
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the G-category of supporis has

e Objects —as im\;

e arrows —f: A— Bwheref: A— Bis an arrow ofA and|f| is an ordinal,

e 2-cells—p: f = gfor p a ‘structure preserving’ support bijection, ige.f =g
in A.

Composition is defined as follows. Givdn A— Bandg: B — C,
gog f =i2-gopliy- f

where|f| - || @ |g| <2 |g| is the chosen coproduct diagram@nrd . Given an
arrow f in A, we usef =t¢- f in B, the ‘canonical representative’ éfin B. To
simplify the notation in the following we writé for t;|. Observe that, with these

conventionsts : | f| — |f].

Notice that the translation can be easily extended to neastistems. That is, start-
ing with a reactive systerA over a well-supported precategafy one uses the
translation of Definition 33 to obtain a G-reactive systBnover the G-category
of supportsB. Observe that such structure gives a concise representattiooth
the quotient, via the 2-structure, and the support, with@ednto include the latter
explicitly in the objects. The following theorem guararg¢leat the LTS generated
is the same as the one generated with the theory of functeaative systems.

Theorem 34 Let A be a reactive system over a well-supported precategqry
and letB and B be respectively the G-reactive system and G-category roddai
as above. TherELTS*(A) = GTSB).

PROOF. Let C be the track ofA. It is enough to present a translation between
GIPOs inB and IPOs inC which preserves the resulting label in the derived LTS.
Suppose thdf) below is a GIPO.

Z ~(ZN)
P N N
X p Yy (X,pifal) (Y ia|l])
\ / pit-a %
0 (0,0)
(i) (i)
Then we claim thafii) above is an IPO itT, for N = |I| & |d| andiy, i» injections

into coproducts irOrd. (Observe that thés in the two sides of the diagram refer
to different coproducts; we trust this will not cause comdas) Note that(ii) is
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commutative sinc@ is by definition a structure-preserving support bijection,a
thereforep(iz-coig-a) =iz-doig-I.

Suppose that(R M) ,e, f,g) is a candidate fofii). We then show how to fin@,
y andd such that(R, € f.9,B,V, ) is a candidate GRPO fdi). This amounts to
require thaf, y, andd are such that their pasting composite yigdand that each
of them is a structure-preserving bijection.

Let B represent the following composite

[pi1ts Y ) , liaig Liste] -
& @ |6 ——— |pir-alWlel=liz-l|W]f] — [l |f],

and similarly lety andd be respectively

piz . liate, iatg]
lc| — [piz2-c|=|gogl=|e[w|g —— [€[]d]

and

[t tg Y] i1

~ ol . 2

[fl@[g] —— [flwlgl=[ge f|=lizod] — |d|
It is easy to check that the pasting i3 andd as in the GRPO diagram vyields
p. We show thaly is a structure-preserving bijection The argument for theot
morphisms is similarly trivial. Sinc@i,-c¢c = go e we have([itteistg]piz) - ¢ =
liate, intg] - (goe€) and soy-c=go¢&.

Indeed (R €, f g,B,Y,9) is a candidate GRPO fdi). Thus there existh: Z—R
and 2-cells (structure-preserving support bijectiops = hc, ¢: hd= f and
1: gh=idz.

From the existence af and the definition of well-supported category, we can de-
duce thatg| = |g| = 0 and|h| = 0. Note thatt = id, since there is only one endo-
function on@. We can therefore conclude that aldo= N andg = g.

(R,N) (Z,N)
/ Th \ QT r\
<X7i1|a|>pi2—.c><Z7N>ﬁ<Y7il|”> <R7N><—<Z7N>

h
(i) (i)

We also get immediately thét) above commutes. We show that the left triangle of
(i) commutes, the proof for the right one is similar. From therdedin of GRPO,
we have that ig= tceGd sy = gd «y which then implies tha = y 1. Using the
definition ofy, pize ¢ ote = id wWhich amounts to saying that the triangle is commu-
tative.
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Uniqueness irC easily follows from essential uniquenessBn(which is in this
case the same as uniqueness, since there is only one entitmfuortthed).

Going the other way, suppose tlf&f) below

(Z,N) Z
/ \ / X
Y X p Y

M)

N N

(0,K)
(iii)

is a RPO. Theriv) is a GRPO where is

(iv)

C] tlt] ~
Aeld =8 jalwc = 1| w]d "2 ie|d]

It is trivial to show that thap is structure-preserving, i.e.- (Ca) = dl. Now con-
sider a candidatéR e, f,g,[3,y, ®) for (ii), above. Since the pasting compositeyof
B andd yieldsp, we have that; 'y tio-g=t;'i,-g=g. LetV =N\|¢/|. Lete =
tolytis-eand ' =t518i; - f. Itis easy but tedious to check thgR V) ,€, f',¢)

is a candidate fori). By assumption, there exists an arrtw (Z,N) — (R V)
which satisfiehc= €, hd = f’ andg’h = f’. This can be translated in the by-now
standard way into a mediating morphisim¢, Wy, T) wheret is again the unique
endofunction on th@. Uniqueness again follows by laborious, yet not challeggin
work.

Example 35 (Bunches)The 2-category of supports of the precategArBun is
Bun. Note that a ‘structure preserving’ support bijection ia&ky a bunch homo-
morphism. Indeedp: (X,char,rt) = (X’,char’,rt’) if X" = pX, char’ = char p~1
andrt’ = rt(id ®p~1) which is the same as sayinbyar = char’ p andrt = rt/ (id ©p).

In other words, our general construction translating froeil\supported precate-
gories to G-categories applied to the particular case aiches and wirings,” ex-
tractsBun out of A-Bun. This confirms the results obtained by Leifer and Milner on
this specific subject, and supports our claim of appropmigs of the structures we
have introduced. It is worth remarking how in Definition 3&gategories’ support-
translation isomorphisms are subsumed in G-categoriescals2 Further study is
of course necessary to verify the usefulness of GRPOs in ribgepce of more
complex terms. The results we obtained recently in the chgeph rewriting and
bigraphs are indeed encouraging [22].
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6 Conclusion

We have extended our theory of GRPOs initiated in previouskvio order to
strengthen existing techniques for deriving operatiomaigcuences for reduction
systems in the presence of non trivial structural congreenia particular, this pa-
per has shown that previous theories can be recast usingdives systems and
GRPOs at no substantial additional complexity. Also, wespdbthat the theory is
powerful enough to encompass several examples considethd literature, as a
precise consequence of the fact that any precategory otditi@icreactive system
yields a corresponding G-category in a direct, systemadig. Wherefore, we be-
lieve that it constitutes a natural starting point for fitumvestigations towards a
fully comprehensive theory, which we started to explorétferin [22].

It follows from Theorem 34 that G-categories are at leastx@sessive as well-
supported precategories. A natural consideration is venedhreverse translation
may exist. We believe that this is not the case, as generat&yories appear to
carry more information than precategories. This may tutit@bhave an impact in
dealing with complex structural congruences, such the osag from the repli-
cation axiomP =P | IP.
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