
Monoidal Multiplexing

Apiwat Chantawibul and Pawe l Sobociński

ECS, University of Southampton

Abstract. Given a classical algebraic structure—e.g. a monoid or group—
with carrier set X, and given a positive integer n, there is a canonical way
of obtaining the same structure on carrier set Xn by defining the required
operations “pointwise”. For resource-sensitive algebra (i.e. based on mere
symmetric monoidal, not cartesian structure), similar “pointwise” opera-
tions are usually defined as a kind of syntactic sugar: for example, given
a comonoid structure on X, one obtains a comultiplication on X ⊗ X
by tensoring two comultiplications and composing with an appropriate
permutation. This is a specific example of a general construction that we
identify and refer to as multiplexing. We obtain a general theorem that
guarantees that any equation that holds in the base case will hold also for
the multiplexed operations, thus generalising the “pointwise” definitions
of classical universal algebra.

Keywords: string diagrams· resource sensitivity · symmetric monoidal
categories· props

1 Introduction

In recent years there has been a significant amount of work that uses string
diagrams as a compositional syntax for various computational artefacts. A few
of the application domains are quantum foundations and quantum computing [1,
12, 13], Petri nets [24, 25], signal flow graphs in control theory [2, 7, 9, 10, 14],
electrical circuits [3, 17, 18], game theory [16] and functional programming [19,
23]. In applications, string diagrams are an intuitive, yet formal syntax and
often come equipped with an underlying algebraic theory with which one can
reason about the specific application domains using diagrammatic reasoning.
The deeper reason for this trend is that string diagrams are an appropriate
graphical representation for the arrows of symmetric monoidal categories, since
intuitive topological deformations capture the underlying algebraic laws. But
why symmetric monoidal categories?

In categorical universal algebra, following Lawvere [21], categories with finite
products are a canonical, categorical setting with which to capture the data of
any classical algebraic theory. Classical algebraic theories have an implicit as-
sumption that the underlying data is amenable to copying and discarding. Math-
ematically, this is reflected by the characterisation of cartesian categories as those
symmetric monoidal categories where each object is equipped with a cocommu-
tative comonoid structure and all arrows are comonoid homomorphisms [11,15].

In many applications (e.g. quantum), however, data is not classical. In others
(e.g. concurrency, control), it is advisable to make copying and discarding ex-
plicit, whenever it is used. This boils down to passing from cartesian categories
(Lawvere theories) to mere symmetric monoidal categories (props).

Classical universal algebra dates back to the 1930s, and is a mature subject.
On the other hand, “resource-sensitive” universal algebra is still in a state of
flux. The upshot of this state of affairs is that the same basic constructions are
repeated in different articles, often without a clear picture of their generality. A
consolidation effort is only just beginning, e.g. by extending Lawvere’s functorial
semantics to a suitable class of props [8] and by developing a general theory of
rewriting modulo the structure of symmetric monoidal categories [4–6].

An example of a construction that appears in many of the aforementioned
applications of string diagrams is “pointwise” definitions: e.g. given an operation
such as multiplication (2 → 1), comultiplication (1 → 2), cup (0 → 2) or a cap
(2→ 0), it is common to define its n-ary version, i.e. replacing the carrier 1 by n.
For instance, two cups can be wired together appropriately to obtain a “2-cup”:

7−→

In articles, the “obvious” recursive definitions are often given explicitly. Proving
that “k-cups” behave as ordinary cups then reduces to a simple induction. This
paper is devoted to continuing the consolidation effort through a close examina-
tion of such “pointwise” definitions, which we call monoidal multiplexing.

We start with an examination of classical “pointwise” definitions. A presen-
tation of an algebraic theory is a pair (Σ,E) where Σ is a set of operations,
each with an arity, and E is a set of equations between terms constructed from
operations and variables. For a concrete example, consider the algebraic the-
ory of a monoid. Its usual presentation is Σ = {m, e}, where m has arity 2
and e arity 0. The set of equations consists of associativity (m(m(x1, x2), x3) =
m(x1,m(x2, x3)) and unitality (m(x1, e) = x1, m(e, x1) = x1). To give a model
(a concrete monoid) is to pick a carrier set X and interpretations: m : X2 → X,
e : X0 → X, satisfying the required equations, given an implicit universal quan-
tification over the variables that appear within them.

Given k ∈ N, there is a canonical way to define this structure when the
underlying carrier set is Xk: the operation m·k : (Xk)2 → Xk simply per-
forms m “pointwise” on a pair of k-tuples. So, say letting k = 3, the multiplica-
tion takes (x1, x2, x3), (y1, y2, y3) to (m(x1, y1),m(x2, y2),m(x3, y3)) with unit
(e, e, e). This idea is not specific to monoids and can be carried through similarly
for any algebraic theory, as we shall see below.

Let us come back to Lawvere theories in more detail: the data of an algebraic
theory with presentation (Σ,E) is captured by the Lawvere theory LΣ,E . This
is a category with finite products where objects are natural numbers; moreover,
the categorical product of m and n is m+n. A concrete description of an arrow
m → n in LΣ,E is as an n-tuple of terms constructed from operations of Σ

and variables x1, x2, . . . xm, taken modulo the equations of E. Composition is
substitution, in the obvious way. An outcome of this is functorial semantics: a
classical model is a product-preserving functor LΣ,E → Set.

The “pointwise” construction can be explained concisely using Lawvere the-
ories. Indeed, suppose that σ ∈ Σ has arity n and consider some k ∈ N. Write
n · k for k + k + · · ·+ k︸ ︷︷ ︸

n times

for the n-fold product of k in LΣ,E ; recall that in a

Lawvere theory + is the categorical product on objects. The object k is itself a
k-fold product of 1; for 1 ≤ i ≤ k, denote the ith projection πi : k → 1. Note
that as a term, πi is simply the (1-tuple containing the) ith variable πi = (xi).

Now let Πi : n·k → n = πi + πi + · · ·+ πi︸ ︷︷ ︸
n times

, which—concretely—is the n-tuple

of variables (xi, xi+k, . . . , xi+(n−1)k). Together, {Π1, Π2, . . . ,Πk} is a complete
set of projections of n·k. Given this choice of projections, the pointwise definition
of σ on k-tuples is the unique arrow σ · k : n · k → k induced by the universal
property of products, where for each projection:

k
πi // 1

n · k

σ·k

OO

Πi

// n

σ

OO

The above definition does not rely on the fact that σ is in Σ, and works for any
arrow of LΣ,E . It is therefore easy to see that it defines a functor

(−) · k : LΣ,E → LΣ,E

with the heavy lifting taken care of by the fact that LΣ,E has finite products.
Now, given a model M : LΣ,E → Set, we obtain a canonical “pointwise” model
on k-tuples: M ◦ [(−) · k] : LΣ,E → Set.

Although finite products seem to play an important role in the above devel-
opment, they are in fact not necessary. To see why this is the case it is useful to
note that any Lawvere theory is in fact a prop [11]. Then, returning the concrete
example of the theory of monoids, m · 3 is the string diagram

m m m
.

Our main result is that (−) ·k defines a strict monoidal functor on any prop,
where strict refers to preservation of ⊗ on the nose. An example of this for k = 2

and the arrow A⊗B, where A : 2→ 2 and B : 2→ 2, is given below.

(
A B

)
2 = A B A B

= A A B B

=

(
A

)
2⊗

(
B

)
2

In order to define and reason about (−)·k without assuming that ⊗ is the cate-
gorical product, we need to carefully identify the required permutations, which
feature in the diagrams above. We rely on the fact that the initial prop is the
prop of permutations P, which can be understood as the skeletal version of the
category of finite sets and bijections. The latter category embeds faithfully in the
category of finite sets and functions, which has both products and coproducts,
and whose skeletal version can be presented as the symmetric monoidal theory
of commutative monoids CM [20]. We use the structure of CM as a useful syntax
with which to identify the required permutations.

Structure of the paper After recalling the necessary background definitions and
graphical conventions in Section 2, we develop a toolbox of permutations in
Section 3. We define the multiplexing operation in Section 4 where we prove our
main result, and conclude in Section 5.

2 Preliminaries

2.1 Props

Props or product and permutation categories are special cases of symmet-
ric strict monoidal categories where the objects are generated from repeated
monoidal product of a single generator object [22]. The strictness of monoidal
categories means that the coherence morphisms (associator, left unitor, and right
unitor) that mediate the different ways objects are combined with monoidal
product are trivial: they are all identities.

The effect of strictness is that objects in props can be harmlessly identified
with finite ordinals where the monoidal product on objects is addition and the
monoidal unit is 0. Morphisms between props are symmetric strict monoidal
functors, as described in Definition 2 that are, moreover, also identity-on-objects.

A common use of props is as a carrier of the data of an algebraic theory. Such
“algebraic” props are often called symmetric monoidal theories. They strictly
generalise Lawvere theories, which in turn can be identified with cartesian props
where the monoidal product is also the categorical product.

2.2 Symmetric Monoidal Theory

By a symmetric monoidal theory we mean a prop that is generated from a
presentation: a pair (Σ,E) of signature set Σ and a equation set E. As opposed
to classical presentation, the elements of Σ are equipped with both arity and
coarity. A presentation of particular relevance for us is the theory of commutative
monoids, which appears at the beginning of Section 3.

2.3 Symmetric monoidal functors

Symmetric monoidal functors are structure-preserving maps between symmetric
monoidal categories. They are typically defined with extra conditions ensuring
their compatibility with the coherence conditions of monoidal categories. How-
ever, since the paper only concerns props which are symmetric strict monoidal
categories, there are no further coherence conditions that the monoidal functors
need to satisfy. The definition then reduces to:

Definition 1 (symmetric monoidal functor). Let C and D be props. A sym-
metric monoidal functor F : C→ D consists of

– a functor
F : C→ D

– an isomorphism
εF : 0→ F (0)

– a natural isomorphism

µFa,b : F (a)⊗ F (b)→ F (a⊗ b)

for all objects a, b ∈ C.

satisfying the preservation of symmetry condition:

µFb,a ◦ σFa,Fb = F (σa,b) ◦ µFa,b

where σ denotes the symmetry natural transformation of the props.

The strictness of symmetric monoidal functors refers to the additional property
that the preservation of symmetric monoidal structure is, in fact, on the nose.

Definition 2 (symmetric strict monoidal functor). A symmetric monoidal
functor F : C→ D is strict if εF is the identity morphism on 0, i.e.,

0 = F (0)

and µF is the identity natural transformation, i.e.,

F (a)⊗ F (b) = F (a⊗ b)

thus satisfying the strict preservation of symmetry condition:

σFa,Fb = F (σa,b)

2.4 Graphical conventions

Props admit a particularly simple and topologically intuitive string diagram-
matic notation. The objects (which, as we previously mentioned, can be con-
sidered as finite ordinals) are drawn as an ordered list of wires. We will draw a
morphism A : n → m as an A-labelled box with n strings originating from the
bottom and m strings coming out from the top. Sometimes, in specific cases such
as CM, a custom graphical notation is used instead to represent generators. The
monoidal product of two morphisms is represented by juxtaposing two diagrams
side-by-side and the composition of two morphisms is drawn by connecting the
diagrams with matching number of strings vertically, as shown below.

A⊗B
a+b...

c+d...

= A B

a...

c...

b...

d...

A ◦B

a...

c...

=

B

A

a...

b...

c...

3 Permutations structured by CM

The goal of this section is to assemble a toolbox of definitions and results about
permutations, which are needed for a proper account of multiplexing. By permu-
tations in an arbitrary prop X, we refer to the morphisms of X contained within
the image of the unique (but possibly non-faithful) morphism of props P → X
where P is the initial prop which is equivalent to the category of finite ordinals
and bijections. To manage the class of relevant permutations, we first note that
P embeds in the prop of commutative monoids CM which is also equivalent to
the category of finite ordinals and (all, i.e. possibly non-monotone) functions.

Remark 1. The embedding P → CM implies that we are able to use CM as a
“sound and complete calculus” for permutations in P — it is “sound” because
equations involving the permutations in CM are reflected in P due to faithfulness
of the embedding, and it is “complete” because equations involving permutations
in P hold also in CM due to functoriality. Unlike P, CM has finite (categorical)
products and coproducts which, on objects, are the multiplication and addition
of finite ordinals respectively; this is enough structure for description of the class
of permutations of interest.

In § 4, we will define the multiplexing operation on prop X by using the
aforementioned class of permutations. Given the above embedding, we are able
to do this without loss of generality.

In order to retain the “syntactic-flavour” of working with string diagrams,
we use the well-known presentation [20] of CM. The generators of CM are mul-
tiplication and unit while the commutative monoid equations are:

= , = , = .

The permutations of interest follow from the universal properties of a par-
ticular choice of products and coproducts in CM. Of course, the object part of
products and coproducts is forced on us since CM is skeletal: the only choice
is the projections and injections. In fact, these are determined by the following
two conditions, which follow from usual conventions in diagrammatic reasoning:
1. the monoidal product of CM is diagrammatically represented by juxtaposing

string diagrams side-by-side. Thus the left injection ought to “pick out” the
left hand side of the composite diagram, the right the right hand side.

2. the product is strictly right-distributive over the coproduct, i.e., the canonical
morphism:

n·k +m·k −→ (n+m)·k (SRD)

is required to be the identity. Informally, this translates to the identification
of the following two ways of grouping of identity string diagrams:

...

k

...

k

...

k

...

k

...

k

...

k

. . .

. . .

. . .

. . .

n m

=

...

k

...

k

...

k

. . .

. . .

n+m

The informal use of ellipses, as above, is part of what this work intends to
eliminate.

Coproducts and injections. From the above conditions, the inductive characteri-
sations of projections and injections can be deduced. Fix the notation ι1,n,m : n→
n+m and ι2,n,m : m→ n+m for the left and right injections, respectively. Write
σn,m : n+m→ m+n for the isomorphism obtained from the universal property
(of coproducts), which coincides with the symmetry of CM:

m+ n

n n+m m

σm,n

ι1,n,m

ι2,m,n

σn,m

ι2,n,m

ι1,m,n

(1)

The left injection can be given inductively as:

ι1,0,0 = id0,

ι1,a,b+1 = ι1,a,b ⊗ ,

ι1,1+a,b = id1 ⊗ ι1,a,b.

Products and projections. We fix notation π1,m,n : m·n→ m and π2,m,n : m·n→
n for the left and right projections, respectively. Let ρn,m : n·m→ m·n be defined
by the universal property of products, as illustrated below:

m·n

n n·m m

π2,m,n π1,m,n

ρm,nρn,m

π1,n,m π2,n,m

(2)

Note that ρn,m = ρ−1m,n. It is easy to check that ρm,n is a natural transformation
from −1·−2 : CM × CM → CM to −2·−1 : CM × CM → CM. Similarly, the
projections are natural transformations from −1·−2 : CM × CM → CM to the
two projection functors. In subsequent mentions, the subscript of these natural
transformations are omitted as they are implied by expressions of source and
target objects.

Lemma 1. The strict right-distributivity condition uniquely determines the in-
ductive characterisation of the left projection π1 as:

π1,0,k = id0 (3)

π1,1,1 = id1 (4)

π1,1,1+k = ◦ (id1 ⊗ π1,1,k) (5)

π1,a+b,k = π1,a,k ⊗ π1,b,k (6)

Proof. Projections given by (3), (4), and (5) are imposed by the universal prop-
erties of initial object 0 and terminal object 1. Lastly, (6) follows from fixing
identity as the canonical right-distributor in the commutative diagram defining
it as seen below:

k

a·k a·k + b·k b·k (a+ b)·k

a a+ b b

ι1,a·k,b·k

π2,a,k

π1,a,k

[π2,a,k,π2,b,k]

π1,a,k⊗π1,b,k

id

(strict distribution)
ι2,a·k,b·k

π1,b,k

π2,b,k

π2,a+b,k

π1,a+b,k

ι1,a,b ι2,a,b

More explicitly, the derivation starts from noting that strict distribution condi-
tion equates the canonical right-distributor with identity:

id = (π1,a,k ⊗ π1,b,k, [π2,a,k, π2,b,k])

Post-composing with the first projection of (a+ b)·k on both sides results in

π1,a+b,k = π1,a,k ⊗ π1,b,k

ut

3.1 Product functor; left and right multiplication

We take a closer look at the product functor that follows from our particu-
lar choice of projections and note the intuitive relationship it has with the de-
sired multiplexing operation on arbitrary props. The induced product functor
−1·−2 : CM×CM→ CM maps (A : a′ → a,B : b′ → b) to the morphism induced
by the universal property of a·b:

a a·b b

a′ a′·b′ b′

π1 π2

A A·B
π1 π2

B

Writing ida as just a for brevity, A·B can be factorised using the universal
property of products as:

a·b′ a·b

a′·b′ a′·b

a·B

A·b′

a′·B

A·B
A·b (7)

We demonstrate in Lemma 2 that left multiplication k·(−) : CM→ CM is much
easier to describe, namely as “k-fold monoidal product” and thus simple to
define in arbitrary props. The right multiplication (−)·k : CM→ CM, however,
is used to define the multiplex operation in § 4. To this end, we note the natural
symmetry of product ρ can be used to express right multiplication in terms of
left-multiplication instead as shown by the following commutative diagram:

b′·a a·b′ a·b b·a

b′·a′ a′·b′ a′·b b·a′

ρ a·B ρ

b′·A A·b′

a′·B

A·B

ρ

A·b
ρ

b·A (8)

A·B = ρb,a ◦ (b·A) ◦ ρa′·b ◦ (a′·B)

A·B = (a·B) ◦ ρb′,a ◦ (b′·A) ◦ ρa′·b′

The bifunctor −1·−2 : CM×CM→ CM provides a useful tool for manipula-
tion of CM as a string diagram, for example:

() 2 ◦ 3 () = () · () = 2 () ◦ () 2

= () · () =

(Note that the diagrams are only equal w.r.t. the equational theory of CM.)
For any natural number k, the intuitive diagrammatic description of

– left multiplication k·(−) is k-fold monoidal product of the argument.
– right multiplication (−)·k is k copies of the argument ‘placed in an overlap-

ping cascade’.

Lemma 2. Given any A : a′ → a in CM, the left multiplication k·(−) : CM →
CM satisfies:

0·A = 0 k·A = A⊗ (k − 1)·A

Proof. The first equation is forced by initiality of 0. The second equation follows
from strict right-distributivity (SRD) inducing a natural identity:

(1 + (k − 1))·(−)⇒ 1·(−)⊗ (k − 1)·(−)

3.2 Natural permutations structured by CM

We summarise the relationships between the natural family of permutations
structured by CM here, ready to be transferred into arbitrary props on which
multiplexing will be defined.

Let ξk,a,b : (k·a) + (k·b) → k·(a + b) be the natural isomorphism defined by
the canonical left-distribution of product over the coproduct (as opposed to the
right-distribution which is required to be identity in (SRD)). Together with the
symmetry of coproduct σ, the symmetry of product ρ, and the product functor
defined previously, we obtain the following commutative diagram:

k·(a+ b) k·a+ k·b k·b+ k·a k·(b+ a)

(a+ b)·k a·k + b·k b·k + a·k (b+ a)·k

ξ

k·(σ)

σ ξ

ρ

id

(σ)·k

ρ⊗ρ

σ

ρ⊗ρ

id

ρ (9)

which commutes because they are all canonical isomorphisms. In the diagram
above, we omit the arrowheads and subscripts to emphasise that these are all
isomorphisms.

Lemma 3. ξ has an inductive characterisation with base case ξ0,a,b = id0 and
inductive case as shown by the following commutative diagram:

(1 + k)·(a+ b) a+ b+ k·(a+ b)

a+ b+ k·a+ k·b

(1 + k)·a+ (1 + k)·b a+ k·a+ b+ k·b

id

ida⊗idb⊗ξk,a,b

ξ(1+k),a,b

id

ida⊗σk·a,b⊗idk·b

Proof. The lemma is a special case where n = 1 of

(n+m)·a+ (n+m)·b (n+m)·(a+ b) n·(a+ b) +m·(a+ b)

n·a+m·a+ n·b+m·b n·a+ n·b+m·a+m·b

ξ

id

id

ξ⊗ξ
idn·a⊗σn·b,m·a⊗idm·b

where the diagram commutes because they mediate canonical ways to distribute
(n+m)·(a+ b). ut

Example 1. From the inductive definition of ξ, the string diagram of ξ3,2,2 is:

ξ3,2,2 =
ξ2,2,2 =

4 Multiplexing

We have seen in the previous section that (−)·k : CM→ CM maps diagrams to
our desired “pointwise” k-fold version. To define this as a functor on an arbitrary
prop X, we define it not through the product functor (which may not exists in
X) but through repeated tensor and permutations. With Remark 1 in mind, we
abuse the notation and denote permutations in arbitrary props with the same
symbols — ξ, ρ, σ — as the corresponding permutations defined in CM.

Definition 3 (multiplexing map). For an arbitrary prop X, a morphism
A : a′ → a in X, and any natural number k, define k·(−) : X[a′, a]→ X[k·a′, k·a]
by recursion as:

0·A = id0 k·A = A⊗ (k − 1)·A.

Next, we define (−)·k : X[a′, a]→ X[a′·k, a·k] as:

A·k = ρk,a ◦ (k·A) ◦ ρa′,k

where ρa,k : a·k → k·a denotes the permutation from (2). Call k·A the k-fold
monoidal product of A and A·k the k-multiplex of A.

Example 2. Let A : 2→ 3 be a morphism in X, then

3·A = A A A

and

A·3 = 3·A = A A A

The above defines k·(−) and (−)·k as functions on homsets. On objects, we
let [k·(−)](m) = k·m = m·k = [(−)·k](m).

Lemma 4. Both k·(−) and (−)·k strictly preserve the monoidal unit, i.e., on
objects:

0·k = 0 = k·0

Lemma 5. In the case X = CM, the definitions of k·(−) and (−)·k as defined
inductively in Definition 3 agree with their definition as a one-argument product
functor given in § 3.1.

Next, we verify that both k·(−) and (−)·k (strictly) preserve composition,
i.e., are endofunctors on X as a plain category.

Lemma 6. k·(−) strictly preserves composition.

Proof. Using induction on k, the base case is derived by:

(0·A) ◦ (0·B) = id0 ◦ id0
= id0

= 0·(A ◦B)

and the inductive case is derived by:

(k·A) ◦ (k·B) = (A⊗ (k − 1)·A) ◦ (B ⊗ (k − 1)·B) ; distributivity

= (A ◦B)⊗ ((k − 1)·A) ◦ ((k − 1)·B) ; interchange law

= (A ◦B)⊗ ((k − 1)·(A ◦B)) ; hypothesis

= k·(A ◦B) ; distributivity

ut

Lemma 7. (−)·k strictly preserves composition, i.e., the following diagram com-
mutes in X for all A : b→ a and B : b′ → b.

a·k a·k

b·k

b′·k b′·k

id

A·k

id

B·k

(A◦B)·k

Proof. The following commutes by diagram pasting:

a·k k·a k·a a·k

b·k k·b

b′·k k·b′ k·b′ b′·k

ρ

id

id ρ

A·k
ρ

k·A

B·k
ρ

id

k·B

id

k·(A◦B)

ρ

(A◦B)·k

where the middle rectangle commutes by Lemma 6; the top and bottom rect-
angle commutes by (2); and other rectangles to the side commute as direct
consequences of Definition 3. ut

The next two results demonstrate a significant difference between k·(−) and
(−)·k: whereas the former preserves monoidal product only up to isomorphism,
the latter preserves it on the nose.

Lemma 8. k·(−) preserves tensor up to isomorphism via the naturality of ξ.

Proof. The proof is by induction on k, relying on the inductive characterisation
of ξ given in Lemma 3. The base case satisfies naturality condition because
(0·A)⊗ (0·B) = id0 ⊗ id0 = id0 = 0·(A⊗B) by Definition 3.

The inductive case is given by the commutativity of the outer perimeter of

(1+k)·a+(1+k)·b (1+k)·(a+b)

a+k·a+b+k·b a+b+k·a+k·b a+b+k·(a+b)

a′+k·a′+b′+k·b′ a′+b′+k·a′+k·b′ a′+b′+k·(a′+b′)

(1+k)·a′+(1+k)·b′ (1+k)·(a′+b′)

ξ(1+k),a,b

id

ida⊗σk·a,b⊗idk·b ida⊗idb⊗ξk,a,b

id

(1+k)·A⊗(k+1)·B

ida′⊗σk·a′,b′⊗idk·b′

A⊗B⊗k·A⊗k·B

ida′⊗idb′⊗ξk,a′,b′

(1+k)·(A⊗B)

id

ξ(1+k),a′,b′

id

which is obtained by pasting commutative diagrams where the top and bottom
rectangles commute by Lemma 3; the middle-left rectangle commutes by nat-
urality of symmetry σ; and the middle-right rectangle commutes by induction
hypothesis. ut

Lemma 9. (−)·k strictly preserves tensor.

Proof. The lemma is represented by the front face of the following diagram

k·a+ k·b k·(a+ b)

a·k + b·k (a+ b)·k

k·a′ + k·b′ k·(a′ + b′)

a′·k + b′·k (a′ + b′)·k

ξk,a,b

ρk,a⊗ρk,b

k·A⊗k·B

ρk,(a+b)

id

ξk,a′,b′

ρk,a′⊗ρk,b′

k·(A⊗B)

ρk,(a′+b′)

A·k⊗B·k

id

(A⊗B)·k

which commutes by diagram pasting with back face from Lemma 8, left and
right faces from Definition 3, and top and bottom faces from the left rectangle
in (9). ut

Lemma 10. (−)·k strictly preserves symmetry, i.e., the following commutes:

(b+ a)·k b·k + a·k

(a+ b)·k a·k + b·k

id

(σa,b)·k

id

σa·k,b·k

Proof. Directly from the commutativity of the bottom rectangle in (9). ut

Theorem 1. (−)·k is a symmetric strict monoidal functor.

Proof. Follows directly from Lemma 4, Lemma 7, Lemma 9, and Lemma 10. ut

The fact that (−)·k : X→ X is a strict monoidal functor is the main technical
result of our work and it is worthwhile to examine its significance. First, its
action on arrows gives us a concise definition of multiplexing: given an arrow
A : m→ n in X, A·k is its k-multiplexed version. Moreover, functoriality means
that any equation A = B that holds for arrows in X will also hold for its k-
multiplexed variation, i.e. A·k = B·k. Finally, given a notion of model as a
symmetric monoidal functor X→ C, precomposition with (−)·k yields a model
on which any algebraic structure of X is defined “pointwise”, generalising the
situation for classical models outlined in the Introduction.

5 Conclusions and future work

We showed that “pointwise” definitions of classical universal algebra generalise
to resource-sensitive theories. Our main result shows that this operation defines a
strict monoidal functor (−)·k on any prop X. By identifying a suitable categorical
setting in which to define and reason about the required permutations, we showed
that although the similar operation on Lawvere theories seemingly requires the
presence of categorical products, they are actually not necessary.

We note that this construction can be extended to braided monoidal cate-
gories: in fact, every string diagram for symmetry drawn in this article is already
shown in compatible braiding scheme.

Our work fits into the recent trend of consolidating disparate strands of
theory and applications of string diagrams in computer science and related fields,
and through it, the crystallisation of a “resource-sensitive universal algebra”.

References

1. S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In
Logic in Computer Science (LiCS ‘04). IEEE Press, 2004.

2. J. C. Baez and J. Erbele. Categories in control. Technical report, arXiv:1405.6881,
2014.

3. J. C. Baez and B. Fong. A compositional framework for passive linear networks.
arXiv preprint arXiv:1504.05625, 2015.

4. F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. Rewriting
modulo symmetric monoidal structure. In Thirty-first annual ACM/IEEE sympo-
sium on Logic and Computer Science (LiCS 2016), pages 710–719, 2016.

5. F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. Confluence of
graph rewriting with interfaces. In European Symposium on Programming (ESOP
2017), 2017.

6. F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. Rewriting with
Frobenius. In Thirty-third annual ACM/IEEE symposium on Logic and Computer
Science (LiCS 2018), 2018. To appear.

7. F. Bonchi, J. Holland, D. Pavlovic, and P. Sobociński. Refinement for signal flow
graphs. Concurrency Theory - 28th International Conference, (CONCUR 2017),
2017.

8. F. Bonchi, D. Pavlovic, and P. Sobocinski. Functorial semantics for relational
theories. arXiv preprint arXiv:1711.08699, 2017.

9. F. Bonchi, P. Sobociński, and F. Zanasi. Full abstraction for signal flow graphs. In
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, (POPL 2015), pages 515–526. ACM, 2015.

10. F. Bonchi, P. Sobociński, and F. Zanasi. The calculus of signal flow diagrams I:
Linear relations on streams. Inf. Comput., 252:2–29, 2017.

11. F. Bonchi, P. Sobociński, and F. Zanasi. Deconstructing lawvere with distributive
laws. Journal of Logical and Algebraic Methods in Programming, 2018. Accepted
for publication.

12. B. Coecke and R. Duncan. Interacting quantum observables. In ICALP‘08, pages
298–310, 2008.

13. B. Coecke and A. Kissinger. Picturing Quantum Processes - A first course in
Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

14. B. Fong, P. Rapisarda, and P. Sobociński. A categorical approach to open and
interconnected dynamical systems. In Thirty-first annual ACM/IEEE symposium
on Logic and Computer Science (LiCS 2016), pages 495–504, 2016.

15. T. Fox. Coalgebras and cartesian categories. Communications in Algebra, 4(7):665–
667, 1976.

16. N. Ghani, J. Hedges, V. Winschel, and P. Zahn. Compositional game theory.
In Thirty-third annual ACM/IEEE symposium on Logic and Computer Science
(LiCS 2018), 2018. To appear.

17. D. R. Ghica. Diagrammatic reasoning for delay-insensitive asynchronous circuits.
In Computation, Logic, Games, and Quantum Foundations. The Many Facets of
Samson Abramsky, pages 52–68. Springer, 2013.

18. D. R. Ghica and A. Jung. Categorical semantics of digital circuits. In 16th Formal
Methods in Computer-Aided Design (FMCAD 2016), pages 41–48, 2016.

19. R. Hinze. Kan extensions for program optimisation or: Art and dan explain an old
trick. In J. Gibbons and P. Nogueira, editors, Mathematics of Program Construc-
tion, pages 324–362, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

20. S. Lack. Composing PROPs. Theor. App. Categories, 13(9):147–163, 2004.
21. F. W. Lawvere. Functorial semantics of algebraic theories. In Proceedings, National

Academy of Sciences, volume 50, pages 869–873, 1963.
22. S. Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40–106, 1965.
23. M. Piróg and N. Wu. String diagrams for free monads (functional pearl). In

Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, pages 490–501, New York, NY, USA, 2016. ACM.

24. P. Sobociński. Representations of Petri net interactions. In Concurrency Theory,
21th International Conference, (CONCUR 2010), number 6269 in LNCS, pages
554–568. Springer, 2010.

25. P. Sobociński. Nets, relations and linking diagrams. In Algebra and Coalgebra in
Computer Science - 5th International Conference, (CALCO 2013), volume 8089 of
LNCS, pages 282–298. Springer, 2013.

	Monoidal Multiplexing

