
Full Abstraction for Signal Flow Graphs

Filippo Bonchi
ENS Lyon, U. Lyon, CNRS, INRIA

filippo.bonchi@ens-lyon.fr

Paweł Sobociński
U. Southampton, UK
ps@ecs.soton.ac.uk

Fabio Zanasi
ENS Lyon, U. Lyon, CNRS, INRIA

fabio.zanasi@ens-lyon.fr

Abstract
Network theory uses the string diagrammatic language of monoidal
categories to study graphical structures formally, eschewing spe-
cialised translations into intermediate formalisms. Recently, there
has been a concerted research focus on developing a network theo-
retic approach to signal flow graphs, which are classical structures
in control theory, signal processing and a cornerstone in the study
of feedback. In this approach, signal flow graphs are given a rela-
tional denotational semantics in terms of formal power series.

Thus far, the operational behaviour of such signal flow graphs
has only been discussed at an intuitive level. In this paper we equip
them with a structural operational semantics. As is typically the
case, the purely operational picture is too concrete – two graphs
that are denotationally equal may exhibit different operational be-
haviour. We classify the ways in which this can occur and show
that any graph can be realised – rewritten, using the graphical the-
ory, into an executable form where the operational behavior and the
denotation coincides.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; F.3.2 [Semantics of Programming Lan-
guages]: Algebraic approaches to semantics

Keywords Signal Flow Graphs, String Diagrams, PROPs, Struc-
tural Operational Semantics, Full Abstraction

1. Introduction
Signal flow graphs (SFGs) are foundational structures in control
theory and signal processing studied since at least the 1950s [23].
They can be constructed from small set of basic components (dis-
played below) and feedbacks.

k x (1)

Signals, which take values over a field k, flow from left to right.
The leftmost component duplicates the signal, the second sums the
two signals arriving on the left and the third multiplies the signal by
a scalar k ∈ k. The rightmost one is a delay: when a sequence of
signals k0, k1, k2, . . . arrives on the left, it outputs the sequence
0, k0, k1 . . . It can thus be thought as a synchronous one place
buffer initialised with 0.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright c© 2014 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676993

A simple mathematical meaning can be given to those SFGs
where feedbacks pass through (at least) one delay component. It is
well known (see e.g. [21]) that SFGs with this restriction, one input
and one ouput port denote so-called rational linear functions. In
traditional approaches, however, SFGs are not treated as interesting
mathematical structures per se: formal analyses typically mean the
introduction of latent variables and translations into systems of
linear equations— although, more recently, they have also attracted
the use of coalgebraic tools [4, 26]. This paper, instead, follows the
series of recent works [3, 5, 7, 14, 31] where SFGs are understood
as structures known as string diagrams and studied as mathematical
objects of interest in their own right—this approach is known as
network theory [2]. The majority of the attention so far has been
focused on what we call the denotational semantics: differently
from the classical approach, string diagrams, in general, give rise to
linear relations rather than functions. The string diagrams that are
considered are not restricted by any side conditions on feedbacks,
being all those diagrams generated from the basic components (1),
together with their duals:

k

x (2)

Intuitively, in (2) the signal flows from right to left. This means that
diagrams constructed using both components in (1) and (2) have no
univocal flow direction and require a relational model.

Network theory brings fundamentally new ingredients to the
field of signal flow graphs. First, the relational semantics is a
compositional account of their behavior that enjoys a sound and
complete axiomatisation independently discovered in [5, 7] and
[3]. Second, the axiomatisation has uncovered a rich underlying
mathematical playground – featuring two Hopf algebras and two
Frobenius algebras – which also reveals connections with quantum
phenomena [3, 6, 31]. Third, it has resulted in a subtle re-evaluation
of causality as a central ingredient of SFGs. In 1953 Mason [23]
wrote: “flow graphs differ from electrical network graphs in that
their branches are directed. In accounting for branch directions it
is necessary to take an entirely different line of approach from that
adopted in electrical network topology.” Instead, our results suggest
that direction of signal flow is not a primitive notion: this argument
has been made informally already in [3, 5] but is rigorously shown
at the end of this paper (Section 6). Similar ideas are prominent in
the behavioural approach in control theory [30].

In this paper, we introduce operational semantics to the net-
work theoretic accounts of signal flow graphs: we show that string
diagrams can be thought of as terms of a process calculus and ex-
ecuted as state machines. For this reason we shall call our string
diagrams circuit diagrams or simply circuits. Reconciling the op-
erational perspective with the established denotational model turns
out to be quite subtle. Indeed, the denotational semantics is in a
sense too abstract: finite computations that reach deadlocks are ig-
nored. Such deadlocks can arise for instance when components of
(1) are composed with the those of (2) and, intuitively, the signal

flows from the left and right toward the middle. For an example,
consider the circuit below on the left.

x x xx

(3)

In a first step, the signals arriving from left and right are stored in
the two buffers. Then, the stored values are compared in the middle
of the circuit: if they do not agree then the computation gets stuck.
The circuit on the right features another problem, which we call
initialisation. Intuitively, the flow goes from the middle toward left
and right. All its computations are forced to start by emitting on
the left and on the right the value 0 which is initially stored in the
two buffers. The two circuits are denotationally equivalent, but their
operational behaviour can be obviously distinguished: the leftmost
does not have initialisation and the rightmost cannot deadlock.

Deadlock and initialisation are dual problems at the heart of the
mismatch of operational and denotational semantics. We show that
circuits in cospan form, namely circuits built from components in
(1) followed by those in (2) (like the leftmost circuit in (3)), are free
from initialisation. Instead, circuits in span form, i.e., those built
from components in (2) followed by (1) (like the rightmost in (3))
are free from deadlock. This is interesting because the equational
theory developed in [3, 5] asserts that any circuit is equivalent to
both one in cospan and one in span form. This duality of deadlock
and initialisation helps us in proving a full abstraction result: for
those circuits that are free from both deadlock and initialisation,
the operational and the denotational semantics agree.

Our second main theorem is a realisability result: for any de-
noted behaviour there exists some circuit that properly, without
deadlocks or initialisation, realises it. The key for the proof is the
fact that any circuit in [3, 5] is equivalent (according to the deno-
tational semantics) to a signal flow graph up to some “rewiring”.
This result allow us to impose a syntactic restriction to our circuits
to guarantee deadlock and initialisation freedom. By virtue of the
full abstraction results we can thus safely use the axiomatization
of [3, 5] to reason about the operational behaviour of these circuits.

Summarising, the main results of this paper are:

• a structural operational semantics for the network-theoretic ac-
count of SFGs;
• a full abstraction theorem relating the operational and the deno-

tational semantics previously introduced in [3, 5];
• a realisability theorem: every behaviour can be implemented by

a circuit without deadlock and initialisation;
• a formal explanation of the fact that direction of flow is a

derivative notion.

Related work. String diagrams originally came to the fore in the
study of monoidal categories because they clear away swathes of
cumbersome coherence bureaucracy, thereby dramatically simpli-
fying algebraic arguments: in particular, they are useful for charac-
terising free monoidal categories [16, 18, 27].

In this paper we work with particular symmetric monoidal cat-
egories, called PROPs [19, 22] (PROduct-and-Permutation cate-
gories). PROPs are a useful setting for the study of string diagrams
and especially monoidal theories—Lack’s theory of composing
PROPs [19] was used to derive the axiomatisation in [5, 7]. PROPs
have also recently been used by computer scientists: Lafont’s study
of boolean circuits [20], Bruni, Montanari, Plotkin, and Terreni [8]
have used them to give an alternative presentation of Milner’s bi-
graphs while Fiore and Campos [13] presented a theory of directed
acyclic graphs. Our operational semantics is related to Katis, Saba-
dini and Walters’ [17] Span(Graph) algebra of transition systems
and the algebra of connectors of Bruni, Lanese and Montanari [9].
String diagrams are increasingly used by computer scientists: for

instance we mention Pavlovic’s monoidal computer [24, 25] where
they are employed to study classical notions of computability and
computational complexity.

The interplay of Hopf algebras and Frobenius algebras, at the
core of the axiomatisation of the denotational semantics, appeared
first in the work of Coecke, Duncan and Kissinger [11, 12] on
the ZX-calculus, used in the study of quantum circuits. Similar
algebraic interactions emerged in the study of Petri nets [28] and
in string-diagrammatic theories of asynchronous circuits [15].

Structure. In §2 we introduce the operational semantics. In §3
we recall the denotational semantics from [3, 5] and we prove full
abstraction in §4. In §5 we prove the realisability theorem and in §6
we consider a directed syntax in order to capture classical SFGs.

Notational conventions. C[a, b] is the set of arrows from a to b in
a small category C. Composition of f : a→ b, g : b→ c is written
f ; g : a→ c. When C is monoidal, ⊕ is the monoidal product.

2. The Signal Flow Calculus: Syntax and
Operational Semantics

Here we give the syntax and the structural operational semantics
of a simple process calculus, to which we shall refer to as the
Signal Flow Calculus. Fix an arbitrary field k. The syntax, given
below, does not feature binding nor primitives for recursion, while
k ranges over k.

c :: = | | k | x | | | (4)

| | k | x | | | (5)

| | | c⊕ c | c ; c (6)

A sort is a pair (n, m), with n,m ∈ N. We shall consider only
terms that are sortable, according to the rules of Fig. 1. A simple
inductive argument confirms uniqueness of sorting: if c : (n, m)
and c : (n′, m′) then n = n′ and m = m′. We will refer
to sortable terms as circuits since, intuitively, a term c : (n, m)
represents a circuit with n ports on the left and m ports on the
right. The wires carry elements of a field k.

The operational semantics is a transition system with states
augmented circuits where each delay component (x and x)
is assigned some value k ∈ k. Thus states are obtained by replacing
the delays in the syntax specification with registers x k and

x k for each k ∈ k. As for circuits, we only consider sortable
states, which are defined by adding

x k : (1, 1) and x k : (1, 1).

to the rules in Fig. 1.
Structural inference rules for operational semantics are given in

Fig. 2 where we use strings of length n to represents vectors in
kn. So, the empty string stands for

()
, the only vector of k0, and

v = k1 . . . kn for the column vector

(
k1

.

.

.
kn

)
in kn.

If state s : (n, m) is the source of a transition v−→
w
t then t is

also a state with sort (n, m) and v and w are strings representing
vectors of kn and km, respectively. Intuitively, s v−→

w
tmeans that s

can become t whenever the signals on the n ports on the left agree
with v and the signals on the m ports on the right agree with w.
Each circuit c then yields a transition system with a chosen initial
state s0 of c, obtained by replacing the delays x and x in c

with registers x 0 and x 0 containing 0.
To establish a preliminary intuition, we can consider circuits

built up of the components in (4) as taking signals from the left

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c⊕d : (n+r,m+z)

Figure 1. Sort inference rules.

k−−→
k k

k−→ k
l−−→
kl

k x l k−→
l

x k k l−−→
k+l

−→
0

k k−−→
k

−→
k

k
kl−−→
l

k

x l l−→
k

x k k+l−−−→
k l

0−→

k−→
k

k l−−→
l k

s
u−→
v
s′ t

v−→
w
t′

s ; t
u−→
w
s′ ; t′

s
u1−−→
v1

s′ t
u2−−→
v2

t′

s⊕ t u1 u2−−−−→
v1 v2

s′ ⊕ t′

Figure 2. Structural rules for operational semantics, with k, l ranging over k and u, v, w vectors of elements of k of the appropriate size.

boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k ∈ k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the

empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel ⊕ composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c′ is drawn c c0...
...

... c⊕ c′ is drawn
c

c0 ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0−−→
w0

s1
v1−−→
w1

. . . in the transition system of c, starting from
its initial state s0. When c has sort (n, m), each vi and wi consist
of strings over k, say ki1 . . . kin and li1 . . . lim, respectively. The
trace of a computation s0

v0−−→
w0

s1
v1−−→
w1

. . . is then a pair of vec-

tors

(
α1

.

.

.
αn

)
,

(
β1

.

.

.
βm

)
where αj = k0jk1j . . . and βj = l0j l1j

Occasionally we will use the notation (−→α ,
−→
β) for such a pair and,

to make the notation lighter, we will write αj = k0k1 . . . and
βj = l0l1 Moreover, with αj(i) and βj(i) we will denote the
i-th elements of αj and βj .

Note that in a computation of length z, all αj , βj have length
z, while for an infinite computation all αj , βj are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = (; ((-1 ; x)⊕)) ;

the second of the term

c2 = ((;)⊕) ; (⊕ (;))

; (((⊕ x)⊕) ; ((;)⊕))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;

serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

ci[0]
1−→
1
ci[1]

0−→
1
ci[1]

0−→
1
ci[1] · · ·

for i ∈ 0, 1, which yields the trace (1000 . . .), (1111 . . .). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

following computation

c3[0, 0]
1−→
1
c3[1, 2]

0−→
2
c3[2, 3]

0−→
3
c3[3, 4]

0−→
4
· · ·

that yields the trace (1000 . . . , 1234 . . .).

Circuits Diagrams. In the first two diagrams of Example 1 we
used dotted lines to ease the passage from each diagram to the
corresponding syntactic term. Indeed, it is clear that syntax carries
more information than the diagrammatic notation (e.g. associativ-
ity). From the point of view of operational behaviour, however, this
extra information is irrelevant and is conveniently discarded by the
graphical notation: we will never again blemish our diagrams with
dotted lines.

Remark 1. Checking that this “forgetting” is sound amounts to
verifying that for any circuits c1, c2, c3, c4, the following circuits
(when sortable) yield isomorphic transition systems:

• (c1 ; c2) ; c3 and c1 ; (c2 ; c3),
• ; c1, c1 and c1 ; ,
• (c1 ⊕ c2)⊕ c3 and c1 ⊕ (c2 ⊕ c3),
• ⊕ c1, c1 and c1 ⊕ ,
• (c1 ; c3)⊕ (c2 ; c4) and (c1 ⊕ c2) ; (c3 ⊕ c4).

Of course, the reader will notice a close connection with the
axioms of monoidal categories — we make explicit use of this fact
below. In fact we will use symmetric monoidal categories (SMCs)
of a specific kind, namely PROPs [19, 22]: a PROP (product and
permutation category) is a strict SMC with objects the natural
numbers, where ⊕ on objects is by addition. Morphisms between
PROPs are strict symmetric monoidal functors that act as identity
on objects: PROPs and their morphisms form the category PROP.

Definition 1. The PROP Circ of circuit diagrams is defined as:

• arrows n → m are circuit terms of sort (n, m) quotiented by
the axioms of symmetric monoidal categories (see e.g. [27]).
Composition ; and monoidal product ⊕ of circuits are given
by the syntax operations in (6).
• The identities are id0 := and idn+1 := idn ⊕ . The

symmetries σn,m : n+m→ m+n are defined in the obvious
way starting from σ1,1 := . For instance, σ2,3 is (up-to
the axioms of SMCs) the circuit below.

Observe that all the axioms of SMCs are sound (à la Remark 1)
with respect to the operational semantics given in Figure 2: for
two state terms c and d representing the same state diagram, the
corresponding transition systems are isomorphic. This means that
there is not any problem in reasoning up to the axioms of SMCs.
For this reason, in the rest of the paper we shall refer to circuits
diagrams and state diagrams just as circuits and states, purposefully
blurring the line between diagrams and traditional syntax.

We identify two sub-PROPs of Circ: C−→irc has as arrows only
those circuits in Circ that are built from the components of (4) and
(6) and C←−irc only those circuits built from the components of (5)
and (6). The notation emphasises that for circuits in C−→irc , signal
flow is from left to right, and in C←−irc from right to left. Formally,
observe that C←−irc is the opposite category of C−→irc : any circuit of
C←−irc can be seen as one of C−→irc reflected about the y-axis. We also
remark that Circ is the coproduct in PROP of C−→irc and C←−irc .

Beyond C−→irc and C←−irc , we can identify another class of cir-
cuits of Circ which adhere to the classical notion of signal flow
graph (see e.g. [23]). In these circuits, the signal flows from left

to right, like in C−→irc , but with the possibility of having feedback
loops, provided that these pass through at least one delay. For-
mally, this amounts to defining, for each n and m, an assign-
ment Tr(·) : Circ[n + 1,m + 1] → Circ[n,m] mapping a circuit
c : n+ 1→ m+ 1 into the n-to-m circuit below:

n mxc
In the picture above and in the sequel, we use the shorthand notation

z for a circuit of the form idz . The intuition is that Tr(·)
equips the circuit c with a feedback loop carrying the signal from
its topmost right to its topmost left port.

Signal flow graphs form a PROP SF, which is the sub-PROP of
Circ inductively defined as follows:

• if c ∈ C−→irc [n,m], then c ∈ SF[n,m]

• if c ∈ SF[n+ 1,m+ 1], then Tr(c) ∈ SF[n,m]

• if c1 ∈ SF[n, z] and c2 ∈ SF[z,m], then c1;c2 ∈ SF[n,m]

• if c1 ∈ SF[n,m] and c2 ∈ SF[r, z], then c1 ⊕ c2 ∈ SF[n +
r,m+ z].

For instance, the second and third circuit of Example 1 are in SF,
whereas the first one is in C←−irc .

Remark 2. The rules of Figure 2 describe the step-by-step evolu-
tion of state machines without relying on a fixed flow orientation.
This operational semantics is not meant to be executable for all cir-
cuits: the rule for sequential composition implicitly quantifies exis-
tentially on the middle value v, resulting in potentially unbounded
non-determinism. However, for circuits where flow directionality
can be assigned, like the class SF above, existential quantification
becomes deterministic subject to a choice of inputs to the circuit at
each step of evaluation. We will see in Section 6 that any circuit
can be transformed into this form, where the valid transformations
are those allowed by the equational theory, presented below.

3. Denotational Semantics
Here we define the denotational domain of interpretation for cir-
cuits; all the results in this section are proven in or immediately
follow from [5, 7]. We begin by recalling some background.

A formal Laurent series (fls) is a function σ : Z → k for which
there exists i ∈ Z such that σ(j) = 0 for all j < i. The degree
of σ is the smallest d ∈ Z such that σ(d) 6= 0. We write σ
as . . . , σ(−1), σ(0), σ(1), . . . with position 0 underlined, or as
formal sum

∑∞
i=d σ(i)xi. With the latter notation, we define the

sum and product of σ =
∑∞
i=d σ(i)xi and τ =

∑∞
i=e τ(i)xi as

σ + τ =

∞∑
i=min(d,e)

(
σ(i) + τ(i)

)
xi (7)

σ · τ =
∞∑

i=d+e

(∑
k+j=i

σ(j) · τ(k)
)
xi (8)

The units for + and · are . . . 0, 0, 0 . . . and . . . 0, 1, 0 Fls form
a field k((x)), where the inverse σ−1 of fls σ with degree d is:

σ−1(i) =

0 if i < −d
σ(d)−1 if i = −d∑n
i=1

(
σ(d+i)·σ−1(−d+n−i)

)
−σ(d) if i=−d+n for n>0

(9)

A formal power series (fps) is a fls with degree d ≥ 0. By (7) and 8
fps are closed under + and ·, but not under inverse: it is immediate

from (9) that σ−1 is a fps iff σ has degree d = 0. Therefore fps
form a ring which we denote by k[[x]].

Other algebras of interest are the ring k[x] of polynomials and
its field of fractions k(x). A polynomial k0 +k1x+ · · ·+knxn can
also be regarded as the fps

∑∞
i=0 kix

i with ki = 0 for all i > n.
Instead, in order to express fractions we need the full generality
of fls: there is a unique field morphism mapping k ∈ k(x) into
the fls . . . 0, k, 0 . . . and the indeterminate x into . . . 0, 0, 1, 0
This morphism will map, in particular, the fraction 1

x
into the fls

. . . 0, 1, 0, 0, 0
In Section 4.1, we will use polynomials to encode finite se-

quences, and fps for streams. In this perspective, fls can be thought
of as sequences with an infinite future, but a “finite past”. Note
that, differently from polynomials, fractions can express infinite se-
quences. For instance, 1

(1−x)2 denotes (along the field morphism
introduced above) the fls . . . , 0, 0, 1, 2, 3, . . .

Definition 2. Let Relk((x)) be the following PROP:

• arrows n→ m are subsets of k((x))n × k((x))m.
• composition is relational: givenG = {(u, v) |u ∈ k((x))n, v ∈

k((x))z} andH = {(v, w) | v ∈ k((x))z, w ∈ k((x))m}, their
composition is {(u,w) | ∃v.(u, v) ∈ G ∧ (v, w) ∈ H}.

• G⊕H = {
((

u
u′

)
,

(
v
v′

))
| (u, v) ∈ G, (u′, v′) ∈ H}.

• The symmetries n → n are induced by bijections of finite
sets: ρ :n → n is associated with the subset {(v, w) | v, w ∈
k((x))n, vi = wρi}.

Relk((x)) serves as the domain for the denotational semantics.

Definition 3. The PROP morphism [[·]] : Circ→ Relk((x)) is induc-
tively defined on circuits as follows. For the components in (4)

7−→ {(σ,
(
σ
σ

)
) | σ ∈ k((x))}

7−→ {(σ,
()

) | σ ∈ k((x))}

7−→ {(
(
σ
τ

)
, σ + τ) | σ, τ ∈ k((x))}

7−→ {(
()

, 0)}

k 7−→ {(σ, σ · k) | σ ∈ k((x))}

x 7−→ {(σ, σ · x) | σ ∈ k((x))}

where 0, k and x denote fls. The semantics of components in (5) is
symmetric, e.g. is mapped to {(

()
, σ) | σ ∈ k((x))}. For (6)

7−→ {(
()

,
()

)}

7−→ {(σ, σ) | σ ∈ k((x))}

7−→ {(
(
σ
τ

)
,

(
τ
σ

)
) | σ, τ ∈ k((x))}

c1 ⊕ c2 7−→ [[c1]]⊕ [[c2]] c1 ; c2 7−→ [[c1]] ; [[c2]]

Remark 3. It is easy to verify that for any circuit c ∈ Circ[n,m],
[[c]] forms a subspace of k((x))n×k((x))m, considered as a vector
space over k((x)). See [5] for more details.

Example 2. Consider the circuit x x . We have that

[[x x

]] = [[x]] ; [[x]]

= {(σ, σ · x) | σ ∈ k((x))} ; {(σ · x, σ) | σ ∈ k((x))}
= {(σ, σ) | σ ∈ k((x))}

which is equal to [[]]. Note that any fls . . . σ(−1), σ(0), σ(1) . . .

on the left of x is related to . . . σ(−1), σ(0), σ(1) . . . on its
right and this is in turn related to . . . σ(−1), σ(0), σ(1) . . . on the

right of x. The circuit x is thus the inverse of x : while

x delays σ, x accelerates it.

Similarly, consider a circuit k k . Its semantics is the com-

posite of [[k]] (pairing σ with σ ·k) and [[k]] (pairing k ·σ with
σ): if k 6= 0, we can see it as first multiplying and then dividing σ
by k. Thus for k 6= 0 k k and have the same denotation.

3.1 Equational Theory
The equivalence induced by the denotational semantics is axioma-
tized in Figures 3, 4 and 5. There, p, p1, p2 range over k[x] and q
over k[x] \ {0}. Given a polynomial p = k0 + k1x+ k2x

2 + · · ·+
knx

n, p and p are notation for the circuit on the left and on
the right respectively:

.

x
xx

x . . .x

k0

k1

k2

kn x

.

. . .

k0

k1

k2

kn

x
xx

xxx

Observe that components k , x and k , x become spe-

cific cases of p , p respectively. Instead the notation

indicates both the circuits -1 and -1 : indeed, they are provably
equal from the other axioms (for instance, using (I5) and (A5)).

Let IH
= be the smallest congruence on circuits generated by these

axioms and IH the PROP obtained by quotienting Circ by IH
=.

Theorem 1. Let c, d be circuits in Circ. Then [[c]] = [[d]] iff c IH
= d.

The equational theory of IH equips circuits with a very rich
algebraic structure, that can be presented in a modular way:

• Figure 3 describe the interaction of components in (4). (A1)-
(A3) and (A6)-(A8) impose a commutative monoid and a co-
commutative comonoid structure on the components ,

and , respectively. Together they form a bial-
gebra, by laws (A9)-(A12). Instead, (A4), (A5), (A17), (A18)
describe the behavior of derived components of shape p ,
saying in particular that they are compatible with the bialge-
bra structure. Finally, note that the bialgebra is in fact an Hopf
algebra, with antipode the circuit -1 .

It is convenient to fix this “module” of IH as a sub-PROP, which
we call HA because of the Hopf algebra structure. It can be
equivalently defined as the PROP having as arrows the circuits
of C−→irc quotiented by the equations in Figure 3.
• The algebraic structure described above is dualised for compo-

nents in (5), in the sense that the axioms (An)∗ in Figure 4 are
exactly those (An) of Figure 3 reflected about the y-axis. This
means that , satisfy the equations of commutative

comonoids, , the ones of commutative monoids, and

together they form an Hopf Algebra with antipode -1 . The
corresponding sub-PROP is HAop , that is, the opposite category
of HA: for a circuit c ∈ HA[n,m], we draw the corresponding
one in HAop [m,n] as c reflected about the y-axis. Equivalently,
HAop can be defined as the PROP having as arrows the circuits
of C←−irc quotiented by the equations in Figure 4.

A1
= A2

= A3
= 1

A4
=

A6
= A7

= A8
= p1 p2

A5
= p1p2

A9
=

A10
= A11

=
A12
=

p2

p1 A17
= +p1 p2

p
A13
= p

p
p

A14
= p

p p A15
= p A16

= 0
A18
=

Figure 3. Interaction of components in (4)

A1∗
= A2∗

=
A3∗
= 1

A4∗
=

A6∗
= A7∗

=
A8∗
= p1 p2

A5∗
= p1p2

A9∗
=

A10∗
= A11∗

=
A12∗
=

p2

p1 A17∗
= +p1 p2

p A13∗
= p

p
p A14∗

=
p
p

p A15∗
= p A16∗

= 0
A18∗
=

Figure 4. Interaction of components in (6)

I1
=

I1
=

I2
=

I2
=

I3
=

I6
=

I4
=

I7
= qq I5

= qq I8
=

q
I9
= q I10

= q
I11
= q

I12
=

Figure 5. Interaction of components in (4) with the ones in (6)

• Finally, equations in Figure 5 describe the interaction of com-
ponents in (4) with components in (5). This motivates the name
IH for the theory of Interacting Hopf algebras. The axioms of
interaction describe a separable Frobenius algebra [10] for both
the white and the black family of components.

The subtheories HA and HAop actually have an interesting life
of their own: they characterise circuits with simple functional be-
haviors, in the following sense. Let Mat k[x] be the PROP where
arrows n to m are m × n-matrices over k[x], composition ; is

matrix multiplication, A ⊕ B is the matrix
(
A 0
0 B

)
and the sym-

metries are the rearrangements of the rows of the identity matrix.
Then HA is a presentation of Mat k[x], that is, they are isomorphic
as PROPs [5, 7]. Dually, HAop is isomorphic to Mat k[x]op .

The circuits of HA and HAop are not the only ones exhibit-
ing a functional behavior. As shown in [5], by quotienting the
PROP of signal flow graphs SF by the axioms of IH, one ob-
tains a PROP, hereafter referred to as SF, that presents the PROP
Mat k〈x〉 of matrices over the rationals, i.e, fractions of poly-
nomials k0+k1x+k2x

2···+knxn
l0+l1x+l2x2···+lnxn

where l0 6= 0. The definition of

Mat k〈x〉 is formally the same as the one of Mat k[x], with the
ring k〈x〉 of rationals replacing k[x].

The equational theory of IH allows us to factorise circuits of
Circ in terms of those of C−→irc and C←−irc . We say that c ∈ Circ[n,m]
is in cospan form if it is of shape c1 ; c2, with c1 ∈ C−→irc [n, z] and
c2 ∈ C←−irc [z,m] for some z. Dually, d ∈ Circ[n,m] is in span form
if it is of shape d1 ; d2, with d1 ∈ C←−irc [n, r] and d2 ∈ C−→irc [r,m]
for some r.

Proposition 1. For all circuits c of Circ, there exist circuits c′ in
span form and c′′ in cospan form such that c IH

= c′
IH
= c′′.

4. Full abstraction
In this section we tackle the question of relating the operational and
the denotational semantics of the Signal Flow Calculus, introduced
in Section 2 and 3 respectively.

To this aim, an elementary observation is that the denotational
semantics seems to be too coarse, since it abstracts away from
the finite behaviours that might arise during the executions of the
circuits. For example, consider x x and : as we have
shown in Example 2, they have the same denotational semantics,

namely the set of all pairs (σ, σ) of fls. However, some computa-
tions of the former circuit can reach a deadlock. For instance, we
can make a transition from the initial state with labels k 6= l, but
there are no further possible transitions from the resulting state:

x 0; x 0 k−→
l

x k; x l 6→

Such failures are not taken into account by the denotational seman-
tics: intuitively, this only considers the successful computations,
which are the ones yielding infinite traces. If we restrict to these
situations, then x x behaves exactly as the identity circuit

. Here are more examples of circuits that may reach a dead-
locked state.

x x
x
x x

x (10)

Our diagnosis is that problematic circuits are those in which inter-
nal components (in particular, the delays) have a conflicting design.
Note that all the above examples are in cospan form, that is, they
are of shape c = c1 ; c2 with c1 a circuit of C−→irc and c2 one of C←−irc .
Intuitively, the signal in c is flowing from the left/right boundaries
towards the middle, that is, the boundary shared by circuits c1 and
c2.

According to our analysis, we can avoid deadlocks by consider-
ing instead circuits d in span form, i.e. d = d1 ; d2 for d1 in C←−irc
and d2 in C−→irc . Circuits of this shape cannot deadlock since, intu-
itively, the signal is flowing from the middle boundary towards the
left (transmitted by d1) and the right (transmitted by d2).

In order to formalize our observations, first we say that a circuit
is deadlock free when none of its computations can reach a dead-
lock - namely, a state from which no transition is derivable. Then
we have the following result.

Theorem 2. Circuits of Circ in span form are deadlock free.

Together with Proposition 1, this theorem asserts that, for each
circuit of Circ, there exists an equivalent one in IH that is deadlock
free. This could give us some hope of reconciling the operational
and the denotational semantics but, unfortunately, also for some cir-

cuits in span form they do not agree: for instance, xx

and

have the same denotational semantics, but all the computa-
tion of the former are forced to start with 0−→

0
. Indeed

x 0; x 0 0−→
0

x k; x k for any k.

Note that after the first transition xx

behaves exactly as

: in some sense, the former circuit exhibits a proper behaviour
only after an initialisation step. To make this formal, we say that
a circuit c is initialisation free if, whenever s0

0...0−−−→
0...0

s1, then
s1 = s0, where s0 is the initial state of c. Other basic circuits that
suffer from initialisation are displayed below.

x x
x
x

x
x (11)

All problematic circuits above are in span form, meaning that they
can be decomposed into c1 ; c2, with c1 in C←−irc and c2 in C−→irc . The
intuition is that any delay in c1 and c2 sends the signal from the
common middle boundary towards the outer boundaries, thus re-
quiring a step in which the default value 0 of each delay is emitted
before behaving properly. According to this analysis, such a situa-
tion is avoided when we can see all the delays as pointing towards
the middle of the circuit. This leads to the following statement.

Theorem 3. Circuits of Circ in cospan form are initialisation free.

Theorems 2 and 3 suggest a duality between deadlock and ini-
tialisation, expressible in terms of span and cospan decompositions
of circuits of Circ. In fact, this is reflected also by the displayed
problematic circuits: the ones in (10) are dual to the ones in (11)
in a precise sense, namely by changing the black/white colouring
and the direction of delays1. Moreover, according to our analysis
circuits with deadlocks have more behaviours (traces) than those
prescribed by the denotational semantics, while circuits with ini-
tialisation have fewer behaviours. We would then expect circuits
which are both deadlock and initialisation free to yield exactly the
right amount of behavior: this will be the content of the next sec-
tion, leading to the full abstraction result (Corollary 2).

4.1 Reconciling Observation and Denotation
Given a circuit c of Circ, we define its observable behavior 〈c〉
as the pair (ft(c), it(c)) of its finite and infinite traces. Like the
denotational semantics [[·]], also the observable behaviour 〈·〉 can
be expressed in a compositional way, as a PROP morphism from
Circ to a certain target PROP that we are going to define below.
In order to do that, we first observe that finite and infinite traces
can be equivalently described in terms of polynomials and of fps
respectively. Indeed, in a trace (−→α ,

−→
β) of length z, each sequence

αj = k0k1 . . . kz and βj = l0l1 . . . lz can be encoded as polyno-
mials k0x+k1x+· · ·+kzxz and l0x+l1x+· · ·+lzxz respectively.
Similarly, in an infinite trace (−→α ,

−→
β), each stream αj = k0k1 . . .

and βj = l0l1 . . . defines fps Σ∞i=0kix
i and Σ∞i=0jix

i respectively.
We can then see ft(c) as a relation between vectors of polynomials
and it(c) as a relation between vectors of fps.

On the base of this observation, we take Relk[x] × Relk[[x]]
as target of 〈·〉. Here Relk[x] and Relk[[x]] are PROPs defined as
Relk((x)) (Definition 2), but with k[x] and k[[x]] respectively in
place of k((x)). Arrows of Relk[x] × Relk[[x]] from n to m are
pairs (f, g) with f ∈ Relk[x][n,m] and g ∈ Relk[[x]][n,m]. The
following statement guarantees that 〈·〉 is compositional:

Proposition 2. 〈·〉 : Circ → Relk[x] × Relk[[x]] is a morphism of
PROPs.

We have now all the ingredients to build a bridge between
the domain of observations Relk[x] × Relk[[x]] and the denotational
domain Relk((x)).

For this purpose, we first illustrate how to relate infinite traces
(i.e., pairs of vectors of fps) and vectors of fls. We say that a trace(−→α ,−→β) ∈ k[[x]]n × k[[x]]m generates

(−→σ ,−→τ) ∈ k((x))n ×
k((x))m if there exist an instant z ∈ Z such that

(i) αj(i) = σj(i+ z) and βh(i) = τh(i+ z) for all i ∈ N and k,
j with 1 ≤ j ≤ n, 1 ≤ h ≤ m;

(ii) z is smaller or equal than any degree of σ1 . . . σn, τ1 . . . τm.

To see the intuition behind this notion, recall from Section 3
that, whereas fps give a way of encoding streams, fls encode
streams “with a (finite) past”. If we see it as a translation from
(−→α ,
−→
β) to (−→σ ,−→τ), our correspondence takes the fps in (−→α ,

−→
β)

and fix for them all a common “present” moment. For example, the
trace (k0k1k2 . . . , l0l1l2 . . .) ∈ k[[x]]× k[[x]] generates infinitely
many pairs of fls, among which we have:

(. . . 00k1k2k3 . . . , . . . 00l1l2l3 . . .)
(. . . 00k1k2k3 . . . , . . . 00l1l2l3 . . .)
(. . . 00k1k2k3 . . . , . . . 00l1l2l3 . . .)

1 See [7, §7.2] for a more detailed account of this transformation in a
denotational context.

with choice of present moment (0, 0), (k1, l1) and (k2, l2) respec-
tively. The instant z ∈ Z will be 1 for the first, 0 for the second and
−1 for the third pair above.

Conversely, we can start from all the fls in (−→σ ,−→τ) and forget
about their present moment to obtain streams. The requirement that
the instant z is chosen not bigger than any degree implies that
only 0s are removed in the process, that is, there is no information
loss. For instance, (. . . 00k1k2k3 . . . , . . . 00l1l2l3 . . .) ∈ k((x))×
k((x)) is generated by infinitely many traces, including:

(k1k2k3 . . . , 0l1l2l3 . . .)
(0k1k2k3 . . . , 00l1l2l3 . . .)

(00k1k2k3 . . . , 000l1l2l3 . . .).

The instant z is chosen to be−1 for the first,−2 for the second and
−3 for the third pair above.

To complete the picture, we relate finite and infinite traces.
A trace (−→α ,

−→
β) ∈ k[x]n × k[x]m of length z is a prefix of an

infinite trace (−→γ ,
−→
δ) ∈ k[[x]]n × k[[x]]m iff αj(i) = γj(i) and

βh(i) = δh(i) for all 0 ≤ i ≤ z, 1 ≤ j ≤ n and 1 ≤ h ≤ m.
We are now ready to define our correspondence between arrows

of Relk[x] × Relk[[x]] and arrows of Relk((x)).

Definition 4. Let (f, g) be an arrow of Relk[x]×Relk[[x]]. We define
F(f, g) as the following arrow in Relk((x))[n,m]:{(−→σ ,−→τ) ∣∣∣ there exist a trace

(−→α ,−→β) ∈ g
generating

(−→σ ,−→τ)}
In the converse direction, given an arrow S ∈ Relk((x))[n,m], we
define U(S) as the pair (f, g) ∈ Relk[x] × Relk[[x]][n,m] where
g ∈ Relk[[x]][n,m] is given as{(−→α ,−→β) ∣∣∣ there exist a pair

(−→σ ,−→τ) ∈ S
generated by

(−→α ,−→β)}
and f ∈ Relk[x][n,m] is the set of all prefixes of the traces in g.

Intuitively, the action of F on (f, g) is to forget the first com-
ponent and generate all the vectors of fls generated by vectors of
fps in g. Instead we can describe U as abstracting away the choice
of the present for all fls and represent them as fps. This gives the
second element in the target pair (f, g): the first is irrelevant, since
it only consists of the prefixes of traces in g (in particular, we do
not generate any deadlock trace). To see how F and U work more
precisely, we shall consider the following example.

Example 3. Recall that, for c = xx

, the set it(c) consists
of all infinite traces of the form (0k0k1k2 . . . , 0k0k1k2 . . .), that
is, c behaves as the identity after one initialisation step. Since this
circuit is deadlock free, the set ft(c) instead contains all and only
those finite traces which are prefixes of some infinite trace in it(c).

One can check that F〈c〉 is the identity relation {(σ, σ) | σ ∈
k((x))} (which is actually equal to [[c]]). For instance, the pair of fls

(. . . 00k0k1k2k3 . . . , . . . 00k0k1k2k3 . . .) (12)

is generated by (0k0k1k2 . . . , 0k0k1k2 . . .). If we then apply U
to F〈c〉, we obtain a pair (f, g) ∈ Relk[x] × Relk[[x]][1, 1] where
f coincides with the original ft(c), while g is strictly larger than
it(c). Indeed (k0k1k2 . . . , k0k1k2 . . .) /∈ it(c) but it belongs to g
since it generates the pair (12).

We now focus on circuit d = x x . The set it(d) consists
of all infinite traces of the form (k0k1k2 . . . , k0k1k2 . . .) and the
set ft(d) consists of either prefixes of it(d) or traces leading to
deadlocks having the form (k0k1 . . . kul, k0k1 . . . kul

′) with l 6=

l′. It is easy to check that these traces are lost when applying UF to
〈d〉, while no infinite trace is added or removed.

The example above suggests that the composite mapping FU
enlarges the set of observable behaviors for circuits with initialisa-

tion (e.g. xx

) and, dually, restricts it for circuits with dead-

locks (e.g. x x). The next statement illustrates the extent of
these observations.

Theorem 4. Let c be a circuit of Circ. Then the following holds:

(a) F〈c〉 = [[c]].
(b) If c is deadlock free, then 〈c〉 ⊆ FU[[c]]. 2

(c) If c is initialisation free, then 〈c〉 ⊇ FU[[c]].

Statement (a) above is instrumental in showing full abstraction
(Corollary 2), but is also of independent interest. Indeed it allows
to immediately derive that

Corollary 1. For any two circuits c, d ∈ Circ, [[c]] = [[d]] if and
only if F〈c〉 = F〈d〉.

In some sense, Corollary 1 tells us under which conditions an
external observer cannot distinguish circuits that have the same
denotation. This is the case whenever F〈c〉 = F〈d〉, that is,
the observation of c and d can be only made “up-to F”. Intu-
itively, this amounts to imposing the following two conditions,
stemming from the definition of F. First, we prevent the ob-
servation of finite behavior — because F disregards ft(c) and
ft(d). This means that we cannot detect deadlock and, for in-
stance, x x and become indistinguishable. Second,
we prevent an external agent from choosing when to begin the

observation. For instance, take c = xx
. By observing the

pair (. . . 00k0k1k2 . . . , . . . 00k0k1k2 . . .) in F〈c〉, on principle
we are not able to judge whether it has been generated by a trace
(k0k1k2 . . . , k0k1k2 . . .) or (0k0k1k2 . . . , 0k0k1k2 . . .) in 〈c〉:
the definition of F allows for both (and infinitely many other) op-
tions. Since our view is restricted to F〈c〉, we cannot tell if the
observation of the actual stream starts with 0 or k0. Therefore,
from that viewpoint xx

and are indistinguishable.
In general, when observations can be made without the restric-

tions of F, one can distinguish amongst circuits that are denotation-
ally equivalent, as explained in Example 3. Statements (b) and (c)
in Theorem 4 allow us to derive that observations and denotations
do coincide for the class of well-behaved circuits that do not suffer
from deadlocks and initialisation steps.

Corollary 2 (Full Abstraction). For any two circuits c and d of
Circ that are deadlock and initialisation free,

[[c]] = [[d]] if and only if 〈c〉 = 〈d〉.

5. Realisability
In the previous section, we have seen two different canonical forms
for circuits of Circ: the span form, preventing deadlocks, and the
cospan form, avoiding initialisation steps. We now tackle the ques-
tion of transforming, within the equational theory of IH, any circuit
c of Circ into one d featuring both properties. This is appealing be-
cause, by Corollary 2, d properly realises the denoted behaviour
[[c]]. To this aim, we first observe that our desiderata are fulfilled for
the class SF, introduced in Section 2:

Proposition 3. Every c in SF is deadlock and initialisation free.

2 The inclusion is meant to be component-wise, i.e. it(c) ⊆ g and ft(c) ⊆
f where (ft(c), it(c)) = 〈c〉 and (f, g) = FU[[c]].

The intuition behind Proposition 3 is that the rules for induc-
tively constructing circuits of SF do not allow for the conflicting
design originating the phenomena of initialisation and deadlock. In
particular, adding feedbacks to a circuit of SF preserves initialisa-
tion and deadlock freedom.

In order to achieve our goal, we will introduce a canonical form
for circuits in Circ which is based on SF. Roughly speaking, such
form consists of signal flow graphs where “the wires have been
jumbled up”. We make this intuition precise in the sequel.

First, for each n,m ∈ N, we take circuits ηn : n → 1 + 1 + n
and εm : 1 + 1 +m→ m as illustrated below.

ηn := n εm := m

Then, we define the families of operators Ln,m : Circ[n+ 1,m]→
Circ[n, 1 + m] and Rn,m : Circ[n, 1 + m] → Circ[1 + n,m] as
follows: for any circuit c ∈ Circ[n+ 1,m],

Ln,m(c) = ηn ; (id1 ⊕ c)
(

n c m

)
and, for any circuit d ∈ Circ[n,m+ 1]

Rn,m(d) = (id1 ⊕ d) ; εm.

(
n md

)
Remark 4. When defined on IH, Ln,m and Rn,m enjoy some
interesting properties. Let 1 + − : IH → IH be the functor acting
on objects as k 7→ 1 + k and on arrows as f 7→ id1 ⊕ f . This
functor is self-adjoint: the unit and the counit are the ηn and εm
defined as above. The fact that IH is a SMC implies naturality of η
and ε. They satisfy the triangle inequalities because of the following
“snake” lemma, provable in IH using (I2), (A5) and (A5)∗:

= = = = (13)

The canonical isomorphisms between hom-sets, induced by the
adjunction, are Ln,m : IH[n + 1,m] → IH[n, 1 + m] and
Rn,m : IH[n, 1 + m] → IH[1 + n,m] defined as above. We can
understand Ln,m intuitively as “rewiring” the connection to the first
port on the left to the right of the circuit. The fact that Ln,m and
Rn,m are isomorphisms means that no information is lost – all such
circuits can be “rewired” back to their original form.

Definition 5. Any c2 ∈ Circ[n2,m2] is a rewiring of c1 ∈
Circ[n1,m1] when c2 can be obtained from c1 by a combination
of the following operations:

• application of Ln,m, for some n and m,
• application of Rn,m, for some n and m,
• post-composition with a permutation,
• pre-composition with a permutation.

Permutations are needed to rewire any port on the boundaries.
For instance, they allow to rewire the second port on the right as
the third on the left in the circuit c : 2→ 2 below:

c

For our purposes, it is of importance to observe that

Lemma 1. Rewiring preserves deadlock and initialisation free-
dom.

The remainder of this section will be devoted to showing that
we can put circuits of Circ into the desired shape.

Theorem 5. Every circuit in Circ is equal in IH to the rewiring of
some circuit in SF.

By Theorem 5, Proposition 3 and Lemma 1 we achieve the
realisability result claimed at the beginning of this section.

Corollary 3 (Realisability). Every circuit c of Circ is equal in IH
to some circuit d of Circ that is deadlock and initialisation free.

5.1 Proof of Theorem 5
In order to prove Theorem 5, we first need some preliminaries
on matrices and their circuit representations. Indeed, there is a
natural way of representing matrices over the field k(x) of fractions
of polynomials as circuits of Circ. To illustrate it, consider the
following example:

(
p1/q1 p4/q4 p7/q7
p2/q2 p5/q5 p8/q8
p3/q3 p6/q6 p9/q9

)
p1 q1

p2 q2

q3p3

p6 q6

p7 q7

p8 q8

p9 q9

p4 q4

p5 q5

The circuit c on the right encodes the matrix M on the left in the
following way: for each boundary of c, we assume a top-bottom
enumerations of the ports, starting from 1. Then the entry Mj,i

(column j, row i) has value p
q
∈ k(x) if and only if, reading the

circuit from the left to the right, one finds a path connecting the jth

port on the left to the ith port on the right passing through a circuit
p q . Intuitively, the ports on the left represent columns, the

ones on the right rows, and the links between them carry the values
in the matrix. One can verify the correspondence between c and M
formally: [[c]] is the relation {(−→σ ,M · −→σ) | −→σ ∈ k((x))3}.

It will be convenient to work with matrices (and the correspond-
ing circuits) of a particular shape. We say that a matrix over k(x) is
in rational form if all its entries are in fact rationals (in k〈x〉) and:

1. for each non-zero row, there is a pivot entry with value 1.

2. in the column of a pivot, the pivot is the only non-zero entry.

An example is displayed below where r1, r2, r3 ∈ k〈x〉. r1 0 1 0
r2 1 0 0
r3 0 0 1
0 0 0 0

The following lemma is the final ingredient for the proof of

Theorem 5—its proof is an easy exercise in linear algebra.

Lemma 2. Every k(x) matrix is row equivalent to one in rational
form.

Proof of Theorem 5. Let us fix a circuit c ∈ Circ[n,m]. In the
following, we will sketch a recipe, using the equational theory of
IH, with which c is transformed into the rewiring of a circuit in SF.
To improve readability, we shall draw any circuit as if both n and
m were 2. It should be fairly clear how our argument generalizes.

(i) First we transform c into the circuit c1 on the right: the two are
equal in IH by virtue of (13).

c
c

IH

Let us call c2 the circuit from n+m to 0 delimited by a dotted
square in the picture above. Since c0 is obtained by rewiring on

c2, it should be clear that, if c2 can be rearranged as the rewiring
of a circuit in SF, then this property also holds for c0. Therefore,
in the sequel we shift our focus to c2.

(ii) Proposition 1 allows us to rewrite c2 in cospan form, as the
composition along a middle boundary z of circuits c3 and c4
below, while preserving equality in IH. By definition of cospan
form, c3 is an arrow of C−→irc , while c4 is an arrow of C←−irc . For
the sake of readability, we will draw z as if it were 2.

c3 c4c
IH

C�!irc C �irc

(iii) Since we are reasoning in IH, in particular all the equations of
HAop hold. Now, 0 is both the initial and the terminal object in
Mat k[x]; because HAop ∼= Mat k[x]op , this means that there
is exactly one circuit of C←−irc , up to equivalence in HAop , from
z to 0. It follows that c4 and the z-tensor of (a circuit that
we call c5) are equal in HAop — and thus in IH. We can thus
write c3 ; c4 as c3 ; c5:

c3 c4 c3
IH

(iv) Since c3 is in C−→irc we can use the results about HA to reason
about it. In particular, c3 can be mapped into an z × (m + n)
matrix of polynomials M , because HA ∼= Mat k[x]. As we
remarked at the beginning of this section, there is a canonical
way of representing M as a circuit c6 of Circ:

(
p11 p21 p31 p41

p12 p22 p32 p42

)
p11
p12

p21
p22

p31

p32

p41
p42

Since c3 corresponds to M along the isomorphism HA ∼=
Mat k[x], it follows that [[c3]] is {(σ,M · σ | σ ∈ k((x))n}.
Therefore [[c3]] = [[c6]] meaning by Theorem 1 that c3

IH
= c6. It

follows that we can rewrite our circuit c3 ; c5 as c6 ; c5:

c3

p11

p12

p21
p22

p31

p32

p41
p42

IH

(v) Using Lemma 2, we can then transform M into a matrix M∗

in rational form (for instance, the one on the left below). Since
M∗ is a matrix over k(x), we have a canonical circuit c7 of IH
(on the right) representing it.

(
1 p1/q1 0 p3/q3
0 p2/q2 1 p4/q4

) p1 q1

p2

q3

q2

p3

p4 q4

By definition of rational form, each non-zero row R in M∗ is
associated with a pivot column C with the only non-zero value
1 at the intersection of R and C. In order to graphically repre-
sent such property in c7, we supposed the following choice of
pivots: the first and the third column for the first and second row
respectively. Observe that an entry with value 0 corresponds to

the circuit 0 , which in IH is equal to : therefore we
could avoid drawing the corresponding link in the circuit c7.
We now claim that c6 ; c5

IH
= c7 ; c5. By Theorem 1, to check

this it suffices to show that [[c6 ; c5]] = [[c7 ; c5]], that is:

{(σ,M · σ |M · σ =
−→
0 } = {(σ,M∗ · σ) |M∗ · σ =

−→
0 }.

This is true because the two relations above describe the kernel
of M and M∗ respectively, and M∗ is row-equivalent to M . It
follows that we can rewrite c6 ; c5 as c7 ; c5, while preserving
equality in IH:

p11

p1 q1

p2

q3

q2

p3

p12

p21
p22

p31

p32

p41
p42

p4 q4

IH

(vi) We now focus on circuit c7 ; c5. Our next step is to use associa-
tivity and commutativity of to make one of the two legs

of each component be always attached to the pivot-wire
of the corresponding row. Also, we use the axioms of SMCs
and naturality of the symmetry to push the pivot-wires
towards the top of the circuit, as follows:

p1 q1

p2

q3

q2

p3

p4 q4

p1 q1

p2

q3

q2

p3

p4 q4

IH

(vii) We can now remove the components of shape by turn-
ing them into rewiring structure. This can be done by simply
applying axiom (I6) of IH:

p1 q1

p2

q3

q2

p3

p4 q4

p1 q1

p2

q3

q2

p3

p4 q4

IH

(viii) Let us call c8 the rightmost circuit above: it is a rewiring of the
circuit inscribed into the dotted square, which we call c9. Since
c7 was constructed starting by a matrix in rational form, for all
the components p q in c8, p

q
is a rational. Thus, using

the fact that SF ∼= Mat k〈x〉, we can rewrite in IH each such
component as a circuit c̃ in SF:

p1 q1

p2

q3

q2

p3

p4 q4

ec1

ec2

ec3

ec4

IH

Now, observe that c9 can be seen as the composition (via⊕ and
;) of circuits that are all in SF.

ec1

ec2

ec3

ec4

It follows that c9 is also in SF and thus c8 is the rewiring of
a circuit in SF. Since c8 was obtained by c2 by only using
rewriting steps allowed by the equational theory of IH, the
statement of the theorem follows.

6. Directing the Flow
In the classical presentation of signal flow graphs (see e.g. [23]),
wires are directed, signifying the direction of signal flow. Through-
out the previous sections, we have been referring to flow direction
only on an intuitive level. We now introduce directionality explic-
itly, claiming that it can be really treated as a derivative notion of
our theory of circuits. We then present some applications and ex-
amples supporting our statement.

In order to model classical signal flow graphs we first need to
introduce an alternative syntax, which we call the directed signal
flow calculus. We will need components that resemble those of
C−→irc , but which are explicitly oriented from left to right.

e :: = | | k | x | |

We also require some “pure” wiring: since signal flow is explicit,
we include two versions of the identity wire and four of the twist:

w :: = | | | | |

These basic components above are given a sorting (u, v) where
u, v ∈ {�, �}∗; for instance:

: (�, ��) and : (��, ��).

Classical signal flow graphs are obtained by composing compo-
nents e andw using the operations ; and⊕, for which we reuse the
sorting rules of Fig. 1, together with guarded feedback operations
Tr�(·) that take a circuit of sort (�1+m,�1+n) and yield a circuit
of sort (�m,�n). The associated sorting rule is thus:

c : (�1+n,�1+m)

Tr�(c) : (�n,�m)

This is represented graphically as follows:

c...
... 7−→ ...

...

x

c

The syntax for directed signal flow graphs is thus:

sf :: = e | w | sf ; sf | sf ⊕ sf | Tr�(sf)

Finally, we include top-level operations reminiscent of the rewiring
in §5: L�, L�, R� and R�, with sorting rules:

c : (�u, v)

L�(c) : (u,�v)

c : (�u, v)

L�(c) : (u,�v)

c : (u,�v)

R�(c) : (�u, v)

c : (u,�v)

R�(c) : (�u, v)

In the graphical rendering below we leave out the arrowheads on
wires where direction is arbitrary:

c...
... c...

...
...

... c ...
... c

Circuits of the directed signal flow calculus are thus specified by
following grammar:

d :: = sf | L�d | L�d | R�d | R�d | d ;w | w ; d

Note that the composition at the top level is restricted to disallow
the introduction of unguarded feedback.

Rather than defining the operational semantics directly, we can
obtain the expected behaviour by first translating directed terms to
the signal flow calculus. Intuitively, the inductively defined transla-
tion E “erases directions” from the wires:

7→ , 7→ · · · 7→ , 7→ ,

sf1 ; sd2 7→ E(sf1) ;E(sf2), sf1 ⊕ sf2 7→ E(sd1)⊕ E(sf2),

Tr�(sf) 7→ Tr(E(sf)), L?(d) 7→ L(E(d)) R?(d) 7→ R(E(d)).

where ? ∈ {�,�} and Tr, L and R are defined as in §2 and §5.
A key observation is that directed sort discipline prevents us

from writing problematic circuits where signal flow is incompat-
ible, like in the examples in §4. In fact, using Proposition 3 and
Lemma 1 we get:

Proposition 4. For any circuit d of the directed signal flow calcu-
lus, E(d) is deadlock and initialisation free.

Moreover, this syntactic restriction does not affect the expres-
siveness since, thanks to Theorem 5, rewirings of signal flow graphs
denote all the possible behaviours. Thus, informally speaking, all
circuits in Circ can be directed (modulo the theory of IH).

Proposition 5. For any circuit c of Circ, there exists a directed
circuit d such that E(d)

IH
= c

Propositions 4 and 5 have two interesting consequences. First,
Proposition 4 and the full-abstraction result mean that we can use
the equational theory of IH to safely reason about classical signal
flow graphs and extensions—indeed, all the circuits in the directed
signal flow calculus. Roughly speaking, the procedure is: forget the
directions and then use IH

=. This confirms the intuition that, like for
electrical circuits, also for signal flow graphs directionality is not a
primitive notion as originally advocated in [23].

Second, Proposition 4, Proposition 5 and full-abstraction tell us
that the denotational semantics of any circuit of the signal flow cal-
culus can be properly realised by some directed circuit. We can
therefore use the “more liberal” signal flow calculus to specify
circuits and the “more restrictive” directed calculus to implement
them. One can then check that an implementation d adheres to a
specification c by mean of the graphical reasoning supported by
IH. Indeed E(d)

IH
= c, means that d implements, without deadlocks

or initialisation, the behaviour denoted by c. Note that while an im-
plementation is a directed circuit—typically featuring feedbacks—
we are being deliberately vague about what kind of circuit in Circ
constitutes a specification: in examples that we consider these are
typically generating functions that can be obtained in a standard
way (see e.g. [29]) from recurrence formulas. We illustrate these
ideas with the aid of the simple example below.

Example 4. Consider the circuits displayed below. The leftmost
serves as specification (1

1−x) and the rightmost, a directed circuit,
as its implementation.

1�x x

To prove that the implementation realises the specification, we
first throw away all the directions from the wires and then we
proceed with a graphical derivation in IH:

x

x x

xx
1�x

(I1)(I2)
(A17

⇤
)(A5

⇤
)

(A14
⇤
)

(I11)
(I5) (I3)

(A1)(A6)
(14)

We annotated the key axioms of IH justifying each derivation step.
Note that the first and the second to last circuit, that we have just

proved equivalent, are c2 and c1 from Example 1 (modulo the
notation adopted for -1 since Section 3).

A similar procedure can be used to check the observational
equivalence of directed signal flow graphs. For instance, take:

x
2

x -1 xx (15)

First, we forget the direction of the flow and we obtain the circuits
c3 and c4 depicted below, on the left and on the right.

x
2

x
x x

Then, by virtue of Proposition 4 and full abstraction, we can safely
use IH

= to check 〈c3〉 = 〈c4〉. Observe that c3 is like in Example 1
and c4 is just the sequential composition c2 ; c2. We can thus reuse
(14) to see that

c4 = c2 ; c2
IH
= 1�x ; 1�x

IH
= (1�x)2

To conclude, we only have to check that c3 is equal in IH to the
rightmost circuit above. This is shown as follows, along the same
lines of derivation (14):

x
2

2

x
xx

2

x
x

2

x
x2

x
xx2�x

(1�x)2

The circuits in (15) can also be thought of as two different

implementations of (1�x)2 . Indeed, 1
(1−x)2 is the generating

function of the sequence 1, 2, 3, 4,

7. Conclusions
The network theoretic approach combines algebra and topology–
the circuits of the theory that we presented have an algebraic na-
ture, as demonstrated by the axiomatisations, as well as a topo-
logical nature, when viewed as string diagrams. Our contribution
adds an operational understanding to the previously discovered de-
notational insights. Throughout the paper we have tried to illustrate
the fruitful interplay between algebra, topology, the operational and
denotational approaches.

Although our attention in this work was restricted to signal flow
graphs, the same methodology could be beneficial in other areas
where diagrammatic notation is employed: in addition to the ex-
amples we mentioned in the introduction there are Kahn process
networks, Bayesian networks and automata, amongst many others.
Typically, such diagrammatic formalisms are translated to more
traditional mathematics, but seldom reasoned about directly. The
broad picture of the work in this paper is a deep connection between
a denotational view and a fully-fledged operational approach that is
intimately related to the hallmark of network theory: the interplay
between algebra and topology. Our vision is close to that advocated
by Abramsky for concurrency theory [1]: we believe that this ap-
proach will eventually lead to less a specialised, fragmented and
sometimes overly syntax-focussed landscape.

Acknowledgements We thank the anonymous referees for the
fruitful discussion. The first and the third author acknowledge sup-
port from the ANR project 12IS02001 PACE.

References
[1] S. Abramsky. What are the fundamental structures of concurrency?

we still don’t know! CoRR, abs/1401.4973, 2014.
[2] J. C. Baez. Network theory. http://math.ucr.edu/home/baez/

networks/, 2014.
[3] J. C. Baez and J. Erbele. Categories in control. CoRR, abs/1405.6881,

2014. http://arxiv.org/abs/1405.6881.
[4] H. Basold, M. Bonsangue, H. H. Hansen, and J. Rutten. (co)algebraic

characterizations of signal flow graphs. In To appear in LNCS, 2014.
[5] F. Bonchi, P. Sobociński, and F. Zanasi. A categorical semantics of

signal flow graphs. In CONCUR, 2014.
[6] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting bialgebras are

Frobenius. In FoSSaCS ‘14. Springer, 2014.
[7] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting Hopf algebras.

CoRR, abs/1403.7048, 2014. http://arxiv.org/abs/1403.7048.
[8] R. Bruni, U. Montanari, G. Plotkin, and D. Terreni. On hierarchical

graphs: reconciling bigraphs, gs-monoidal theories and gs-graphs.
[9] R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless

connectors. Theor Comput Sci, 366:98–120, 2006.
[10] A. Carboni and R. F. C. Walters. Cartesian bicategories I. J Pure Appl

Algebra, 49:11–32, 1987.
[11] B. Coecke and R. Duncan. Interacting quantum observables. In

ICALP‘08, pages 298–310, 2008.
[12] B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong com-

plementarity and non-locality in categorical quantum mechanics. In
LiCS‘12, pages 245–254, 2012.

[13] M. P. Fiore and M. D. Campos. The algebra of directed acyclic graphs.
In Abramsky Festschrift, volume 7860 of LNCS, 2013.

[14] B. Fong. A compositional approach to control theory. PhD Transfer
Report, 2013.

[15] D. R. Ghica. Diagrammatic reasoning for delay-insensitive asyn-
chronous circuits. In Abramsky Festschrift, pages 52–68, 2013.

[16] A. Joyal and R. Street. The geometry of tensor calculus, I. Adv. Math.,
88:55–112, 1991.

[17] P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): an algebra
of transition systems. In AMAST ’97, pages 322–336. Springer, 1997.

[18] G. M. Kelly and M. L. Laplaza. Coherence for compact closed
categories. J. Pure Appl. Algebra, 19:193–213, 1980.

[19] S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163,
2004.

[20] Y. Lafont. Towards an algebraic theory of boolean circuits. J Pure
Appl Alg, 184:257–310, 2003.

[21] B. Lahti. Signal Processing and Linear Systems. Oxford University
Press, 1998.

[22] S. Mac Lane. Categorical algebra. B Am Math Soc, 71:40–106, 1965.
[23] S. J. Mason. Feedback Theory: I. Some Properties of Signal Flow

Graphs. MIT Research Laboratory of Electronics, 1953.
[24] D. Pavlovic. Monoidal computer i: Basic computability by string

diagrams. Inf. Comput., 226:94–116, 2013.
[25] D. Pavlovic. Monoidal computer ii: Normal complexity by string

diagrams. CoRR, abs/1402.5687, 2014.
[26] J. J. M. M. Rutten. A tutorial on coinductive stream calculus and signal

flow graphs. Theor. Comput. Sci., 343(3):443–481, 2005.
[27] P. Selinger. A survey of graphical languages for monoidal categories.

arXiv:0908.3347v1 [math.CT], 2009.
[28] P. Sobociński. Nets, relations and linking diagrams. In CALCO ‘13,

2013.
[29] H. Wilf. Generatingfunctionology. A. K. Peters, 3rd edition, 2006.
[30] J. C. Willems. The behavioural approach to open and interconnected

systems. IEEE Contr. Syst. Mag., 27:46–99, 2007.
[31] W. J. Zeng and J. Vicary. Abstract structure of unitary oracles for

quantum algorithms. CoRR, abs/1406.1278, 2014.

http://math.ucr.edu/home/baez/networks/
http://math.ucr.edu/home/baez/networks/
http://arxiv.org/abs/1405.6881
http://arxiv.org/abs/1403.7048

	Introduction
	The Signal Flow Calculus: Syntax and Operational Semantics
	Denotational Semantics
	Equational Theory

	Full abstraction
	Reconciling Observation and Denotation

	Realisability
	Proof of Theorem 5

	Directing the Flow
	Conclusions

