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We provide a Lawvere-style definition for partial theories, extending the classical notion of equational theory
by allowing partially defined operations. As in the classical case, our definition is syntactic: we use an
appropriate class of string diagrams as terms. This allows for equational reasoning about the class of models
defined by a partial theory. We demonstrate the expressivity of such equational theories by considering a
number of examples, including partial combinatory algebras and cartesian closed categories. Moreover, despite
the increase in expressivity of the syntax we retain a well-behaved notion of semantics: we show that our
categories of models are precisely locally finitely presentable categories, and that free models exist.
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1 INTRODUCTION
Mathematicians interested in, say, the theory of monoids or the theory of groups work in an
axiomatic setting, asserting the presence of a collection of 𝑛-ary operations on an ambient set 𝐴 —
i.e. (total) functions 𝐴𝑛 → 𝐴 for some 𝑛 : N — that satisfy a number of axioms. This data can be
packaged up into an equational theory: a pair (Σ, 𝐸) where Σ is the signature, consisting of operation
symbols, each with a specified arity, and 𝐸 is a collection of equations — i.e. pairs of terms built up
from the signature Σ and auxiliary variables — that provide the axioms. An ambient equational
theory is thus the bread and butter of an algebraist, that together with the principles of equational
reasoning provides the basic calculus of mathematical investigation into the structure of interest.
Birkhoff [Bir35] discovered that a substantial amount of mathematics can be done at the level

of generality of an equational theory. Given an equational theory (Σ, 𝐸), a model is a set together
with an interpretation of the function symbols Σ that satisfies the equations 𝐸. A monoid is nothing
but a model of the equational theory of monoids, a group is a model of the equational theory of
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Fig. 1. Elements of classical functorial semantics on the left, and our contribution on the right.

groups, and so on. The semantics of an equational theory, i.e. its class of models, is called a variety.
Birkhoff showed that certain results (e.g. the so-called isomorphism theorems, existence of free
models) can be derived uniformly for generic varieties, independent of the equational theory at
hand. Most spectacularly, a class of sets-with-structure can be determined to be a variety through
purely structural means; this is often referred to as Birkhoff’s Variety Theorem or the HSP Theorem.

The resulting field is known as universal algebra. Its mathematical objects of study are equational
theories and varieties. Given its goal of uncovering methodological and technical similarities of a
large swathe of contemporary algebra, universal algebra is in the intersection of mathematics and
mathematical logic. It has influenced computer science, especially programming language theory,
as a formal and generic treatment of syntax, terms, equational reasoning, etc.
Lawvere [Law63], and the subsequent development of categorical universal algebra, addressed

some of the perceived shortcomings of the classical account. It is well known that a single variety can
havemany different axiomatic presentations, and in this sense the choice of a particular presentation
may seem ad hoc. The requirement that models be sets-with-structure is also restrictive, since
algebraic structures appear in other mathematical contexts as well. A Lawvere theory is a category
L that serves as a presentation-independent way of capturing the specification of a variety. A
central conceptual role is played by cartesian categories, i.e. categories with finite products. The
free cartesian category on one object often appears in the very definition of a Lawvere theory –
the “one object” here capturing single-sortedness. Finite products track arities and ensure that
operations are total functions. Functorial semantics gives us the correct generalisation of varieties:
a model is cartesian functor L → Set. This point of view is flexible (e.g. Set can be replaced with
another cartesian category) and leads to a rich theory [HP07; Law63; ALR03], where the study of
varieties and their specifications can take place at a high level of generality.

The beautiful abstract picture painted by Lawvere can be used to give a post-hoc explanation of
the elements of classical equational theories. Every equational theory yields a Lawvere theory. Free
equational theories, i.e. those where 𝐸 = ∅, are Lawvere theories whose arrows can be concretely
described as (tuples of) terms. Indeed, it is well-known that terms are closely connected to the
universal property of products. The abstract mathematics, therefore, explains the structure of terms
and justifies the use of ordinary equational reasoning. The elements of Lawvere’s approach to
universal algebra are illustrated in the left side of Fig. 1.
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In this paper we are concerned with partial algebraic structures, i.e. those where the operations
are not, in general, defined on their whole domain. Partiality is important in mathematics: the very
notion of category itself is a partial algebraic structure, since only compatible pairs of arrows can be
composed. Even more so, partiality is an essential property of computation, and partial functions
play a role in many different parts of computer science, starting with initial forays into recursion
theory at the birth of the subject, and being ever present in more recent developments, for example
arising as an essential ingredient in the study of fixpoints [BÉ93]. From the start it was clear that
additional care is necessary for partial operations, the terms built up from them, and the associated
principles of (partial) equational reasoning. An example is the principle of Kleene equality: using
𝑠 = 𝑡 to assert that whenever one side is defined, so is the other, and they are equal, or the use of
notation −|𝑋 to restrict the domain of definition of a function. In general, reasoning about partially
defined terms can be quite subtle.

Our contribution is summarised on the right hand side of Fig. 1 and follows Lawvere’s approach
closely. A key question that we address is what replaces the central notion of cartesian category.
This turns out to be the notion of discrete cartesian restriction (DCR) category, which arose from
research on the structure of partiality [CGH12]. Just as the free cartesian category on one object
plays a central role in the definition of Lawvere theory, the free DCR category on one object plays
a central role in the definition of partial Lawvere theory that we propose. In our development,
the category of sets and partial functions Par replaces Set as the universe of models. Much of the
richness of the classical picture is unchanged: e.g. we obtain free models just as in the classical
setting. Moreover, we prove a variety theorem that characterises partial varieties as locally finitely
presentable (LFP) categories.

Props [ML65; Lac04] and their associated string diagrams, play a crucial technical role. Props are
a convenient categorical structure that capture generic monoidal theories. Monoidal theories differ
from equational theories in that, roughly speaking, in that we are able to consider more general
monoidal structures other than the cartesian one. String diagrams are the syntax of props, and they
are a bona fide syntax not far removed from traditional terms. For example, they can be recursively
defined and enjoy similar properties as free objects, e.g. the principle of structural induction. The
connective tissue between the classical story and string diagrams is Fox’s Theorem [Fox76], which
states that the structure of cartesian categories can be captured by the presence of local algebraic
structure: a coherent and natural commutative comonoid structure on each object. This implies
several things: (i) that classical terms can be seen as particular kinds of string diagrams, (ii) that
classical equational reasoning can be seen as diagrammatic reasoning on these string diagrams and
(iii) that the prop induced from the monoidal theory of commutative comonoids — well-known
to coincide with F op, the opposite of the prop of finite sets and functions — is the free cartesian
category on one object. The correspondence goes further: as shown in [BSZ18], Lawvere theories
are particular kinds of monoidal theories.
We are able to identify the nature of the free DCR category on one object by proving a result

similar to Fox’s Theorem, but for DCR categories instead of cartesian categories. Instead of com-
mutative comonoids, we identify the algebraic structure of interest as partial Frobenius algebras.
The free DCR category on one object is the prop induced from this monoidal theory, and it can be
characterised as Par(F op): the prop of partial functions in F op. This informs our definition of partial
Lawvere theory. Crucially, just as the mathematics of ordinary Lawvere theories serves as a post
hoc justification for equational theories, we identify the precise class of string diagrams that serve
as partial terms, which lets us define a partial equational theory in a familiar way as pair of signature
and equations. We give several examples, from partial commutative monoids, to several examples
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important in computer science, notably the theory of partial combinatory algebras [Bet88], the
theory of pairing functions, and the theory of cartesian closed categories.

To summarise, the original contributions of this paper are:

• A “Fox theorem” for DCR categories, which uses the notion of partial Frobenius algebra and
leads to the characterisation of the free DCR category on one object as Par(F op);
• The definitions of partial Lawvere theory and partial equational theory, which use string
diagrammatic syntax informed by the aforementioned Fox theorem;
• The coupling of these notions into a comprehensive framework for partial algebraic theories,
analogous to the work of Lawvere on classical algebraic theories, as illustrated in Fig. 1;
• The existence of free models, and—more generally–a variety theorem, building on known
results about DCR categories, and the Gabriel-Ulmer duality.

Related work. There are a number of formalisms in the literature that aim at providing a rigorous
way of specifying partial algebraic structure. Freyd’s essentially algebraic theories [Fre72] were
introduced informally, but were subsequently formalised and generalised in various ways [AR94;
PV07; ARV11]. A different, but equally expressive approach is via finite limit sketches [AR94].
Nevertheless, none of these approaches can claim to have the foundational status of classical
equational theories - e.g. they do not, per se, provide a canonical notion of syntax to replace
classical terms, nor a calculus for (partial) equational reasoning about the categories of models they
define. Tout court, none of them can claim to be equational. Interestingly, the semantic landscape
(i.e. the corresponding notion of partial variety) is better understood than the syntax. The class of
models of essentially algebraic theories and finite limit sketches are closely related to Gabriel-Ulmer
duality [Cen04], which asserts a contravariant (bi)equivalence between the category of categories
with finite limits and the category of locally finitely presentable (LFP) categories.

Partial Frobenius algebras, which arise in our characterisation of DCR categories, are spe-
cial/separable Frobenius algebras without units. The version with units was originally studied
in [CW87], is deeply connected to the relational algebra [FS90], characterises 2-dimensional
TQFTs [Koc03], and has been used extensively in categorical approaches to the study of quantum
information and quantum computing, such as the ZX calculus [CD08]. In a similar way to the
use of partial Frobenius algebras in this paper, they are used in the recently proposed Frobenius
theories [BPS17], which are algebraic theories that take their models in the category of relations
Rel, and are guided by the structure of cartesian bicategories of relations [CW87].
Restriction categories were introduced in [CL02] as a general framework for reasoning about

categories of partial maps. Cartesian restriction (CR) categories are those with a certain sort
of formal finite product structure – restriction products – introduced in [CL07]. Notably, the p-
categories of [RR88] arise as restriction categories with restriction products. Discrete cartesian
restriction (DCR) categories – named for a similarity to categories of discrete topological spaces –
arise in [CGH12] as the restriction categories with finite latent limits – again a sort of formal limit.
DCR categories are closely connected to the discrete inverse categories considered in [Gil14] which
are presentable in terms of semi-Frobenius algebras, being those special/separable commutative
Frobenius algebras with neither a unit nor a counit.

Structure of the paper. In S2 we lay the foundations by recalling the basic concepts of universal
algebra, props and string diagrams, Fox’s theorem, and functorial semantics. In S3, after recalling
the basics of restriction category theory, we prove Theorem 3.6, which is to DCR categories what
Fox’s theorem is to cartesian categories. In S4 we propose our original definitions: partial Lawvere
theories and their varieties. Next, S5 is devoted to the associated notion of partial equational theory,
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and several examples, continued in S6 with multi-sorted examples. Our variety theorem is in S7
where we also treat other semantic aspects, e.g. the existence of free models.

2 BACKGROUNDMATERIAL
2.1 Overview of classical universal algebra
Universal algebra is the study of equational theories and of their semantics, varieties. In this section
we recall the basic concepts and definitions.

Definition 2.1. A signature is a pair (Σ, 𝛼) where Σ is a set and 𝛼 a function Σ→ N that assigns
to every element 𝑡 : Σ a natural number 𝛼 (𝑛) : N called the arity of the function symbol 𝑡 .

Notation 2.2. The arity “slices” the set Σ of function symbols. The slice Σ𝑛 ⊆ Σ contains operations
of arity 𝑛, and 𝑡 : Σ𝑛 is a synonym for “𝑡 is a 𝑛-ary operation”. We will sometimes write 𝑡𝑛 for a
generic element of Σ𝑛 . We shall refer to the signature as just Σ if the arity function is understood
from the context. For example the signature ΣM of monoids is {𝑚, 𝑒}, with 𝛼 (𝑚) = 2 and 𝛼 (𝑒) = 0.
Definition 2.3. An Σ-algebra is a pair (𝐴, J−K𝐴) where 𝐴 is a set and J−K𝐴 is
a function sending function symbols 𝑡 : Σ𝑛 to functions J𝑡K𝐴 : 𝐴𝑛 → 𝐴. The
function J𝑡K𝐴 is called the𝑛-ary operation on𝐴 associated to the function symbol
𝑡 : Σ𝑛 . We refer to𝐴 as the carrier of the Σ-algebra. A Σ-algebra homomorphism
from (𝐴, J−K𝐴) to (𝐵, J−K𝐵) is a function 𝑓 : 𝐴→ 𝐵 that respects the Σ structure:
i.e. for every 𝑛 ∈ N and 𝑡𝑛 : Σ𝑛 , the diagram on the right commutes:

𝐴𝑛

J𝑡𝑛K𝐴

��

𝑓 𝑛 // 𝐵𝑛

J𝑡𝑛K𝐵

��
𝐴

𝑓

// 𝐵.

Remark 2.4. Σ-algebras and their homomorphisms define a categoryVΣ.

Of course, an algebraic structure isn’t just about operations, but also about properties enjoyed by
those operations. To express this we first need the notion of term. Fixing a signature Σ, we recall
the usual recursive construction of the set of terms 𝑇𝑉

Σ , for some set of variables 𝑉 :

𝑇𝑉
Σ ::= 𝑉 | 𝑡0 | 𝑡1 (𝑇𝑉

Σ ) | 𝑡2 (𝑇𝑉
Σ ,𝑇

𝑉
Σ ) | . . . | 𝑡𝑛 (𝑇𝑉

Σ , . . . ,𝑇
𝑉
Σ ) | . . .

In the above, each 𝑡𝑖 ranges over the function symbols in Σ𝑖 . For any 𝑉 , 𝑇𝑉
Σ carries a canonical

Σ-algebra structure: J𝑡K(𝑡1, 𝑡2, . . . , 𝑡𝑛𝑡 )
def
= 𝑡 (𝑡1, 𝑡2, . . . , 𝑡𝑛𝑡 ). We call this the term Σ-algebra over 𝑉 .

Observation 2.5. The term Σ-algebra𝑇𝑉
Σ enjoys a universal property: given a Σ-algebra (𝐴, J−K𝐴)

and function 𝑣 : 𝑉 → 𝐴, there is a unique extension to a homomorphism of algebras 𝑣 : 𝑇𝑉
Σ → 𝐴.

This is just the induction principle associated to the recursive definition of terms.

Definition 2.6 (Σ-equation). Fixing 𝑉 , a Σ-equation is a pair (𝑠, 𝑡) ∈ 𝑇𝑉
Σ ×𝑇𝑉

Σ ; we usually write
‘𝑠 = 𝑡 ’. A Σ-equation 𝑠 = 𝑡 holds in Σ-algebra (𝐴, J−K𝐴) if for all 𝑣 : 𝑉 → 𝐴 we have 𝑣 (𝑠) = 𝑣 (𝑡) in 𝐴.

Given the signature of monoids, we can express properties such as associativity:𝑚(𝑥,𝑚(𝑦, 𝑧)) =
𝑚(𝑚(𝑥,𝑦), 𝑧); or commutativity: 𝑚(𝑥,𝑦) = 𝑚(𝑦, 𝑥); etc. The idea is that a set of Σ-equations
constrains the choice of algebras (𝐴, J−K𝐴) to those where every equation holds.

Definition 2.7 (Equational Theory and Variety). A pair (Σ, 𝐸) where Σ is a signature and 𝐸 a set of
Σ-equations is called an equational theory. A model of (Σ, 𝐸) is a Σ-algebra where every 𝑒 : 𝐸 holds.
The class of models for an equational theory is called a variety.

Example 2.8. The equational theory of commutative monoids is
( {𝑚, 𝑒}, {𝑚(𝑚(𝑥,𝑦), 𝑧) =𝑚(𝑥,𝑚(𝑦, 𝑧)), 𝑚(𝑥,𝑦) =𝑚(𝑦, 𝑥), 𝑚(𝑒, 𝑥) = 𝑥 } ).

The corresponding variety is the class of commutative monoids.

Some of the most famous results of universal algebra characterise varieties. For example:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 57. Publication date: January 2021.



57:6 Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński

Theorem 2.9 (Birkhoff [Bir35]). A class of Σ-algebras is a variety if and only if it is closed under
homomorphic images, subalgebras and products.

2.2 Props and monoidal theories
Our development is informed by the differences between the algebraic structure of total functions
and partial functions. Given the focus on algebra, the notion of prop is useful as a categorical gadget
on which to hang an algebraic structure. Moreover, the associated notion of string diagram will
lead us to a syntax with which to express partial equational theories by appropriately generalising
classical terms. Here we recall the basic definitions of props [Lac04], string diagrams and some of
the algebraic structures that are prominent in subsequent sections.

Definition 2.10 (Prop [ML65, Ch. 5]). A prop is a symmetric strict monoidal category with set of
objects the natural numbers N, where the monoidal product on objects is addition:𝑚 ⊗ 𝑛 :=𝑚 + 𝑛.
A homomorphism of props is an identity-on-objects symmetric strict monoidal functor.

Example 2.11. An important example is the prop F of finite ordinal numbers. In the following,
[𝑚] def

= {1, 2, . . . ,𝑚}. The F -arrows𝑚 → 𝑛 are all functions [𝑚] → [𝑛]: composition is function
composition, and the monoidal product is “disjoint union”; i.e. for 𝑓1 : 𝑚1 → 𝑛1 and 𝑓2 : 𝑚2 → 𝑛2,

(𝑓1 ⊗ 𝑓2) (𝑖) : 𝑚1 +𝑚2 → 𝑛1 + 𝑛2
def
=

{
𝑓1 (𝑖) if 𝑖 ≤ 𝑚1

𝑓2 (𝑖 −𝑚1) + 𝑛1 otherwise.

Free props generated from some signature of operations are of particular importance.

Definition 2.12 (Monoidal signature). A monoidal signature Γ is a collection of generators 𝛾 : Γ,
each with an arity 𝑎𝑟 (𝛾) : N and coarity 𝑐𝑜𝑎𝑟 (𝛾) : N.

Concrete terms can be given a BNF description, as follows:

𝑐 ::= 𝛾 ∈ Γ | | | | 𝑐 ⊗ 𝑐 | 𝑐 # 𝑐 (1)

Arities and coarities are not handled in the BNF but with an associated sorting discipline, shown
below. We only consider terms that have a sort, which is unique if it exists.

𝛾 : (𝑎𝑟 (𝛾 ), 𝑐𝑜𝑎𝑟 (𝛾 )) : (0, 0) : (1, 1) : (2, 2)

𝑐 : (𝑛, 𝑧) 𝑑 : (𝑧,𝑚)

𝑐 #𝑑 : (𝑛,𝑚)

𝑐 : (𝑛,𝑚) 𝑑 : (𝑟, 𝑧)

𝑐⊗𝑑 : (𝑛+𝑟,𝑚+𝑧)

The idea is that the sort 𝑐 : (𝑚, 𝑛) counts the number of “dangling wires” of each term. Every
sortable term generated from (1) has a diagrammatic representation. The convention for 𝛾 : Γ is to
draw it as a box with 𝑎𝑟 (𝛾) “dangling wires” on the left and 𝑐𝑜𝑎𝑟 (𝛾) on the right:

𝑎𝑟 (𝛾)
{

𝛾...
...

}
𝑐𝑜𝑎𝑟 (𝛾)

The conventions for the (1) operations are: 𝑐 # 𝑐 ′ is drawn c c0...
...

... and 𝑐 ⊗ 𝑐 ′ is drawn c

c0 ...

...
...

...

.

The sorting discipline ensures that the convention for # makes sense.

Example 2.13. Consider the following signature, where the (co)arities are apparent from the

Γ
def
=

{
,

}
(CMG)
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glyphs. The term ( ⊗ ( ⊗ )) #(( ⊗ ) # ) has sort (3, 2) and diagram:

where the “dotted line” boxes serve the role of parentheses.

Terms of (1) are quotiented by the laws of symmetric strict monoidal categories. We do not go
into the details here, but these are closely connected with the diagrammatic conventions. Indeed,
they allow us to discard the “dotted line” boxes and focus only on the connectivity between the
generators. For example the following two diagrams are in the same equivalence class of terms:

=

We refer to equivalence classes [𝑐] : 𝑚 → 𝑛 as string diagrams.

Definition 2.14. The free prop XΓ on Γ has as arrows𝑚 → 𝑛 string diagrams [𝑐] : (𝑚, 𝑛).

String diagrams can be used to specify additional equations that specify algebraic structure.

Definition 2.15 (Monoidal theory [Lac04]). For a monoidal signature Γ, a Γ-equation is a pair
( [𝑐], [𝑑]) of equally-sorted string diagrams; we usually write ‘[𝑐] = [𝑑]’. A monoidal theory is a
pair (Γ, 𝐹 ) where 𝐹 is a set of Γ-equations.

Given a monoidal theory (Γ, 𝐹 ), the induced prop X(Γ,𝐹 ) can be obtained by taking a coequaliser
in Cat. It can alternatively be given an explicit description as follows: as arrows [𝑚] → [𝑛] it has
arrows of XΓ quotiented by the smallest congruence containing 𝐹 .

Example 2.16. Consider the signature (CMG) and the following set of equations:

𝐸
def
=

{
= , = , =

}
. (CM)

The resulting prop CM is the prop of commutative monoids. The equations, from left to right,
express associativity, commutativity and unitality.

Remark 2.17. String diagrams in X(Γ,𝐹 ) are amenable to equational reasoning, often referred
to as diagrammatic reasoning in this context: if ( [𝑐], [𝑑]) ∈ 𝐹 then substituting 𝑐 for 𝑑 inside any
context is sound. For example in CM the set of equations contains only one of the unit laws. The
other may be derived:

= = =

= = = =

We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .
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Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function 𝑓 : 2→ 2 where 𝑓 (1) = 𝑓 (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem ([Fox76]), recalled here – this will
be explained in S2.6. Cartesian categories are categories with finite products, and cartesian functors
preserve them. Fox showed that cartesian categories are exactly those that have a certain algebraic
structure.
A commutative comonoid on an object 𝑋 of a symmetric monoidal category X is a triple

(𝑋, 𝛿𝑋 , 𝜀𝑋 ) s.t. 𝛿𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 and 𝜀𝑋 : 𝑋 → 𝐼 , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects 𝑋,𝑌 :

𝑋⊗𝑌
𝑋⊗𝑌

𝑋⊗𝑌

𝑋

𝑌

𝑋

𝑋

𝑌

𝑌

= 𝑋⊗𝑌
𝑋

𝑌

= (coherent)

Further, we say that the 𝛿 and 𝜀 are natural if for any arrow 𝑓 : 𝑋 → 𝑌 of X, we have:

𝑓𝑋

𝑌

𝑌 𝑓

𝑓
𝑋

𝑌

𝑌

= 𝑓𝑋 = (natural)

Theorem 2.22 ([Fox76]). A cartesian category is the same thing as a symmetric monoidal category
where every object is equipped with a (coherent) and (natural) commutative comonoid structure.

In light of Observation 2.21, we know that a commutative comonoid structure on𝑋 is equivalently
a cartesian functor X : F op → X where X[1] = 𝑋 . The action of X on objects is determined by its

action on 1, and the generators give arrowsX( ) = 𝛿𝑋 : 𝑋 → 𝑋 ⊗𝑋 andX(𝑋 ) = 𝜀𝑋 : 𝑋 → 𝐼

of X which satisfy (CCM). Thus we may specialize Theorem 2.22, to props as follows:
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Corollary 2.23. A prop X is cartesian (with categorical product the monoidal product) if and only
if there is a homomorphism of props F op → X and the picked out comonoid structure is (natural).

It is easy to show that a coherent and natural commutative comonoid structure, if it exists, is
unique. An easy consequence of Theorem 2.22 is that a cartesian functor is precisely a symmetric
monoidal functor that preserves the comonoid structure. This, combined with Corollary 2.23, gives:

Proposition 2.24. The prop F op is the free cartesian category on a single object.

2.4 Lawvere theories
We recall Lawvere’s approach [Law63] of functorial semantics of algebraic theories in the rest of
the section. Lawvere’s approach is centered on the theory of cartesian categories.

Definition 2.25 (Lawvere theory). A Lawvere theory is a cartesian prop. A morphism of Lawvere
theories is a cartesian prop homomorphism. Lawvere theories and homomorphisms define the
category Law.

Finite products do two jobs: they keep track of arities of operations, and—less obviously—they
ensure the totality and single-valuedness of the interpretation of function symbols in any model.
Free categories with products play a leading role. Recall from Proposition 2.24 that F op is the

free category with products on one object. Spelled out, a Lawvere theory is a cartesian category
L and an identity-on-objects cartesian functor F op → L. A morphism of Lawvere theories is a
functor ℎ : L →M s.t. the following triangle commutes:

F op

L M .

𝑞𝑝

ℎ

Remark 2.26. Every equational theory gives rise to a Lawvere theory. For the case of no equations
(Σ,∅), this Lawvere theory LΣ is the free category with products on Σ. It also has a simple, concrete
description that uses Σ-terms. An arrow𝑚 → 𝑛 is an 𝑛-tuple

(𝑡1, 𝑡2, . . . , 𝑡𝑛) where each 𝑡𝑖 : 𝑇 [𝑚]Σ (2)

i.e. where each term in the tuple may use formal variables from the set {1, . . . ,𝑚}. Composition of
(𝑠1, . . . , 𝑠𝑘 ) : 𝑚 → 𝑘 with (𝑡1, . . . , 𝑡𝑛) : 𝑘 → 𝑛 is via substitution:

(𝑡1 [𝑠1/1, . . . 𝑠𝑘/𝑘], . . . , 𝑡𝑛 [𝑠1/1, . . . , 𝑠𝑘/𝑘]) : 𝑚 → 𝑛.

Given a set of equations 𝐸, ordering the variables in each 𝑠 = 𝑡 : 𝐸 induces pairs of arrows
𝑠, 𝑡 :𝑚 → 1 (where𝑚 is the number of variables appearing in 𝑠 and 𝑡 ). Then L (Σ,𝐸) is obtained by
“equating” 𝑠 and 𝑡 –this can be computed via a coequaliser, or directly as in (2) where terms are
taken modulo the smallest congruence containing the required equations. We omit the details.

The Lawvere theory induced from the empty equational theory (∅, ∅) is F op.

2.5 Semantics for algebraic theories
Here we recall some of the basic elements of functorial semantics.

Definition 2.27 (Model of a Lawvere theory). Amodel for a Lawvere theory L is a cartesian functor
𝐿 : L → Set. A model homomorphism 𝐿 → 𝐿′ is a natural transformation 𝛼 : 𝐿 ⇒ 𝐿′. This defines
the category of models ModL of a Lawvere theory L.

Remark 2.28. There are forgetful functors𝑈 : ModL → Set, given by evaluating on the terminal
object 𝐹 ↦→ 𝐹 (1). Intuitively,𝑈 forgets the algebraic structure, returning the underlying carrier set.
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Definition 2.27 is compatible with its classical counterpart: the data required to give a model
of (Σ, 𝐸), in the sense of Definition 2.7, is precisely that required to give a functor L (Σ, 𝐸) → Set.
The functorial approach lends itself to generalisations: e.g. replacing Set with another cartesian
category. Moreover, it allows for further structural analysis.

Observation 2.29. ModL is closed under limits computed in the category of all functors [L, Set],
because limits commute with limits. For a similar reason it is closed under sifted colimits. Thus the
inclusion ModL ↩→ [L, Set] creates limits and sifted colimits1.

Remark 2.30 (Multi-sorted, unsorted). The codomain of 𝑈 : ModL → Set betrays that our pre-
sentation is single sorted. Indeed when L is 𝑆-sorted we obtain a functor 𝑈 : ModL → [𝑆, Set].
Historically, syntactic aspects are single sorted, while categorical variety theorems are most crisp
in the unsorted case. It is thus worthwhile to focus on these concepts in more detail.

An 𝑆-sorted Lawvere theory is a cartesian 𝑆-coloured prop. Spelled out, it is an identity-on-objects
cartesian functor F (𝑆) → L, where F (𝑆) is the free cartesian category on 𝑆 .

An unsorted Lawvere theory is simply a (small) category with products.

In the remainder of this section we focus on the unsorted version, because the treatment is
notationally and technically simplified. Nevertheless, much of the following is sort-agnostic.

Observation 2.31. A theory morphism ℎ : L → L ′ induces a (contravariant) functor
Modℎ : ModL′ → ModL

taking 𝐹 : L ′ → Set to 𝐹 · ℎ : L → Set. The functor Modℎ always admits a left adjoint: Modℎ
preserves limits and sifted colimits because they are computed in the underlying functor category.
The special adjoint functor theorem can now be used to obtain a left adjoint 𝐿ℎ : ModL → ModL′ .

Example 2.32. For intuition, we consider a concrete example. Consider the inclusion 𝑖 of the
theory of monoids in commutative monoids. ThenMod𝑖 is the functor that “forgets” commutativity.
Its left adjoint takes a monoid and “forces” commutativity by quotienting the underlying carrier set.

Observation 2.33. Lawvere theories have free models. Let 𝑝 : F op → L be a Lawvere theory.
Observation 2.31 gives an adjunction

𝐹 : ModF op ⇆ ModL : Mod𝑝 .

ThenMod𝑝 coincides with the forgetful functor of Remark 2.28. The left adjoint 𝐹 gives free objects.

Because of Observation 2.31, it is natural to take adjunctions as the notion of variety morphism.
Below, by unsorted-variety we mean a category equivalent to ModL for L with finite products.

Definition 2.34. Let V,W be two (unsorted) varieties; a morphism of varieties is a functor
𝑅 : V →W satisfying the following:
mv1) 𝑅 admits a left adjoint 𝐿 :W →V;
mv2) 𝑅 commutes with sifted colimits.
Given that adjunctions compose, this data yields a category Var.

Let Prod be the 2-category whose objects are small cartesian categories, morphisms are cartesian
functors and 2-cells are natural transformations. Then Observation 2.31 boils down to defining a
2-functor Mod : Prodop → Var. The following captures the relationship between Law and Var.
1Sifted J-indexed colimits satisfy the following property: given a functor 𝐸 : 𝐼 × J → Set, s.t. the category 𝐼 is discrete
(namely, it is just a set), the following isomorphism holds:

colimJ lim𝐼 𝐸 (𝐼 , 𝐽 ) � lim𝐼 colimJ 𝐸 (𝐼 , 𝐽 ) .
In other words, sifted colimits are those that commute with finite products in Set.
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Theorem 2.35 ([ALR03, Theorem 4.1]). There exists a 2-adjunction whose unit is an equivalence:

Th : Var⇆ Prodop : Mod

Remark 2.36. One obtains the 𝑆-sorted version of Theorem 2.35 by slicing on both sides over the
free category with products on 𝑆 . This is given in more detail for partial Lawvere theories in S7.1.

2.6 Equational theories as monoidal theories
Given that Lawvere theories are cartesian props, Theorem 2.22 suggests how to consider them as
monoidal theories. We recall the recipe from [BSZ18]: the idea is to characterise Σ-terms as certain
string diagrams, and then—through this lens—turn any equational theory into a monoidal theory.

Recipe 2.37. Fix a signature Σ. A Σ-term 𝑡 : 𝑇 [𝑛]Σ is the same thing as a string diagram 𝑛 → 1 in
the prop induced by the monoidal theory with

• generators Γ def
= Σ + (CCMG)

• (CCM) together with equations that ensure naturality with respect to the comonoid structure.
The latter can be easily added as two additional equations for each 𝜎 : Σ:

𝜎

𝜎

𝜎
= 𝜎𝑚 𝑚 𝑚 𝑚= (SN𝜎)

The Lawvere theory induced by equational theory (Σ, 𝐸) can now be seen as the prop induced
by the monoidal theory (Γ, 𝐹 ) where 𝐹 is the set of equations obtained by translating the equations
in 𝐸 to string diagrams, together with (CCM), and (SN𝜎) for each 𝜎 : Σ.

It is important to build an intuition behind this translation. An obvious difference between terms
and string diagrams is that the latter do not have named variables. The translation ensures that
wires play the role of variables, and the comonoid structure plays the role of “variable management”.
We illustrate this with an example below.

Example 2.38. The prop corresponding to the Lawvere theory induced by the equational theory
of commutative monoids (Example 2.8) is the same as the prop of commutative bialgebra. For
example, the term𝑚(𝑚(𝑥, 𝑥), 𝑦) in the theory of commutative monoids can be depicted as

𝑚
𝑚

In the term we have considered, the variable 𝑥 appears twice. In the corresponding diagram, the
wire corresponding to 𝑥 starts with a comultiplication that witnesses the “copying of 𝑥”.

3 ALGEBRA OF PARTIAL MAPS
We have seen that finite products are central in classical universal algebra. It is therefore natural to
begin our development of its partial analogue by identifying the corresponding universal property
in the partial setting. We will see that this amounts to replacing the class of cartesian categories with
the class of discrete cartesian restriction categories (DCR categories) [CGH12]. Next, we characterise
DCR categories in terms of algebraic structure, analogous to Theorem 2.22 for cartesian categories.

3.1 Partial functions
The starting point of our journey is the (2-)category Par of sets and partial functions. Just as Set
was the semantic universe for ordinary equational theories, Par is the semantic universe for partial
equational theories. We first recall an elementary, set theoretic presentation:
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Definition 3.1. Par has sets as objects and partial functions 𝑓 : 𝑋 ⇀ 𝑌 as arrows, where a
partial function 𝑓 is a pair (dom𝑓 , def 𝑓 ) where dom𝑓 ⊆ 𝑋 is the domain of definition of 𝑓 and
def 𝑓 : dom𝑓 → 𝑌 is a (total) function. Given a partial function 𝑓 : 𝑋 ⇀ 𝑌 , and some 𝑋 ′ ⊆ 𝑋 we
write 𝑓 |𝑋 ′ for the partial function (dom𝑓 ∩𝑋 ′, 𝑓 ′) where 𝑓 ′ : dom𝑓 ∩𝑋 ′→ 𝑌 is def 𝑓 restricted to
the (potentially smaller) domain of definition dom𝑓 ∩ 𝑋 ′. Similarly, given 𝑌 ′ ⊆ 𝑌 , write 𝑓 −1 (𝑌 ′) =
{𝑥 ∈ dom𝑓 | def 𝑓 (𝑥) ∈ 𝑌 ′}. Given 𝑓 : 𝑋 ⇀ 𝑌 and 𝑔 : 𝑌 ⇀ 𝑍 , their composite is defined by
𝑓 #𝑔 = (𝑓 −1 (dom𝑔), (def 𝑓 | 𝑓 −1 (dom𝑔) # def𝑔). The identity on 𝑋 is (𝑋, id𝑋 ).
There is a natural partial order between partial functions 𝑋 ⇀ 𝑌 :

𝑓 ≤ 𝑔 def
= dom𝑓 ⊆ dom𝑔 ∧ 𝑔 |dom𝑓 = 𝑓 .

It is straightforward to verify that this data makes Par a category, and with ≤, a 2-category.

Categorifying partiality has long history (see e.g., [RR88; CL02]). We recall a classical approach:

Definition 3.2. Suppose that C has finite limits. Its 2-category of partial maps, Par(C) has:
1) objects are objects of C.

2) arrows are equivalence classes [𝑚, 𝑓 ] : 𝑋 → 𝑌 of spans 𝑋 𝑚←− 𝐴
𝑓
−→ 𝑌 where𝑚 is monic. We

equate (𝑚, 𝑓 ) ∼ (𝑚′, 𝑓 ′) iff there is an isomorphism 𝛼 s.t. the following diagram commutes:

𝐴 𝐴′

𝑋 𝑌 .

𝑚

𝑓

𝛼

𝑚′
𝑓 ′

3) 2-cells: [𝑚, 𝑓 ] ≤ [𝑚′, 𝑓 ′] when there exists any 𝛼 that makes the diagram commute.
4) composition is defined by pullback. Explicitly, the composite of (𝑚, 𝑓 ) : 𝐴 → 𝐵 and
(𝑚′, 𝑔) : 𝐵 → 𝐶 is the outer span of the diagram on the left

𝑋 ∧ 𝑋 ′

𝑋 𝑋 ′

𝐴 𝐵 𝐶

𝜋0 𝜋1

𝑚 𝑓 𝑚′ 𝑔

where the square with top 𝑋 ∧ 𝑋 ′ is a pullback in C. Note that it doesn’t matter which
pullback, since any two choices will give isomorphic spans, and therefore equal morphisms.

5) Identities are diagonal spans (1𝐴, 1𝐴) : 𝐴→ 𝐴.

Given a morphism (𝑚, 𝑓 ) : 𝐴→ 𝐵 in Par(C), we think of the monic𝑚 : 𝑋 → 𝐴 as a subobject,
specifying which part of 𝐴 the morphism is defined on, and then 𝑓 : 𝑋 → 𝐵 tells us what it does.
The following is a straightforward sanity check:

Observation 3.3. There is an isomorphism of (2-)categories Par � Par(Set).

Just as a model of a total operation of arity 𝑛 is a function 𝐴𝑛 → 𝐴 (an arrow in Set), a model of
a partial operation ought to be a partial function 𝐴𝑛 ⇀ 𝐴 (an arrow in Par). For this reason, it is
important to understand the mathematical status of the cartesian product in Par. Interestingly, Par
has categorical products, but these do not correspond to the cartesian product of sets.2

2The categorical product of 𝐴 and 𝐵 in Par is (𝐴 + {★}) × (𝐵 + {★}) − {(★, ★) }. This can be seen via the equivalence
1/Set ≃ Par. Limits in the coslice category 1/Set are calculated pointwise, and the functor 1/Set→ Par removes the point
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3.2 Cartesian Restriction Categories
It is by focusing on the universal property of the cartesian product in Par that we are able to identify
a generalisation of Lawvere’s approach to partial operations. This is the goal of this section.

Restriction categories were devised to study partial phenomena in an axiomatic setting. Here we
give a whirlwind tour, more details can be found in [CL02; CL07; CGH12]. In a restriction category,
every arrow 𝑓 : 𝐴→ 𝐵 has an associated idempotent 𝑓 : 𝐴→ 𝐴, thought of as the identity function
restricted to the domain of definition of 𝑓 . We call them domain idempotents. Arrows where 𝑓 = 1𝐴
are called total, and form a subcategory. Further, we have:

Remark 3.4. Any restriction category is poset-enriched, with the ordering defined by

𝑓 ≤ 𝑔⇔ 𝑓 #𝑔 = 𝑓

Functors 𝐹 that preserve domain idempotents (𝐹 𝑓 = 𝐹 𝑓 ) are called restriction functors. Restriction
categories and restriction functors form a category. This extends to a 2-category in which the 2-cells
are lax transformations. A lax transformation 𝛼 : 𝐹 → 𝐺 of restriction functors 𝐹,𝐺 : X → Y

consists of a family of total maps 𝛼𝐴 : 𝐹𝐴→ 𝐺𝐴 in Y indexed by the objects 𝐴 of X s.t. for every
𝑓 : 𝐴→ 𝐵 of X the usual naturality square commutes up to inequality:

𝐹𝐴 𝐺𝐴

𝐹𝐵 𝐺𝐵

𝐹 𝑓

𝛼𝐴

𝐺𝑓

𝛼𝐵

≤

where ≤ is the ordering introduced above. Call this 2-category RCat≤ . Just as categories with finite
products enjoy a universal property in the 2-categoryCat, those with finite restriction products have
a universal property in RCat≤ . In general, formal limits in RCat≤ are called restriction limits [CL07].
A cartesian restriction (CR) category is a restriction category with finite restriction products.

Observation 3.5 ([CL02]). Par is a CR category, with the cartesian product as restriction product.

CR categories have appeared in the literature under a variety of different names, including
p-category with a one-element object [RR88] and partially cartesian category [CO89]. For our devel-
opment, it is crucial that the data of CR categories can be equivalently captured as follows:

Theorem 3.6 ([CL07]). A CR category is the same thing as a symmetric monoidal category
where every object is equipped with a commutative comonoid structure that is (coherent) and the
comultiplication is natural. That is, for any 𝑓 : 𝐴→ 𝐵 we have 𝑓 #𝛿𝐵 = 𝛿𝐴 #(𝑓 ⊗ 𝑓 ).

From this perspective a CR category is very close to a cartesian category viewed as a monoidal
category through Theorem 2.22. The difference is that we do not ask for the counit of the comonoid
to be natural. This has profound consequences: for instance, the same symmetric monoidal category
may have more than one such chosen comonoid structure, thus definining different CR categories.
Given the algebraic data, the domain idempotent 𝑓 : 𝐴 → 𝐴 of an arrow 𝑓 : 𝐴 → 𝐵 in a CR

category is recovered as:
𝑓

𝑓 =

and so in particular the subcategory ofX for which the counit is natural is precisely the subcategory
of total maps. Notice that this means the subcategory of total maps of a CR category is cartesian.

Definition 3.7. A CR functor between two CR categories 𝐹 : X→ Y is a functor that preserves
the algebraic structure. That is, 𝐹 (𝐴 ⊗ 𝐵) = 𝐹𝐴 ⊗ 𝐹𝐵, 𝐹1 = 1, 𝐹𝛿𝐴 = 𝛿𝐹𝐴 and 𝐹𝜀𝐴 = 𝜀𝐹𝐴.
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Remark 3.8. A lax transformation of CR functors may be equivalently specified as a family of maps
𝛼𝐴 : 𝐹𝐴→ 𝐺𝐴 indexed by the objects 𝐴 of X s.t. for every 𝑓 : 𝐴→ 𝐵 we have 𝐹 𝑓 #𝛼𝐵 ≤ 𝛼𝐴 #𝐺𝑓 .
We do not need to ask that each 𝛼𝐴 is total, since if 𝐹 and 𝐺 preserve the cartesian restriction
structure, then they are automatically total. In particular the diagram on the left gives the inequality
on the right, which gives that 𝛼𝐴 is total:

𝐹𝐴 𝐺𝐴

𝐹𝐼 𝐺𝐼

𝐹𝜀𝐴

𝛼𝐴

𝐺𝜀𝐴

𝛼𝐼

≤
FA
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GA

<latexit sha1_base64="FINJi7VecoT6Qo28g/TdYGVeF7Q=">AAACDnicbVDLSsNAFL2pr1pfVZduBovgqiRSUHcVF7qsYh/QhjKZTNqhM0mYmYgh9A9cuNFPcSdu/QW/xK3TNgvbeuDC4Zx7ufceL+ZMadv+tgorq2vrG8XN0tb2zu5eef+gpaJEEtokEY9kx8OKchbSpmaa004sKRYep21vdD3x249UKhaFDzqNqSvwIGQBI1gb6f7mql+u2FV7CrRMnJxUIEejX/7p+RFJBA014ViprmPH2s2w1IxwOi71EkVjTEZ4QLuGhlhQ5WbTS8foxCg+CiJpKtRoqv6dyLBQKhWe6RRYD9WiNxH/87qJDi7cjIVxomlIZouChCMdocnbyGeSEs1TQzCRzNyKyBBLTLQJZ26L0gLLVPpzn2RP6dgk5SzmskxaZ1WnVr28q1XqtTyzIhzBMZyCA+dQh1toQBMIBPAMr/BmvVjv1of1OWstWPnMIczB+voFBw2dPQ==</latexit>

3.3 Discrete Cartesian Restriction Categories
Restriction products do not quite capture all the properties of Par needed for partial universal
algebra. In particular, we require CR categories with the following extra structure:
Definition 3.9. A CR category is said to be discrete (DCR category [CGH12]) if for each object

𝐴 there is an arrow 𝜇𝐴 : 𝐴 ⊗ 𝐴 → 𝐴 that is partial inverse to 𝛿𝐴. That is, 𝛿𝐴 # 𝜇𝐴 = 𝛿𝐴 = 1𝐴 and
𝜇𝐴 #𝛿𝐴 = 𝜇𝐴.
We give a novel presentation of DCR categories, inspired by the work of [Gil14]. Central to our

presentation is the notion of a commutative special Frobenius algebra in which the monoid does
not have a unit, which we call a partial Frobenius algebra. More precisely:
Definition 3.10. A partial Frobenius algebra (𝐴, 𝛿𝐴, 𝜇𝐴, 𝜀𝐴) in a symmetric monoidal category

consists of a commutative comonoid (𝐴, 𝛿𝐴, 𝜀𝐴) and a commutative semigroup (𝐴, 𝜇𝐴) s.t. (𝐴, 𝛿𝐴, 𝜇𝐴)
is a semi-Frobenius algebra. Diagramatically, this is the comonoid structure we have already seen

together 𝜇𝐴, which we depict as in our string diagrams, subject to the following equations:

= = (MCA)

= = =
(SFROB)

Note that there is some redundancy in the equational presentation above, as discussed in [Car91].
We now extend the characterisation of CR categories given in Theorem 3.6 to DCR categories:

Theorem 3.11. A DCR category is the same thing as a symmetric monoidal category where every
object 𝐴 is equipped with a coherent partial Frobenius algebra structure (𝐴, 𝛿𝐴, 𝜀𝐴, 𝜇𝐴) s.t. the
comultiplication is natural. That is, for any 𝑓 : 𝐴→ 𝐵 we have 𝑓 #𝛿𝐵 = 𝛿𝐴 #(𝑓 ⊗ 𝑓 ).

DCR categories are intimately connected to categories with finite limits [CGH12]. In particular:
Proposition 3.12. If C is a category with finite limits, Par(C) is a DCR category.
Definition 3.13 (the 2-category DCRC≤). It follows that for any CR functor 𝐹 : X→ Y between

DCR categories, we have 𝐹𝜇𝐴 = 𝜇𝐹𝐴. CR functors therefore give the notion of morphism between
DCR categories. We consider the strict 2-category of DCR categories, restriction functors, and lax
transformations, which we call DCRC≤ .

4 PARTIAL LAWVERE THEORIES
In this section we develop a Lawvere-style approach to partial algebraic theories, where operations
may be partial. Ordinary Lawvere theories are determined by the free cartesian category on a single
object F op; we are thus interested in the analogue of F op in the world of DCR categories.
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4.1 The free DCR category on one object
Given Theorem 3.11, we have an explicit description for the DCR category on one object: it is the
prop PF induced from the monoidal theory of partial Frobenius algebras. That is, it has generators

{ , , } and equations (MCA), (CCM) and (SFROB).
It turns out that one can gain a precise intuition on what PF looks like by mimicking the way in

which the props F and its opposite F op describe familiar algebraic structures. In fact, the prop CM

of commutative monoids is isomorphic to the prop F (see Observation 2.18), and similarly, the prop
CC of commutative comonoids is isomorphic to F op (Observation 2.21).

The prop PF of partial Frobenius algebras that we want to describe here can be given a similar
“combinatorial” characterisation relying on the insights of Lack [Lac04]. First, we note that the prop

CAM induced by the monoidal theory of commutative semigroups ({ } and equations (MCA))
is isomorphic to sub-prop F𝑠 ⊂ F of finite sets and surjective functions.

Observation 4.1. As props, CAM � F𝑠 .

This is intuitive: as observed in Remark 2.19, string diagrams of CM allow one to “draw” all
functions [𝑚] → [𝑛]. Doing without the unit means that we can express exactly the surjective
ones.
Next, we know from [Lac04] that the prop FROB induced by the monoidal theory of special

Frobenius algebras with generators { , , , } and equations (CM), (CCM) and

(SFROB) is isomorphic to the prop of cospans of finite sets Cospan(F ). An arrow𝑚 → 𝑛 here is (an

isomorphism class of) a cospan of functions [𝑚]
𝑓
−→ [𝑘]

𝑔
←− [𝑛], and composition is by pushout.

Proposition 4.2 ([Lac04]). As props, FROB � Cospan(F ).

Given that surjective functions are closed under composition and pushouts in F , we can consider
the subprop Cospan𝑠 (F ) of Cospan(F ) with arrows those cospans where the left leg is surjective.
Now, combining Observation 4.1 and Proposition 4.2 yields:

Proposition 4.3. As props, PF � Cospan𝑠 (F ).

This gives us a combinatorial characterisation of PF . But there is a more familiar and satisfactory
way of describing Cospan𝑠 (F ). Given that cospans in C are spans in Cop, and epimorphisms in C
are monomorphisms in Cop, we see that Cospan𝑠 (F ) = Par(F op), since a cospan in F with left leg
surjective is the same thing as a span in F op with left leg a monomorphism. Therefore, we obtain:

Proposition 4.4. As props, PF � Par(F op).

4.2 Partial Lawvere theories
We have seen that F op is central to the definition of Lawvere theories, being the free cartesian cate-
gory on one object. The prop Par(F op), being the free DCR on one object, plays the corresponding
role in the definition of partial Lawvere theories.

Definition 4.5. A partial Lawvere theory L is a DCR prop.

Spelled out, a partial Lawvere theory is a DCR category L for which there is an identity-on-
objects CR functor Par(F op) → L. A morphism of partial Lawvere theories is a functor ℎ : L →M
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s.t. the following triangle commutes:
Par(F op)

L M .

𝑞𝑝

ℎ

This defines the category pLaw of partial Lawvere theories.
Mimicking also the definition of model of a Lawvere theory, we obtain at once the notion of

model of a partial Lawvere theory:

Definition 4.6 (Model of a partial Lawvere theory). A model for a partial Lawvere theory L is a
CR functor 𝐿 : L → Par. A homomorphism 𝐿 → 𝐿′ is a lax natural transformation 𝛼 : 𝐿 ⇒ 𝐿′.

Definition 4.7. The category of models and homomorphisms of a partial Lawvere theory L is
denoted pModL . As explained in Remark 3.8, the homomorphisms are total functions.

5 PARTIAL EQUATIONAL THEORIES
In order to consider interesting examples of partial Lawvere theories, we need to introduce the
notion of partial equational theory. For partial structures, these are the syntactic analogue of
equational theories, and yield partial Lawvere theories in a similar way to how equational theories
yield Lawvere theories.

Monoidal signatures (Definition 2.12) Γ have unrestricted arities and coarities. Instead, a signature
Σ of an equational theory (Definition 2.1) has function symbols of arbitrary arities, but—considered
as a monoidal signature—all coarities are 1. Partial signatures are an intermediate concept: as for
equational theories, coarities > 1 are redundant, but we need to admit symbols of coarity 0.

Definition 5.1. A partial signature Δ def
= Δ0 + Δ1, where Δ0 is the set of operations of coarity 0,

and Δ1 is the set of operations of coarity 1. Each 𝛿 : Δ𝑖 comes with an arity 𝑎𝑟 (𝛿) : N.

Differently from ordinary equational theories, we cannot use classical terms, which—as discussed
in Remark 2.26—are tied to an underlying cartesian structure. Instead, we adapt Recipe 2.37 to DCR
categories, obtaining partial terms as particular string diagrams. Before we launch into formal
definitions, and illustrate them with a variety of examples, let us establish some intuitions for how
to read the string diagrams.
• string diagrams represent partial terms, obtained through composing partial operations,
• equalities and inequalities between them are understood in the sense of Kleene,

• the comonoid structure { , } plays a similar role to that described in S2.6.

Recipe 5.2. Given a partial signature Δ, the free DCR prop LΔ on Δ is the prop induced from the
monoidal theory with

• generators (Δ + { , , })

• equations (MCA), (CCM) and (SFROB), together with 𝛿

𝛿

𝛿

𝑚𝑚
= for each

𝛿 : Δ1, where 𝑎𝑟 (𝛿) =𝑚.

Definition 5.3 (Partial Equational Theory). A partial equation is a pair (𝑠, 𝑡) where 𝑠, 𝑡 : LΔ (𝑚,𝑛)
for some𝑚,𝑛 : N; we usually write ‘𝑠 = 𝑡 ’. A partial equational theory is a pair (Δ,𝐺) where Δ is a
partial signature and 𝐺 is a set of partial equations.

We first return to a familiar example.
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Example 5.4 ((Partial) Commutative Monoids). We start with the monoidal theory of commutative
monoids (Example 2.16), where the multiplication and unit generators are re-coloured to red to
avoid a clash. In models, the multiplication operation may be partially defined and the unit may be
undefined. To define the partial theory of total commutative monoids, we’d need to add equations:

= = (3)

Example 5.5 (Equational Theories). Any equational theory (Σ, 𝐸) is an example. One follows
Recipe 5.2, adding equations analogous to (3) to specify that every generator in Σ is total. The
category of models of this partial theory then agrees with that of the Lawvere theory L (Σ,𝐸) .

The following elementary examples illustrate the novel features of partial Lawvere theories,
highlighting the way in which they differ from classical (i.e., total) Lawvere theories.

Example 5.6 (Equivalence Relations). Consider the partial Lawvere theory consisting of a single
binary operation 𝑅 with coarity 0, together with equations expressing symmetry and reflexivity:

𝑅 : 𝑅 𝑅= 𝑅 =

Note that inequations of terms, as in Remark 3.4, do not add expressivity. As such, we may use
them freely when specifying partial Lawvere theories. Transitivity is intuitively captured by the
inequation on the left, which, unfolding the definition of ≤, is precisely the equation on the right:

𝑅

𝑅

𝑅

≤
𝑅

𝑅

𝑅

𝑅

𝑅

=

A model A of this theory consists of a set 𝐴 together with an equivalence relation =𝐴⊆ 𝐴 × 𝐴
corresponding to the domain of definition ofA(𝑅). A morphism 𝐹 : A → B is a function 𝐹 : 𝐴→ 𝐵

with 𝑎 =𝐴 𝑏 ⇒ 𝐹𝑎 =𝐵 𝐹𝑏, which arises from the requirement that 𝐹 is a lax transformation:

𝑅

𝐴

𝐴

𝐹

𝐹

𝐴

𝐴

𝑅≤

Thus, the variety corresponding to this theory is the category of Bishop sets (setoids) [Pal09].

Example 5.7 (Partial Combinatory Algebras). A partial combinatory algebra (PCA) is a set 𝐴 with
a binary partial operation _ • _ : 𝐴 ×𝐴→ 𝐴, and elements s, k ∈ 𝐴 s.t. for any 𝑥,𝑦, 𝑧 ∈ 𝐴:

(i) (k • 𝑥) • 𝑦 = 𝑥

(ii) ((s • 𝑥) • 𝑦) • 𝑧 = (𝑥 • 𝑧) • (𝑦 • 𝑧)
(iii) (s • 𝑥) • 𝑦 is defined

where “=” is Kleene equality. The partial Lawvere theory of PCAs has three generators:

𝑘 𝑠
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and equations that ensure the totality of 𝑘, 𝑠 , i.e. they define elements of the carrier, and (𝑖𝑖𝑖):

𝑘 = 𝑠 =

𝑠

=

as well as equations for (𝑖) and (𝑖𝑖):

𝑘
=

𝑠

=

The variety here is the category of PCAs and homomorphisms preserving the applicative structure.

Example 5.8 (Pairing Functions). Consider the partial Lawvere theory with two operations which
we think of as pairing and unpairing respectively, subject to the equation on the right:

=

Models are sets equipped with a pairing function, and model morphisms map pairs to pairs. For
example, N and Cantor’s pairing function, or Λ – the set of untyped 𝜆-terms – with the usual
pairing and projection functions. Note that our equation makes pairing a section, and so it is total.

6 MULTI-SORTED EQUATIONAL THEORIES
In this section we present a progression of multi-sorted partial Lawvere theories for categories
with different kinds of structure. While our development of partial Lawvere theories has thus far
focused on the single-sorted case, the move to multi-sorted theories contains no surprises, so we
omit the details. The short version is that props are replaced with coloured props, and the sorting
discipline changes accordingly. The examples that follow are developed incrementally: Each step
adds more categorical structure to the models by adding the appropriate operations and equations
to the theory, culminating in the partial Lawvere theory of cartesian closed categories.

Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of directed graphs,
which has a sort 𝑂 of vertices and a sort 𝐴 of edges, together with source and target operations:

𝑠𝐴 𝑂 𝑡𝐴 𝑂 𝑠 =𝐴 𝐴 𝑡 =𝐴 𝐴

The associated variety is the category of directed graphs, as model morphisms 𝐹 must satisfy:

𝑠 𝐹 𝐹 𝑠= 𝑡 𝐹 𝐹 𝑡=

Example 6.2 (Reflexive Graphs). Extending Example 6.1, we ask that each vertex has a self-loop:

id𝑂 𝐴 id =𝑂 𝑂 id 𝑠𝑂 𝑂 𝑂 𝑂= = id 𝑡𝑂 𝑂

then morphisms of models are required to preserve the self-loop, so the associated variety is the
category of reflexive graphs. Notice that along with Example 6.1, this could also be presented as a
(total) 2-sorted Lawvere theory, since all the operations are total.
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Example 6.3 (Categories). To capture categories we extend Example 6.2 with a composition
operator, which is defined when the target of the first arrow matches the source of the second:

𝐴

𝐴

𝐴

𝑡

𝑠
=

and equations insisting composition is associative and unital, with identities given by the self-loops:

𝐴

𝐴

𝐴
𝐴 =

𝐴

𝐴
𝐴

𝐴
𝑠 id

𝑡 id
𝐴 𝐴 𝐴 𝐴 𝐴 𝐴= =

Model morphisms are precisely functors. It is worth noting that this involves an inequality:

𝐹
𝐹

𝐹
≤

This states that if 𝑓 and 𝑔 are composable then so are 𝐹 𝑓 and 𝐹𝑔, and in particular 𝐹 (𝑓 #𝑔) = 𝐹 𝑓 # 𝐹𝑔.
If this were an equality, it would insist also that if 𝐹 𝑓 and 𝐹𝑔 are composable, then so are 𝑓 and 𝑔,
which is not always the case. Of course, the associated variety is the category of small categories.

Example 6.4 (Strict Monoidal Categories). Next, we extend Example 6.3 by asking for a functorial
binary operation ⊗ on 𝑂 and 𝐴 together with a unit constant ⊤ of 𝑂 :

⊤ 𝑂 : ⊤ = ⊗
𝑂

𝑂

𝑂 : ⊗
𝑂

𝑂

𝑂

𝑂

=

⊗
𝐴

𝐴

𝐴

𝐴

= ⊗
𝐴

𝐴

𝑂𝑠

𝑠

𝑠
⊗

𝐴

𝐴

𝑂=

⊗
𝐴

𝐴

𝑂𝑡

𝑡

𝑡
⊗

𝐴

𝐴

𝑂=

⊗

⊗
⊗

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴 =

Additionally, we require equations to the effect that ⊗ is associative and unital:

⊗
⊗

𝑂

𝑂

𝑂

𝑂 ⊗
⊗

𝑂

𝑂

𝑂

𝑂
=

⊗
⊗

𝐴

𝐴

𝐴

𝐴 ⊗
⊗

𝐴

𝐴

𝐴

𝐴
=

⊤ id
⊗

𝐴

𝐴 =
⊤ id

⊗
𝐴

𝐴
⊤
⊗

𝑂

𝑂 𝑂 𝑂

⊤
⊗

𝑂

𝑂= =

Now the associated variety is the category of strict monoidal categories and strict monoidal functors.

Example 6.5 (Symmetric Strict Monoidal Categories). To capture symmetric monoidal categories,
we extend Example 6.4 with a binary operation 𝜎 : 𝑂 ⊗ 𝑂 → 𝐴 for the braiding maps, subject to:

𝜎

𝑂

𝑂

𝐴 : 𝜎

𝑂

𝑂

= 𝜎 𝑠
𝑂

𝑂

𝑂 ⊗
𝑂

𝑂

𝑂=
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𝜎 𝑡
𝑂

𝑂

𝑂 ⊗
𝑂

𝑂

𝑂=

𝜎

𝜎

𝑂

𝑂

𝐴 = ⊗ id

𝑂

𝑂

𝐴

⊗

𝑡

𝑡

𝜎 ⊗

𝑠

𝑠
𝜎

=

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

This gives the variety of strict monoidal categories and symmetric strict monoidal functors.

Example 6.6 (Cartesian Restriction Categories). In light of Theorem 3.6, we can capture CR
categories by extending Example 6.5 with operations 𝛿 : 𝑂 → 𝐴 and 𝜀 : 𝑂 → 𝐴 corresponding to
the comultiplication and counit of the comonoid structure:

𝛿𝑂 𝐴 : 𝛿= 𝛿 𝑠 = 𝛿 𝑡 ⊗=

𝜀𝑂 𝐴 : 𝜀 = 𝜀 𝑠 = 𝜀 𝑡 ⊤=

along with equations insisting that 𝛿 and 𝜀 are coherent with respect to the monoidal structure:

⊗ 𝛿

𝛿

𝛿

id
𝜎

id

⊗

⊗

⊗
= ⊗ 𝜀

𝜀

𝜀
⊗=

And finally equations for the commutative comonoid axioms, and naturality of 𝛿 :

𝛿

𝛿

id
⊗

𝛿

id

𝛿
⊗

=

𝛿

𝜎

𝛿=

𝛿

𝜀

id
⊗

𝛿

id

𝜀
⊗

=

𝑠

⊗

𝛿

𝑡 𝛿

=

The associated variety is the category of CR categories and CR functors.

Example 6.7 (Discrete Cartesian Restriction Categories). Theorem 3.11 makes it easy to capture
DCR categories by extending Example 6.6 with 𝜇 : 𝑂 → 𝐴 satisfying the Frobenius and special
equations: there is a 𝜇𝑂 𝐴 such that

𝜇𝑂 𝑂= 𝜇 𝑠𝑂 𝑂 ⊗𝑂 𝑂=
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𝜇 𝑡𝑂 𝑂 𝑂 𝑂=
𝛿

𝜇
𝑂 𝐴 = id𝑂 𝐴

𝜇

id

id

𝛿

⊗

⊗
𝑂 𝐴

𝛿

𝜇

𝑂 𝐴

id

𝜇

𝛿

id

⊗

⊗
𝑂 𝐴= =

The variety is the category of strict DRC categories and strict CR functors (since they preserve 𝜇).

Example 6.8 (Cartesian Categories). To capture cartesian categories instead, we can extend Exam-
ple 6.6 with one equation, ensuring that 𝜀 is natural:

𝑡 𝜀
𝐴 𝐴 𝑠 𝜀𝐴 𝐴=

Then by Theorem 2.22, this gives the variety of strict cartesian categories and strict cartesian
functors.

Example 6.9 (Cartesian Closed Categories). Finally, to capture cartesian closed categories we extend
Example 6.8 with an operator exp : 𝑂 ⊗ 𝑂 → 𝑂 , the idea being that exp(𝐴, 𝐵) is the internal hom
[𝐴, 𝐵], along with an operator ev : 𝑂 ⊗ 𝑂 → 𝑂 that gives the corresponding evaluation map:

exp
𝑂

𝑂

𝑂 : exp = 𝑒𝑣

𝑂

𝑂

𝐴 : 𝑒𝑣 =

𝑒𝑣 𝑠

exp

⊗=
𝑒𝑣 𝑡 =

along with an operation 𝜆 and equations stating, intuitively, that 𝜆(𝑋,𝐴, 𝐵, 𝑓 ) is defined precisely
in case 𝑓 : 𝑋 ×𝐴→ 𝐵, and yields a map 𝜆(𝑋,𝐴, 𝐵, 𝑓 ) : 𝑋 → [𝐴, 𝐵] as in:

𝜆 𝐴
𝑂

𝑂

𝑂

𝐴

𝜆

⊗
𝑠

𝑡
=

𝜆 𝑠 =
𝜆 𝑡 exp=

also equations insisting that if 𝑓 : 𝑋 ×𝐴→ 𝐵 then (𝜆(𝑋,𝐴, 𝐵, 𝑓 ) × 1) # ev = 𝑓 holds:

id

𝜆

𝑒𝑣

⊗ =

⊗
𝑠

𝑡

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 57. Publication date: January 2021.



57:22 Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński

and that if 𝑔 : 𝑋 → [𝐴, 𝐵] then 𝜆(𝑋,𝐴, 𝐵, (𝑔 × 1) # ev) = 𝑔 holds:
ex

p

𝑠

𝑡 =

id

𝑒𝑣

⊗

𝜆

Now the associated variety is the category of strict cartesian closed categories and strict cartesian
closed functors: these preserve hom-objects and, when 𝜆(𝑋,𝐴, 𝐵, 𝑓 ) is defined, satisfy 𝐹𝜆(𝑋,𝐴, 𝐵, 𝑓 ) =
𝜆(𝐹𝑋, 𝐹𝐴, 𝐹𝐵, 𝐹 𝑓 ). This presentation of cartesian closed categories is essentially due to Freyd: a
version of it is given immediately after the first appearance of the notion of essentially algebraic
theory in [Fre72], albeit somewhat informally, and using very different syntax.

7 THE VARIETY THEOREM FOR PARTIAL THEORIES
Here we classify the categories of models of partial Lawvere theories. These turn out to be exactly
the locally finitely presentable (LFP) categories [AR94, 1A]. LFP categories have an important
position in categorical algebra, due to deep connections with model theory [AR94, Ch. 5] and
[MP89], homotopy theory [Dug01], and universal algebra [AR94, Ch. 3].

Definition 7.1. In a category C, an object 𝐶 is finitely presentable if the hom-functor C(𝐶, )
preserves directed colimits (see [AR94, 1.1] for the definition).

This notion might appear obscure to the reader unfamiliar with categorical logic; [AR94, 1.2]
contains lots of examples to help the reader build their intuition: for instance, an object of the
category of sets is finitely presentable if and only if it is finite, and a (commutative) monoid is
finitely presentable if and only if it admits a presentation ⟨𝐺 | 𝑅⟩ where both 𝐺 (set of generators)
and 𝑅 (set of relations) are finite sets: this happens for many other algebraic structures, and thus
motivates the definition.

Definition 7.2 (Locally finitely presentable category). [AR94, Def. 1.9] A locally finitely presentable
(LFP) category K is a cocomplete category s.t. there is a small full subcategory A ⊂ K of finitely
presentable objects, and such that every object of K is a directed colimit of objects of A.

As in the classical case (Remark 2.30), the most crisp statement of the variety theorem is for the
unsorted case. Just as an unsorted Lawvere theory is exactly a (small) cartesian category, we define
an unsorted partial Lawvere theory to be a (small) DCR category, and the corresponding notion of
morphism to be a CR functor. Then:

Categories of models of partial theories are exactly LFP categories.
Indeed, we have a similar contravariant adjunction to that of Theorem 2.35, if LFP is a 2-category
having 1-cells 𝑅 : K → K ′ the right adjoint functors 𝑅 preserving directed colimits, and 2-cells all
natural transformations 𝛼 : 𝑅 ⇒ 𝑅′. A motivation for this apparently peculiar choice of 1-cells can
be found in our Observation 2.31; it is exactly as our Definition 2.34, provided one replaces “sifted”
colimit with “directed”.

Theorem 7.3. There is a 2-adjunction

Th : LFP⇆ (DCRC≤)op : Mod, (4)
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where DCRC≤ is the 2-category of DCR categories of our Definition 3.13 and LFP is the 2-category
of LFP categories. Moreover, the unit of this adjunction is an equivalence, namely there is a natural
equivalence of categories between K ∈ LFP and Mod(Th(K)), i.e. each LFP category is equivalent
to the category of models of its induced theory.

The proof of Theorem 7.3 is split into two parts, as illustrated below:

(DCRC≤)op (Lex)op

LFP

1

2 (5)

1) we show that Lex –the 2-category of categories A with finite limits, functors A → A ′
preserving finite limits, and natural transformations– is reflective in the 2-category DCRC≤ .
This is the original, technical core of Theorem 7.3.

2) we connect Lexop and LFP with a contravariant biequivalence of 2-categories. This is a
classical result called Gabriel-Ulmer duality.

Composing the two, we obtain Theorem 7.3.
We will start from the first of the two tasks, providing an adjunction of 2-categories as follows.

𝐾𝑡 : DCRC≤ ⇆ Lex : Par

We first describe the left adjoint 𝐾𝑡 , then the right adjoint Par, and conclude by showing that
they define an adjunction.

Splitting Domain Idempotents. The functor 𝐾𝑡 arises via a modified Karoubi envelope, also called
Cauchy completion in [BD86]. Recall that an idempotent 𝑎 : 𝐴→ 𝐴 in a category splits if there is a
commutative diagram

𝑋 𝐴

𝑋 𝐴

𝑠

𝑠

1𝑋
𝑟

𝑎

Restriction categories in which all of the domain idempotents split are called split restriction
categories. An example is Par(C): for any arrow (𝑚, 𝑓 ) : 𝐴 → 𝐵, (𝑚, 𝑓 ) = (𝑚,𝑚) : 𝐴 → 𝐴 splits
with 𝑠 = (1,𝑚) and 𝑟 = (𝑚, 1). Notice that this means the domain of definition of (𝑚, 𝑓 ) is a
subobject of 𝐴. This is a good way to think of split domain idempotents in general: for 𝑓 to be split
in a restriction category is for the domain of definition of 𝑓 : 𝐴→ 𝐵 to be a subobject of 𝐴.

For any restriction category X we can construct a split restriction category 𝐾 (X) that contains
X as a subcategory. Its subcategory of total maps 𝐾𝑡 (X) is of particular interest.

Definition 7.4. Let X be a DCRC. Then 𝐾𝑡 (X) is the category where
1) objects are pairs (𝐴, 𝑎) with 𝐴 an object of X and 𝑎 : 𝐴→ 𝐴 a domain idempotent in X;
2) arrows 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏) are arrows 𝑓 : 𝐴→ 𝐵 of X such that 𝑓 = 𝑎 and 𝑓 #𝑏 = 𝑓 ;
3) composition is given by composition in X;
4) The identity on (𝐴, 𝑎) is given by 𝑎.

It is routine to verify that this forms a category. Crucially, if X is a DCRC, then the subcategory
𝐾𝑡 (X) of total maps of 𝐾 (X) has finite limits [CGH12]:

Lemma 7.5. For any DCRC X, 𝐾𝑡 (X) has finite limits.
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We now show that this extends to a 2-functor 𝐾𝑡 : DCRC≤ → Lex. If X and Y are DCRCs
and 𝐹 : X → Y is a CR functor, then there is a functor 𝐾𝑡 (𝐹 ) : 𝐾𝑡 (X) → 𝐾𝑡 (Y ) defined by
𝐾𝑡 (𝐹 ) (𝐴, 𝑎) = (𝐹𝐴, 𝐹𝑎) on objects and𝐾𝑡 (𝐹 ) (𝑓 ) = 𝑓 on arrows. It follows from our characterization
of CR functors in terms of the partial Frobenius algebra structure that 𝐾𝑡 (𝐹 ) preserves finite limits,
giving the action of our 2-functor 𝐾𝑡 on 1-cells. The action of 𝐾𝑡 on 2-cells is given as follows:

Lemma 7.6. If 𝐹,𝐺 : X → Y are CR functors between DCR categories and 𝛼 : 𝐹 → 𝐺 is a lax
transformation, define 𝐾𝑡 (𝛼) : 𝐾𝑡 (𝐹 ) → 𝐾𝑡 (𝐺) by letting 𝐾𝑡 (𝛼) at (𝐴, 𝑎) in 𝐾𝑡 (X) be:

𝐾𝑡 (𝛼) (𝐴,𝑎) = 𝐹𝑎 #𝛼𝐴 : (𝐹𝐴, 𝐹𝑎) → (𝐺𝐴,𝐺𝑎)

Then 𝐾𝑡 (𝛼) is a natural transformation.

At this point we need only show that 𝐾𝑡 preserves composition and identities for 1-cells and
2-cells, which in both cases is straightforward.

Lemma 7.7. 𝐾𝑡 : DCRC≤ → Lex is a 2-functor.

Partial Functions Revisited. Here we show that the Par construction (S3.1) also extends to a
2-functor Par : Lex → DCRC≤ . If C and D are categories with finite limits and 𝐹 : C → D is a
finite-limit preserving functor, then we obtain a CR functor Par(𝐹 ) : Par(C) → Par(D), defined on
objects by Par(𝐹 ) (𝐴) = 𝐹 (𝐴), and on arrows by

𝑋

𝐴 𝐵

𝑚 𝑓
Par(𝐹 )
↦−→

𝐹𝑋

𝐹𝐴 𝐹𝐵

𝐹𝑚 𝐹 𝑓

Since 𝐹 preserves finite limits, we have that Par(𝐹 ) (𝛿𝐴) = (𝐹1𝐴, 𝐹Δ𝐴) = (1𝐹𝐴,Δ𝐹𝐴) = 𝛿𝐹𝐴 =

𝛿Par(𝐹 ) (𝐴) and Par(𝐹 ) (𝜀𝐴) = (𝐹1𝐴, 𝐹 !𝐴) = (1𝐹𝐴, !𝐹𝐴) = 𝜀Par(𝐹 ) (𝐴) , so Par(𝐹 ) preserves the CR
structure. This defines the action of Par on 1-cells. We present the action of Par on 2-cells as a
lemma:

Lemma 7.8. If 𝐹,𝐺 : C→ D are finite limit preserving functors between categories with finite
limits and 𝛼 : 𝐹 → 𝐺 is a natural transformation, define Par(𝛼) : Par(𝐹 ) → Par(𝐺) by defining
the component of Par(𝛼) at 𝐴 in C to be:

𝐹𝐴

𝐹𝐴 𝐺𝐴

Par(𝛼)𝐴
1𝐹𝐴 𝛼𝐴

Then Par(𝛼) : Par(𝐹 ) → Par(𝐺) is a lax transformation.

It remains only show that Par preserves composition and identities at the level of 1-cells and
2-cells, which is immediate in both cases. We therefore have:

Lemma 7.9. Par : Lex→ DCRC≤ is a 2-functor.

Adjointness. The following result is original, and builds on [CL02, Corollary 3.5]; however, there
the 2-cells of the categories involved are different.

Theorem 7.10. There is a 2-adjunction 𝐾𝑡 : DCRC≤ ⇆ Lex : Par.
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It is worth describing the unit and counit of our adjunction. The unit 𝜂 : 1→ Par ·𝐾𝑡 is given by
the canonical inclusion 𝜂X : X→ Par(𝐾𝑡 (X)) defined by

𝐴
𝑓
→ 𝐵

𝜂X↦−→
(𝐴, 𝑓 )

(𝐴, 1𝐴) (𝐵, 1𝐵)

𝑓 𝑓

The counit 𝜀 : 𝐾𝑡 · Par→ 1 is defined in terms of the equivalence of categories 𝐾 (X) ≃ X between
any split restriction category X and the result of formally splitting its domain idempotents. In
particular, since Par(C) is always split, we obtain an equivalence of categories𝐾 (Par(C)) ≃ Par(C).
Restricting this to the subcategories of total maps gives defines our counit 𝜀C : 𝐾𝑡 (Par(C)) ≃ C. In
particular, the fact that the counit is a natural equivalence gives:

Lemma 7.11. Lex is a reflective (2-)subcategory of DCRC≤ .

Gabriel-Ulmer duality. To complete the triangle (5), we recall a theorem first shown by P. Gabriel
and F. Ulmer [GU71], establishing a contravariant equivalence between the 2-category LFP of
locally finitely presentable categories and the 2-category Lex of categories with finite limits.
The duality asserts that a locally finitely presentable category K can be reconstructed from its

subcategory K𝜔 of finitely presentable objects. A good reference for the proof is [CV02, Th. 3.1].

Theorem 7.12 (Gabriel-Ulmer duality). There is a biequivalence of 2-categories
Lexop ⇆ LFP

between Lex, the 2-category of small categories with finite limits, where 1-cells are functors
preserving finite limits and 2-cells are the natural transformations, and LFP, the 2-category of
locally finitely presentable categories, where 1-cells are right adjoints preserving directed colimits.

7.1 Sorted Gabriel-Ulmer duality
A similar version of the above theorem holds if, instead of considering theories of all possible sorts,
we fix once and for all a single cardinality for the sorts𝔖. Such “relative” version of Gabriel-Ulmer
duality is useful to recover the classical Lawvere-style approach of single- and many-sorted theories.

Definition 7.13. We call 𝐿𝔖 the free category with finite limits over the discrete set𝔖. When𝔖
is the singleton we will use the shortened notation 𝐿1.

Definition 7.14. A𝔖-sorted category with finite limits (A, 𝑝) is an object in (Lex)op/𝐿𝔖 whose
specifying functor 𝑝 : 𝐿𝔖 → A is bijective on objects. (𝔖-Lex)op is the full 2-subcategory of
𝔖-sorted categories with finite limits.

Definition 7.15. A𝔖-sorted locally finitely presentable category (K,𝑈 ) is an object in LFP/[𝔖, Set]
whose specifying functor𝑈 : K → [𝔖, Set] is conservative. (𝔖-LFP)op is the full 2-subcategory of
𝔖-sorted locally finitely presentable categories.

Theorem 7.16 (Sorted Gabriel-Ulmer duality). There is a biequivalence of 2-categories
Mod𝔖 : (𝔖-Lex)op ⇆𝔖-LFP : Th𝔖 .

7.1.1 Sorted partial variety theorem. We can use the sorted version of Gabriel-Ulmer duality to
infer the sorted version of the syntax-semantics duality for multi-sorted partial Lawvere theories.

Theorem 7.17. There is an 2-adjunction, whose unit is an equivalence,
𝔖-LFP⇆ (𝔖-pLaw)op,
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where𝔖-pLaw is the 2-category of “𝔖-sorted partial Lawvere theories”, understood as the analogue
of Remark 2.30 for partial theories (see Definition 4.5), and𝔖-LFP is the 2-category of𝔖-sorted
locally finitely presentable categories.

Sketch of proof. The proof is divided into intermediate steps: each tag on the following two
diagrams indicates the section where the proof of the adjunction, or equivalence, is given.

(𝔖-pLaw)op (𝔖-Lex)op (DCRC≤)op (Lex)op

𝔖-LFP LFP

★ 7.10

7.16 7.12

The claim in (★) is the only one that needs to be proven. Yet it is also the most trivial one.
We will deduce it directly from Theorem 7.10. Indeed if Lex is reflective in DCRC≤ , (Lex)op/𝐿𝔖
is coreflective in (DCRC≤)op/Par(𝐿𝔖), now observe that Par(𝐿𝔖) is precisely the free discrete
cartesian restriction category over𝔖. The desired result follows passing to functors bijective on
objects in the slice. □

Observation 7.18. In analogy with 2.33, we can show that sorted partial Lawvere theories have
free models. For the single-sorted case, let 𝑝 : Par(F op) → L be a partial Lawvere theory. Indeed
we can look at it as a morphism in DCRC≤ , then the previous theorem produces an adjunction
𝐹 ⊣ Mod𝑝

𝐹 : ModPar(F op) ⇆ ModL : Mod𝑝 .

The functor Mod𝑝 coincides with the forgetful functor. Its left adjoint 𝐹 provides free objects.

8 CONCLUSIONS AND FUTUREWORK
We introduced partial Lawvere theories and their associated notion of partial equational theory.
Our definitions are guided by the appropriate universal property, replacing cartesian categories
with discrete cartesian restriction categories. Knowing the right universal property determines our
choice of syntax, isolating the correct class of string diagrams that replace classical terms. This
enables the standard methodology of presenting a theory by means of a signature and equations,
while avoiding ad-hoc notations and eliminating the subtleties of reasoning about partial structures.

The extension is conservative: every equational theory yields a partial equational theory such
that the categories of models coincide, even though our models are in Par rather than in Set. The
recently proposed Frobenius theories [BPS17] take their models in the category of relations Rel, and
are guided by the structure of cartesian bicategories of relations [CW87]. Every partial equational
theory yields a Frobenius theory and again, the categories of models coincide. We feel that our
notion is a sweet-spot. First, we have shown that our notion of partial theories is expressive,
capturing a number of important examples. Second, we retain much of the richness of the semantic
picture, via a canonical variety theorem and existence of free models.

There is much future work. The fact that the syntax introduced here is inherently partial makes
it well-suited to applications in computing. In particular there is an evident notion of computable
model for partial Lawvere theories, namely those models valued in the category of sets and partial
recursive functions. The corresponding computable varieties seem to be interesting for programming
language semantics, and therefore worthy of study. A further step would be the lifting of this
situation to a more synthetic category of computable functions, such as a Turing category [CH08]
or monoidal computer [Pav13].
An important part of categorical universal algebra is played by monads, a point of view that

we have not considered here. Indeed, Lawvere theories can be seen as finitary monads [Lin66],
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with the category of algebras giving the associated variety. This connection has been a fruitful one,
relating areas of research that are, on the surface, very different, see e.g. [Che20; LV12; MSS02].
A natural question is whether there is an analogous approach for partial algebraic theories. We
conjecture that there is, with certain formal monads [Str72] in the 2-category DCRC≤ playing
the role of finitary monads. We expect that other constructions of categorical universal algebra
(e.g. [Fre66; Pow06]) will have corresponding partial accounts.
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