
EXPRESS 2006

General reversibility

Vincent Danos

CNRS & Université Paris 7

Jean Krivine

INRIA Rocquencourt & Université Paris 6

Pawe l Sobociński 1

Computer Laboratory, University of Cambridge

Abstract

The first and the second author introduced reversible ccs (rccs) in order to model
concurrent computations where certain actions are allowed to be reversed. Here we
show that the core of the construction can be analysed at an abstract level, yielding
a theorem of pure category theory which underlies the previous results. This opens
the way to several new examples; in particular we demonstrate an application to
Petri nets.

1 Introduction

The reversible calculus of communicating systems (rccs) [1] is essentially
Milner’s ccs [9] with the caveat that some observable actions in the standard
labelled transition system (lts) semantics are understood to be reversible.
Technically, the theoretical development involved the engineering of explicit
syntax for keeping track of a computation history. Such a history, together
with a ccs term, forms the configuration of a given process. Appropriate new
structural operational semantics (sos) rules allowed the reversible components
of a given state’s history to be undone. Phillips and Ulidowski [10] proposed
a different approach to keeping the record of a computation’s history; instead
of keeping an explicit representation of history together with an unevaluated
term, they keep the structure of terms essentially unaltered by making the
sos rules static. Causality is kept track of by tagging actions with so-called
communication keys.

1 Research partially supported by epsrc grant EP/D066565/1.
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Danos, Krivine and Sobociński

In [2], it was argued that a calculus such as rccs (or ccsk of [10]) is suited
for modelling transactions – ie computations where several agents interact in
order to agree on a common irreversible action; see [3] for example. Indeed,
it seems that guaranteeing the soundness of such transactions is easy enough
since policies are normally specified by requiring the local states of the partic-
ipants to satisfy certain criteria. On the other hand, completeness seems to
be more difficult, since the existence of a possible computation leading to all
of the agents having the required state does not guarantee that such a state
will be reached – for instance, the agents may deadlock while racing to obtain
the necessary shared resources. If we stipulate that the actions leading to
transactions are reversible and enrich the participants with histories, meaning
that the intermediate actions can be undone, the irreversible computations are
“essentially” the transactions. More concretely, it was shown in [2] that the
lts where the labels are taken to be the transactions and the lts of processes
with histories and reversible actions, where the reversible actions are equated
with τs, are weakly bisimilar.

In this paper we show that the design of a calculus such as rccs involves
an underlying abstract construction of the history category from a category
of computations. The fact that the computations agree essentially with the
causal (irreversible) computations in the original category is captured by an
equivalence of categories.

The main contributions of this paper are:

(i) the observation that subcategories R of reversible and I of causal com-
putations form a factorisation system 〈I,R〉 on the category of compu-
tations C (cf §3);

(ii) given a factorisation system 〈I,R〉 on C, an explicit construction of the
“category of histories” h?(C,R) (cf Definition 4.3);

(iii) a proof that h?(C,R) essentially follows from a free construction; con-
cretely we prove that h?(C,R) is equivalent to a certain category of
fractions (cf Theorem 4.5);

(iv) an equivalence of categories h?(C,R) ' I (cf Theorem 4.4) – this is
the main result of the paper and guarantees that in order to capture
the causal computations it is enough to keep the reversible parts of a
computation along as part of the state and allow these histories to be
undone;

(v) a direct application of Theorem 4.4 to the categories of computations
induced by Petri nets;

(vi) an explanation of how Theorem 4.4 relates to the previous work [2] con-
cerning rccs. In particular, a weak bisimulation that relates the lts of
transactions to the lts of reversible histories where the reversible actions
are treated as internal (cf Theorem 5.3).

2

Danos, Krivine and Sobociński

Structure of the paper

In §2 we recall the basic concepts of categories of fractions and factorisation
systems. In §3 we introduce several examples, including Petri nets, and show
that the sets of causal and reversible computations form factorisation systems.
The construction of the history category together with our main Theorem 4.4
is given in §4. Finally, in §5 we explore the connections with labelled transition
systems. The paper assumes a basic acquaintance with the categorical notions
of adjunctions and symmetric monoidal (sm) categories.

2 Categories of fractions and factorisation systems

Categories of fractions

Given a category C and an arbitrary class of morphisms Σ, we denote by
C[Σ−1] the category of fractions obtained by “freely” adding formal inverses
to the arrows of Σ (see, for instance [5]).

The category of fractions is characterised by a univer-

C

F
""DD

DD
DD

DD
D

Φ // C[Σ−1]

F ′

��
D

sal property: the existence of a functor Φ: C → C[Σ−1]
which sends each arrow in Σ to an isomorphism, and
moreover, given a category D and a functor F : C → D
which takes each arrow in Σ to an isomorphism, the ex-
istence of a unique functor F ′ : C[Σ−1] → D such that
F ′Φ = F .

Factorisation systems

Given a category C and two arrows f, g ∈ C we shall

A

f

��

p // B

g

��
C

h

>>

q
// D

write f ⊥ g if f and g satisfy the following property:
given a commutative diagram with p, q arbitrary mor-
phisms of C there exists a unique morphism h : C → B
such that gh = q and hf = p, as illustrated. Notice that
⊥ is not symmetric. Given an arbitrary set X of arrows
of C there are two closure operations which use ⊥:

X⊥ = { y in C | ∀x ∈ X . x ⊥ y } and X> = { y in C | ∀x ∈ X . y ⊥ x }.

If we let Iso(C) (Ar(C)) be the class of all isomorphisms (morphisms) of C
then it’s immediate that Iso(C)⊥ = Ar(C) = Iso(C)>.

The following are standard properties enjoyed by the closure operations:

Proposition 2.1

(i) X⊥>⊥ = X⊥;

(ii) X>⊥> = X>;

(iii) X ⊆ X ′ ⇒ X ′⊥ ⊆ X⊥

(iv) X ⊆ X ′ ⇒ X ′> ⊆ X>.

3

Danos, Krivine and Sobociński

Following [4], we define a prefactorisation system as follows:

Definition 2.2 [Prefactorisation system] A prefactorisation system for a cat-
egory C consists of two classes I, R of arrows of C such that I⊥ = R and
R> = I.

By the first two parts of Proposition 2.1 it is immediate that for any class
of arrows X of C,

〈
X>,X>⊥〉

and
〈
X⊥>,X⊥〉

are prefactorisation systems.

The following are some of the well-known properties of prefactorisation
systems [4]:

Proposition 2.3 Suppose that 〈I,R〉 is a prefactorisation system on C. Then:

(i) Iso(C) ⊆ I, Iso(C) ⊆ R and I ∩ R = Iso(C);

(ii) I and R are closed under composition.

The conclusion of Proposition 2.3 implies that I and R are actually sub-
categories of C since they contain the identities and are closed under compo-
sition. We shall take advantage of this by often confusing I and R with the
subcategories they form the arrows of.

Definition 2.4 [Factorisation system] A prefactorisation system 〈I,R〉 on C
is a factorisation system if every arrow p in C can be written p = g ◦ f for
some f in I and g in R.

Example 2.5 Clearly 〈C, Iso(C)〉 and 〈Iso(C),C〉 are factorisation systems
in any category. Probably the most well-known factorisation system is of
course 〈E ,M〉 in the category of sets Set, where E is the class of surjections
and M is the class of injections.

The following is a well-known property of factorisation systems:

Lemma 2.6 〈I,R〉-factorisation is unique up to isomorphism: if p : A → B
in C can be factorised p = g1f1 and also p = g2f2 where fi : A → Ci is in I
and gi : Ci → B is in R for i = 1, 2, then there exists a unique isomorphism
h : C1 → C2 such that hf1 = f2 and g2h = g1

3 Reversibility

Following the theoretical exposition, we give a number of motivating examples
of factorisation systems. We shall consider categories of computations which
decompose into an underlying set of atomic actions, some of which are a
priori specified as reversible. Given a computation which consists of both
types of actions, it should be possible to break it up into a causal (non-
reversible) component followed by a maximal reversible component. If we
denote the causal computations by I and the reversible computations by R,
it turns out that 〈I,R〉 usually forms a factorisation system on the category
of computations.

4

Danos, Krivine and Sobociński

Example 3.1 [Single-threaded reversibility] Consider an alphabet Σ = I +R
for some sets I and R; we think of I as a set of irreversible atomic actions and
R as a set of reversible atomic actions. Let Σ∗ denote the free monoid over Σ
considered as a one-object category.

Let R = R∗ and let I = R> = Σ∗I + ε – the set of all strings which end
with an irreversible action, together with the empty string. Then 〈I,R〉 is a
factorisation system on Σ∗.

Example 3.2 [Multi-threaded reversibility] Let C be the free sm category on
a graph G – ie one first forms the free category on G and then the free sm cat-
egory on the resulting category. We think of the vertices of G as representing
the states of a particular thread of computation, and the edges as possible ac-
tions. Then, following this intuition, the arrows of C represent multithreaded
computations of finitely many non-communicating processes, with the tensor
product ⊗ representing parallel composition.

Suppose that the edges of G are partitioned into two sets, I and R. Let
GR denote the graph with the same nodes as G but with the edges restricted
to the members of R.

Let R be the free sm category on GR. Clearly R is a subcategory of C
in a canonical way. Let I = R>. It is easy to verify that I is the smallest
subcategory of C which contains the isomorphisms of C, arrows of the form iα
with i ∈ I and whose arrows are closed under ⊗. Then 〈I,R〉 is a factorisation
system on C.

It is instructive to consider a more substantial example in order to illustrate
the theory. Here we shall consider Petri nets as sm categories in the tradition
of [8]. Note, however, that we do not deal with strict symmetric monoidal
categories. We shall first need to recall the notion of a tensor scheme [6] and
the associated notion of a free sm category on a tensor scheme; indeed, as we
shall see, tensor schemes are very closely related to Petri nets. Note that tensor
schemes can also be used in order to construct ordinary (ie non-symmetric)
free monoidal categories.

Definition 3.3 [Tensor scheme]A tensor scheme S consists of a set V of ver-
tices, a set E of edges, and functions s, t : E → V ∗, where V ∗ is the free
monoid (the set of finite words) on V . Every tensor scheme leads to a free
sm category C – see [6] for details. Intuitively, the objects of C can be seen
as finite words (ie the product in V ∗ is interpreted as ⊗ in C) in V and the
arrows of C are generated freely from the basic edges in E. Concretely, the
arrows can be seen as certain equivalence classes or as certain string diagrams;
see [11]. Notice that the procedure described in Example 3.2 can be seen as a
special case of a tensor scheme (where all the edges have one letter words as
sources and targets).

Definition 3.4 [Petri net] A Petri net N with a set of states S and set of
transitions T is a graph s, t : T → S⊕ where S⊕ is the free commutative

5

Danos, Krivine and Sobociński

x1

y

z1

z2

x2 z3

g1

g2

f1

f2

f3

2

Fig. 1. A simple Petri net, the filled transitions are irreversible.

monoid on S. A Petri category CN is the free sm category on N , considered
as a tensor scheme. 2

The Petri category CN can be thought of as the category with arrows the
(truly) concurrent computations of a net N .

Example 3.5 [Petri net reversibility] Suppose that the set T of transitions
N can be partitioned T = I + R, where the set I contains the transitions
which are deemed irreversible and R the transitions deemed reversible. We
obtain a factorisation system 〈I,R〉 as in our previous examples.

Let R be the free sm category on NR, the Petri net with the same places
as N and with R as its set of transitions, considered as a tensor scheme; it
is clearly a subcategory of CN in a canonical way. Let I = R> – the arrows
of I can be described roughly as in Example 3.2. The pair 〈I,R〉 forms a
factorisation system on CN .

Consider the concrete example of a net illustrated in Figure 1, where pre-
cisely the unfilled transitions (g1 and g2) are taken to be reversible. Suppose
that places x1 and x2 initially contain one token each; intuitively, we can con-
sider places x1 and x2 as agents which each have an option of committing
to two transactions: x1 can commit to either f1 or f2 while x2 can commit
to f2 or f3. In terms of CN this amounts to the fact that there are arrows
f1 : x1 → z1, f3 : x2 → z3 and f2.g1 ⊗ g2 : x1 ⊗ x2 → z2. Notice that if x1

chooses to perform g1 and x2 commits to f3 then the computation begun by
x1 is stuck unless the g1 transition can be reversed and f1 chosen instead.

Consider the effect of adding new transitions g1? and g2? to act as the
inverses of g1 and g2 respectively. If we deem that reversed computations are
the same as doing nothing then the resulting Petri category is just CN [R−1].
However, this setting is clearly unsuitable to model the expected behaviour
of the net: consider starting with a single token in x2 and performing the g2

transition. Since now g1? is enabled, we can perform g1? and then f1, thus
arriving at a behaviour which is not in the specification – x2 being able to
commit to action f1.

2 One fixes a particular ordering of places for the source and the target of each transition,
the order is immaterial.

6

Danos, Krivine and Sobociński

4 Histories

A key technical feature of rccs is that histories are kept as part of the state,
which allows reversible moves to be backtracked correctly. Here we repeat the
construction at a higher level of abstraction, assuming only the presence of a
factorisation system.

Definition 4.1 [Category h(C,R) of histories] Suppose that 〈I,R〉 is a fac-
torisation system on C. Let h(C,R) be the category with:

• objects: arrows g in R;

• arrows: commutative diagrams, as illustrated, where
f is in C and f ′ ∈ I.

P1

g1 ��

f ′ // P2

g2��
Q1 f

// Q2

Notice that given an object g1 : P1 → Q1 in h(C,R) and an arbitrary arrow
f : Q1 → Q2, there exists a unique up-to-isomorphism object g2 of h(C,R) and
arrow f ′ : P1 → P2 in I such that 〈f, f ′〉 : g1 → g2 is in h(C,R) – here g2 ◦ f ′

is just the 〈I,R〉-factorisation of f ◦ g1. Notice that if f ∈ R, then using the
fact that arrows of R compose and uniqueness of factorisation (Lemma 2.6),
we have that f ′ ∈ Iso(C).

Recall from Proposition 2.3 that we can consider I to be a

P1

��

f // P2

��
P1 f

// P2

category. There is an obvious functor M : h(C,R) → I which
takes an object g1 : P1 → Q1 to P1 and the diagram above to
the arrow f ′ : P1 → P2. Returning to our intuitions, this functor
takes a computation to its causal (non-reversible) component.
Using the final remark of the previous paragraph, M sends ar-
rows which have a lower component in R to isomorphisms.

There is also a (full and faithful) functor N : I → h(C,R), which takes an
object P1 ∈ I to the identity on P1 (null history) and a morphism f : P1 → P2

to the illustrated diagram.

Proposition 4.2 N is left adjoint to M .

Proof. Given g1 : P1 → Q1 ∈ h(C,R), consider the illustrated

P1

��

// P1

g1��
P1 g1

// Q1

morphism εg1 = 〈g1, id〉 : NM(g1) → g1. It is easy to verify
that ε defines a natural transformation NM ⇒ idh(C,R) – it is
the counit of the adjunction. The unit is trivial as MN = idI ,
and the triangle identities are easily checked. 2

Recall that our intuition is that the objects of h(C,R) represent (re-
versible) histories. We shall now extend h(C,R) with “reversed” compu-
tations with the effect that such histories can be undone.

Definition 4.3 [Category h?(C,R) of reversible histories] Suppose that 〈I,R〉
is a factorisation system. Let Φ: C → C[R−1] be the canonical functor to the
category of fractions. Let h?(C,R) denote the category with:

7

Danos, Krivine and Sobociński

h(C,R)
M

��
a

Ψ --
h?(C,R)

M?ooIN

YY N?
44

∼

Fig. 2. Histories and causal computations.

• objects: arrows g in R;

• arrows: formal diagrams, as illustrated, with f ∈ I,
f? ∈ C[R−1], such that f?Φ(g1) = Φ(g2f) in C[R−1].

P1
f //

g1 ��

P2

g2��
Q1 f?

// Q2

There is an evident functor Ψ: h(C,R) → h?(C,R) which maps the lower
component of a history morphism from C to C[R−1] via Φ:

P1

g1 ��

f ′ // P2

g2��
Q1 f

// Q2

7−→
P1

g1 ��

f ′ // P2

g2��
Q1 Φf

// Q2

Let M? : h?(C,R) → I be the functor which takes an arrow of h?(C,R) to its
upper component. Clearly M?Ψ = M .

Theorem 4.4 M? is an equivalence of categories.

Proof. Let N? = ΨN : I → h?(C,R) (see Fig 2) – clearly M?N? = idI , we
shall show that there exists a natural isomorphism N?M? ⇒ idh?(C,R).

Indeed, since Ψ is the identity on objects, we have N?M?g =

P

��

// P
g
��

P Φg
// Q

ΨNMΨg = NMg, and thus it suffices to show that Φε is a
natural isomorphism, where ε is the counit of the adjunction
N a M . We illustrate Ψεg, clearly it is an invertible morphism
of h?(C,R). Naturality is straightforward.

2

Recall from Example 2.5 that 〈C, Iso(C)〉 and 〈Iso(C),C〉 are trivial fac-
torisation systems in any category C. The conclusion of Theorem 4.4 implies
immediately that h∗(C, Iso(C)) ' C and h∗(C,C) ' Iso(C).

We shall now show that h?(C,R) essentially follows from a free construc-
tion. Let R′ = { 〈g, ϕ〉 ∈ Ar(h(C,R)) | g ∈ R}, the set of those arrows of
h(C,R) where the lower component is in R (cf paragraph following Defini-
tion 4.1).

Theorem 4.5 There is an equivalence of categories h?(C,R) ' h(C,R)[R′−1].

Proof. Let X = h(C,R)[R′−1]. Since we know that h?(C,R) ' I, it is
enough to show that also X ' I. Let Φ′ : h(C,R) → X be the canonical
quotienting functor. Since M : h(C,R) → I sends every member of R′ to an

8

Danos, Krivine and Sobociński

isomorphism, we have a unique functor M ′ : X → I such that M ′Φ′ = M . Let
N ′ = Φ′N : I → X. Then M ′N ′ = M ′Φ′N = MN = idI .

Let ε : NM → idh(C,R) be the counit of

N ′M ′g N ′M ′h //

Φ′εg

��

N ′M ′g′

Φ′εg′
��

g
h

// g′

the adjunction N a M . Clearly Φ′ sends
each component of ε to an isomorphism in X.
Since Φ′ is the identity on objects, we have
that for each object g ∈ X, Φ′εg : N ′M ′g →
g is an isomorphism. It remains to check
that Φ′ε defines a natural transformation N ′M ′ →
idX. To do this we need to check that the commutativity of an arbitrary
square, as illustrated, where h is in X.

It is well-known that arrows in X are equivalence classes of zig-zags in
h(C,R) where each of the reverse arrows is in R′. Using the functoriality
of N ′M ′ and the fact that ε is a natural transformation, we can “fill in” the
diagram below at each point, and since h = (Φ′γn)−1Φ′αn . . . (Φ′γ1)

−1Φ′α1,
naturality easily follows by a straightforward diagram chase.

N ′M ′g
Φ′NMα1//

Φ′εg

��

N ′M ′g1

Φ′εg1
��

N ′M ′s1
Φ′NMγ1oo

Φ′εs1
��

Φ′NMα2// . . . Φ′NMαn // M ′N ′gn

Φ′εgn
��

N ′M ′g′
Φ′NMγnoo

Φ′εg′
��

g
Φ′α1

// g1 s1
Φ′γ1

oo
Φ′α2

// . . .
Φ′αn

// gn g′
Φ′γn

oo

2

Considering Examples 3.1, 3.2 and 3.5, Theorem 4.4 states that to un-
derstand the structure of causal computations it is enough to remember the
maximal reversible component of a given computation and allow these histo-
ries to be backtracked.

Returning to the discussion concerning the net of Figure 1, the missing
ingredient was clearly the explicit keeping track of the history of the current
computation – ie instead of working in CN [R−1] we work in the history cate-
gory h?(CN ,R). (cf Definition 4.3). Our main result, Theorem 4.4, establishes
that the categories h?(CN ,R) and I are equivalent, which confirms that the
computations of nets with histories are essentially the same as the causal com-
putations of the original net. Of course, the main result is clearly more general
than this particular example, for instance it underlies the previous work on
rccs [1, 2].

Indeed, it is interesting to compare the concrete implementation of a re-
versible process algebra, like rccs, with the abstract construction we present
in this paper. Roughly, the definition of rccs in [1] can be summed up as the
development of a correct syntactic presentation of the category of reversible
histories h?(C,R), where C is the category of computations of ccs.

9

Danos, Krivine and Sobociński

5 Free categories as transition systems

The categories of Examples 3.2 and 3.5 can be thought of as a transition
systems as well as categories; indeed, since the categories are generated freely,
their arrows can be seen as (equivalence classes of) traces in the transition
systems. Here we shall elucidate the consequences of our main Theorem 4.4
for the underlying transition systems, obtaining a direct generalisation of the
main result of [2]. Notice however that the results of §4 are more general,
since the underlying categories are not assumed to be free; indeed, the only
assumption is the presence of a factorisation system.

Let S = 〈V, E〉 be a tensor scheme with edges E partitioned into sets of
irreversible actions I and reversible actions R. Let C be a freely generated sm
category over S. Let R be the subcategory of C generated by SR = 〈V, R〉.
Let I = R>. Then 〈I,R〉 is a factorisation system. 3

Definition 5.1 Let TS(C) be defined as follows:

• states are isomorphism classes of objects of C;

• transitions are labelled with elements of E and arise as follows

P1 ⊗ P2
α⊗P2−−−→ P ′

1 ⊗ P2 in C, α ∈ E

[P1 ⊗ P2]
α

GGGA [P ′
1 ⊗ P2]

Using the fact that C is freely generated, any non-invertible arrow of C gen-
erates a finite set of traces in TS(C). We shall refer to each possible trace of
an arbitrary morphism f in C as a serialisation of f .

A trace σ is said to be causal if it is a serialisation of an arrow f in I.
A trace σ is an i-transaction if it is causal and contains precisely one action
i ∈ I (and arbitrarily many actions from R). Let CTS(C) be the lts with
the same states as TS(C), but with transitions

[P]
σ

GGGA [P ′] in TS(C), σ an i-transaction

[P]
i

GGGA [P ′] in CTS(C)

Thus CTS(C) is the lts of transactions. Correspondingly, we shall now
define the history lts, where states are enriched with a history, and the transi-
tions are those of TS(C) as well as new transitions which allow backtracking.

Definition 5.2 Let RTS(C) be defined as follows:

• states: isomorphism classes of objects h(C,R) (structural isomorphisms);

3 We leave it as future work to determine sufficient conditions on a subcategory which
ensure that R = R>⊥.

10

Danos, Krivine and Sobociński

• transitions labelled with elements of E ∪ R∗ where R? = { r? | r ∈ R }.
They are derived from morphisms in h?(C,R), as illustrated below:

P1

g1
��

f // P2

��
g2��

Q1 ⊗Q2
α⊗Q2 // Q′

1 ⊗Q2

, α ∈ E

 P1

g1 ��
Q1 ⊗Q2

 α

GGGA

 P2

g2��
Q′

1 ⊗Q2

P1

g1
��

f // P2

��
g2��

Q1 ⊗Q2
r−1⊗Q2 // Q′

1 ⊗Q2

, r ∈ R

 P1

g1 ��
Q1 ⊗Q2

 r?

GGGA

 P2

g2��
Q′

1 ⊗Q2

It is clear from the construction of h?(C,R) that any morphism in h?(C,R)
induces a set of serialisations (traces) in RTS(C).

Theorem 5.3 Consider a free sm category C generated from a tensor scheme
S = 〈V, E〉 with E = I + R, together with an induced factorisation system
〈I,R〉 where R is the subcategory of C freely generated by SR = 〈V, R〉. Let
CTS(C) be the lts of transactions (cf Definition 5.1) and RTS(C) be the
reversible lts (cf Definition 5.2) where the reversible actions are considered
to be silent. Then CTS(C) ≈ RTS(C).

Proof. We shall show that the (object part of the) functor M? : h?(C,R) → I
is actually a functional weak bisimulation.

Recall that M?(P
g−→ Q) = P . Clearly M? is well-

P
g

��

f // P ′

g′
��

Q
α⊗X

// Q′

P
g

��

// P
(†)

��

fi // P ′

��
Q g∗

// P fi

// P ′

defined as a function from states of RTS(C) to states of
CTS(C). Suppose that there is a transition

[P
g−→ Q]

α

GGGA [P ′ g′−→ Q′].

Then either α ∈ R, in which case the transition is silent –
we have P ′ ∼= P so we can counter with the empty trace.

If α /∈ R then we have the first diagram where f is in I.
Since we are in a free category, any serialisation of f must
contain α as a unique action from I. Thus f leads to a trace in TS(C) which

is an α-transaction – ie we have a labelled transition [P]
α

GGGA [P ′] in CTS(C).

Now consider an arbitrary transition [P]
i

GGGA [P ′]. Let P
fi−→ P ′ be

the corresponding arrow in I. Then in particular we have the square (†)
in h∗(C,R), as illustrated in the second diagram. Let g∗ be the inverse to
g in C[R−1]. Clearly i is the only irreversible action in any serialisation
(in RTS(C)) of the combined second diagram, so we have a weak transition

[p
g−→ q]A∗

i

GGGA [p′ → p′]. 2

11

Danos, Krivine and Sobociński

6 Conclusion

The main contribution of this paper is the development of the underlying
abstract concepts which become apparent when designing “reversed” versions
of known formalisms, such as Petri nets or ccs. In particular, we show that
the problem reduces to developing the particular syntactic representations
(such as the concrete syntactic representation of histories in rccs) of the
reversible history category h∗(C,R). The fact that the resulting computations
capture the intended causal behaviour can then be seen as a consequence of our
Theorem 4.4, which is formalism independent. We hope that this conceptual
clarification will be of use to designers of reversible formalisms.

Another contribution is the observation that breaking up a computation
into irreversible-reversible components naturally leads to a factorisation sys-
tem on the category of computations. As part of future work, we plan to study
such factorisation systems in more detail. We also plan to explore connections
with previous work on factorisation systems in rewriting theory [7].

References

[1] Danos, V. and J. Krivine, Reversible communicating systems, in: Proceedings of
Concur’04, LNCS 3170 (2004), pp. 292–307.

[2] Danos, V. and J. Krivine, Transactions in RCCS, in: Proceedings of Concur’05,
LNCS 3653 (2005), pp. 398–412.

[3] Danos, V., J. Krivine and F. Tarissan, Self-assembling trees, in: SOS’06, ENTCS
(2006), to appear.

[4] Freyd, P. J. and G. M. Kelly, Categories of continuous functors, i, Journal of
Pure and Applied Algebra 2 (1972), pp. 169–191.

[5] Gabriel, P. and M. Zisman, “Calculus of fractions and homotopy theory,”
Springer-Verlag, 1967.

[6] Joyal, A. and R. Street, The geometry of tensor calculus, i, Advances in
Mathematics 88 (1991), pp. 55–112.

[7] Melliès, P.-A., A factorisation theorem in rewriting theory, in: Proceedings of
CTCS ’97, LNCS 1290 (1997), pp. 49–68.

[8] Meseguer, J. and U. Montanari, Petri nets are monoids, Information and
computation 88 (1990), pp. 105–155.

[9] Milner, R., “A Calculus of Communicating Systems,” LNCS 92, Springer, 1980.

[10] Phillips, I. and I. Ulidowski, Reversing algebraic process calculi, in: Proceedings
of FoSSaCS ’06, LNCS 3921 (2006), pp. 246–260.

[11] Street, R., Higher categories, strings, cubes and simplex equations, Applied
Categorical Structures 3 (1995), pp. 29–77.

12

	Introduction
	Categories of fractions and factorisation systems
	Reversibility
	Histories
	Free categories as transition systems
	Conclusion
	References

