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Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially ( ; ) and in parallel (⊕). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [8, 39], quantum information, where
they model quantum circuits [10, 11], and in systems theory, where
they provide a calculus of signal flow graphs [2, 4, 6].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A⊕ C) ; (B ⊕D) = (A ; B)⊕ (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both
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sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [20] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [9]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W)
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.
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Our approach is to think of string diagrams neither as terms nor
as topological entities, but rather as combinatorial structures: i.e. as
certain “open” (hyper-)graphs. Roughly speaking—since we focus
on the symmetric case—the geometry of diagrams is discarded,
and only connectivity information remains. We show that rewriting
of diagrams is an instance of graph rewriting, in particular the
double pushout (DPO) approach, a research topic that goes back to
the 1970s [15]. The correspondence between rewriting modulo the
laws of SMC and DPO is surprisingly tight, as we explain below.

To establish the connection between rewriting of string dia-
grams and graph rewriting, we extend and connect together two
existing research threads. First, the algebraic nature of cospans of
graphical structures was studied in e.g. [34], where the algebra of
special Frobenius monoids was shown to play a crucial role. In a
cospan n → G ← m, the open nature of graphs is exhibited by
the “interfaces” n and m which, like “dangling wires” in string di-
agrams, allow composition on the left and right.
Second, there has been work connecting computads in
cospans [17, 35] and DPO graph rewriting: the key ob-
servation is that DPO rules, which are usually presented
as spans of graphs L ← j → R, correspond to rewrite
rules in the cospan category as displayed on the right,
where 0 is the initial object in the category of graphs.

j

����
L +3 R

0

OO OO

Our starting point is the extension of the result in [34] from
graphs to hypergraphs. This is essential to tackle arbitrary symmet-
ric monoidal signatures Σ: the category of cospans of hypergraphs
with type Σ is isomorphic to the free hypergraph category, that
is the SMC freely generated by Σ together with a chosen special
Frobenius structure. Hypergraph categories have previously been
called well-supported compact closed categories by Walters [41].

By connecting this result with the observations in [17, 35],
we are able to show that DPO is just rewriting modulo the laws
of SMCs “plus” Frobenius. More precisely, a DPO system on
hypergraphs of type Σ amounts to a rewriting system on the free
SMC generated by Σ together with a chosen special Frobenius
structure. Intuitively speaking, the Frobenius equations imply a
self-dual compact closed structure, which in turn allows us to
bend rules around: an arbitrary rewriting rule of cospans, as below
on the left, can always be transformed into the DPO rule on the
right. The presence of a Frobenius structure means that this rule
transformation is also sound in the corresponding SMC.

j
����

L +3 R

i

OO NN

i+ j
����

L +3 R

0

TT JJ

Next we tackle rewriting modulo the equations of SMCs in isola-
tion. We can still consider DPO, but we must be more careful about
rule application: since we may not have a compact closed struc-
ture on the algebraic side, it may be the case that a graph rewriting
rule is unsound when considered as a rewrite of string diagrams.
Here we introduce a restricted form of DPO rewriting, called con-
vex DPO rewriting, and prove that it is sound and complete with
respect to rewriting modulo symmetric monoidal structure.

Rewriting modulo SMC

Rewriting modulo SMC
+ chosen special 

Frobenius structure

DPO rewriting of hypergraphs

convex
DPO rewriting of 

hypergraphs

We conclude the paper with an illustrative example of our approach
by proving termination for the theory of non-commutative bi-
monoids (a.k.a. bialgebras). As any non-commutative group yields
a bimonoid whose multiplication is non-commutative, these play an
important role in representation theory, and the case where neither
the multiplication nor the comultiplication is commutative forms
the basis of the study of quantum groups [22].

Related work. The correspondence between terms of algebraic
structures with sequential and parallel composition (ultimately rep-
resenting arrows of a free SMC) and flow diagrams (i.e., suitable
hyper-graphs) was recognized early on in computer science, and
studied at least since the work of Stefanescu (see the references
in the survey [37]). After [20], and especially after the paper on
traced monoidal categories by Joyal, Street and Verity [21], there
was a flourishing of interest in string diagrams.

A long tradition, pioneered by the work of Burroni on poly-
graphs [9], generalised term rewriting to higher dimensions, includ-
ing the three-dimensional case of string diagram rewriting — see
e.g. [31] for a survey. Here, the laws of SMCs are usually consid-
ered as explicit rewriting rules, resulting in rather elaborate rewrit-
ing systems whose analysis is often challenging (see e.g. [18, 27]).
Abstract higher-dimensional rewriting is far more general than our
approach, which focusses only on SMCs. However, the benefit of
our graphical representation is that it has the laws of SMCs built-in,
reducing considerably the number of rewriting rules and simplify-
ing the analysis of the resulting rewriting systems.

In [13], the authors use cospans of string graphs (a.k.a. open
graphs) to encode morphisms in a symmetric monoidal category
and reason equationally via DPO rewriting. There is an evident
encoding of the hypergraphs we use to string graphs, which yields
an equivalence between the category of directed cospans from [13]
and our subcategory of monogamous acyclic cospans in FTermΣ

(characterised in Theorem 3.12). However, the notion of rewriting
considered in loc. cit. is only sound if there is a trace on the SMC,
whereas our notion of convex DPO rewriting guarantees soundness
for any SMC. Another difference is that we directly work in an
adhesive category [26], while the category of open graphs needs to
inherit the good rewriting properties from an embedding into the
adhesive category of typed graphs.

Structure of the paper. Section 2 provides background on SMCs
and string diagrams. Section 3 introduces the combinatorial struc-
tures for interpreting diagrams and characterises them algebraically
in terms of Frobenius monoids. Section 4 establishes the correspon-
dence between DPO rewriting and rewriting in a free SMC with a
chosen special Frobenius monoid. Section 5 develops a restriction
of DPO rewriting, called convex DPO, that is adequate for rewriting
in any free SMC. Section 6 is devoted to the proof of termination
for the theory of non-commutative bimonoids. Omitted proofs are
available in an extended version [? ] of this paper.

2. Background
Notation. Composition of f : a → b, g : b → c in a category C
is written f ; g : a → c. For C symmetric monoidal (SMC), ⊕ is
its monoidal product and σa,b : a ⊕ b → b ⊕ a is the symmetry
for a, b ∈ C. Given C with pushouts, its cospan bicategory has
the objects of C as 0-cells, cospans of arrows of C as 1-cells and
cospan morphisms as 2-cells; Cospan(C) is the category obtained
by identifying the isomorphic 1-cells and forgetting the 2-cells.

SMTs and PROPs. A standard way of expressing the alge-
braic structure borne in SMCs is through the notion of symmet-
ric monoidal theory (SMT). A one-sorted SMT is determined by
(Σ, E) where Σ is the signature: a set of generators o : n → m
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(c ; c′) ; d = c ; (c′ ; d) idn ; c = c = c ; idm
(c⊕ c′)⊕ d = c⊕ (c′ ⊕ d) id0 ⊕ c = c = c⊕ id0

(c ; c′)⊕ (d ; d′) = (c⊕ d) ; (c′ ⊕ d′)
σ1,1 ; σ1,1 = id2

(c⊕ idz) ; σm,z = σn,z ; (idz ⊕ c)

Figure 1. Laws of SMCs instantiated to a PROP X.

with arity n and coarity m where m,n ∈ N. The set of Σ-terms is
obtained by combining generators in Σ, the unit id : 1→ 1 and the
symmetry σ1,1 : 2 → 2 with ; and ⊕. This is a purely formal pro-
cess: given Σ-terms t : k → l, u : l→ m, v : m→ n, we construct
new Σ-terms t ; u : k → m and t⊕ v : k+m→ l+ n. The set E
of equations contains pairs of Σ-terms of the form (t, t′ : i → j);
the only requirement is that t and t′ have equal arities and coarities.

Just as ordinary (cartesian) algebraic theories have a categorical
rendition as Lawvere categories [19], the corresponding (linear2)
notion for SMTs is the one of PROP [28] (product and permutation
category). A PROP is a symmetric strict monoidal category with
objects the natural numbers, where ⊕ on objects is addition. Mor-
phisms between PROPs are identity-on-objects strict symmetric
monoidal functors. PROPs and their morphisms form a category
PROP. Any SMT (Σ, E) freely generates a PROP by letting the
arrows n → m be the Σ-terms n → m modulo the laws of sym-
metric monoidal categories (in Figure 1) and the (smallest congru-
ence containing the) equations t = t′ for any (t, t′) ∈ E.

We write SΣ to denote the PROP freely generated by (Σ,∅).
There is a graphical representation of the arrows of SΣ as string
diagrams, which we now sketch, referring to [37] for the details. A
Σ-term n→ m is pictured as a box with n ports on the left and m
ports on the right, which are ordered and referred to with top-down
enumerations 1, . . . , n and 1, . . . ,m. Compositions via ; and ⊕
are drawn respectively as horizontal and vertical juxtaposition.

t ; s is drawn st t⊕ s is drawn t
s

(2)

There are specific diagrams for the Σ-terms responsible for the
symmetries: these are id1 : 1 → 1, represented as , the sym-

metry σ1,1 : 1 + 1 → 1 + 1, represented as , and the unit
object for⊕, that is, id0 : 0→ 0, whose representation is an empty
diagram . Graphical representation for arbitrary identities idn
and symmetries σn,m are generated according to the pasting rules
in (2). Note that, of the equations displayed in Figure 1, the first
five are implicit in the diagrammatic language.

It will be sometimes convenient to represent idn with the short-
hand diagram n and, similarly, t : n→ m with mn t .

Example 2.1.
(a) A basic example is the theory (ΣM , EM ) of commutative

monoids. The signature ΣM contains two generators: multipli-
cation — which we depict as the string diagram : 2 → 1

— and unit, represented as : 0 → 1. Equations in EM are
given in the leftmost column of Figure 2: they are built from
id0, σ1,1 and the generators, composed with ; and ⊕, and as-
sert commutativity, associativity and unitality. We call M the
PROP freely generated by the SMT (ΣM , EM ). A useful ob-
servation is that we can give a concrete description of M: it is
isomorphic to the PROP F with arrows n → m the functions
{0, . . . , n− 1} → {0, . . . ,m− 1}, see e.g. [25] for details.

2 In the sense that variables cannot be copied, nor discarded.

=

=

=

=

=

=

=

=

Figure 2. The equations EF of special Frobenius monoids.

(b) An SMT that plays a key role in our exposition is the theory
(ΣF , EF ) of special Frobenius monoids. The signature ΣF is:

{ : 2→ 1, : 0→ 1, : 1→ 2, : 1→ 0}.

Equations EF are in Figure 2. They include the theory of com-
mutative monoids in the leftmost column. Dually, the equations
in the middle column assert that and form a cocommu-
tative comonoid. Finally, the two rightmost equations describe
the interaction between these two structures.
The PROP freely generated by (ΣF , EF ) is called Frob. Just
as M, Frob enjoys a concrete description: it is isomorphic to
the PROP Cospan(F) of cospans in F [25]. The isomorphism
ξ : Frob→ Cospan(F) is the unique PROP morphism defined
as follows on the generators in ΣF .

7−→ (2→ 1← 1) 7−→ (0→ 1← 1)

7−→ (1→ 1← 2) 7−→ (1→ 1← 0)

(c) The theory of non-commutative bimonoids has signature

{ , , , }

and the following equations:

=

=

=

=
= =

=

==

=

(3)

We call NB the resulting freely generated PROP. In Section 6
we show that the rewriting system obtained by orienting the
equalities from left to right terminates. For this, it will be con-
venient to use µ, η, ν, ε respectively to refer to the generators.

Compact-closedness. SMTs containing a Frobenius monoid will
play a special role in our work. We say that an SMT (Σ, E) is
equipped with a chosen special Frobenius structure if Σ = Σ′+ΣF
and E = E′ + EF for some signature Σ′ and set of equations E′.
It is relevant for us that PROPs freely generated by such SMTs
possess a self-dual compact closed structure [23]. This amounts to
the existence, for each n, of “cups” n : n+ n→ 0 and “caps”

n : 0→ n+ n, subject to equations

n

n
n

n
= n = n

n

nn
. (4)

The equations of a Frobenius monoid imply (4) with cups defined
according to the following pattern:
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0 :=

2 :=

1 :=

3 :=

and similarly for caps, using and . This data also yields a
contravariant PROP morphism ·? (cf. [36, Rmk 2.1]) defined as

cn m 7→ c nm ? :=
n

c
n

m
m .

Rewriting in a PROP. We now fix an arbitrary PROP X. A
rewriting rule is a pair 〈l, r〉 where l, r : i → j are arrows of
X with the same source and target. We say that i → j is the
rule’s type and sometimes write 〈l, r〉 : (i, j). A rewriting system
R is a set of rules. A rewriting step is defined for any two arrows
d, e : n → m in X as d ⇒R e iff ∃〈l, r〉 : (i, j) ∈ R, c1 : n →
k + i, c2 : k + j → n such that d = c1 ; (idk ⊕ l) ; c2 and
e = c1 ; (idk ⊕ r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m

n me = c2c1
n

k

ji
m

r .

When the PROP under consideration X is SΣ for some signa-
ture Σ, the notion of rewriting step can be reformulated as follows:
in order to apply a rewrite rule 〈l, r〉 : (i, j) to a diagram d in SΣ

we need to find a match of l in d. This means finding a context C:
a term in SΣ+{• : i→j} with exactly one occurrence of •, such that
d = C[l/•]. The rewrite then takes d⇒R e, where e = C[r/•].
Remark 2.2. Another common way of viewing a rewrite system
on (the arrows) a monoidal category is a to view a collection of
rules 〈l, r〉 : (i, j) as a computad [40] or polygraph [9]. One can
then consider the free 2-category on this data, in a similar way to
how one obtains a free category on a directed graph.

With these definitions, diagrammatic reasoning can now be seen
as a special case of rewriting. Given an arbitrary SMT (Σ, E) we
can obtain a rewriting systemRE as

RE = { 〈t, t′〉 | (t, t′) ∈ E} ∪ { 〈t′, t〉 | (t, t′) ∈ E }.
Proposition 2.3. Let c, d be two diagrams in SΣ. Then c = d in
the PROP freely generated by (Σ, E) iff c⇒∗RE

d.

3. Frobenius termgraphs
In order to implement rewriting of string diagrams, we shift our fo-
cus away from viewing them as essentially a shorthand for terms, in
favour of considering them as combinatorial hypergraph-like struc-
tures. In the following let F be the PROP of functions, introduced in
Example 2.1.(a). We start by defining the category of hypergraphs.

Definition 3.1 (Hypergraphs). The category of finite directed hy-
pergraphs Hyp is the functor category FI where I has as objects
pairs of natural numbers (k, l) ∈ N × N together with one extra
object ?. For each k, l ∈ N, there are k + l arrows from (k, l) to ?.

An object f of FI is the hypergraph with set of nodes f(?) and,
for each k, l, f(k, l) the set of hyperedges with k (ordered) sources
and l (ordered) targets. We shall visualise hypergraphs as follows:

is a node and is an hyperedge, with ordered tentacles
attached to the left boundary linking to sources and the ones on the
right linking to targets. Here is an example.

In order to serve as an interpretation for string diagrams, we
need to extend such vanilla hypergraphs in two ways, leading to
the notion of Frobenius termgraph (Def. 3.2). The first is to assign
hyperedges to the generators in a given signature. Formally, this is
achieved as follows. Any symmetric monoidal signature Σ can be
considered as a hypergraph with a single node, in the obvious way.
We can then express Σ-typed hypergraphs as the objects of the slice
category HypΣ

def
= Hyp/Σ. The typing is represented pictorially

by labeling hyperedges with generators in Σ.

o2

o1o2

Henceforward we shall only work in the slice, thus referring to
its objects directly as (Σ-)hypergraphs.

The second extension is to identify the “left and right dangling
wires”. A natural solution is to use discrete cospans, that is, the full
subcategory of Cospan(HypΣ) (the category of cospans)3 with
objects discrete hypergraphs, i.e. those hypergraphs with no edges.

Such discrete cospans can encode terms, termgraphs [12, 38]
(where variable sharing can occur), but also cyclic structures where,
for example, an output of an operation can be fed back as an input.
As we shall see (Theorem 3.3), there is a deep connection with the
theory of special Frobenius monoids; for this reason, we shall refer
to these discrete cospans as Frobenius termgraphs.

Definition 3.2 (Frobenius termgraphs). The PROP FTermΣ of
Σ-Frobenius termgraphs is the full subcategory of Cospan(HypΣ)
with objects the discrete hypergraphs. Discrete hypergraphs are in
1-1 correspondence with the objects of F, i.e. the natural numbers,
whence FTermΣ is a PROP for the same reasons as Cospan(F).

The terminology Frobenius termgraph is justified by the follow-
ing algebraic characterisation of FTermΣ.

Theorem 3.3. FTermΣ
∼= SΣ + Frob

Theorem 3.3 is crucial for our exposition as it serves as a bridge
between algebraic and combinatorial structures. Indeed, it provides
a presentation, by means of generators and equations, for the PROP
FTermΣ: the disjoint union of the SMTs of SΣ and Frob.

We remark that Theorem 3.3 generalises results already appear-
ing in the literature (see e.g. [34, Proposition 3.2] and [17, Theorem
12], and the references therein) which however dealt only with op-
erations of type 1→ 1. Here we consider operations with arbitrary
(co)arities, thereby allowing us to deal with arbitrary SMTs.

Proof of Theorem 3.3. It suffices to verify that FTermΣ satisfies
the universal property of coproducts in PROP. We begin by
defining morphisms

bb·cc : SΣ → FTermΣ and ψ : Frob→ FTermΣ.

Since SΣ is the PROP freely generated by an SMT with no equa-
tions, it suffices to define bb·cc on the generators: for each o : n →
m in Σ, we let bbocc be the following cospan of type n→ m.

o1
0

1
0

n � 1 m � 1

(5)

For the definition ofψ, recall the isomorphism Frob
∼=−→ Cospan(F)

of Example 2.1.(b). We let ψ be its composition with the trivial
embedding Cospan(F)→ FTermΣ given by regarding a set as a
discrete graph.

Now, given a PROP X and morphisms α : SΣ → X, β :
Frob → X we must show that there exists a unique morphism

3 Since F has pushouts, so does Hyp, where they are calculated pointwise.
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υ : FTermΣ → X making the following diagram commute.

SΣ

α ''NNNNNNNNN
bb·cc // FTermΣ

υ

��

Frob
ψoo

βwwnnnnnnnnn

X

(6)

To do this, we decompose—in an essentially unique way—any
Frobenius termgraph into an expression where all the basic con-
stituents lie in the image of φ and ψ. This is possible because we
are working with discrete cospans: all of the action happens on the
nodes, that intuitively serve as coat-hangers for the edges.

Let n
f−→ G

g←− n be in FTermΣ. Then G = (N,E, τ) where
N is the ordinal of nodes, E =

⋃
k,l∈NEk,l is a family of (typed)

hyperedges and τ : E → Σ is the type morphism. Since n,m are
discrete, we actually have a cospan of functions n

f−→ N
g←− m.

Given a hyperedge e ∈ E, bbτecc is as illustrated in (5). Define

ñ
i−→ Ẽ

o←− m̃ :=
⊕
e∈E

bbτecc. (7)

Intuitively, Ẽ is the collection of the hyperedges of G, but dis-
connected, and ñ and m̃ are the finite ordinals of all the inputs
and outputs, concatenated. There are the induced canonical maps
j : ñ → N and p : m̃ → N that send a “disconnected” input
or output node to the corresponding node in N . Now consider the
following composition of three arrows in FTermΣ.

N N ⊕ Ẽ N

n

f @@����
N + ñ

[id j]ccGGGGG
id⊕i

99rrrrr
N + m̃

id⊕o

ffMMMMM
[id p] ;;wwwww

m

g^^>>>> (8)

It is straightforward to compute the resulting pushouts in F and
conclude that we obtain n

f−→ G
g←− m as a result. Since the

constituents of (8) are all in the image of φ and ψ, this means that
we can define υ on G. This assignment is well-defined since the
fact that X is symmetric monoidal means the order of the edges in
Ẽ is immaterial. Moreover, it is unique since the decomposition is
unique up-to permutation of Ẽ.

We are interested in FTermΣ as a combinatorial universe for
rewriting in SΣ. In the remainder of this section we thus focus on
the coproduct injection bb·cc : SΣ → FTermΣ. Our first obser-
vation is that bb·cc is faithful; the proof of the following relies on
properties of coproducts in PROP.

Proposition 3.4. bb·cc : SΣ → FTermΣ is faithful.

We conclude this section with a combinatorial characterisation
of the image of bb·cc. A preliminary series of definitions introduces
the relevant hypergraph notions: monogamicity and acyclicity.

Definition 3.5 (Degree of a node). The indegree of a node v in
hypergraphG is the number of pairs (h, i) where h is an hyperedge
with v as its i-th target. Similarly, the outdegree of v is the number
of pairs (h, j) where h is an hyperedge with v as its j-th source.

Definition 3.6 (Monogamicity). Givenm
f−→ G

g←− n in FTermΣ,
let in(G) be the image of f and out(G) the image of g. We say that
G is monogamous if f and g are mono and, for all nodes v of G,

the indegree of v is

{
0 if v ∈ in(G)

1 otherwise.

the outdegree of v is

{
0 if v ∈ out(G)

1 otherwise

Example 3.7. The following three cospans are not monogamous.

1 −→ ←− 1 1 −→ ←− 1 1 −→ ←− 1.

Remark 3.8. There is a compact characterisation of monogamicity
that uses (8): the factorised cospan is monogamous precisely when

[f p] : n+ m̃→ V and [g j] : m+ ñ→ V

are bijections.

The notion of directed path from a node v to v′ in a directed
graph generalises to (directed) hypergraphs in the obvious way.

Definition 3.9 (Acyclicity). A hypergraph G is directed acyclic if
there exists no directed path from a node to itself. We also call a
cospan n −→ G←− m directed acyclic if the property holds for G.

Definition 3.10 (Convex sub-hypergraph). A sub-hypergraphH ⊆
G is convex if, for any nodes v, v′ inH and any directed path p from
v to v′, every hyperedge in p must also be in H .

Lemma 3.11. Let m → G ← n be a monogamous directed
acyclic cospan and L a convex sub-hypergraph. Then there exists
k ∈ N and a unique cospan i→ L← j such that G factors as:

(m −→ C1 ←− i+k) ;

(
k

id−→ k
id←− k

)
⊕

(i −→ L←− j)
; (j+k −→ C2 ←− n) (9)

where all cospans in (9) are monogamous directed acyclic.

Theorem 3.12. n −→ G←− m in FTermΣ is in the image of bb·cc
if and only if n −→ G←− m is monogamous directed acyclic.

Proof. The only if direction follows by induction on d such that
bbdcc = n −→ G ←− m. For the converse direction, we can reason
by induction on the number of hyperedges in G. If G does not
contain any, then monogamicity and acyclicity imply that n −→ G
and m −→ G are bijections, so that n −→ G ←− m is in the
image of an arrow only consisting of identities and symmetries. If
G consists of a single hyperedge e, it has a Σ-type τe ∈ Σ. Because
n −→ G←− m is monogamous directed acyclic, τe : n→ m as an
arrow of SΣ and bbo : n→ mcc = n −→ G←− m.

For the inductive step, pick any hyperedge e ofG. By monogam-
icity and acyclicity, bbτecc is a convex sub-hypergraph ofG. Hence,
by Lemma 3.11, n −→ G←− m factors as (9), with L being bbτecc.
The lemma guarantees that all the above cospans are monogamous
directed acyclic. Therefore, by the inductive hypothesis they are in
the image of bb·cc, and so the same holds for n −→ G←− m.

4. DPO rewriting on Frobenius termgraphs
In this section, we exploit Theorem 3.3 to establish an equivalence
between rewriting in a PROP and DPO rewriting. The definition
below, due to Ehrig and König [14], extends the classical DPO
approach [15] with the “interface” m.

Definition 4.1 (DPO). A DPO rule is a span L ←− j −→ R
in HypΣ where j is discrete. A DPO rewriting system R is a
set of DPO rules. Given d, e : 0 → m in FTermΣ, namely
d = 0 → G

p←− m and e = 0 → H
q←− m, we write that d  R e

if there exists L ←− j −→ R in R and cospan j → C ← m s.t. the
diagram (in HypΣ) below commutes and the squares are pushouts.

L

��

j

��q p

oo // R

��
G Coo // H

m

OO
q

99sssssp

eeKKKKK
(10)
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The arrow L → G is called a match of L in G. See Examples 4.8
and 4.10 for illustrations of DPO rewriting.

The first step in relating PROP and DPO rewriting in HypΣ is
observing that the latter coincides with ground PROP rewriting.

Definition 4.2. A ground rewriting system on a PROP X is a
collection of rules 〈l, r〉 : (i, j) with i = 0.

Lemma 4.3. Let R be a ground rewriting system on a PROP X
and d, e : 0 → m be in X. Then d ⇒R e if and only if there are
〈l, r〉 : (0, j) ∈ R and c : j → m such that

d = l ; c and e = r ; c. (11)

Proof. Suppose that d ⇒R e. By definition d is as shown below
left. It is equal to the diagram below right by the equations of
SMCs. We define the context c : j → m as the dashed diagram.

c1
m

c2l

k

j

c1

mc2l

k

j

Similarly, we have e = r ; c. The other direction is immediate.

Observe that there is a 1-1 correspondence between ground
systems and DPO systems in FTermΣ. Indeed, any DPO rule
L ←− j −→ R uniquely induces, by initiality of 0 in HypΣ, a
ground rule 〈0→ L←− j, 0→ R←− j〉, and vice versa. Moreover,
this correspondence lifts to the rewrite relations.

Theorem 4.4. Let R be a ground rewriting system in FTermΣ.
Then, d⇒R e iff d R e.

Proof. The conditions in (10) are the same as those on (11): it is
enough to take c in (11) as j → C ← m in (10) and recall that
composition in FTermΣ is defined by pushout.

This correspondence can be further extended to arbitrary—
i.e. not necessarily ground—rewriting systems. Indeed, in PROPs
freely generated by an SMT equipped with a chosen Frobenius
structure, for any rewriting system there exists an equivalent ground
one. The idea is to bend a rule 〈l, r〉 of type n → m into a ground
rule of type 0→ n+m by exploiting the compact closed structure
introduced in Section 2. To make this intuition formal, for any
morphism d : n→ m, we define pdq : 0→ n+m as

d
n mn

n

.

Then, for a systemR, we define the ground rewrite system pRq as

{〈plq, prq〉 | 〈l, r〉 ∈ R}
which, as stated in the following, is equivalent toR.

Lemma 4.5. LetR be a rewriting system on a PROP freely gener-
ated by an SMT with a chosen special Frobenius structure. Then

d⇒R e iff pdq⇒pRq peq.

Proof. For the left-to-right direction, let 〈l, r〉 : i → j be the
applied rule. That means, for some c1, c2 and k,

d
n m

= l
c2c1

n
k

ji
m

n me = c2c1
n

k

ji
m

r . (12)

Now, using the compact-closed structure and the laws of SMCs we
can transform pdq as

d
n mn

n

=
l c2c1

k

ji
mn

n

n

=
i

c1
? n

j

k

c2
m

l
(13)

= i

c1

c2

?

m

ni

j

k

l
.

There is an analogous computation for peq exploiting (12).

en m
n

n

= i

c1

c2

?

m

ni

j

k

r
(14)

To conclude, observe that the outcome of (13) rewrites into the
outcome of (14) with the rule 〈plq, prq〉 : i→ j.

For the converse direction, suppose that pdq ⇒pRq peq via
〈plq, prq〉 : i→ j. By Lemma 4.3 this means that, for some c,

mpdq
n

= l

i

i j mc
n

(15)

m

n

peq =
i

i j mc
n

r . (16)

Now, by (15) we can suitably shape d as follows using the
compact-closed and symmetric monoidal structure.

d
n m

=
n

n

mpdq

=
l

i

i j

n

n

mc (17)

= l

i

i j
n

n

mc
n

We act analogously on e exploiting (16).

n me =
i

i j
n

n

mc
n

r (18)

The result of (17) is in the shape d1 ; (id⊕r) ; d2 and that of (18) is
of the form d1 ; (id⊕r) ; d2, whence d⇒R e via rule 〈l, r〉.

We now combine the insights provided by Theorem 4.4 and
Lemma 4.5 into the following theorem, which gives a tight corre-
spondence between rewriting in SΣ + Frob and DPO rewriting in
FTermΣ. First, given a rewriting systemR on SΣ+Frob, we de-
fine the system Φ(R) on FTermΣ as {〈Φ(l),Φ(r)〉 | 〈l, r〉 ∈ R}
where Φ: SΣ + Frob→ FTermΣ is the iso of Theorem 3.3.

Theorem 4.6. LetR be any rewriting system on SΣ+Frob. Then,

d⇒R e iff Φ(pdq) Φ(pRq) Φ(peq) .

Proof. Immediate from Lemma 4.5 and Theorems 3.3, 4.4.

A wide corpus of theorems, algorithm and tools has been devel-
oped in the last decade for DPO rewriting on adhesive categories
[26]. These can be reused to deal for rewriting SMTs equipped with
a Frobenius structure because of Theorem 4.6 and the following.

Proposition 4.7. HypΣ is adhesive.
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Proof. The PROP F of functions is adhesive for the same reasons
that Set is. Adhesivity of HypΣ then follows since it is a functor
category over F, see [26, Prop. 3.5].

The theory of adhesive categories says that pushout comple-
ments for a DPO rewriting as in (10) are uniquely defined when
the arrow j → L is mono. However, this situation is not enforced
by our approach, as shown by the following example.

Example 4.8. Consider Σ = {e1 : 0 → 1, e2 : 1 → 0, e3 : 1 →
1} and a rewriting systemR with the rule 〈 , e3 〉 : (1, 1).
In FTermΣ, it is captured by the DPO rule

0, 1 0
1

oo // e3
0 1

The left leg of the span is not mono, and therefore pushout comple-
ments are not necessarily unique for the application of this rule, as
testified by the following two DPO rewriting steps.

0, 1

��

0
1

q
g ��

oo //

p

e3
0 1

��
e2e1 e1 e2

0 1oo // e1 e2e3

(19)

0, 1

��

0
1

q
g′ ��

oo //

p

e3
0 1

��

e2e1 e1 e2
01oo //

e3

e2e1

(20)

The different outcome is due to the fact g maps 0 to the leftmost
and 1 to the rightmost node, whereas g′ swaps the assignments.
Note that, as guaranteed by Theorem 4.6, both rewriting steps can
be mimicked at the syntactic level in SΣ + Frob. In the second
case, one needs to use the compact closed structure.

e1 e2 ⇒R e3e1 e2

e1 e2 =
e1

e2
= e1 e2

⇒R e1 e2

e3

Example 4.9. A number of theories contain special Frobenius
structures, see e.g. [3, 5, 10]. Our results mean that each theory can
be seen as a smaller collection of DPO rewriting rules (cf. Propo-
sition 2.3) on the associated hypergraphs, since a chosen Frobenius
structure is implicitly handled by the combinatorial representation.

For example, consider the theory of interacting bimonoids
from [5]. In that paper, there are two special Frobenius structure,
one “black” (where the monoid and comonoid structures are drawn
as in Fig. 2) and one “white” where the the generators are drawn
as those in Example 2.1.(c). Let us consider the the black special
Frobenius structure as the chosen one. Now, seen as hypergraphs,
instead of eight generators, it suffices to consider two hyperedges
that serve as the multiplication/comultiplication and unit/counit:

The two indicative steps below illustrate the translation from SMT
equations to DPO rules.

=  00

11

22 33

22

33

00

11

00
11

33
22

=  1100 11
0000

11

Example 4.10. In a similar fashion we would like to study the
rewriting theory of the SMTs introduced in Example 2.1, in par-
ticular the case of non-commutative bimonoids (Ex.2.1.(c)). First,
we orient the equations (3) from left to right, creating a rewrit-
ing system RNB. We then obtain the ground rewriting system
pRNBq by bending each rule in RNB and, finally, via the trans-
lation Φ: SΣ + Frob

∼=−→ FTermΣ we obtain the DPO system
Φ(pRNBq) — see Figure 3. In Section 6, we will show termination
of Φ(pRNBq). For this to work, however, we first need a rewriting
procedure that is sound and complete for rewriting in SMTs such
as NB which do not have additional special Frobenius structure
required by Theorem 4.6. This is the content of the next section.

5. The general symmetric monoidal case
In the general case, where there is no chosen special Frobenius
structure, we can still use FTermΣ for rewriting, but we need to
careful about how we find legal contexts. For instance, the context
in (20) relies on the extra Frobenius structure being present.

The remit of this section is to tailor a suitable restriction of
DPO rewriting that adheres to rewriting for an SMT as closely as
ordinary DPO rewriting corresponds to rewriting in an SMT with a
chosen Frobenius structure (Theorem 4.6).

Before the formal developments, let us sketch the intuition.
Given a rewriting system R, we are interested in the shape of
contexts for pRq-rewriting in SΣ + Frob ∼= FTermΣ that
“look like” legal contexts forR-rewriting in SΣ. By Lemma 4.5, a
generic context in SΣ + Frob for a rule 〈plq, prq〉 has shape

l
j

i

m

n

c

Now, this context corresponds to a legal one in SΣ only when we
can find c1, c2 in SΣ such that

m

n

c
i

j
=

c1

c2

?

m

ni

j

k . (21)

Indeed, in that case, we are in presence of the bent version of a legal
context in SΣ for rule 〈l, r〉 (cf. (13)):

i

c1

c2

?

m

ni

j

k

l
=

l c2c1

k

ji
mn

n

n

Our task is to characterise legal contexts like (21). We pro-
ceed in two steps. First, we introduce the notion of boundary com-
plement (Definition 5.1), which rests on monogamicity (Defini-
tion 3.6). It clarifies the role that interfaces i, j,m, n play in the
legal context (21): j, n serve as inputs and i, m serve as outputs of
its un-bent version. Contrary to arbitrary contexts in FTermΣ (cf.
Example 4.8), boundary complements are uniquely defined up-to
iso when they exist (Proposition 5.2). The second notion is convex
matching (Definition 5.4), which enforces that the only communi-
cation between c1 and c2 happens along the interface k, cf. (21).

A convex matching implies the existence of a unique boundary
complement as context: we call this situation a convex a DPO
rewriting step (Definition 5.5). The main result is the adequacy of
convex DPO rewriting for rewriting in an SMT (Theorem 5.6).

Definition 5.1 (Boundary complement). For monogamous cospans
i
a1−→ L

a2←− j and n
b1−→ G

b2←− m, and a mono f : L → G, a
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pushout complement as (†) below

L

f

��
(†)

i+ j
a:=[a1,a2]oo

c:=[c1,c2]

��q
G L⊥g

oo

n+m

[b1,b2]

hhPPPPPPPPPPPP
[d1,d2]

OO�
�
�

is called a boundary complement if c is mono and there exists
d1 : n → L⊥ and d2 : m → L⊥, making the above triangle
commute, such that

j + n
[c2,d1]−−−−→ L⊥

[c1,d2]←−−−− m+ i (22)

is a monogamous cospan.

Proposition 5.2. Boundary complements in HypΣ are unique,
when they exist.

As mentioned, the notion of boundary complement does not
tell the whole story about which matches in FTermΣ are legal
in SΣ. The missing requirement is that c?1 and c2 in (21) can only
communicate through interface k, which connects outputs of c1 to
inputs of c2. The following counterexample shows that, even in
presence of a boundary complement, linking outputs of c2 to inputs
of c1 may still yield an illegal rewriting step in SΣ.

Example 5.3. Fix Σ = {e1 : 1→ 2, e2 : 2→ 1, e3 : 1→ 1,
e4 : 1→ 1} and consider the following rewriting rule in SΣ.

〈 e1 e2
,

e4

e4
〉 : (2, 2) (23)

Left and right side are interpreted in FTermΣ as cospans

2 −→ e1 e2 ←− 2 2 −→
e4

e4
←− 2.

We introduce another diagram c : 1 → 1 in SΣ and its interpreta-
tion in FTermΣ:

e1 e2
e3 � bb·cc // 1 −→ e3 e2e1 ←− 1.

Now, the left-hand side of the rule (23) cannot match in c. However,
their interpretation yields a DPO rewriting step in FTermΣ as
below, where f maps grey nodes to grey nodes.

e1 e2

0

1

2

3

f
��

2 + 2oo

��

// e4

e4

0

1

2

3

��
e3e1 e2

1
2 0

3 e3
2 0

1 3
oo // e3e4 e4

1 2 0 3

Observe that the leftmost pushout above is a boundary complement:
the input-output partition is correct. Still, mimicking this rewriting
step in SΣ fails because the context does not fit the legal shape (21).
This is most evident by showing how matching in bbccc appears
under the isomorphism FTermΣ

∼= SΣ + Frob:

e1 e2

e3 =:
c1

c2

?

l
2

2

2

The diagrams l, c1 and c2 on the right side are defined in terms of
the dotted squares on the right. The difference with the prescription
of (21) is apparent: the topmost output interface of c2 connects to
the bottommost input interface of c1. For this reason, we cannot
un-bend our context to obtain a legal matching in SΣ.

In order to rule out situations (23) and complete the characteri-
sation of legal contexts like (21), we recover the notion of convex-
ity (Def. 3.10) to introduce convex matchings. The intuition is that
a convex matching cannot leave “holes” as f does in Example 5.3.

Definition 5.4 (Convex matching). We call m : L→ G in HypΣ

a convex matching if it is mono and its image is convex.

Lemma 3.11 and Theorem 3.12 are testimony to the importance
of the convex matchings: given such a match, it is always possible
to recover the appropriate context in SΣ. We now combine the
notions of boundary complement and of convex matching to tailor a
family of DPO rewriting steps which only yield legal SΣ-rewriting.

Definition 5.5 (Convex DPO rewriting step). Let R be a DPO
rewriting system. A convex DPO rewriting step

D
0

44iiiii n+m

[q1,q2]kkXXXXX VR E
0

44iiiii n+m

[p1,p2]kkXXXXX

happens when there is a rule L
[a1,a2]←−−−− i+ j

[b1,b2]−−−−→ R inR such
that the following diagram in HypΣ commutes

L

f
��

i+ j

��q p

[a1,a2]oo [b1,b2] // R

��
D Coo // E

n+m

OO

[p1,p2]

99ttttttt[q1,q2]

eeKKKKKKK

(24)

the two squares are pushouts, and the following conditions hold:

• f : L→ G is a convex matching;
• in the leftmost pushout i+ j → C is a boundary complement.

Note that the relationVR is contained in R (Definition 4.1),
the difference being that the leftmost pushout has to rest on a
convex matching and a boundary complement.

We have now all the ingredients to prove the adequacy of convex
DPO rewriting with respect to rewriting in SΣ.

Theorem 5.6. LetR by any rewriting system on SΣ. Then,

d⇒R e ⇔ Φ(pdq)VΦ(pRq) Φ(peq).

Proof. For the only if direction, by Theorem 4.6 d ⇒R e implies
Φ(pdq)  Φ(pRq) Φ(peq). It is not difficult to check that the
argument actually constructs a convex DPO rewriting step, thus
yielding the desired statement.

We now turn to the converse direction. Let

Φ(pdq) =:
D

0

AA��
n+m

[q1,q2]ddIII Φ(peq) =:
E

0

AA��
n+m

[p1,p2]ddIII .

Our assumption gives us a diagram as in (24), with application
of a rule 〈Φ(plq),Φ(prq)〉 in Φ(pRq). We now want to show
that d ⇒R e with rule 〈l, r〉, say of type (i, j). Now, because
n

q1−→ D
q2←− m = bbdcc, it is monogamous directed acyclic by

Theorem 3.12. Since the matching f : L → D in (24) is convex,
Lemma 3.11 yields a decomposition of n

q1−→ D
q2←− m in terms

8 2016/4/29



of monogamous directed acyclic cospans:

(n −→ C1 ←− i+k) ;

(
k

id−→ k
id←− k

)
⊕

(i −→ L←− j)
; (j+k −→ C2 ←− m) .

Applying again Theorem 3.12 we obtain c1, c2 in SΣ such that

bbc1cc = n −→ C1 ←− i+ k bbc2cc = j + k −→ C2 ←− m.

By functoriality of bb·cc, bbdcc = bbc1 ; (id⊕ l) ; c2cc and, since
bb·cc is a faithful prop morphism, d = c1 ; (id ⊕ l) ; c2. Thus we
can apply the rule 〈l, r〉 on e, which yields e = c1 ; (id ⊕ r) ; c2
such that d ⇒R e. We can conclude that bbecc = n

p1−→ E
p2←− m

because boundary complements are unique (Proposition 5.2).

6. Case study: non-commutative bimonoids
Thanks to Theorem 5.6, we can now return to Example 4.10 and
study the DPO rewriting theory of non-commutative bimonoids
(Example 2.1.(c)), shown in Figure 3. As a proof of concept, we
focus on proving termination for this system. First, we construct a
metric based on two kinds of paths and a weight.

• A U-path is a path p from an input or an η-hyperedge to an
output or an ε-hyperedge.

• An M-path is a path from a µ-hyperedge to a ν-hyperedge.

A µ-tree with root x is a maximal tree of µ-hyperedges with
output x. Similarly, a ν-tree with root x is a maximal tree of ν-
hyperedges with input x.

For a µ-hyperedge h, let the L-weight `(h) be the size of the µ-
tree whose root is the first input of µ. Similarly, for a ν-hyperedge,
let `(h) be the size of the ν-tree whose root is the first output of h.
Let `(h) = 0 otherwise and:

G �L H ⇐⇒
∑
h∈EG

`(h) ≤
∑
h∈EH

`(h).

Next, define orders �U , �M , �µ, �ν based on counting the num-
ber of U-paths, M-paths, µ-hyperedges, and ν-hyperedges, respec-
tively. Armed with the five orders, we define the following lexico-
graphic ordering that combines them as its components:

� := lex(�U ,�M ,�µ,�ν ,�L) (25)

Clearly, � is well-founded, thus we can conclude as follows.

Theorem 6.1. NB is strictly decreasing in �, thus it terminates.

Proof. We argue rule-by-rule, showing that each is strictly decreas-
ing in one of the orders from (25), and non-increasing in every order
that is prior in the lexicographic ordering.

Since every rule NBj has a unique path from every input to
every output on the LHS and RHS, applications of these rules have
no effect on paths which start and finish outside of their image.
Hence, for each rule, we only need to consider paths which start or
terminate in the image of the LHS.

NB1 has no effect on η or ε hypereges, hence no effect on �U .
No M-path can terminate in NB1 and any M-path originating on
NB1 must exit through the unique output. Since there are precisely
two µ-hyperedges in the LHS and RHS, there is a 1-to-1 correspon-
dence between M-paths before and after applying the rule. NB1

also leaves the number of µ and ν hyperedges fixed, so we only
need to show it strictly decreases �L. Applying the rule has no ef-
fect on the L-weight of any µ-hyperedges outside of the image of
the LHS. Suppose there are µ-trees of size a, b, c connected to in-
puts 0, 1, 2 of the LHS, respectively. Then, the L-weight of the two
µ-hyperedges on the LHS are a and a+ b+ 1, whereas on the LHS

they are a and b. Hence �L is strictly decreased. NB2 follows via
a symmetric argument.

Since NB3–NB6 and NB10 remove η- and ε-hyperedges from
the hypergraph, they will strictly decrease the number of U-paths.

For NB7, no U-path can terminate in the LHS, and any U-path
starting in LHS must exit through one of the two outputs. Hence
it corresponds to a unique U-path exiting the RHS. M-paths are
unaffected, as is the number of µ-hyperedges. However, the number
of ν-hyperedges is strictly decreased, so NB7 strictly decreases�ν .
The argument for NB8 is again symmetric.

NB9 has no η or ε-hyperedges in its LHS or RHS, so it leaves
the number of U-paths fixed. Consider an M-path which enters
the LHS from the left. It enters either from input 0 or input 1,
hence it corresponds to a unique M-path entering the RHS. We
can argue similarly for M-paths exiting on the right. Hence, the
only M-path left to consider is the one from the µ-hyperedge to the
ν-hyperedge in the LHS, which is eliminated. Thus NB9 strictly
reduces �M .

Hence, the combinatorial presentation gives a short and simple
proof of termination. We conjecture that one can construct a simi-
larly simple proof of confluence, via analysis of critical pairs. There
is an existing notion of critical pair in the DPO literature, of which
NB rewrite system has 24 (all of which are ‘joinable’). There are,
however, subtleties arising in critical pair analysis for DPO rewrite
systems [32] and general rewriting for SMCs [27]. We leave devel-
opment of a comprehensive theoretical framework for critical pair
analysis on convex DPO rewrite systems as future work.

7. Conclusions
Our approach rests on the bridge between algebraic and combinato-
rial descriptions of string diagrams, in the form of the isomorphism
SΣ + Frob ∼= FTermΣ. We used it to spell out two fundamen-
tal ways in which rewriting in symmetric monoidal categories and
DPO hypergraph rewriting are compatible.

The first is that we can use DPO to rewrite SMCs generated
by theories containing a special Frobenius structure. Increasingly
theories of that kind are appearing in diverse research threads: they
play a role in the compositional study of Petri nets [8, 33, 39], in
the algebra of concurrent connectors [7], in signal flow diagrams [2,
4, 6, 16] and in the ZX-calculus [10, 11], just to mention a few
examples. Our approach enables the use of the technology that has
been developed for DPO in the last decades in those areas.

The second approach – convex DPO rewriting – allows to
rewrite in categories presented by arbitrary symmetric monoidal
theories. Our results lay the theoretical foundations for the devel-
opment of comprehensive tool support for reasoning about rewrit-
ing in SMCs. Emerging tools such as Globular [1] do not factor in
the symmetric structure, whereas Quantomatic [24] relies on addi-
tional structure, requiring for example that the ambient category be
traced. Our theory overcomes these limitations. Furthermore, under
the encoding of hypergraphs as string graphs (the underlying theory
used by Quantomatic), it is now possible to extend Quantomatic to
support rewriting in a generic SMC. We leave the algorithmic and
implementation details as future work.

Just as in term rewriting, commutative operators pose a interest-
ing problem: naively encoding commutativity in a rule immediately
yields a non-terminating system. We leave this issue as future work,
but preliminary results suggest that the commutativity of some op-
erators can be effectively encoded in the graphical structure.

From a theoretical viewpoint, we intend to build on this work to
investigate the relationship between distributive laws of PROPs [25,
42] and rewriting. Compatibility conditions expressed by a distribu-
tive law come with an orientation, making natural to think of them
as rewriting rules. Just as in our approach, these conditions are de-
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Figure 3. DPO Rewriting system Φ(pRNBq) — cf. Example 4.10.
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fined modulo the laws of SMCs: it thus appears promising to ex-
plore the correspondence between the two perspectives.
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