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Abstract. Stochastic rule-based models of networks and biological sys-
tems are hard to construct and analyse. Refinements help to produce
systems at the right level of abstraction, enable analysis techniques and
mappings to other formalisms. Rigidity is a property of graphs intro-
duced in Kappa to support stochastic refinement, allowing to preserve
the number of matches for rules in the refined system. In this paper: 1)
we propose a notion of rigidity in an axiomatic setting based on adhe-
sive categories; 2) we show how the rewriting of rigid structures can be
defined systematically by requiring matches to be open maps reflecting
structural features which ensure that rigidity is preserved; and 3) we
obtain in our setting a notion of refinement which generalises that in
Kappa, and allows a rule to be partitioned into a set of rules which are
collectively equivalent to the original. We illustrate our approach with
an example of a social network with dynamic topology.

1 Introduction

Graph transformations are a natural model for complex evolving networks in-
cluding software architectures, social or technical networks, and chemical or bi-
ological systems. To address domain-specific requirements, modelling techniques
have to tailor their notations, expressivity and analysis tools to a chosen class
of problems. While benefiting from concepts and results of the general theory,
domain-specific techniques can offer superior capabilities in the chosen domain.
In order to avoid reinventing variants of the same concepts, an axiomatic ap-
proach to domain-specific graph transformation approaches is advisable.

Kappa [8], a stochastic rewriting approach for graphs representing molecu-
lar structures, is a case in point. For a particular class of (hyper)graphs and
finely tuned constraints on rules and matches, its techniques for refinement,
simulation and analysis [5,9] are significantly more powerful than those for stan-
dard (stochastic) graph transformations. An understanding of its relation with
mainstream graph transformation is currently emerging (see also Sect. 6). The
particular aim of the paper is to develop an axiomatic approach enabling the
transfer of Kappa’s refinement technique into transformation systems based on
adhesive categories. This will allow a more general view of the domain-specific



constraints enabling Kappa’s capabilities, which are at the heart of its success
with biologists.4

One fundamental concept is stochastic rule refinement which, apart from a
top-down method of developing models, enables techniques such as the thermo-
dynamic approach [6] and the derivation of differential equations [14,7]. Refine-
ments allow a rule to be replaced by a set of extended rules, jointly equivalent
(in the sense of a stochastic bisimulation) to the original. We investigate the
conditions under which Kappa-like refinement is possible in an adhesive setting.
Alongside we present a model, based on typed attributed graphs, of a social
network [11] as an interesting application for stochastic graph transformation.

The paper is organised as follows. We start with our general double-pushout
setting: an adhesive ambient category of structures and its subcategories of pat-
terns (e.g., left- and right-hand sides of rules) and states (objects to which the
rewriting eventually applies). In Sec. 3 we turn to the fundamental notion of
rigidity. This is a property of objects similar to the absence of V-structures in
graphs [10], where no node is allowed to carry two or more edges unless they are
distinguishable by their types or attributes, or those of their target nodes. We
show how rigidity can be achieved canonically by placing negative constraints
on structures. In Sec. 4 we show how to ensure that these negative constraints
(and others) are invariant under rewriting, leading to the systematic extraction
of match constraints based on a theory of matches as open maps [16]. With this
material in place, we turn to rule refinements, generalising the notion of growth
policy used in Kappa to specify them and illustrate this by a refinement of the
social network model which is thermodynamically consistent in the sense of [6].

2 Structures, Patterns, and States

A type graph defines a structured vocabulary for instance graphs. However, de-
pending on the interpretation of instances as states, patterns or arbitrary struc-
tures, they are subject to further constraints. States are the most constrained:
negatively, by stating the absence of certain structures, or positively, requiring
their presence. Patterns forming, e.g., the left- and right-hand sides of rules, are
subject to negative constraints only, because they represent fragments of states,
not deemed to be complete. Structures live in an adhesive ambient category for
states and patterns. A category is adhesive [18] if it has pullbacks as well as
pushouts for all pairs of morphisms where one is a mono, and where all such
pushouts enjoy the van Kampen property. An example is the category of typed
attributed graphs [12].

Assumption 1 We assume an adhesive category C of structures equipped with

4 The language was featured in Nature both in July and November 2009, and hailed as
one of the future “mainstream components of modern quantitative biology” and the
“harbinger of an entirely new way of representing and studying cellular networks”
in Nature Methods in 2011.



1. a full subcategory PC of C, called pattern category, closed under subobjects:
for a monomorphism A→ B ∈ C, B ∈ |PC| implies A ∈ |PC|.

2. a full subcategory SC ⊆ PC called state category.

Due to 1, if a structure satisfies the constraints for patterns, all its substruc-
tures do. That means, such constraints are negative, demanding the absence of
structure, not their presence. SC is defined by additional constraints on objects.

Remark 1. It follows that PC has pullbacks along pairs of morphisms where
at least one is mono. They are constructed in C and, by closure of PC under
subobjects, the pullback object is in PC.

Rules are spans of monomorphisms. Transformations follow the double-pushout
approach, with monomorphisms as matches [13]. We use a model of socially-
driven evolution of opinions [11] to illustrate our concepts.

Example 1 (typed attributed graph transformation). Our ambient category C is
that of attributed graphs over the type graph [12] in the top left of Fig. 1. The
model features agents who vote for one of two parties and can be connected
to other agents. We represent votes as node attributes 0, 1. Connections are

Fig. 1. type graph (top left), instance graph (top right) and rules in concrete syntax,
where l, k, j ∈ {a, b, c} (bottom)

identified by labels a, b, c on the sites they are attached to. Once restricted to
rigid graphs, this will limit the number of an agent’s connections to 3.

In the lower part of Fig. 1 rules are given in a condensed Kappa-like notation.
Vote attributes are shown as labels inside Agents. Sites connected to Agents are
shown by their labels only. Each Site label is attached to exactly one Agent,
leaving agent edges implicit. Link edges are assumed to be symmetric, shown
as undirected. To compare, the top right of Fig. 1 shows the left-hand side of
rule p as full instance graph (omitting edge types, which can be inferred from
sources and targets). Rules are given by rule schemata, e.g., p(l, k) represents all



rules obtained by choosing for l, k any labels from a, b, c. That means, l, k are
not variables in the sense of attributed graphs, to be instantiated by matches,
but metavariables to express rule schemata.

Rules model the coevolution of votes and connections: if two connected agents
hold different votes, either one is converted to the opinion of the other (rules
p, q), or the link between them is broken and one makes a new connection to
an agent of the same opinion (rules r, s). We also allow spontaneous change of
opinion (rules c, d).

We define patterns and states by constraints on structures. A positive con-
straint is a mono c : P → Q, satisfied by an object G if for every mono P → G
there is a mono Q→ G which makes the triangle commute. A negative constraint
is an object P , satisfied by G if there is no mono P → G. In Assumption 1, the
axiomatic treatment abstracts from the way patterns and states are specified,
but constraints will be used in our running example. Negative ones play a role
in ensuring rigidity.

Example 2 (constraints). Pattern and state constraints are given in the top and

Fig. 2. Constraints on patterns (top) and states (bottom).

bottom of Fig. 2, resp. Patterns are subject to negative constraints, expressed
by forbidden substructures. They include V-structures, parallel edges and loops,
i.e., V-S2A, V-S2S: no Site is connected to two Agents nor Sites, V-A2S: no
Agent is connected to two Sites with the same label, V-vote: no Agent has two
vote attributes, V-lab: no Site has two labels and PAR-S2A, PAR-S2S, LOOP-
S2S: there are no parallel edges or loops. The pattern category PC is the full
subcategory of C satisfying the negative constraints.

States SC form the full subcategory of PC defined by constraints SYM:
link edges are symmetric, S2A: every Site is connected to an Agent, S-lab: each
Site has a label attribute, A-vote: each Agent has a vote, A2S: for all labels
l ∈ {a, b, c}, each Agent has a Site labelled l. As before, l is a metavariable
expanding A2S into three concrete constraints.



For the model presented we are interested in questions such as: What is the
evolution over time of the number of agents holding certain votes, or of edges
connecting agents of the same vs. those of different votes? What are their re-
sulting long-term ratios? How do these correlate to initial conditions and rates
assigned to rules? Kappa provides techniques to explore such questions by ex-
tracting differential equations (done manually in [11]) or deriving rates for rules
from long-term probabilities of certain patterns. Our aim is to open up these
techniques to a wider range of rewriting approaches. The notions in the follow-
ing section provide the prerequisite.

3 Rigidity

The analysis techniques mentioned above use a notion of rule refinement that
preserves the dynamics of the system based on a property of structures called
rigidity. This helps to ensure that the number of matches for a set of extended
rules is the same as for the original.

Assumption 2 We assume that C is extensive [1]—that is, C has binary co-
products, which are disjoint and stable under pullback5.

A1

��

// B1

��
A

h // B
ϕ // B1 +B2

An arrow h : A → B ∈ C intersects all
components of B iff for all B1, B2 and isos
ϕ : B → B1 + B2 where B1 is not initial, the
pullback object A1 is not initial. An object
C is rigid iff all morphisms h : A → B that
intersect all components of B behave like epis for morphisms between B and C,
that is, for all f, g : B → C we have that f ◦ h = g ◦ h implies f = g. A category
C is rigid if all its objects are6 (equivalently: if a morphism in C is epi iff it
intersects all components of its target). The full subcategory of C of all rigid
objects is denoted Rg(C).

An example of a rigid category is Set, the category of sets and functions. A
non-example is the category of directed multi graphs (V,E, src, tar): the inclu-
sion of the one-vertex graph with no edges to the graph with one vertex and a
self-loop is not epi. It is immediate from the definition to show, e.g. that if C is
rigid then C/C is rigid, for any C ∈ C.

Example 3 (rigidity). The forbidden pattern V-A2S in Fig. 2 provides an exam-
ple of a non-rigid graph in our sample category C. Assume A to be the graph
with a single Agent and let B consist of an Agent and connected Site labelled l.
While h clearly intersects the only component of B, there are two different ways

5 A coproduct is disjoint if pulling back the injections yields the initial object, and sta-
ble under pullback if pulling back the injections along an arbitrary third morphisms
always yields a coproduct diagram.

6 This follows the tradition of regular, extensive and adhesive categories, in that finite
colimits (here epis and initial object) are related with finite limits (here pullbacks).



to extend the only morphism from A to C to one from B to C, using the left or
right Site node in C to map the single Site in B.

We are interested in rigidity because it gives us a means for refinement via
epis. If pattern A is refined by B via epi h, each occurrence of a A in C extends
to an occurrence of B in C in at most one way. In our example category PC this
is because, starting from an agent there is at most one connected site of each
label, and starting from a site, there is at most one connected site, attached to
a unique agent.

Lemma 1. In rigid categories, epis are stable under pullbacks along coproduct
injections.

Proof. Suppose that f is epi and the diagram below left is a pullback.

A1

��

f1 // B1

��
A

f
// B1 +B2

X1

��

g1 // Y1
��

// C1

i1��
i1

&&LLLLLLLLLLLLLLL

A1

��

f1 // B1

��

ϕ // C1 + C2

i1��
A

f
// B1 +B2

ϕ+B2

// (C1 + C2) +B2 α
// C1 + (C2 +B2)

We need to show that f1 is epi. Suppose that ϕ : B1 → C1+C2 is an isomorphism.
Let Y1 and X1 be obtained by pulling back. Then, since pullbacks paste together
and α is an isomorphism, X1 is the pullback of (α(ϕ+B2))f along the injection
C1 → C1 + (C2 +B2), thus X1 6= 0, as required.

In the following we limit ourselves to working with rigid patterns.

Assumption 3 PC is rigid, and the inclusion to C creates coproducts.

That means, for objects A,B in PC their coproduct in C is also in PC. In
case of negative constraints defining patterns, it means that their satisfaction is
closed under coproducts. This is ensured if the constraints are connected. An
object A ∈ C is connected if for any coproduct A1 +A2 isomorphic to A, either
A1
∼= A or A2

∼= A.

Example 4 (rigid structures). The subcategory PC ⊆ C defined by the pattern
constraints in the top of Fig. 2 is indeed rigid, and since all constraints are
connected, it has all coproducts, created by the inclusion to C.

These constraints arise in a canonical way, as minimal non-rigid objects in C:
Disregarding LOOP-S2S, the pattern constraints in Fig. 2 represent all minimal
non-rigid instance graphs (i.e., they are not rigid and have no proper subgraph
that is). The only exception is V-A2S which has a non-rigid subgraph obtained
by dropping site labels. However, in all our graphs (as patterns, rules, states) all
sites carry a label to distinguish sites. LOOP-S2S is required because our model
does not contain loops.



In general, constraints may arise from our knowledge of the domain, such as
with the absence of cycles or non-labelled sites, but may also be derived system-
atically to ensure rigidity of the resulting category of patterns. One can think
of this as a two-step process making explicit the distinction between constraints
that are requirements-driven or derived canonically.

Proposition 1 (rigidity is closed under subobjects). For monos e : C →
D, if D is rigid, so is C. That means, Rg(C) is the full subcategory of C defined
by the set of negative constraints consisting of all non-rigid objects in C that are
without non-rigid proper subobjects.

Proof. If C is not rigid, there exist A,B, h, f, g as above so that f ◦h = g◦h, but
g 6= f . This extends to a counterexample to D’s rigidity because e◦f ◦h = e◦g◦h
but, since e is mono, g 6= f implies e ◦ g 6= e ◦ f . ut

For example, in the category of multi graphs (i.e., allowing multiple parallel
edges), minimal non-rigid graphs are graphs of the form 1 → 2 ← 3 and 1 ←
2 → 3, graphs of two nodes connected by parallel edges, and graphs with a
single node and two loops. No graph containing any of these as subgraphs is
rigid, restricting us to graphs made up of chains and circles.

The following will be useful later, when considering epis as refinements.

Proposition 2 (epis and monos in rigid categories). In a rigid category
with all coproducts, for every arrow a : A→ B there exists a maximal epi-mono

factorisation A
e−→ O

f−→ B, i.e., for every factorisation A
e′−→ O′

f ′

−→ B with
e′ epi, there is a morphism g : O′ → O commuting the resulting triangles. It
follows that g is epi, and uniquely determined by e and e′. It is mono if f ′ is.

Proof. Let C(B) be the set of coproduct injections into B that have a non-initial
pullback along f . Clearly, C(B) is closed under binary joins (taken in the lattice
of coproduct injections) and is downwards closed by Lemma 1.

Since C has arbitrary coproducts, it is closed under arbitrary joins, in par-
ticular, it has a maximum element X. Thus B ∼= X + Y for some Y and, by
assumption, Y /∈ C(B).

A′

ϕ
��

a′ // X
i��

A a
// B

0

OO

// Y

OO

Hence we have pullback diagrams, from which, us-
ing extensivity, A ∼= A′ + 0 and thus ϕ is an iso.

Let e = a′ϕ−1, and f = i. It follows from the
construction of the maximal element X that the fac-
torisation is in fact the maximal one, i.e., for every
other epi-mono factorisation A → X ′ → B there is a
unique X ′ → X commuting the two triangles. ut

In our example category PC the maximal factorisation is given by cutting off
all components of B not intersecting with A. This is the largest O while e is epi,
but not the only one. For example, we can reduce O to O′ until e′ is surjective.

Morphisms in PC that are mono as well as epi are used as pattern re-
finements, extending the source by adding connected structure. The category
ME(A) of mono-epis under A has as objects all morphisms in PC starting in A



that are mono and epi. Morphisms in ME(A) between b : A→ B and c : A→ C
are monos B → C in PC that commute the triangle.

Remark 2. It follows that arrows in ME(A) are epis and ME(A) is a preorder.

4 Matches as Open Maps

Given a rule p : L← K → R in PC and an object G ∈ SC, in order to apply p to
G, we need a match m : L→ G. Apart from the standard gluing conditions, we
restrict matches to a subclass of monos that satisfy suitable reflection constraints,
i.e., matches have to reflect some of the structure of G. If this structure is not
present in L, the match is invalid. Absence of structure in L acts like a negative
application condition. In [16], such conditions were characterised categorically
as open maps (used earlier to describe functional bisimulations [17]).

The idea is to use a subcategory R of C of “ordinary” morphisms to capture
extensions of structure. An arrow c : P → Q in R can be seen as an implication
saying that, for each occurrence of P in the source of an open morphism m :
X → Y , if a corresponding occurrence of Q can be found in Y , then this must
give rise to a compatible occurrence of Q in X. If P represents a prefix of a
path (e.g., in an LTS) and Q a possible extension, this amounts to a reflecting
property for the paths specified. In our case, c : P → Q represents the forbidden
embedding of a pattern into a state graph.

P //

c
��

X

m

��
Q //

f

;;

Y

Given a subcategory R of C, (historically
called path category) a morphism m : X → Y
is R-open if commutative squares mapping a
c : P → Q in R to m have a fill-in, i.e., a
morphism f such that the resulting triangles
PQX and QXY commute. If R is understood, we refer to m as open.

Embeddings are monic R-open maps in C for a given path category R. The
(wide) subcategory of PC with R-open monic morphisms only is called PCR.
We define the path category R by means of reflection constraints, i.e., morphisms
generating R as the smallest subcategory of C containing the constraints.

Example 5. The reflection constraint in the top left of Fig. 3 states that there
should not be links attached to an agent’s sites in a graph if there are no such
links in a pattern (i.e., a rule’s left-hand side). As before, this is a family of con-
straints covering all possible labels. Consider the instance R-AS2S(a,b) (shown
right of the constraint); the match of the new rule is not open (shown right), as
there is no fill-in of the square. In this case, we see that using that match would
lead to a state (bottom right) violating the pattern constraint V-S2S of Fig. 2,
and non-rigid if b = c.

For a rule and negative constraints, it is possible to construct a set of re-
flection constraints such that, given a match into a graph satisfying the nega-
tive constraints, the match satisfies the reflection constraints (is open) iff the
transformation does not lead to a graph violating the negative constraints. This



Fig. 3. Reflection constraints and preserving constraints (top) and derivation of reflec-
tion constraints from negative constraints and minimal rules (bottom)

provides us with a systematic way of defining the reflection constraints needed
to guarantee preservation of rigidity.

We derive reflection constraints for a selection of minimal rules serving as
generators for all rules allowed in a model. Reflection constraints that guarantee
preservation of rigidity for this selection will be sufficient for all derived rules.

A span L
l←− K r−→ R is a minimal creation rule if R is atomic (i.e., cannot

be obtained as a union of two proper subobjects), l iso and r mono but not iso;
it is a minimal deletion rule if L is atomic, r iso and l mono but not iso. An
object is finite if it has only finitely many subobjects.

Proposition 3. In an adhesive category C with initial pushouts [12], if G and H

are finite, every transformation G
p

=⇒ H can be decomposed as a finite sequence

of transformations G = G0
p1

=⇒ . . .
pn

=⇒ Gn = H via minimal rules pi.

Proof. Split the given transformation into a deletion and a creation phase, rep-

resented by monos G
g←− D

h−→ H. By symmetry, it is enough to consider h.
Since H is finite, there exists a (non-unique) finite chain of monos:

D = D0
h1−→ . . .

hn−→ Dn = H

which compose to h such that none of the hi is iso nor can it be decomposed into
hi = hi2 ◦hi1 with hi2, hi1 not iso. Initial pushouts over hi+1 : Di −→ Di+1 yield

transformations Di
pi+1
=⇒ Di+1 with pi+1 : Li+1 → Ri+1. These are minimal rules

because pi+1 is mono and Ri+1 is atomic: assuming another mono S → Ri+1

such that S∪Li+1 = Ri+1, this results in a pushout pre-composable to the initial
one. By initiality therefore, S ∼= Ri+1. ut



Hence, in order to guarantee that state properties are invariant, it is sufficient
to ensure that they are preserved by a set of minimal rules that can implement
all effects of the rules in a model. If we are concerned with negative constraints,
it is even enough to consider minimal creation rules.

L ∩ P
zzvvv

vv
&&MMMMMM
// R ∩ P

xxqqqqqq
��

L
r //

��

R

��

P

xxqqqqqqq

O // U

For a given set of negative constraints N , let the
set of reflection constraints RN be the set of mor-
phisms L→ O as in the diagram with:

– r : L→ R a minimal creation rule
– P in N
– R→ U ← P jointly epi (their pullback is a pushout)
– the pullback L ∩ P of L→ R→ U ← P a proper

subobject of R ∩ P
– the pushout complement LROU exists
– O satisfies all constraints in N

Theorem 1. Assume an adhesive category C with initial pushouts and epi-
mono factorisation, and let N be a set of negative constraints with RN con-
structed for rule r as above. Then, for all transformations over finite objects

G
r,m
=⇒ H such that G satisfies N , H satisfies N if m is RN -open.

Proof. Every counterexample, where the result of a transformation using r vio-
lates constraint P , can be reduced to U by an epi-mono factorisation, leading to
the diagram above since open maps are closed under composition and prefix. ut

The reverse is not true because the construction of RN does not take into account
the individual rules of the system, but works for arbitrary rules. For example,
any identical rule would preserve negative constraints even on matches that are
not RN -open.

Example 6 (minimal rules and reflection constraints). At the bottom of Fig 3 we
show the two minimal creation rules +(a,c), +1 that all creation effects in our
model are derived from. We only allow to add links between existing nodes (e.g.,
as part of rules rule changing links) and vote attributes (e.g., in rules changing
the attribute). Therefore, deriving reflection constraints for these two we cover
all possible cases where negative constraints could be violated.

We obtain two families of constraints, comprising respectively the left-hand
side of the minimal rule and the graph it is applied to. The one derived from
+(a,c) is similar to R-AS2S(a,b) above except for the additional agent with
site labelled c. We adopt the somewhat stronger constraint which, as seen in
the previous example, also addresses node creation, but observe that they are
equivalent for all graphs that contain one more agent than +(a,c)’s left hand-
side, with a c-labelled site attached. The second constraint prevents agents with
undefined vote to be mapped to agents with defined vote attribute.

We define the notion of rigid adhesive structure transformation (RAST) in
PC and SC. We say that a rule p = L← K → R is derivable from a set of rules

M if there is a derivation: L = G0
p1,m1
=⇒ . . .

pn,mn
=⇒ Gn = R with pi ∈ M such

that p’s span is the composition of the bottom spans of these steps via pullback.



Definition 1 (rigid adhesive structure transformation (RAST)). Given
PC and SC as before and a set of minimal rules M with creation rules M+ ⊆M .
Let N be the subset of all objects in |C| \ |PC| without proper subobjects in PC,
and RN the path category over reflection constraints derived for rules in M+

and constraints N .

The set of permissible rules in PC/SC is given by the set of all rules deriv-
able from M whose transformations via RN -open maps preserve states, i.e., for

all transformations G
p,m
=⇒ H with p derivable from M and m RN -open, G ∈ SC

implies H ∈ SC. A RAST model is a set of permissible rules, applied using
double pushouts in C using open maps as matches.

Example 7 (RAST). In our model, all rules are derived from the minimal cre-
ation rules +(a,b), +1, +0 and their inverse deletion rules. Note that, for ex-
ample, deletion rule -1 by itself does not preserve state constraints because it
removes the required vote attribute of an agent, violating constraints A-vote.
However, the derived rule c in Fig. 1 is permissible because it replaces one at-
tribute value by another. Using similar arguments it is easy to see that all our
rules in Fig. 1 satisfy this requirement.

As demonstrated by the example and underlying theory, a Kappa-like RAST
approach can be constructed systematically as follows.

– Define a type graph able to represent intended structures in rigid graphs.

– Define negative pattern constraints as minimal non-rigid objects (or stronger),
as well as additional state constraints.

– Define permissible actions as subset of minimal rules.

– Derive reflection constraints from pattern constraints and minimal rules.

– Derive permissible rules based on minimal rules, state and reflection con-
straints.

Next we demonstrate how RAST models can be refined thanks to rigidity.

5 Growth Policies and Refinements

A pattern A can be seen as a predicate over objects in SC, validated by a match
a : A → G. Refining the pattern, we want to replace A by a set of extensions
e : A → E, each representing a stronger predicate, such that their exclusive
disjunction is equivalent to A. Intuitively, the set of solutions for A should split
into disjoint subsets of solutions for the extended patterns. In other words, for
every occurrence a : A → G there should be a single extension e : A → E with
a unique decomposition of a as b ◦ e, with b : E → G.

If left-hand sides are taken to be patterns, this ensures that matches of the
original rules are in one-to-one correspondence with matches of their refinements.
In a stochastic transformation system, one can therefore replace a rule by its
refinement without affecting the behaviour as expressed by its Markov chain.



Example 8 (rule refinement). A refinement for rule p of Fig. 1 is shown in Fig. 4.
It is easy to check on a couple of examples that matches for p factor uniquely
through exactly one of the extensions. Since matches are open maps, reflecting
links, if an agent in a rule shows a site that is not connected, this site cannot be
connected in the state graph. For example, the rule in the top right cannot be
applied to a graph where the agent voting 1 has any further connections, because
all three sites are present. Instead, the agent voting 0 in the same rule can have
two more connections on the sites not mentioned in the rule. Each of the rules
describes exactly one embedding of the original p into an immediate context.

Fig. 4. A refinement for rule p. Labels l, k, j, i, h, g ∈ {a, b, c}; i, j, k pairwise distinct.
Below each rule, the vector of change in the number of occurrences of the 3 different
types of edges is indicated.

Growth policies specify refinements by stating how patterns can be extended.
A growth policy ΓA for an object A is a subset of |ME(A)| such that:

A

e1

��

e2

��

e��
E

}}||| !!BB
B

E1

f1
!!BB

B E2

f2
}}|||

G

(1) ΓA is consistent with states: For all a : A → G ∈ PC,
G ∈ |SC|, if a = i ◦ b is the maximal epi-mono factorisation
of a, then b ∈ ΓA.
(2) ΓA is closed under pullbacks in ME(A): Given the outer
diagram in PC and let e : A → E be formed using the
pullback of f1 and f2 in PC, e1, e2 ∈ ΓA implies e ∈ ΓA.

Both assumptions are met by growth policies in
Kappa [6]. (1) means that cutting off disconnected context of a state we obtain
an epi satisfying the policy; (2) is a statement of the local nature of policies.

A refinement of a pattern A as defined by ΓA is given by the set of rep-
resentatives a ∈ ΓA of all isomorphism classes [a : A → B] such that for all
a′ : A → B′ ∈ ΓA, a′ → a implies a → a′. In other words, up to iso a is a



minimal object in ΓA with respect to the preorder ME(A). We write Γ (A) for
the refinement, although it is only defined up to iso.

Theorem 2 (refinement). Every mono a : A → G ∈ PC with G ∈ |SC|
factors uniquely as a = f ◦ e for a unique e ∈ Γ (A) and monic f .
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Proof. We show the existence of a decomposition
first. Given a : A→ G, let O+G′ be a coproduct
object in C isomorphic to G, and such that O is
the coproduct of all connected components of G
intersecting with a, and G′ is the coproduct of the
remaining components. In the first diagram, o is obtained via pullback of a and
in. Since C is extensive, pullbacks with coproduct injections yield the top row
as a coproduct where, by neutrality of the initial object, the left injection is
the identity on A. By construction o is epi, hence in ME(A), and therefore (by
condition 1 above) o is in ΓA.
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Let e be the smallest element of ΓA such that
e → o (existing by condition 2, and unique by
construction), and i be the corresponding (unique)
morphism in ME(A). Then, e ∈ Γ (A), and in ◦ i
is mono since in is a coproduct injection and i is
mono (by definition of ME(A)). A
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Suppose now we are given another decomposition
f ′ ◦e′ = a with e′ in Γ (A) and f ′ mono. The maximal epi-
mono factorisation of a via O yields j : E′ → O. Its pull-
back with i in PC yields a decomposition A

e0−→ E0 → G
which is in ΓA by closure under pullbacks. Since f ′ is
mono, so is j and therefore E0 → E. Since, by assumption,
e is minimal, e0 and e are equal.

Instead of limiting morphisms a, f to be monic, we can choose any restriction
to a class of morphisms which “behave like monos”, i.e., which is closed under
composition, identities, pullbacks and prefixes and includes coproduct injections.
The case in point are of course open maps, as shown below.

Proposition 4. PCR has all pullbacks.

Proof. Pullbacks preserve monos, pullbacks with monos preserve open maps [16].
Monos and open maps decompose so universal arrows are monic and open.

Assumption 4 We assume that coproduct injections in PC are R-open.

This holds if the target objects of all reflection constraints are connected.
With this, the refinements can be applied to open monic matches as they are
used in Kappa. Putting everything together we get our notion of refinement:

Corollary 1. Every monic R-open a : A → G ∈ PC with G ∈ |SC| factors
uniquely as a = f ◦ e for a unique e ∈ Γ (A) and monic R-open f .



A refinement a of the left-hand side L extends to a rule p if p is applicable
to a, i.e., the relevant pushout complement exists. While this is not guaranteed
in general, reflection constraints can be used to restrict refinements of L. In our
example rules do not delete nodes, so the pushout complement always exists.

Example 9 (growth policy for balanced refinement). The refinement in Fig. 4 is
motived by the desire to track the number of links between agents with different
votes vs. those of the same vote, counting occurrences of the following patterns.

Depending on the context, p may destroy or create different numbers of
occurrences of these patterns. This is what motivates the refinement in Fig. 4: it
replaces p with a set of jointly equivalent rules, each of which are balanced with
respect to [01], [00], [11], i.e., they create or destroy a fixed number of occurrences
of each pattern. The balance is given below the rule arrow, e.g., the rule in the
top right destroys one occurrence of [01] and creates two of [00]. (Occurrences of
[11] or [00] always come in pairs because of their symmetry.) The growth policy
leading to this refinement is based on analysing partial overlaps of rules and
patterns, requiring to extend a rule whenever a pattern overlaps a subrule in a
way such that an application would create or destroy the pattern [6].

6 Related Work

Hayman and Heindel [15] developed a categorical generalisation of Kappa in
the more general single-pushout setting, but did not consider growth policies
and rule refinements. Rather than restricting matches to ensure preservation of
constraints such as rigidity, constraints were incorporated into the construction
of a transformation as a pushout of partial maps. Instead, we follow [16] in using
a double-pushout approach which defines constraints on matches to preserve
rigidity. Solutions for (causal) trace compressions introduced in [4] have been re-
understood categorically in [3] using fibrations. A concrete fibrational approach
to rule restriction was proposed in [2] in a DPO setting. It would be interesting
to rethink and generalise this approach following the ideas in this paper.

7 Conclusion

Based on an analysis of the concept of rigid graphs at a categorical level we
have defined a generic approach to rigid adhesive structure transformation and
a Kappa-like notion of rule refinement based on growth policies. We have also de-
veloped a methodology for obtaining concrete instances of the generic approach
in a systematic fashion, choosing an adhesive ambient category and defining
appropriate constraints on graphs and rules. In addition, we have used a recent
example from the literature on complex social networks to serve as an illustration
of this methodology and show the concrete interest of our development.



We believe that this approach provides a platform to transfer analysis tech-
niques and tools for stochastic systems from Kappa to adhesive structure trans-
formations. For instance the (infinite) system of differential equations, which is
central to the analysis of our example [11], can be now seen as a special case
of the fragmentation technique developed in [7] and be produced by mechanical
means (up to an arbitrary precision).
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