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Abstract (RPO), in order to equip each reactive system with an LTS,

whose labels can be characterised as the smallest contexts
The theory of reactive systems, introduced by Leifer anaiévlii  that allow reactions to occur — an idea originally due to
and previously extended by the authors, allows the dedwatif Sewell [19]. Such LTSs are very well-behaved; in particu-
well-behaved labelled transition systems (LTS) for seimambd- lar, bisimilarity is a congruence with respect to all congex
els with an underlying reduction semantics. The derivapoo provided thatC has “enough” RPOs. In [16], the authors
cedure requires the presence of certain colimits (or, maneally proposed an approach based on a 2-dimensional generali-
and generally, bicolimits) which need to be constructechsaply sation of RPOs, thgroupoidal relative pushoutGRPO),
within each model. In this paper, wefer a general construc-  which has been shown in [15] to encompass previous ap-
tion of such bicolimits in a class of bicategories of cospafike proaches addressing these issues. Of course, one retins th
construction sheds light on as well as extends Ehrig andigg®én  congruence theorems (bisimilarity, trace and failures\equ
rewriting via borrowed contexts and opens the way to a unified alences) in the more general setting.

treatment of several applications. Several constructions of GRPOs have been proposed in
the literature forparticular categories of models. For in-
stance, Milner explicitly constructed such bicolimits fif
Introduction graphs [13] in full detail, but there has been little work on
understanding how such constructions may be performed in
Some of the most important operational techniques, devel-other models. Indeed, the main applications our theory of
oped through research on concurrency, involve the use ofreactive systems have so far involved relatively simple ex-
labelled transition systems (LTS) and the accompanying no-amples [16, 15].
tions of operational preorders and equivalences, bisimula In the paper we address this by giving a construction
tion being chief among these, in order to reason about pro-of GRPOs for a wide range of models — those which can
cess equivalence. Some basic concepts, common to manpe expressed as certain cospans @gresivecategories.
applications where such operational techniques apply, in-The class of adhesive categories, introduced in [9], iresud
clude the notions aferm, contextandreaction many categories where the objects are variants of graphs —
Such notions began to be studied in the seminal work for instance, the catego/@raph of graphs and graph ho-
of Berry and Boudol [3] on theehemical abstract ma- momorphisms is adhesive.
chine More recently, Leifer and Milner’s [11] introduced An important application of our results is Ehrig and
the framework ofreactive systemsaimed at providing a  Konig's rewriting via borrowed contexfsan extension of
general setting where such notions can be studied. Reacthe double-pushout (DPO) graph transformation approach
tive systems can be seen as a generalisation of ground termwith a contextual semantics that allows transfer of con-
rewriting systems, where a collection of ground rewrite cepts and techniques from the field of process algebra to
rules is closed under a set of “reactive” contexts to obtain graphs. The labels of their LTS are the so-called “borrowed-
the rewrite relation. Contexts are themselves organised asontexts” — certain contexts which allow a DPO transforma-
the arrows of a category. tion to be performed.
Leifer and Milner’s chief contribution was to utilise a  Other applications include a partial treatment of Milner’s
universal categorical construction, dubbethtive pushout  bigraphs [13], a model introduced to model various fun-
“Research partly supported by EU FET-GCYWhS: Models and damental noti_ons arising from the study qf process calculi
Types for Security in Mobile Distributed Systems’, IST-2082617 such as the pi-calculus, as well as a Petri net-based model

and ‘AciLe:  Architectures for Mobility’, 1IST-2001-32747; EC RTN 2-
2001-00346 ssraVis; and BRICS, Basic Research in Computer Science IMilner actually constructs ordinary RPOs inpaecategory-— this is
(www.brics.dk), funded by the Danish National Research Foundation, equivalent to constructing GRPOs in the bicategory whiculte from
University of Aarhus. taking support translations as 2-cells (see [15]).




mone coffee coffee mono. Examples akactive systemsver such cospan cate-
gories include, therefore, the theoryli§raphical reactive

e . e ik Konig [5] are cospans iGraph with both interface maps

($) (c) [[$) (c] systemof Milner [13] and the theory ofiouble-pushout

e - (DPO) graph transformation [4].

mone caffes The main result of the paper is the construction of GR-
POs in a class of cospan bicategories over adhesive cate-

gories, which in turn allows the derivation of LTSs falt
reactive systems based on such bicategories. Specifically,

Figure 1. Example of a contextual system. we require that thénner interface map of every cospan is
mona Although technical in nature, the linearity condition
of open systems [17], related to open nets [1]. does have an intuitive account. As alluded in théfe®

Before a formal presentation of the technical details of drinker example, one can consider a cospan as a “black
our results, we shall first allow ourselves a certain amountbox,” with an inner interface and an outer interface. The
of informality in order to illustrate the intuition and theom  €nvironment cannot see the internals of the system and only
tivation behind the construction introduced in this paper. interacts with it through the outer interface. The fact that
A cospan in an adhesive category is for us a genera"sedhe outer interface need not be linear means that the system
“graphical context” between “interfaces;” starting with-o is free to connect the outer interface arbitrarily to iteimt
jectsl, J andC of an adhesive catego#y (the reader could ~ nal representation. For example, théfee machine could
takeA = Graph for concreteness), we can tréxas a con-  have two extra buttons in its outer interface; the “cafelat
text with inner interface and outer interfacé by providing ~ button and the “cappuccino” button. The machine internals
could connect both these buttons to the same internal trig-
ger for cdtee with milk; the point is that the system controls
its outer interface and is able to equate parts of it. On the
other hand, the system cannot control what is plugged into

. one of its slots. Thus, an assumption of input-linearity is
face;” concretely, by constructing a pushout. Due to the . : .
A essentially saying that the system does not have the right to
nature of pushouts, the composition is, in general, not as-

sociative on the nose, but rather, up to a unique coherenf>3UMe that two components coming in through the inner

isomorphism — which means that Cospahis, in general, mterface_ can be confused_.
abicategory[2]. . AppIym_g the co.r.1sFruct|on to mono cospans@_fn.aph .
Starting with any categon with pushouts, the process yields Ehrig and Konlg’g [5] con.structlon of r_ewrltlng via
A ~» Cospand) can be thought of as a kind of a canoni- bor_rowed contexts — which confirms that their a}pproach is
cal “contextualisation” operation, turning objects of aon &n instance of the gene_ral methodology of_reactlve systems;
category into the arrows of another (bi)category. Incitfent W€ shall show that the_|r labels actually arise from GRPOs
the dual situation, that of spans over graphical structures @"d thus satisfy a universal property. As a consequence,
has been studied by Katis et al [8] — roughly, they argue thattheir congruence theorem fqllows automatically fro.m the
spans over graphs can be seen as generalised automata. theory of reactive systems. Finally, because we requing onl
For an idealised example of cospans, consider the simpleN€ [€ft 1eg of the cospan to be mono, we are able to gener-
model of a céfee vending machine, illustrated by the left- allse_ their r(_esult,s. ) .
most diagram of Fig. 1. It has an outer interface consisting Since Milner's blgrz_iphs can be seen as output-linear
of two nodes, $ an€, which one can think of as a money COSPans, the construction dqes not apply. quever, we pro-
slot and the cfiee out-tray. These are the parts of théee ylde LTS semantics for a fierent class of bigraphs: the
machine accessible to the environment, the internal compo-NPUt-linear cospans over the same category. The construc-
nents, represented IS are invisible. The middle diagram tion has also _b_een applied in ordgr to derive LTS semantics
represents a dtee drinker. He expects to see a money slot for a compositional model of Petri nets [17].
and a cdfee out-tray, which are his inner interfaces. As the Structure of the paper. The paper begins with two sec-
outer interface of the dtee machine and the inner interface tions summarising the background theory necessary for our
of the cdfee drinker match, one may compose them and construction. First, ir§1 we recall Leifer and Milner’s the-
obtain the system pictured in the rightmost diagram. ory of reactive systems and relative pushouts together with
There are several examples of cospans relevant for comthe generalisation of the theory previously worked out by
puter science. For instance bigraphs are cospans in an adhe authors. Secondly, §2 we recall about adhesive cate-
hesive category of place-link graphs with outer interface gories and cospan bicategories. Our main construction ap-
maps mono, and graph contexts in the sense of Ehrig andbears in§3. In §4, we provide a detailed exposition of the

homomorphisms] Loc® 3. This resulting cospan is
treated as aarrow of a new category Cospat) with the
same objects ak — indeed such cospans may be composed;
intuitively, by “glueing together along the common inter-



relevance to Ehrig and Konig's [5] and mention other appli- 4. a set of pairs of terms, thieaction rulesk. The terms
cations. [, r of any given paikl, r) € R have the same codomain

L ) as arrows of3.
Preliminaries. Throughout the paper we assume a basic

knowledge of category theory, as well as basic acquaintance The reactive contexts are those inside which evaluation
with the concepts of 2-categories and bicategories. Heremay occur. Composition-reflecting means ttett € D im-

we mention only that @icategory[2] can be described, pliesd andd’ € D, while the closure property means that
roughly, as a 2-category where associativity and identity givend € D and an isomorphism: d = d’ in B implies
laws of horizontal composition hold up to isomorphisms. ¢’ ¢ D.

We shall denote all associativity isomorphismsahyas for The reaction relation—> is defined by taking — a’
examplea : h(gf) = (hg)f. The isomorphisms are re- if there is(l,ry € R, d € D, o dl = aanda’: & = dr.
quired to respect well-known coherence axioms [12]. We This represents that, up to structural congruenceis the

use ic to denote the identity aX, while 1s and « stand,  |eft-hand sidd of a reduction rule in a reactive contest

respectively, for identity 2-cells and vertical compasiti while & is, up to structural congruencé, the right-hand
sider in the same context.

1 Reactive Systems and GRPOs Leifer and Milner [11] developed the derivation of a

canonical LTS associated to any given reactive system. The
derivation uses a universal construction, dubbed relative

Her_e wef bnefly recall an extension 9f Le{fﬁrzagq M|In_ers Ipushout (RPO), which is a pushout in a slice category.
notion of reactive system to categories with 2-dimensional gici1ation on the resulting LTS is a congruence, pro-

structure, as previously introduced by the authors [16¢ Th vided that the underlying category of the reactive system

t_)aS|c idea of a reac.tlve system is to bring together a COI,IeC'has enough RPOs; we shall make the meaning of “enough”
tion of contexts, which form the arrows of a category, with precise below

e o o amme A roUpOGa-elatve pshout (GRPO) s e generls
9 y '~ tion of an RPO to categories with 2-dimensional structure.

ing certain .pUSh.O.UtS.’ o_ne_equips a reactive system with e recall the definition belok,and due to lack of space
LTS on which bisimilarity is a congruence with respect to refer the reader to [16] for a full presentation. Note that

all conte>;ts. vial les. it is th hat th although GRPOs are introduced there in the setting of G-
Apart from t.“V'a examples, itis the n(_)rmt .att € con- categories (2-categories with iso 2-cells), the develagme

texts of a reactive system have some notion of |som0.rph|smis easily transferred to bicategories with iso 2-cells -uft s

— often referred to as structural congruence in the field of g0 15 jntroduce the coherent associativity isomorphisms

p][ocess ‘ET'CU“- It tufrns out thgt |gnor|r|19 such strgcttlxr(; ' where necessary. In order to increase readability, we leave
often problematic (cf. [16]) and one solution is to include these out within the definition below.

the isomorphishgstructural congruence as part of the struc-

ture; i.e., to consider 2-categories of contexts insteatf  pefinition 1.2 (GRPO). A candidatefor squarei) is a tu-
egories. Guided by examples, we usually consider only iso-pje (15, e, f, g, 4, v, 6) such thasb.g8+ya = a. In other

morphic 2-cells. In order to generate an LTS and extend yords, the 2-cellyy, 8 and g, illustrated in diagramii),
the congruence results still, one then needs to consider bipaste together to give.

pushouts (rather than pushouts) [16]. A idal-relati houlGRPO) i did
In this paper we consider cospans as contexts; since the groupoidal-relative-pushouf ) is a candidate

composition is associative up to isomorphism, we shall needWhICh satisfies a universal property, namely, for any other

to work in bicategories instead of 2-categories. Apart from Cand':.atqiﬁ’ f( .9 'g ’ yl’ &) there exists anediating
changing the definition of reactive system, this generalisa morphismthat1s a quadruple
tion poses no diiculty — bicolimits are naturally a bicate-

gorical notion. (hils—>le, o€ =hey hf= 1, r:gh =0

illustrated in diagramsi() and {v). The equations that need

Definition 1.1 (Reactive System).A reactive systenC - 1
to be satisfied are: Teeg'pey =v;2.8 e ger +f =6;

consists of -

1. abicategor with all 2-cells iso; and 3.ybehB.pa=p'".

2. a collectionD of arrows ofB called thereactive con- Such a mediating morphism must éssentially unique
texts it is required to be closed under 2-cells and be namely, for any other mediating morphisin, ¢’, ¥’, ')
composition-reflecting (see below); there must exist a unique 2-céll h = h’ which makes the

3. adistinguished object®B; arrows with domain 0 are  two mediating morphisms compatible, i.e.: de.¢ = ¢’;
often referred to aterms 2. =y/sand 3.7 o gE = 1.
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Figure 2. Pushout diagram.

2 Adhesive categories and cospans

GRPOs are used to classify the smallest contexts nec-
essary for a reaction to be performed. The redex squareé\dhesive categories. In order to construct GRPOs in

which satisfy this property are known as groupoidal-idem-
pushouts, or GIPOs.

Definition 1.3 (GIPO). Diagram {) of Definition 1.2 is
a G-idem-pushout (GIPO) fl4, c, d, idy,, @, 1., 1g) is its
GRPO.

We are now in a position to define the LTS which has
such smallest contexts as labels.

Definition 1.4 (LTS). For C a reactive system and its
underlying bicategory, define GLTSJ as follows:

o the states of GLT () are terms;

o there is a transitioa ——» a if there exists a 2-celt,
aruledl,ry € R, and a reactive conterte D such that
the diagram below is a GIPO amtlis iso todr.

la
RN

|2:>

a
0

1)

I3

In previous work [16, 15], we have considered
stract LTS where the terms and transitions are quotiented
by isomorphism; this is the norm in specific calculi, for in-

stance in CCS or the pi-calculus the states are processes, 3-

i.e., terms modulo structural congruence. For simplicity,

we leave the terms and transitions unquotiented here, that

is, we deal with theconcretetransition system, using the
terminology of [20]. Both versions have the same congru-
ence properties.

Definition 1.5. A reactive systen€ is said to haveedex-
GRPOswvhen every redex-square (1), watandf arbitrary,
d a reactive context arlda part of a reaction ruld,r) € R,
has a GRPO.

The following is a slight extension of a theorem for 2-
categories which can be found in [16].

Theorem 1.6. Let C be a reactive system with redex-
GRPOs. Then bisimilarity oGLTS(C) is a congruence
with respect to all the contexts Gf

2For category theorists, a GRPO can be described concisealybas
pushout in a pseudo-slice category.

cospan bicategories we shall need the notion of adhesive
categories, we refer the reader to [9] for an introduction;
here we shall only mention some properties of adhesivity
which we shall be need in the later exposition§8) we as-
sume that the underlying category of the cospan bicategory
is adhesive and use the structure of adhesive categories re-
peatedly in the construction of GRPOs.

Adhesive categories can be described by a slogan:
pushouts along monomorphisms exist and are well-
behaved. The class of adhesive categories incliB#s
Graph, as well as any elementary topos. It is closed under
product, slice, coslice and functor category. As explained
in [9], many graphical structures relevant to computer sci-
ence form adhesive categories.

We shall need the following properties of adhesive cat-
egories for our constructions. The proof of the following
lemma can be found in [9].

Lemma 2.1. Let A be an adhesive category.

1. Monos are stable under pushout4n In other words,
in the diagram of Fig. 2, if m is mono then n is mono.

2. A pushout imA (Fig. 2) is also a pullback diagram, if
m is mono.

If it exists, a pushout complemémtf (m, gy, with m
mono, is unique up to a compatible isomorphism; more
precisely, if fnand f : C - B',n" : B — D are
pushout complements, then there exists apis® —

B’ such thatpf = f” and rip = n.

Recall that, given an objet, a subobjectf : Y — X]is
an equivalence class of monomorphisms iKtovhere the
equivalence relation is generated from the canonical pre-
order on monomorphisms intd: p < ' if there exists
k:Y — Y such thap/k = u. Subobjecintersectionand
unionrefers to a meet and join of subobjects (if it exists)
in this preorder. Any category with pullbacks has binary
subobject intersection. Binary subobject unions in adleesi
categories are calculated by pushing out along their inter-
section.

3Givenm : C - Aandg : A — D, we say thatB is a pushout
complemenbf {m, g) when there exist : C —» Bandn: B — D such that
the resulting diagram (Fig. 2) is a pushout diagram.
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Figure 3. Composition of cospans.

Cospan bicategories. We shall assume thét is a cate-
gory with chosen pushoutsThat is, for arrowsn: C —» A
andf : C — B, there exists unique “chosen” objekt-c B
and arrowsA — A +c BandB — A +¢ B such that the
resulting square is a pushout.

The bicategory of cospans Cosp@h(has the same
objects asC, but arrows froml; to I, are cospans.

l; —<— C+=—1,. We will denote such cospa® :

I; — Iz, and omitc (resp.oc) whenl; (resp.ly) is initial.
We shall sometimes refer iq and |, as, respectively, the
inner and outer interfaces @f*. Intuitively, we can think
of a cospan as a generalised context, wiieze the inter-
nals, (the image viac of) |, represents the public view of
C, and (the image vig: of) |1 the view ofC afforded to the
“holes” in it.

A 2-cellh: C¥ = CX:1; — I, in Cospan() is an

(1)

arrowh: C — C' in C satisfyinghic = (¢ andhoc =

oc. The isomorphic 2-cells provide a canonical notion
of “structural congruence.” We shall denote the bicate-
gory of cospans which has the 2-cells limited to isomor-

phisms by Cospat{C). Given cospan€X : I, — I, and

Df’g’ : I, — 13, their composition is the cospan obtained by

taking the pushout obc and:p, as illustrated by Fig. 3.
Note that in the resulting compositiott, is “forgotten.”

3 GRPOs for cospans

In this section we present a general construction of GRPOs
for a class of reactive systems over cospan bicategories.

Construction. The following result is the main original
contribution of this paper. Several implications of Theo-
rem 3.1 and of the construction which constitutes its proof
are considered ig4.

Theorem 3.1. If A is adhesivelLC(A) has GRPOs.

The remainder of this section presents a proof of the
above theorem. We first outline an algorithm for the con-
struction of the desired minimal candidate. Because of
space constraints, we have omitted most technical details;
these can be found in the second author’s Ph.D. thesis [20]
and in [18].

An arbitrary square in ILCG), as illustrated in dia-
gram ) below, amounts to a commutative diagraim i
A, with @ an isomorphism.

ke o] AN

|2:>| lo A+|2C—)B+|3D I3

NN 14

(i) (ii)
Definition 3.2 (Frame of reference).Given a diagramij
in ILC(C), by aframe of referencave mean an arbitrary

Composition is associative up to a unique isomorphism. It ObleCtX equipped with |som0rph|sm/s| A+,C — Xand
is easy to check that the associativity isomorphisms satisf @r - B+1;D — Xsuch that; 'wy = a. Letwa = wiiasacc

the coherence axioms, and thus yield a bicategory

To perform our construction we need a certain linearity

restriction. In particular, the notion of input-linear pas.

Definition 2.2 (Linearity). A cospanCX is said to be
input-linear when.c is a mono,output-linearwhenoc is
mono, andinear when it is both input-linear and output-
linear.

A simple corollary of the first part of Lemma 2.1 is that

the composition of two input-linear cospans over an adhe-

sive category yields an input-linear cospan. Similarlyneo
position preserves output-linearity and linearity.

Definition 2.3. Assuming thatA is adhesive, let ILCK)

be the bicategory consisting of input-linear cospans and 2-

isomorphisms. Similarly, let LGY) be the bicategory of
linear cospans and 2-isomorphisms.

A — X, wc = wiicsac : C— X, we = wripseip : B— X
andwp = wripoewp : D — X.

Clearly, a frame of reference for) (always exists. For
instance, one can &t beB +,, D, w; be the identity and)
bea. It follows easily that diagramii(), below, is commu-
tative. Notice that both of the squares in diagrair) @re
actually pushouts.

CHMLD

wc\ o N
OA\ o \“’B /OB

A<— I1—> B
(7% 1223
(iii)

Sincewa and wg are readily seen to be mono, being
pushouts of monos in an adhesive category (Lemma 2.1),

we are able to obtain the subobject union — an obyeet



AU B and monomorphismg : Y — X, e : A — Y and 0 0

e : B — Y satisfyingue; = wa andue; = ws. 7 ’y 7 y
Notice that since: is mono angieitp = wata = weptp = 1 Y

uexg We have thatya = exg. We obtain the commutative

diagram (v). &O% &0%

I'I'I

/’ W'{‘N , 0 , , 0 )
S, & KT\ KT\

| o 2 N, 2
A—>Y B |2—E§|5<{f—|3 ]\I/ ]\I/

"\ 1—1—1+1—1 1—2—2+2—1
&pz L / A
u X wD 0 0
V) ) (vi) Figure 4. GRPOs in ILC(Sed.

Algorithm 3.3 (GRPO Construction in ILC(A)). The precisely, given any other candidate for diagramyg(s illus-
construction of the components of the minimal candidate is trated in diagramx(ii), there exists a mediating morphism:
outlined below. They are illustrated in diagranasgnd {i).

We obtain: / \
1. G as the pullback ofuc : C —» X andwp : D — X; / //6/

|2—E—)|6€F—|3

2. Easthe pullback of: : Y —» X andwc : C — X; FA\ B A
I

3. F asthe pullback ofi : Y - Xandwp : D — X;
: : : (xiit)
4. 15 as the pullback op,: F — D andrn;: G — D;

notice that due to the properties of pullbacks, we obtain

a morphisnog : Is — E such that all the faces of

are pullbacks.

a cospanI5>L—H> H PR lg (an arrowH : Is — Ig of
ILC(A)) and isomorphismg : E' - E+;H, ¢y : F+,H —
F’andr : H+,,G’ — G in C which form 2-cells of ILCA)

The following two lemmas show that the construction of and which satisfy the required equations:
Q:gg?g;r?h3e.§rgcri]e§(i results in a GRPO, and complete the (E+,Dalp+,G)y =y, &W+,G)aF +,7Y)=6

and B+, y)aB +i; Ha(A+, ¢) =

Moreover, the mediating morphisthl, ¢, ¥, 7) is required
to be essentially unique (see Definition 1.2). This means
Proof. In order to prove the lemma, we are required to: ~ thatfor any other mediating morphisti’, ¢’,y’, 7’) which
satisfies analogous equations, there exists a unique isomor

1. demonstrate the existence of appropriate inner andphisme : H — H’ which makes the two mediating mor-
outer interfaces for each &, F andG; phisms compatible:

Lemma 3.4. The construction as outlined in Algorithm 3.3
provides a candidate for squaii (

2. show that there exist isomorphisiis: A+, E —

B+,F,y:C—>E+,Gands:F +,G — D; (E+.d)p=¢, Y(F+,6N =y and 7(E+,G) =1
3 ) 5 . 5 ’

3. show that these isomorphisms paste together in wayProof. Omitted, see [18, 20]. m
which results in a 2-cell equal to: A+,C — B+, D.
Examples. First, with the aid of a simple example, we
We omit the details, and refer the reader to [18, 20h shall demonstrate that it @itical that one fixes a particular
isomorphisma : A+, C — B+, D. Indeed, consider

Lemma 3.5. The candidate constructed using Algo- the two dlflgrams in ILGRe) in the first row of Fig. 4; the
rithm 3.3 satisfies the universal property of a GRPO. More arrow 0 — 1 denotes the cospan é—> 1 & 1, while



The GRPO is illustrated in the interior of the diagram. One
can compare this “blowing up” of the outer interface in the
GRPO with the phenomenon of “forking” as described by
Leifer [10, Fig. 1.4].

4 Applications

In this sections we shall examine some of the applications of
Theorem 3.1 and Algorithm 3.3. Due to space restrictions,
we shall concentrate on the application Ehrig and Konig’s
rewriting via borrowed contexts and briefly summarise ap-
plications to bigraphs and Petri nets.

4.1 Rewriting via borrowed contexts

Our results both shed light on and extend Ehrig and
Konig’s rewriting via borrowed contexts [5]. First, we ¢ha
show that borrowed contexts correspond to GIPOs, and
therefore satisfy a universal property. Consequently, the
theory of rewriting via borrowed contexts falls within the
framework of reactive systems [11, 16, 15] and therefore the
various congruence properties and constructions carny ove
In particular, Ehrig and Kdnig’s congruence theorem can be
seen as an application of the congruence of bisimilarity the

Figure 5. GRPO ILC(Graph) orem for reactive systems. Finally, due to the generality of

) . Theorem 3.1, we relax some of the technical conditions im-
1 — 0 denotes the cospan—ﬁ 2«——0,andy:2 -2 posed by Ehrig and Konig and thereby introduce the notion
is the bijection which swaps the two elements. We illustrate of extended borrowed contexts (Definition 4.7).
the two resulting candidates in the second row of Fig. 4: We begin with a brief account of a variant of double-

i i pushout (DPO) graph transformation [4], working at the
level of an arbitrary adhesive categaty

1 L 1 is the identity cospan 1£> 1 & 1, whereas

1% 2isthe cospan 152 2and1-% 2is the
cospan 152 2 Definition 4.1 (Rewrite Rule). A rewrite rulepis a span

Intuitively, in the first case, the two lower arrows corre- | )
spond to the same element. Thus the context contains re- L+~ K—R (2)
dundant information which can be factored out resulting in
a candidate which is just the identity context. Conversely, in A. No assumptions are made about eitherr.
they are diterent in the second case, meaning that the con-

text has to be kept in the minimal candidate. - A ) ) !
We shall ai le with ILGfaph hand side of the rule, whilK is information which remains
e shall give one more example wit (aph) as undfected by the rewrite. A redex in an objéctis identi-

our category of_ contexts in order to_iIIustrate some of the fied by matching a rule’s left-hand side, which is done via a
effects of allowing non-mono outer interfaces. In the ac- morphismf : L — C.

companying Fig. 5, we label the nodes of the graphs in or-

der to clarify the action of various graph morphisms, which pefinition 4.2 (Grammar). An grammaiG is a pair(C, P)

we leave unlabelled. We also do not draw the 2-cells as thQNhereC is a category andP is a set of rewrite rules. A
labelling on the nodes makes these clear. The exterior mapgrammar is said to badhesivavhenC is adhesive.

of Fig. 5 correspond to two fferent ways of decomposing

Definition 4.3 (Rewrite rule application). Object C
rewrites toD with rule p, in symbolsC — ¢ D, if there
exist an objecE and morphisms so that the two squares in
the Fig. 6 are pushouts. We shall write— D if there
existpe Pandf: L — C such thaC —» 1 D.

Here L and R represent respectively the left and right-

C

N

Tt o>
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Figure 6. Rewrite rule application (DPO). OGT @ J|1 © TOC
J o Feg—K
Using the conclusion of the third part of Lemma 2.1, one
can show that in adhesive grammars, the application of left-
linear rewrite rules is functional, so th@—,; D and
C — .+ D" implies thatD = D’ (cf. [9]).
Any grammarG = (C,P) can be seen translated into
a reactive system on Cosp&i)( Let O denote the empty

Figure 7. Borrowed context.

derived via rewriting with borrowed contexts as defined
in [5]. Recall that the states of RBGJ are graphs with a
mono outer interface. The transitions are labelled by mono

graph, and the seR contain for each rewrite rule (2) a oF
pair cospans of graphs; there is a transit@fta —=» H° pre-
<0 oL L K.0— R S K). cisely when there exists a diagram as illustrated in Fig. 7

. [ .
with all arrows monolL «— | S Re P, regions (1-4)

We choose all arrows of Cospd&)(be reactive. Let—> pushouts and region (5) a pullback.

denote the resulting reaction relation. The translatias pr

serves semantics, as demonstrated by the following lemmaTheorem 4.6. LTS(G) = RBC(G).

which is similar to a previously published result [6] and can _ i

be considered folklore. We use the shorth@nd—s D to Proof. The proof consists of showing that borrowed con-
mean thaC andD are cospans with empty inner and outer texts correspond to contexts obtained from GIPOs.
interfaces. It is crucial for us because it serves as a founda

tion for relating the theory of DPO transformation systems From borrowed contexts to GIPOs. Given a borrowed
and reactive systems over cospans. context diagram as illustrated in Fig. 7, we shall show that

one may construct a GIP@)(
Lemma4.4.C—» Diff C—> D.

In order to apply Theorem 3.1, we need restrict to graph LOF/ oc

transformation systems which correspond to reactive sys- F | K
) ) K N
tems over input-linear cospans. 7 & =
a 71 o Oc

Definition 4.5 (Input-Linear Rewrite Application). Ob- J ———— | 1/ C .
ject C rewrites toD input-linearly with rulep, in symbols rG\ / G \SC
C —> D, if C —>p¢ D and in additionf, g andh of 0 N
Fig. 6 are mono. G-~ 7

It follows that starting with an adhesive gramn@r= M) (if)

(A, P) and an input-linear rewrite relatioa—»', we may
construct a corresponding reactive systermver the bicat-
egory of input-linear cospans IL&]J. Clearly, Lemma 4.4
specialises, and thus semantics is preserved. Now, usng th
construction of GRPOs of Theorem 3.1, we obtain an LTS
let LTS(G) = GLTS(A). Using the congruence theorem for
bisimilarity from [16] on such an LTS, we obtain that bisim-

llarity on LTS(G) is a congruence. trated in (i), in the construction we use only the fact that

A rew;lte rule (2) is calledinear when bothl andr are  gq,41e8) of Fig. 7 is a pullback. Thus, the GRPO of redex
mono. If we re_strlct our view to D_PO rewrltl_ng systems squarei is (K, F, C,id, id, id, ), meaning that it is a GIPO.
with linear rewrite rules and input-linear rewrites then we

are in a position to compare the resulting LTS with rewriting

via borrowed contexts, which requires these extra as,sump-From OFGIPOS to borrowed contexts. Suppose that

tions. G% —E— H% is a transition in LTSG). thenF must
Precisely, given an adhesive gramr@as (A, P), where be a part of an GIPO diagram. Since every GIPO can

P consists of linear rewrite rules, let RBG) be the LTS be constructed as a GRPO, we have a redex diagram as

Assume without loss of generality thht+, C = G*. Let

a : F+;G — G* be the unique isomorphism such that

alij=01:F > Gtandais = ¢ : G — G

~ Since squarelj of Fig. 7 is a pushout of monos and

"we are in an adhesive category, it is also a pullback
(Lemma 2.1). This implies thdt U G = G*. The cube
which results from an application of Algorithm 3.3 is illus-



- Iy c 4.2 Bigraphs and Petri nets
K [ \ I3 5 R
NN

Lo —F5 e ec— | i I 19 Bigraphs are a graphical formalism originally introduced
2 5 3 c 1 ) i . o
_— C—H by Milner [13] in order model dynamic systems with inde-
:3\ p K 0 pendent locality and connectivity structures [7]. Bigraph
0 (iv) can be seen as ‘output-linear’ cospans over a certain adhe-
(iii) sive category, as we discuss below. It follows that by con-
sidering an input-linear variant — a model which yet incor-
or i ic porates many of bigraphs’ fundamental features — we meet
GnLr—G Is—F l2>—F l3—C the requirements of our framework. Using Algorithm 3.3,
{ la OCI l”l OGL l“l °Ll l“z we are then able to derive an LTS for any reactive system
L =Y CoY GrY LY on such bigraphical structures. Such an LTS coincides with
Milner’s on the bigraphs in the intersection of the respecti
(v) (vi) (vii) (viii) definitions. Here wefber only a brief discussion, the reader

is referred to [18, 20] for details. We introduce the adhesiv
the outside of diagramii(), with (L, R*) being a reac-  category of place-link graphs, which can be considered “bi-
tion rule, corresponding via the translation of Lemma 4.4 graphs without interfaces.” Interfaces will be handled by
to the rewrite rule | «—— I3 ~® ¢ R The candidate considering the bicategory of cospans over such category.
(Is, F,C,G,B,7,6) illustrated is the GRPO obtained via the Fixed an alphabet of contrals we define alace-graph

construction of Algorithm 3.3. G to be a directed graph with nodes labelled oxetHere

We also haveH% = Ciocc o R%®, which in other words  edges represent (a generalisation of) the nesting of loca-
means that diagraniv) is a pushout withoy : Is — H tions. The connectivity of eack € X is determined by
equal tod, o Oc. an arity functionar: ¥ — N,so thatk has ports numbered

Recall that from the construction, we have that 1-...ar(K). By “set of portSof G we indicate the disjoint
diagram () is a pushout, diagranvi) is a pullback, dia- union of all the ports associated to all the node&of
grams yii) and ) are pushouts. Diagramsv) through
to (viii) paste together to give the required borrowed con-
text. O

Definition 4.8 (Place-Link Graphs). A place-link (pl)
graphis a place-graghtogether with dink mapl: P — S,
whereP is the set of ports ofs. The role ofl andS is to
jointly describe the connections between ports. A plack-li
(pl) morphism is a graph morphism which preserve node la-
bels and port connections. LBLGraphy, be the category

of pl-graphs and pl-graph morphisms oXer

We end this section with an extension of borrowed con-
texts suggested by the linearity conditions imposed in the
construction of Algorithm 3.3.

Definition 4.7 (Extended Borrowed Contexts).Given an
adhesive grammds = (C, P) with anarbitrary set of rules
P, we shall construct a labelled transition system with:

It is easy to construct a categaky so thatPLGraphy
is a presheaf categoSet™ and, as such, is adhesive. We
can then conclude as follows.

. . . 0
— States: Graphs with outer interfacds,— G where  corollary 4.9. ILC(PLGraph,) has GRPOs, calculated

Og is arbitrary; using Algorithm 3.3.
— Transitions: Cospans of grapnsL—F> F <& K where There are two aspects of our bicategory of pl-graphs
tr is mono andk is arbitrary. that generalise the theory of bigraphs. Firstly, interface

o here need not be “discrete,” i.e., specify just nodes to be

We derive a transitio5% —F—» H% if there exists a  Merged and ports to be connected, but allow for more com-

commutative diagram as in Fig. 7, whei,(2), (3) and @) plex forms of composition. S_e_condly, place graph_s are usu-
are pushouts, while squarg) (s a pullback. The indicated ~ ally forests of trees, and their input (resp. output) irsteels

morphisms are assumed to be mono, the others are arbitrary€ach only leaves (resp. roots), while we allow all directed
graphs. One can, however, prove that Corollary 4.9 remains

As a corollary of the translation between borrowed con- valid when the arrows of ILG{LGraphy) are restricted to
texts and GIPOs of Theorem 4.6 and the congruence wesuch bigraphs.
have that bisimilarity on the labelled transition system re The main dfference with bigraphs remains the input-
sulting from Definition 4.7 is a congruence with respect to vs output-linearity issue, which has the interestirftpet
arbitrary input-linear graph contexts. of banning name aliasing in respectively the inner and the



outer interface. We leave a deeper analysis of this di-
chotomy as future work.

Petri nets provide another application of our framework,
described in [17]. The model consists of adding an ele-
mentary notion of interface to Petri nets, similarly to athe
proposals in the literature, as e.g. [1, 14]. Specificallg, w
equip each net with two ordered subsets of placesirthe
nerand theouter interface This, together with morphisms
that respect net topologies and interfaces, yields a bicate
gory INet, which can easily be recast in terms of cospans
over an adhesive category. Formally, MNet be the cat-
egory of marked Petri nets and structure-preserving homo-
morphisms. AdMNet is adhesive, we have the following
result, where GRPOs are calculated via Algorithm 3.3.

Corollary 4.10. ILC(MNet) has GRPOs,

INet consists of the linear cospans with discrete inter-
faces in ILCMNet) and, once again, the existence of GR-
POs is not fected by this restriction. Then, considering the
usual Petri “token game” as a reactive system ¢Met, we
automatically derive an LTS for Petri nets with interfaces
over which bisimulation is congruence.

As it turns out, such a bisimulation admits a very sim-
ple characterisation consisting of only three kinds of tran
sitions: p — p’, if p’ results fromp through an internal
firing; p = p’ if p’ results fromp by adding a token at its
ith outer place; ang —» p’ if p’ results fromp by remov-
ing a token from itdth outer place. We remark that this is
the same bisimulation as derived by Milner using a bigraph-
based representation of Petri nets with interfaces [14].

5 Conclusion

We have constructed groupoidal relative pushouts (GRPOs)[15]

in a general framework of generalised contexts and inter-

faces, represented by cospan bicategories over adhesive ca

egories. This allows us teystematicallyderive a composi-
tional semantics foeachreactive system in the framework,
in the form of a LTS determining a bisimulation congru-
ence. We have shown in detail how Ehrig and Konig's
rewriting via borrowed contexts [5] falls within the frame-
work and can be obtained as an application of our theory,
and mentioned two others, a variant of Milner’s bigraphs
and a compositional approach to Petri nets [17].

As future work, we plan to investigate conditions under
which a general construction of GRPOs exist for output-
linear cospan bicategories.

AcknowledgementsThe authors would like to thank Vincent
Danos and the anonymous referees for their helpful comments
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