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Abstract

The theory of reactive systems, introduced by Leifer and Milner
and previously extended by the authors, allows the derivation of
well-behaved labelled transition systems (LTS) for semantic mod-
els with an underlying reduction semantics. The derivationpro-
cedure requires the presence of certain colimits (or, more usually
and generally, bicolimits) which need to be constructed separately
within each model. In this paper, we offer a general construc-
tion of such bicolimits in a class of bicategories of cospans. The
construction sheds light on as well as extends Ehrig and König’s
rewriting via borrowed contexts and opens the way to a unified
treatment of several applications.

Introduction

Some of the most important operational techniques, devel-
oped through research on concurrency, involve the use of
labelled transition systems (LTS) and the accompanying no-
tions of operational preorders and equivalences, bisimula-
tion being chief among these, in order to reason about pro-
cess equivalence. Some basic concepts, common to many
applications where such operational techniques apply, in-
clude the notions ofterm, contextandreaction.

Such notions began to be studied in the seminal work
of Berry and Boudol [3] on thechemical abstract ma-
chine. More recently, Leifer and Milner’s [11] introduced
the framework ofreactive systems, aimed at providing a
general setting where such notions can be studied. Reac-
tive systems can be seen as a generalisation of ground term-
rewriting systems, where a collection of ground rewrite
rules is closed under a set of “reactive” contexts to obtain
the rewrite relation. Contexts are themselves organised as
the arrows of a categoryC.

Leifer and Milner’s chief contribution was to utilise a
universal categorical construction, dubbedrelative pushout
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(RPO), in order to equip each reactive system with an LTS,
whose labels can be characterised as the smallest contexts
that allow reactions to occur – an idea originally due to
Sewell [19]. Such LTSs are very well-behaved; in particu-
lar, bisimilarity is a congruence with respect to all contexts,
provided thatC has “enough” RPOs. In [16], the authors
proposed an approach based on a 2-dimensional generali-
sation of RPOs, thegroupoidal relative pushout(GRPO),
which has been shown in [15] to encompass previous ap-
proaches addressing these issues. Of course, one retains the
congruence theorems (bisimilarity, trace and failures equiv-
alences) in the more general setting.

Several constructions of GRPOs have been proposed in
the literature forparticular categories of models. For in-
stance, Milner explicitly constructed such bicolimits forbi-
graphs [13] in full detail,1 but there has been little work on
understanding how such constructions may be performed in
other models. Indeed, the main applications our theory of
reactive systems have so far involved relatively simple ex-
amples [16, 15].

In the paper we address this by giving a construction
of GRPOs for a wide range of models – those which can
be expressed as certain cospans overadhesivecategories.
The class of adhesive categories, introduced in [9], includes
many categories where the objects are variants of graphs –
for instance, the categoryGraph of graphs and graph ho-
momorphisms is adhesive.

An important application of our results is Ehrig and
König’s rewriting via borrowed contexts, an extension of
the double-pushout (DPO) graph transformation approach
with a contextual semantics that allows transfer of con-
cepts and techniques from the field of process algebra to
graphs. The labels of their LTS are the so-called “borrowed-
contexts” – certain contexts which allow a DPO transforma-
tion to be performed.

Other applications include a partial treatment of Milner’s
bigraphs [13], a model introduced to model various fun-
damental notions arising from the study of process calculi
such as the pi-calculus, as well as a Petri net-based model

1Milner actually constructs ordinary RPOs in aprecategory– this is
equivalent to constructing GRPOs in the bicategory which results from
taking support translations as 2-cells (see [15]).
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Figure 1. Example of a contextual system.

of open systems [17], related to open nets [1].

Before a formal presentation of the technical details of
our results, we shall first allow ourselves a certain amount
of informality in order to illustrate the intuition and the mo-
tivation behind the construction introduced in this paper.
A cospan in an adhesive category is for us a generalised
“graphical context” between “interfaces;” starting with ob-
jectsI , J andC of an adhesive categoryA (the reader could
takeA = Graph for concreteness), we can treatC as a con-
text with inner interfaceI and outer interfaceJ by providing

homomorphismsI
ιC // C J

ocoo . This resulting cospan is
treated as anarrow of a new category Cospan(A) with the
same objects asA – indeed such cospans may be composed;
intuitively, by “glueing together along the common inter-
face;” concretely, by constructing a pushout. Due to the
nature of pushouts, the composition is, in general, not as-
sociative on the nose, but rather, up to a unique coherent
isomorphism – which means that Cospan(A) is, in general,
abicategory[2].

Starting with any categoryA with pushouts, the process
A { Cospan(A) can be thought of as a kind of a canoni-
cal “contextualisation” operation, turning objects of a one
category into the arrows of another (bi)category. Incidently,
the dual situation, that of spans over graphical structures,
has been studied by Katis et al [8] – roughly, they argue that
spans over graphs can be seen as generalised automata.

For an idealised example of cospans, consider the simple
model of a coffee vending machine, illustrated by the left-
most diagram of Fig. 1. It has an outer interface consisting
of two nodes, $ andC, which one can think of as a money
slot and the coffee out-tray. These are the parts of the coffee
machine accessible to the environment, the internal compo-
nents, represented byS, are invisible. The middle diagram
represents a coffee drinker. He expects to see a money slot
and a coffee out-tray, which are his inner interfaces. As the
outer interface of the coffee machine and the inner interface
of the coffee drinker match, one may compose them and
obtain the system pictured in the rightmost diagram.

There are several examples of cospans relevant for com-
puter science. For instance bigraphs are cospans in an ad-
hesive category of place-link graphs with outer interface
maps mono, and graph contexts in the sense of Ehrig and

König [5] are cospans inGraph with both interface maps
mono. Examples ofreactive systemsover such cospan cate-
gories include, therefore, the theory ofbigraphical reactive
systemsof Milner [13] and the theory ofdouble-pushout
(DPO) graph transformation [4].

The main result of the paper is the construction of GR-
POs in a class of cospan bicategories over adhesive cate-
gories, which in turn allows the derivation of LTSs forall
reactive systems based on such bicategories. Specifically,
we require that theinner interface map of every cospan is
mono. Although technical in nature, the linearity condition
does have an intuitive account. As alluded in the coffee
drinker example, one can consider a cospan as a “black
box,” with an inner interface and an outer interface. The
environment cannot see the internals of the system and only
interacts with it through the outer interface. The fact that
the outer interface need not be linear means that the system
is free to connect the outer interface arbitrarily to its inter-
nal representation. For example, the coffee machine could
have two extra buttons in its outer interface; the “café latte”
button and the “cappuccino” button. The machine internals
could connect both these buttons to the same internal trig-
ger for coffee with milk; the point is that the system controls
its outer interface and is able to equate parts of it. On the
other hand, the system cannot control what is plugged into
one of its slots. Thus, an assumption of input-linearity is
essentially saying that the system does not have the right to
assume that two components coming in through the inner
interface can be confused.

Applying the construction to mono cospans inGraph
yields Ehrig and König’s [5] construction of rewriting via
borrowed contexts – which confirms that their approach is
an instance of the general methodology of reactive systems;
we shall show that their labels actually arise from GRPOs
and thus satisfy a universal property. As a consequence,
their congruence theorem follows automatically from the
theory of reactive systems. Finally, because we require only
the left leg of the cospan to be mono, we are able to gener-
alise their results.

Since Milner’s bigraphs can be seen as output-linear
cospans, the construction does not apply. However, we pro-
vide LTS semantics for a different class of bigraphs: the
input-linear cospans over the same category. The construc-
tion has also been applied in order to derive LTS semantics
for a compositional model of Petri nets [17].

Structure of the paper. The paper begins with two sec-
tions summarising the background theory necessary for our
construction. First, in§1 we recall Leifer and Milner’s the-
ory of reactive systems and relative pushouts together with
the generalisation of the theory previously worked out by
the authors. Secondly, in§2 we recall about adhesive cate-
gories and cospan bicategories. Our main construction ap-
pears in§3. In §4, we provide a detailed exposition of the
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relevance to Ehrig and König’s [5] and mention other appli-
cations.

Preliminaries. Throughout the paper we assume a basic
knowledge of category theory, as well as basic acquaintance
with the concepts of 2-categories and bicategories. Here
we mention only that abicategory[2] can be described,
roughly, as a 2-category where associativity and identity
laws of horizontal composition hold up to isomorphisms.
We shall denote all associativity isomorphisms bya, as for
example,a : h(g f) ⇒ (hg) f . The isomorphisms are re-
quired to respect well-known coherence axioms [12]. We
use idX to denote the identity atX, while 1f and • stand,
respectively, for identity 2-cells and vertical composition.

1 Reactive Systems and GRPOs

Here we briefly recall an extension of Leifer and Milner’s
notion of reactive system to categories with 2-dimensional
structure, as previously introduced by the authors [16]. The
basic idea of a reactive system is to bring together a collec-
tion of contexts, which form the arrows of a category, with
a set of reaction rules on terms. From the reaction rules
one generates a reaction relation by contextual closure. Us-
ing certain pushouts, one equips a reactive system with an
LTS on which bisimilarity is a congruence with respect to
all contexts.

Apart from trivial examples, it is the norm that the con-
texts of a reactive system have some notion of isomorphism
– often referred to as structural congruence in the field of
process calculi. It turns out that ignoring such structure is
often problematic (cf. [16]) and one solution is to include
the isomorphism/structural congruence as part of the struc-
ture; i.e., to consider 2-categories of contexts instead ofcat-
egories. Guided by examples, we usually consider only iso-
morphic 2-cells. In order to generate an LTS and extend
the congruence results still, one then needs to consider bi-
pushouts (rather than pushouts) [16].

In this paper we consider cospans as contexts; since the
composition is associative up to isomorphism, we shall need
to work in bicategories instead of 2-categories. Apart from
changing the definition of reactive system, this generalisa-
tion poses no difficulty – bicolimits are naturally a bicate-
gorical notion.

Definition 1.1 (Reactive System).A reactive systemC
consists of

1. a bicategoryB with all 2-cells iso;
2. a collectionD of arrows ofB called thereactive con-

texts; it is required to be closed under 2-cells and be
composition-reflecting (see below);

3. a distinguished object 0∈ B; arrows with domain 0 are
often referred to asterms;

4. a set of pairs of terms, thereaction rulesR. The terms
l, r of any given pair〈l, r〉 ∈ R have the same codomain
as arrows ofB.

The reactive contexts are those inside which evaluation
may occur. Composition-reflecting means thatdd′ ∈ D im-
plies d andd′ ∈ D, while the closure property means that
givend ∈ D and an isomorphismρ : d ⇒ d′ in B implies
d′ ∈ D.

The reaction relation ⊲ is defined by takinga ⊲ a′

if there is〈l, r〉 ∈ R, d ∈ D, α : dl ⇒ a andα′ : a′ ⇒ dr.
This represents that, up to structural congruenceα, a is the
left-hand sidel of a reduction rule in a reactive contextd,
while a′ is, up to structural congruenceα′, the right-hand
sider in the same context.

Leifer and Milner [11] developed the derivation of a
canonical LTS associated to any given reactive system. The
derivation uses a universal construction, dubbed relative-
pushout (RPO), which is a pushout in a slice category.
Bisimulation on the resulting LTS is a congruence, pro-
vided that the underlying category of the reactive system
has enough RPOs; we shall make the meaning of “enough”
precise below.

A groupoidal-relative pushout (GRPO) is the generalisa-
tion of an RPO to categories with 2-dimensional structure.
We recall the definition below,2 and due to lack of space
refer the reader to [16] for a full presentation. Note that
although GRPOs are introduced there in the setting of G-
categories (2-categories with iso 2-cells), the development
is easily transferred to bicategories with iso 2-cells – it suf-
fices to introduce the coherent associativity isomorphisms
where necessary. In order to increase readability, we leave
these out within the definition below.

Definition 1.2 (GRPO). A candidatefor square (i) is a tu-
ple 〈I5, e, f , g, β, γ, δ〉 such thatδb •gβ • γa = α. In other
words, the 2-cellsγ, β and δ, illustrated in diagram (ii ),
paste together to giveα.

A groupoidal-relative-pushout(GRPO) is a candidate
which satisfies a universal property, namely, for any other
candidate〈I6, e′, f ′, g′, β′, γ′, δ′〉 there exists amediating
morphism, that is a quadruple

〈

h : I5→ I6, ϕ : e′ ⇒ he, ψ : h f ⇒ f ′, τ : g′h′ ⇒ g
〉

illustrated in diagrams (iii ) and (iv). The equations that need
to be satisfied are: 1.τe• g′ϕ • γ′ = γ ; 2. δ′ • g′ψ • τ−1 f = δ;
and 3.ψb • hβ •ϕa = β′.

Such a mediating morphism must beessentially unique,
namely, for any other mediating morphism〈h′, ϕ′, ψ′, τ′〉
there must exist a unique 2-cellξ : h⇒ h′ which makes the
two mediating morphisms compatible, i.e.: 1.ξe•ϕ = ϕ′;
2. ψ • ξ−1 f = ψ′; and 3.τ′ •g′ξ = τ.
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(iv)

GRPOs are used to classify the smallest contexts nec-
essary for a reaction to be performed. The redex squares
which satisfy this property are known as groupoidal-idem-
pushouts, or GIPOs.

Definition 1.3 (GIPO). Diagram (i) of Definition 1.2 is
a G-idem-pushout (GIPO) if

〈

I4, c, d, idI4 , α, 1c, 1d
〉

is its
GRPO.

We are now in a position to define the LTS which has
such smallest contexts as labels.

Definition 1.4 (LTS). For C a reactive system andB its
underlying bicategory, define GLTS(C) as follows:

• the states of GLTS(C) are terms;

• there is a transitiona f
◮ a′ if there exists a 2-cellα,

a rule〈l, r〉 ∈ R, and a reactive contextd ∈ D such that
the diagram below is a GIPO anda′ is iso todr.

I4

I2

f ??���
α +3 I3

d__>>>

0
a

__???
l

??���

(1)

In previous work [16, 15], we have considered anab-
stract LTS where the terms and transitions are quotiented
by isomorphism; this is the norm in specific calculi, for in-
stance in CCS or the pi-calculus the states are processes,
i.e., terms modulo structural congruence. For simplicity,
we leave the terms and transitions unquotiented here, that
is, we deal with theconcretetransition system, using the
terminology of [20]. Both versions have the same congru-
ence properties.

Definition 1.5. A reactive systemC is said to haveredex-
GRPOswhen every redex-square (1), witha and f arbitrary,
d a reactive context andl a part of a reaction rule〈l, r〉 ∈ R,
has a GRPO.

The following is a slight extension of a theorem for 2-
categories which can be found in [16].

Theorem 1.6. Let C be a reactive system with redex-
GRPOs. Then bisimilarity onGLTS(C) is a congruence
with respect to all the contexts ofC.

2For category theorists, a GRPO can be described concisely asa bi-
pushout in a pseudo-slice category.

D
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g ??~~~
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n__@@@

C
m

__???
f

??���

Figure 2. Pushout diagram.

2 Adhesive categories and cospans

Adhesive categories. In order to construct GRPOs in
cospan bicategories we shall need the notion of adhesive
categories, we refer the reader to [9] for an introduction;
here we shall only mention some properties of adhesivity
which we shall be need in the later exposition. In§3, we as-
sume that the underlying category of the cospan bicategory
is adhesive and use the structure of adhesive categories re-
peatedly in the construction of GRPOs.

Adhesive categories can be described by a slogan:
pushouts along monomorphisms exist and are well-
behaved. The class of adhesive categories includesSet,
Graph, as well as any elementary topos. It is closed under
product, slice, coslice and functor category. As explained
in [9], many graphical structures relevant to computer sci-
ence form adhesive categories.

We shall need the following properties of adhesive cat-
egories for our constructions. The proof of the following
lemma can be found in [9].

Lemma 2.1. LetA be an adhesive category.

1. Monos are stable under pushout inA. In other words,
in the diagram of Fig. 2, if m is mono then n is mono.

2. A pushout inA (Fig. 2) is also a pullback diagram, if
m is mono.

3. If it exists, a pushout complement3 of 〈m, g〉, with m
mono, is unique up to a compatible isomorphism; more
precisely, if f, n and f′ : C → B′, n′ : B′ → D are
pushout complements, then there exists an isoϕ : B→
B′ such thatϕ f = f ′ and n′ϕ = n.

Recall that, given an objectX, a subobject [µ : Y→ X] is
an equivalence class of monomorphisms intoX, where the
equivalence relation is generated from the canonical pre-
order on monomorphisms intoX: µ ≤ µ′ if there exists
k : Y → Y′ such thatµ′k = µ. Subobjectintersectionand
union refers to a meet and join of subobjects (if it exists)
in this preorder. Any category with pullbacks has binary
subobject intersection. Binary subobject unions in adhesive
categories are calculated by pushing out along their inter-
section.

3Given m : C → A and g : A → D, we say thatB is a pushout
complementof 〈m,g〉 when there existf : C→ B andn : B→ D such that
the resulting diagram (Fig. 2) is a pushout diagram.
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Cospan bicategories. We shall assume thatC is a cate-
gory with chosen pushouts. That is, for arrowsm : C → A
and f : C→ B, there exists unique “chosen” objectA+C B
and arrowsA → A +C B and B → A +C B such that the
resulting square is a pushout.

The bicategory of cospans Cospan(C) has the same
objects asC, but arrows from I1 to I2 are cospans.

I1
ιC // C I2

oCoo . We will denote such cospansCoC
ιC :

I1 → I2, and omitιC (resp.oC) whenI1 (resp.I2) is initial.
We shall sometimes refer toI1 and I2 as, respectively, the
inner and outer interfaces ofCoC

ιC . Intuitively, we can think
of a cospan as a generalised context, whereC are the inter-
nals, (the image viaoC of) I2 represents the public view of
C, and (the image viaιC of) I1 the view ofC afforded to the
“holes” in it.

A 2-cell h: CoC
ιC ⇒ CoC′

ιC′
: I1 → I2 in Cospan(C) is an

arrow h: C → C′ in C satisfyinghιC = ιC′ and hoC =

oC′ . The isomorphic 2-cells provide a canonical notion
of “structural congruence.” We shall denote the bicate-
gory of cospans which has the 2-cells limited to isomor-
phisms by Cospan�(C). Given cospansCoC

ιC : I1 → I2 and
DoC′
ιC′

: I2 → I3, their composition is the cospan obtained by
taking the pushout ofoC and ιD, as illustrated by Fig. 3.
Note that in the resulting composition,I2 is “forgotten.”
Composition is associative up to a unique isomorphism. It
is easy to check that the associativity isomorphisms satisfy
the coherence axioms, and thus yield a bicategory

To perform our construction we need a certain linearity
restriction. In particular, the notion of input-linear cospan.

Definition 2.2 (Linearity). A cospanCoC
ιC is said to be

input-linear when ιC is a mono,output-linearwhenoC is
mono, andlinear when it is both input-linear and output-
linear.

A simple corollary of the first part of Lemma 2.1 is that
the composition of two input-linear cospans over an adhe-
sive category yields an input-linear cospan. Similarly, com-
position preserves output-linearity and linearity.

Definition 2.3. Assuming thatA is adhesive, let ILC(A)
be the bicategory consisting of input-linear cospans and 2-
isomorphisms. Similarly, let LC(A) be the bicategory of
linear cospans and 2-isomorphisms.

3 GRPOs for cospans

In this section we present a general construction of GRPOs
for a class of reactive systems over cospan bicategories.

Construction. The following result is the main original
contribution of this paper. Several implications of Theo-
rem 3.1 and of the construction which constitutes its proof
are considered in§4.

Theorem 3.1. If A is adhesive,ILC(A) has GRPOs.

The remainder of this section presents a proof of the
above theorem. We first outline an algorithm for the con-
struction of the desired minimal candidate. Because of
space constraints, we have omitted most technical details;
these can be found in the second author’s Ph.D. thesis [20]
and in [18].

An arbitrary square in ILC(A), as illustrated in dia-
gram (i) below, amounts to a commutative diagram (ii ) in
A, with α an isomorphism.

I4

I2
α +3

C ??���
I3

D__>>>

I1
A

__>>>
B

??���

(i)

C
i��

I4
oCoo

oD // D
i ��

I2
<<

ιC
<<yyyyy

oA ""E
EE

EE
A+I2 C α // B+I3 D I3

oB||yy
yy

y

bb

ιD
bbEEEEE

A
OO
i
OO

I1
//
ιB

//oo
ιA

oo

(ii )

B
OO

i
OO

Definition 3.2 (Frame of reference).Given a diagram (i)
in ILC(C), by a frame of referencewe mean an arbitrary
objectX equipped with isomorphismsωl : A+I2 C→ X and
ωr : B+I3 D→ X such thatω−1

r ωl = α. LetωA = ωl iA→A+C :
A→ X, ωC = ωl iC→A+C : C→ X, ωB = ωr iB→B+D : B→ X
andωD = ωr iD→B+D : D→ X.

Clearly, a frame of reference for (i) always exists. For
instance, one can letX beB+I3 D, ωr be the identity andωl

beα. It follows easily that diagram (iii ), below, is commu-
tative. Notice that both of the squares in diagram (iii ) are
actually pushouts.

C

ωC ��
>>

>>
I4

oCoo
oD // D

ωD����
��

I2

oA ��
>>

>>

ιC @@���

X I3

ιD__>>>>

oB����
��

A

ωA
@@����
I1

(iii )

ιA
oo

ιB
// B

ωB
__>>>>

SinceωA andωB are readily seen to be mono, being
pushouts of monos in an adhesive category (Lemma 2.1),
we are able to obtain the subobject union – an objectY =
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A ∪ B and monomorphismsµ : Y → X, ǫ1 : A → Y and
ǫ2 : B→ Y satisfyingµǫ1 = ωA andµǫ2 = ωB.

Notice that sinceµ is mono andµǫ1ιA = ωAιA = ωBιB =

µǫ2ιB we have thatǫ1ιA = ǫ2ιB. We obtain the commutative
diagram (iv).

X

A
ǫ1 //

ωA
00

Y

µ

OO

B

ωB
nn

ǫ2oo

I1

ιA

__?????? ιB

??������

(iv)

I5oE

wwooo
ooo �� ιG

��
??oF

��

E

σ1

��

�� ρ1
��

??
G

π2

��

π1wwnnnnnn

C
ωC

��

F
σ2 oo
wwooo

  ρ2
  

AA

Y ��

µ
��

@@
D

ωDwwnnnnnn

X

(v)

γ
>>>>

�#
>>>>

I4

I2

C
11

E //

β

+3

I5

δ����

<D
����G

OO

I3Foo

D
mm

I1

A

__?????? B

??������

(vi)

Algorithm 3.3 (GRPO Construction in ILC(A)). The
construction of the components of the minimal candidate is
outlined below. They are illustrated in diagrams (v) and (vi).
We obtain:

1. G as the pullback ofωC : C→ X andωD : D→ X;

2. E as the pullback ofµ : Y→ X andωC : C→ X;

3. F as the pullback ofµ : Y→ X andωD : D→ X;

4. I5 as the pullback ofρ2 : F → D andπ2 : G → D;
notice that due to the properties of pullbacks, we obtain
a morphismoE : I5 → E such that all the faces of (v)
are pullbacks.

The following two lemmas show that the construction of
Algorithm 3.3 indeed results in a GRPO, and complete the
proof of Theorem 3.1.

Lemma 3.4. The construction as outlined in Algorithm 3.3
provides a candidate for square (i).

Proof. In order to prove the lemma, we are required to:

1. demonstrate the existence of appropriate inner and
outer interfaces for each ofE, F andG;

2. show that there exist isomorphismsβ : A +I2 E →
B+I3 F, γ : C→ E +I5 G andδ : F +I5 G→ D;

3. show that these isomorphisms paste together in way
which results in a 2-cell equal toα : A+I2 C→ B+I3 D.

We omit the details, and refer the reader to [18, 20].�

Lemma 3.5. The candidate constructed using Algo-
rithm 3.3 satisfies the universal property of a GRPO. More
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Figure 4. GRPOs in ILC(Set).

precisely, given any other candidate for diagram (i), as illus-
trated in diagram (xiii ), there exists a mediating morphism:

γ′
>>>>

�#
>>>>

I4

I2

C
11

E′ //

β′
+3

I6

δ′����

<D
����G′

OO

I3F′oo

D
mm

I1

A

__?????? B

??������

(xiii )

a cospanI5 //
ιH // H I6

oHoo (an arrowH : I5 → I6 of
ILC(A)) and isomorphismsϕ : E′ → E+I5 H,ψ : F+I5 H →
F′ andτ : H+I6 G′ → G in C which form 2-cells of ILC(A)
and which satisfy the required equations:

(E +I5 τ)a(ϕ +I6 G′)γ′ = γ, δ′(ψ +I6 G′)a(F +I5 τ
−1) = δ

and (B+I3 ψ)a(β +I5 H)a(A+I2 ϕ) = β′.

Moreover, the mediating morphism〈H, ϕ, ψ, τ〉 is required
to be essentially unique (see Definition 1.2). This means
that for any other mediating morphism〈H′, ϕ′, ψ′, τ′〉which
satisfies analogous equations, there exists a unique isomor-
phismξ : H → H′ which makes the two mediating mor-
phisms compatible:

(E+I5 ξ)ϕ = ϕ
′, ψ(F+I5 ξ

−1) = ψ′ and τ′(ξ+I6 G′) = τ.

Proof. Omitted, see [18, 20]. �

Examples. First, with the aid of a simple example, we
shall demonstrate that it iscritical that one fixes a particular
isomorphismα : A +I2 C → B +I3 D. Indeed, consider
the two diagrams in ILC(Set) in the first row of Fig. 4; the

arrow 0
1
−→ 1 denotes the cospan 0

id
−→ 1

id
←− 1, while
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Figure 5. GRPO ILC(Graph)

1
2
−→ 0 denotes the cospan 1

0
−→ 2

!
←− 0, andγ : 2 → 2

is the bijection which swaps the two elements. We illustrate
the two resulting candidates in the second row of Fig. 4:

1
id
−→ 1 is the identity cospan 1

id
−→ 1

id
←− 1, whereas

1
2
−→ 2 is the cospan 1

0
−→ 2

id
←− 2 and 1

2′
−→ 2 is the

cospan 1
0
−→ 2

γ
←− 2.

Intuitively, in the first case, the two lower arrows corre-
spond to the same element. Thus the context contains re-
dundant information which can be factored out resulting in
a candidate which is just the identity context. Conversely,
they are different in the second case, meaning that the con-
text has to be kept in the minimal candidate.

We shall give one more example with ILC(Graph) as
our category of contexts in order to illustrate some of the
effects of allowing non-mono outer interfaces. In the ac-
companying Fig. 5, we label the nodes of the graphs in or-
der to clarify the action of various graph morphisms, which
we leave unlabelled. We also do not draw the 2-cells as the
labelling on the nodes makes these clear. The exterior maps
of Fig. 5 correspond to two different ways of decomposing

c d

a

bbEEE OO

��

b

The GRPO is illustrated in the interior of the diagram. One
can compare this “blowing up” of the outer interface in the
GRPO with the phenomenon of “forking” as described by
Leifer [10, Fig. 1.4].

4 Applications

In this sections we shall examine some of the applications of
Theorem 3.1 and Algorithm 3.3. Due to space restrictions,
we shall concentrate on the application Ehrig and König’s
rewriting via borrowed contexts and briefly summarise ap-
plications to bigraphs and Petri nets.

4.1 Rewriting via borrowed contexts

Our results both shed light on and extend Ehrig and
König’s rewriting via borrowed contexts [5]. First, we shall
show that borrowed contexts correspond to GIPOs, and
therefore satisfy a universal property. Consequently, the
theory of rewriting via borrowed contexts falls within the
framework of reactive systems [11, 16, 15] and therefore the
various congruence properties and constructions carry over.
In particular, Ehrig and König’s congruence theorem can be
seen as an application of the congruence of bisimilarity the-
orem for reactive systems. Finally, due to the generality of
Theorem 3.1, we relax some of the technical conditions im-
posed by Ehrig and König and thereby introduce the notion
of extended borrowed contexts (Definition 4.7).

We begin with a brief account of a variant of double-
pushout (DPO) graph transformation [4], working at the
level of an arbitrary adhesive categoryA.

Definition 4.1 (Rewrite Rule). A rewrite rulep is a span

L K
loo r // R (2)

in A. No assumptions are made about eitherl or r.

Here L andR represent respectively the left and right-
hand side of the rule, whileK is information which remains
unaffected by the rewrite. A redex in an objectC is identi-
fied by matching a rule’s left-hand side, which is done via a
morphismf : L→ C.

Definition 4.2 (Grammar). An grammarG is a pair〈C,P〉
whereC is a category andP is a set of rewrite rules. A
grammar is said to beadhesivewhenC is adhesive.

Definition 4.3 (Rewrite rule application). Object C
rewrites toD with rule p, in symbolsC ◮p, f D, if there
exist an objectE and morphisms so that the two squares in
the Fig. 6 are pushouts. We shall writeC ◮ D if there
exist p ∈ P and f : L→ C such thatC ◮p, f D.
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L
f
��

K
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loo r // R
h
��

C Ev
oo

w
// D

Figure 6. Rewrite rule application (DPO).

Using the conclusion of the third part of Lemma 2.1, one
can show that in adhesive grammars, the application of left-
linear rewrite rules is functional, so thatC ◮p, f D and
C ◮p, f D′ implies thatD � D′ (cf. [9]).

Any grammarG = 〈C,P〉 can be seen translated into
a reactive system on Cospan(C). Let 0 denote the empty
graph, and the setR contain for each rewrite rulep (2) a
pair

〈

0→ L
l
←− K, 0→ R

r
←− K

〉

.

We choose all arrows of Cospan(C) be reactive. Let ⊲

denote the resulting reaction relation. The translation pre-
serves semantics, as demonstrated by the following lemma,
which is similar to a previously published result [6] and can
be considered folklore. We use the shorthandC ⊲ D to
mean thatC andD are cospans with empty inner and outer
interfaces. It is crucial for us because it serves as a founda-
tion for relating the theory of DPO transformation systems
and reactive systems over cospans.

Lemma 4.4. C ◮ D iff C ⊲ D.

In order to apply Theorem 3.1, we need restrict to graph
transformation systems which correspond to reactive sys-
tems over input-linear cospans.

Definition 4.5 (Input-Linear Rewrite Application). Ob-
ject C rewrites toD input-linearly with rulep, in symbols
C ◮

il
p, f D, if C ◮p, f D and in additionf , g andh of

Fig. 6 are mono.

It follows that starting with an adhesive grammarG =
〈A,P〉 and an input-linear rewrite relation ◮il , we may
construct a corresponding reactive systemA over the bicat-
egory of input-linear cospans ILC(A). Clearly, Lemma 4.4
specialises, and thus semantics is preserved. Now, using the
construction of GRPOs of Theorem 3.1, we obtain an LTS;
let LTS(G) = GLTS(A). Using the congruence theorem for
bisimilarity from [16] on such an LTS, we obtain that bisim-
ilarity on LTS(G) is a congruence.

A rewrite rule (2) is calledlinear when bothl andr are
mono. If we restrict our view to DPO rewriting systems
with linear rewrite rules and input-linear rewrites then we
are in a position to compare the resulting LTS with rewriting
via borrowed contexts, which requires these extra assump-
tions.

Precisely, given an adhesive grammarG = 〈A,P〉, where
P consists of linear rewrite rules, let RBC(G) be the LTS

D

(1)
��

��

// // L

(2)
��
ǫ2
��

I

(3)
��
ιC
��

loo r // R
��
θ1
��

G

(4)

// ǫ1 // G+

(5)

Cσ2oo θ2
// H

J

oG

OO

//
ιF

// F

σ1

OO

K

oC

OO

oF

oo

Figure 7. Borrowed context.

derived via rewriting with borrowed contexts as defined
in [5]. Recall that the states of RBC(G) are graphs with a
mono outer interface. The transitions are labelled by mono

cospans of graphs; there is a transitionGoG
F

oF
ιF
◮HoH pre-

cisely when there exists a diagram as illustrated in Fig. 7

with all arrows mono,L
l
←− I

r
−→ R ∈ P, regions (1–4)

pushouts and region (5) a pullback.

Theorem 4.6. LTS(G) = RBC(G).

Proof. The proof consists of showing that borrowed con-
texts correspond to contexts obtained from GIPOs.

From borrowed contexts to GIPOs. Given a borrowed
context diagram as illustrated in Fig. 7, we shall show that
one may construct a GIPO (i).

K

J
α +3

F
==zzzzzz

I

C
aaCCCCCC

0
G

aaDDDDDD L

=={{{{{{

(i)

KoF

uulllllll
  

AAoC

��

F

σ1

��

##G
GG

K

oC

��

oFvvmmmmmm

F
σ1

��

Cll

vvlll
l

σ2
��

@@

G+
""F

F C
σ2vvnnnnnn

G+

(ii )

Assume without loss of generality thatL +I C = G+. Let
α : F +J G → G+ be the unique isomorphism such that
αi i = σ1 : F → G+ andαi2 = ǫ1 : G→ G+.

Since square (1) of Fig. 7 is a pushout of monos and
we are in an adhesive category, it is also a pullback
(Lemma 2.1). This implies thatL ∪ G = G+. The cube
which results from an application of Algorithm 3.3 is illus-
trated in (ii ), in the construction we use only the fact that
square (5) of Fig. 7 is a pullback. Thus, the GRPO of redex
square (i) is 〈K, F,C, id, id, id, α〉, meaning that it is a GIPO.

From GIPOs to borrowed contexts. Suppose that

GoG
F

oF
ιF
◮HoH is a transition in LTS(G). thenFoF

ιF must
be a part of an GIPO diagram. Since every GIPO can
be constructed as a GRPO, we have a redex diagram as
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γ
>>>>

�"
>>>>

I4

I2

β

+3

F′ 00

F // I5

δ����

<D
����G

OO

I3Coo

C′nn

0
G

__????? L

??�����

(iii )

I3
oR //

��
iC ��

R
��
θ1��

C
θ2

// H

(iv)

G∩ L // //

��

��

G
��
ǫ1��

L //
ǫ2

// Y

(v)

I5
oF //

oC
��

F
σ1
��

C σ2

// Y

(vi)

I2

oG
��

//
iF // F

σ1
��

G //
ǫ1

// Y

(vii)

I3

oL
��

//
iC // C

σ2
��

L //
ǫ2

// Y

(viii )

the outside of diagram (iii ), with 〈LoL ,RoR〉 being a reac-
tion rule, corresponding via the translation of Lemma 4.4

to the rewrite rule L I3
oLoo

oR // R. The candidate
〈I5, F,C,G, β, γ, δ〉 illustrated is the GRPO obtained via the
construction of Algorithm 3.3.

We also haveHoH � CoC
iC
◦ RoR, which in other words

means that diagram (iv) is a pushout withoH : I5 → H
equal toθ2 ◦ oC.

Recall that from the construction, we have that
diagram (v) is a pushout, diagram (vi) is a pullback, dia-
grams (vii) and (v) are pushouts. Diagrams (iv) through
to (viii ) paste together to give the required borrowed con-
text. �

We end this section with an extension of borrowed con-
texts suggested by the linearity conditions imposed in the
construction of Algorithm 3.3.

Definition 4.7 (Extended Borrowed Contexts).Given an
adhesive grammarG = 〈C,P〉 with anarbitrary set of rules
P, we shall construct a labelled transition system with:

−−− States: Graphs with outer interfaces,J
oG
−→ G where

oG is arbitrary;

−−− Transitions: Cospans of graphsJ
ιF
−→ F

oF
←− K where

ιF is mono andoF is arbitrary.

We derive a transitionGoG
F

oF
ιF
◮HoH if there exists a

commutative diagram as in Fig. 7, where (1), (2), (3) and (4)
are pushouts, while square (5) is a pullback. The indicated
morphisms are assumed to be mono, the others are arbitrary.

As a corollary of the translation between borrowed con-
texts and GIPOs of Theorem 4.6 and the congruence we
have that bisimilarity on the labelled transition system re-
sulting from Definition 4.7 is a congruence with respect to
arbitrary input-linear graph contexts.

4.2 Bigraphs and Petri nets

Bigraphs are a graphical formalism originally introduced
by Milner [13] in order model dynamic systems with inde-
pendent locality and connectivity structures [7]. Bigraphs
can be seen as ‘output-linear’ cospans over a certain adhe-
sive category, as we discuss below. It follows that by con-
sidering an input-linear variant – a model which yet incor-
porates many of bigraphs’ fundamental features – we meet
the requirements of our framework. Using Algorithm 3.3,
we are then able to derive an LTS for any reactive system
on such bigraphical structures. Such an LTS coincides with
Milner’s on the bigraphs in the intersection of the respective
definitions. Here we offer only a brief discussion, the reader
is referred to [18, 20] for details. We introduce the adhesive
category of place-link graphs, which can be considered “bi-
graphs without interfaces.” Interfaces will be handled by
considering the bicategory of cospans over such category.

Fixed an alphabet of controlsΣ, we define aplace-graph
G to be a directed graph with nodes labelled overΣ. Here
edges represent (a generalisation of) the nesting of loca-
tions. The connectivity of eachK ∈ Σ is determined by
an arity functionar : Σ → N,so thatK has ports numbered
1, . . . , ar(K). By “set of ports” of G we indicate the disjoint
union of all the ports associated to all the nodes ofG.

Definition 4.8 (Place-Link Graphs). A place-link (pl)
graph is a place-graphG together with alink mapl : P→ S,
whereP is the set of ports ofG. The role ofl andS is to
jointly describe the connections between ports. A place-link
(pl) morphism is a graph morphism which preserve node la-
bels and port connections. LetPLGraphΣ be the category
of pl-graphs and pl-graph morphisms overΣ.

It is easy to construct a categoryXΣ so thatPLGraphΣ
is a presheaf categorySetXΣ and, as such, is adhesive. We
can then conclude as follows.

Corollary 4.9. ILC(PLGraphΣ) has GRPOs, calculated
using Algorithm 3.3.

There are two aspects of our bicategory of pl-graphs
that generalise the theory of bigraphs. Firstly, interfaces
here need not be “discrete,” i.e., specify just nodes to be
merged and ports to be connected, but allow for more com-
plex forms of composition. Secondly, place graphs are usu-
ally forests of trees, and their input (resp. output) interfaces
reach only leaves (resp. roots), while we allow all directed
graphs. One can, however, prove that Corollary 4.9 remains
valid when the arrows of ILC(PLGraphΣ) are restricted to
such bigraphs.

The main difference with bigraphs remains the input-
vs output-linearity issue, which has the interesting effect
of banning name aliasing in respectively the inner and the
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outer interface. We leave a deeper analysis of this di-
chotomy as future work.

Petri nets provide another application of our framework,
described in [17]. The model consists of adding an ele-
mentary notion of interface to Petri nets, similarly to other
proposals in the literature, as e.g. [1, 14]. Specifically, we
equip each net with two ordered subsets of places: thein-
ner and theouter interface. This, together with morphisms
that respect net topologies and interfaces, yields a bicate-
gory INet, which can easily be recast in terms of cospans
over an adhesive category. Formally, letMNet be the cat-
egory of marked Petri nets and structure-preserving homo-
morphisms. AsMNet is adhesive, we have the following
result, where GRPOs are calculated via Algorithm 3.3.

Corollary 4.10. ILC(MNet) has GRPOs,

INet consists of the linear cospans with discrete inter-
faces in ILC(MNet) and, once again, the existence of GR-
POs is not affected by this restriction. Then, considering the
usual Petri “token game” as a reactive system overINet, we
automatically derive an LTS for Petri nets with interfaces
over which bisimulation is congruence.

As it turns out, such a bisimulation admits a very sim-
ple characterisation consisting of only three kinds of tran-
sitions: p τ

◮ p′, if p′ results fromp through an internal
firing; p +i

◮ p′ if p′ results fromp by adding a token at its
ith outer place; andp −i

◮ p′ if p′ results fromp by remov-
ing a token from itsith outer place. We remark that this is
the same bisimulation as derived by Milner using a bigraph-
based representation of Petri nets with interfaces [14].

5 Conclusion

We have constructed groupoidal relative pushouts (GRPOs)
in a general framework of generalised contexts and inter-
faces, represented by cospan bicategories over adhesive cat-
egories. This allows us tosystematicallyderive a composi-
tional semantics foreachreactive system in the framework,
in the form of a LTS determining a bisimulation congru-
ence. We have shown in detail how Ehrig and König’s
rewriting via borrowed contexts [5] falls within the frame-
work and can be obtained as an application of our theory,
and mentioned two others, a variant of Milner’s bigraphs
and a compositional approach to Petri nets [17].

As future work, we plan to investigate conditions under
which a general construction of GRPOs exist for output-
linear cospan bicategories.
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[20] P. Sobociński.Deriving process congruences from reaction
rules. PhD thesis, BRICS, University of Aarhus, 2004.

10


