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Abstract. We showcase a modular, graphical language—graphical lin-
ear algebra—and use it as high-level language to reason calculationally
about linear algebra. We propose a minimal framework of six axioms that
highlight the dualities and symmetries of linear algebra, and use the re-
sulting diagrammatic calculus as a convenient tool to prove a number
of diverse theorems. Our work develops a relational approach to linear
algebra, closely connected to classical relational algebra.
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1 Introduction

This article is an introduction to Graphical Linear Algebra (GLA), a rigorous
diagrammatic language for linear algebra. Its equational theory is known as
the theory of Interacting Hopf Algebras [10,25], and it has been applied (and
adapted) in a series of papers [3, 8,9, 4,7, 5] to the modelling of signal flow graphs,
Petri nets and even (non-passive) electrical circuits. In this paper, however, we
focus on elucidating its status as an alternative language for linear algebra; that
is, external to any specific applications. Some of this development was the focus
of the second author’s blog [24].

The diagrammatic syntax is extremely simple, yet powerful. Its simplicity
is witnessed by the small number of concepts involved. Indeed, diagrams are
built from just two structures, which we identify with black-white colouring.
The black structure, roughly speaking, is copying; while the white structure is
adding. Crucially, the interpretation of the diagrams is relational; instead of
vector spaces and linear maps, the semantic universe is vector spaces and linear
relations [1,18,12,13]. It is somewhat astonishing that all other concepts are
derived from only the interaction between these two simple structures.

One of our central contributions is the crystallisation of these interactions
into six axioms. We show that they suffice to reconstruct the entire equational
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theory of Interacting Hopf Algebras. A divergence from that work is our focus on
inequations. Indeed, our axioms are inspired by the notion of abelian bicategory of
Carboni and Walters [11]. Inequational reasoning leads to shorter and more con-
cise proofs, as known in the relational community; for examples see [15] and [6],
the latter with results closely related to ours. Importantly, in spite of having
roots in deep mathematical frameworks (functorial semantics [17, 6], cartesian
bicategories, abelian bicategories [11]) and its focus on universal properties and
the use of high-level axioms, GLA is in fact a very simple system to work with:
the rules of soundly manipulating diagrams can be easily taught to a student.
The semantics of diagrams is compositional — the meaning of a compound
diagram is calculated from the meanings of its sub-diagrams. Here there is a con-
nection with relational algebra, the two operations of diagram composition map
to standard ways of composing relations: relational composition and cartesian
product. In fact, the semantics of diagrams is captured as a monoidal functor
from the category of diagrams GLA to the category of k-linear relations LinRely:

GLA — LinRely

One of our favourite features of GLA is how it makes the underlying sym-
metries of linear algebra apparent. Two symmetries are immediately built into
the syntax of diagrams: (i) mirror-image: any diagram can be ”flipped around
the y-axis”, and (ii) colour-swap: any diagram can be replaced with its “pho-
tographic negative”, swapping the black and white colouring. Thus one proof
can sometimes result in four theorems. We feel like these important symme-
tries are sometimes hidden in traditional approaches; moreover, some classical
“theorems” become trivial consequences of the diagrammatic syntax.

After introducing the language and the principles of diagrammatic reasoning,
our goal is to demonstrate that GLA is naturally suitable for modular construc-
tions. Indeed, we argue that GLA can be considered as high-level specifica-
tion language for linear algebra. While traditional calculational techniques
are built around matrix algebra,the diagrammatic language is a higher-level way
of expressing concepts and constructions. Of course, the equational theory means
that we can “compile” down to low-level matrix representations, when necessary.

The compositional nature of the syntax means that we can express many
classical concepts in a straightforward and intuitive fashion. Traditional linear
algebra, in spite of its underlying simplicity and elegance, has a tendency for
conceptual and notational proliferation: Kernel, NullSpace, Image, sum of matri-
ces, sum and intersection of vector spaces, etc. In GLA, all these concepts are
expressible within the diagrammatic language. Moreover, the properties and re-
lationships between the concepts can be derived via calculational proofs within
the diagrammatic formalism. In many cases, these 2D proofs are shorter, more
concise and more informative than their traditional 1D counterparts.

Finally, we compare the GLA approach with some recent work [20,22] on
blocked linear algebra, which also focussed on calculational proofs.

To quip, we show that “Calculationally Blocked Linear Algebra!” can be
done graphically! By doing so, and moving from block matrix algebra to block
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relational algebra, we extend the expressivity of the approach to deal with sub-
spaces.

Structure of the paper. In Section 2 we introduce the diagrammatic language, its
semantics, and the six sound axioms for reasoning about linear relations. We then
use those axioms in Section 3 to show that all of the equations of Interacting Hopf
Algebras can be derived. In Section 4 we show how the diagrammatic language
captures classical linear algebraic concepts, and relate it to recent work on block
linear algebra. We conclude in Section 5 with some remarks about ongoing and
future work.

2 Syntax and Semantics of Graphical Linear Algebra

In this section we introduce the diagrammatic language used throughout the
paper. We explain how diagrams are constructed and outline basic principles of
how to manipulate, and reason with them. Our diagrams are an instance of a
particular class of string diagrams, which are well-known [23] to characterise the
arrows of free strict monoidal categories. They are, therefore, rigorous mathe-
matical objects.

We emphasise a syntactic approach: we generate string diagrams as terms
and then quotient them w.r.t. the laws of strict symmetric monoidal categories.
This quotienting process is particularly pleasant and corresponds to a topolog-
ical understanding of diagrams where only the connectivity matters: intuitive
deformations of diagrams do not change their meaning. Thus our work does
not require extensive familiarity of (monoidal) category theory: the rules of con-
structing and manipulating the diagrams can be easily explained.

2.1 Syntax

Our starting point is the simple grammar for a language of diagrams, generated
from the BNF below.

cd = —e|—{ | p—fo—fe—| p—|—{ |-

1 — 1 X leidlcad (1)

The first line of (1) consists of eight constants that we refer to as generators.
Although they are given in diagrammatic form, for now we can consider them
as mere symbols. Already here we can see two fundamental symmetries that are
present throughout this paper: for every generator there is a “mirror image”
generator (inverted in the “y-axis”), and for every generator there is a “colour
inverse” generator (swapping black with white). Thus, it suffices to note that

there are generators —e, and that the set of generators is closed w.r.t

the two symmetries. We shall discuss the formal semantics of the syntax in
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Section 2.2, but it is useful to already provide some intuition at this point. It is

helpful to think of —0,{ as gates that, respectively, discard and copy the

value on the left, and of o—, } as zero and add gates. The mirror-image

versions have the same intuitions, but from right-to-left.

The second line of (1) contains some structural terms and two binary oper-
ations for composing diagrams. The term { | is the empty diagram, — is a wire
and allows swapping the order of two wires. The two binary operations ; and
@ allow us to construct diagrams from smaller diagrams. Indeed, the diagram-
matic convention is to draw c; ¢’ (or as ¢’ - ¢) as series composition , connecting
the “dangling” wires on the right of ¢ with those on the left of ¢/, and to draw
c@® c as c stacked on top of ¢/, that is:

and ¢ & ¢ is drawn )
1<

c; c is drawn

The simple sorting discipline of Fig. 1 counts the “dangling” wires and thus
ensures that the diagrammatic convention for ; makes sense. A sort is a pair of
natural numbers (m, n): m counts the dangling wires on the left and n those on
the right. We consider only those terms of (1) that have a sort. It is not difficult
to show that if a term has a sort, it is unique.

o— : (0, 1)

{;(1,2) };(2,1)
o : (0,1) };(2,1) {;(1,2) —0: (1, 0)
—

(0,0 Ly X202
c:(k1, ko) d:(k2,k3) c:(k1,l1)  d:(kg,l2)
c;d:(ky, k3) c@d: (k1+ka, l1+12)

Fig. 1: The sorting discipline.
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Ezample 1. Consider the term ((( ©—e) @ {) ; (} ® )> X

It has sort (3, 2) and the diagrammatic representation is

where the dashed-line boxes play the role of disambiguating associativity of
operations.

&
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Fig. 2: Laws of Symmetric Monoidal Categories. Sort labels are omitted for read-
ability.

Raw terms are quotiented w.r.t. the laws of symmetric strict monoidal (SSM)
categories, summarised in Fig. 2. We omit the (well-known) details [23] here and
mention only that this amounts to eschewing the need for “dotted line boxes”
and ensuring that diagrams which have the same topological connectivity are
equated.

We refer to terms-modulo-SSM-equations as string diagrams. The resulting
string diagrams are then the arrows of a SSM category known as a prop.

Definition 1. A prop is a SSM category where the set of objects is the set of
natural numbers, and, on objects m & n = m + n. String diagrams generated
from (1) are the arrows of a prop GLA.
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The idea is that the set of arrows from m to n is the set of string diagrams with
m “dangling wires” on the left and n on the right.
In fact, GLA is the free prop on the set of generators

Ore o) o

This perspective makes clear the status of GLA as a syntax: for example to
define a morphism GLA — X to some prop X, it suffices to define its action on
the generators (2): the rest follows by induction.

We can also give recursive definitions, for example, the following generali-

sation of copying { will be useful for us in subsequent sections. Similar

constructions can be given for the other generators in (2).

Definition 2.

n
n
0 n+1 n
. 1
0 :1d0 nt =
0 n+1 n

2.2 Semantics

We use GLA as a diagrammatic language for linear algebra. Differently from
traditional developments, the graphical syntax has a relational meaning. Indeed,
the central mathematical concept is that of linear relation. Linear relations are
also sometimes called additive relations [19] in the literature.

Definition 3. Fix a field k and k-vector spaces V., W. A linear relation from
VtoW is a set RCV xW that is a subspace of V. x W, considered as a
k-vector space. Explicitly this means that (0,0) € R, given k € k and (v,w) € R,
(kv, kw) € R, and given (v,w), (v',w') € R, (v+v',w+w') € R.

Given a field k, the prop LinRely is of particular interest.

Definition 4. The prop LinRely has as arrows m — n linear relations R C
k™ x k™. Composition is relational composition, and monoidal product is carte-
sian product of relations.

We now give the interpretation of the string diagrams of our language GLA
as linear relations.

GLA — LinRel, (3)

Given that GLA is a free prop, it suffices to define the action on the generators.
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{»ﬁ{(x,(i))hcek}gkxﬂ —eo+— {(x, %) |z €k} Ckxk®
}l—){((j),x+y)x,yek}gk2xk o—+— {(%,0)} Ck® x k

The generators ~— , —O map, respectively, to the opposite re-

lations of the above, as hinted by the symmetric diagrammatic notation. As we
shall see in the following, this semantic interpretation is canonical.
Intuitively, therefore, the black structure in diagrams refers to copying and

discarding — indeed is copy, and —e is discard. Instead, the white structure

refers to addition in k — indeed } is add and o— is zero.

Ezxample 2. Consider the term of Example 1, reproduced below without the
unnecessary dashed-line box annotations.

x

Its semantics is the (functional) relation v | (i) | oy zek

2.3 Diagrammatic reasoning

In this section we identify the (in)equational theory of GLA. It is common to
define algebraic structure in a prop as a monoidal theory — roughly speaking,
the prop version of an equational algebraic theory. Our goal, instead, is to arrive
at a powerful calculus for linear algebra, with few high level axioms. These are
inspired by the notion of abelian bicategory of Carboni and Walters [11].

Axiom 1 (Commutative comonoid) The copy structure satisfies the equa-
tions of commutative comonoids, that is, associativity, commutativity and uni-
tality, as listed below:

- -
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Inequalities. Instead of a purely equational axiomatisation, we find the use
of inequalities very convenient in proofs. From a technical point of view this
means the extension of the semantic mapping (3) to a (2-)functor between poset-
enriched monoidal categories. Indeed, LinRely has a natural poset-enrichment
given by (set-theoretical) inclusion of relations.

We state three axioms below. Here R ranges over arbitrary string diagrams of
GLA. Given that R can have arbitrary sort, the axioms make use of Definition 2.

Axiom 2 (Discard) < Yo
The axiom is sound; the left-hand-side denotes LHS = {(z, ) | Jy. xRy}, while
right hand side denotes the relation RHS = {(z,*) | T}. Clearly LHS C RHS.

Y
Axiom 3 (Copy) <

Soundness is again easy: the left-hand-side is the relation LHS = {(«, (U)) | Ry},

while the right-hand-side is RHS = {(z, () | #RyAzRy'}. Again LHS C RHS.
The diagrammatic notation for R aHOWb us to represent the mirror image
symmetry in an intuitive way. In the following diagram, the bottom right oc-
curence of R is the reflected diagram—which we write R in linear syntax—and
which we have seen denotes the opposite relation under the mapping (3).

Y
Axiom 4 (Wrong Way) < =

For example, let = } , then Axiom 4 says that

Eate

For another example let 1 — e, then Axiom 4 says
that

LIRYO axa 0 Def.2
- : : e
{L (w

Soundness of Axiom 4 is very similar to the soundness of Axiom 3. It is

worthwhile to explain the relationship between Axioms 3 and 4. In tandem,
they capture a topological intuition: a relation that is adjacent to black node can
“commute” with the node, resulting in a potentially larger relation. In Axiom 3
the relation approaches from the left. In Axiom 4 the relation comes from the
“wrong side”, it can still commute with the node to obtain a larger relation,
but one must take care of the lower right wire that “curves around”. It is this
“curving around” that results in the R°.
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Symmetries In Section 2.1, we saw that the generators of GLA are closed under
two symmetries: the “mirror-image” (—)° and the “colour-swap”. Henceforward
we denote the colour swap symmetry by (—)t. Clearly, for any R, we have R =
R and Rt = R. We are now ready to state our final two axioms.

Axiom 5 (Converse) R° < S <= R < 5°, or in diagrams:

(@} < {5y =B < {3F

In particular, the mirror-image symmetry is covariant: if R < S then R° < S°.
Soundness is immediate.

Axiom 6 (Colour inverse) R' < S <= R > ST, or in diagrams:

BB - B

Thus the colour-swap symmetry is contravariant: if R < S then ST < Rf. Here
soundness is not as obvious: one way is to show that the inequalities of Axioms 2,
3 and 4 reverse when it is the white structure that is under consideration. First
it is easy to see that the two operations commute.

Theorem 1. (R°) = (RT)°
By the above Theorem we can define the transpose operation.

Definition 5. R':= (R°)! = (RT)°.

Prove one, get three theorems for free principle. We will explore the symmetries
of Axioms 5-6 throughout the paper. When we prove a result, we will usually
assume we can use any of the other three theorems (its converse theorem, its
colour inverse theorem, and its transpose theorem) afterwards just by referencing
the original result. For example when we use, in a proof, the colour inverse of
Axiom 3 we will simply denote Ax. 3.

3 Algebraic structure

In this section we identify some of the algebraic structure that is a consequence
of our six axioms. The two structures that play an important role are bialgebras
and special Frobenius algebras. As Lack explains in [16], these are two canonical
ways in which monoids and comonoids can interact. See loc. cit. for additional
information on the provenance and importance of these two algebraic structures.

First note that it is an easy consequence of Axioms 5 and 6 that the group of
generators {{, —o} is a commutative comonoid, and that {}, o—1},

{}, e—} are both commutative monoids.



10 Joao Paixdao and Pawel Sobocinski

3.1 Bialgebra Structure

White and black structures act as bialgebras when they interact. This can be
summarised by the following equations.

Theorem 2 (Bialgebra).
Proof.

We use Axiom 3 in the first inequality and its color inverse in the second
inequality. Note that while using Axiom 3 in the proof, we must use Definition
2. The other derivations are similar.

Hom posets Every hom-set, i.e. the set of (m, n) string diagrams for m,n € N,
has a top and bottom element. Indeed:

Theorem 3 (Top Element). P —

Ax. 1 Ax. 4 Ax. 2
Proof. [} < S et ee

In the second step, we are using the second example of Axiom 4.

Using Axiom 6, we obtain, dually that —o o— is the bottom element.

Frobenius structure We have seen that the white and black structure interact
according to the rules of bialgebras. On the other hand, individually the white
and black structures interact as (extraspecial) Frobenius algebras.

Theorem 4 (Frobenius). The following equations hold.

T

Proof S 8 Tl
e

In the second step, we are using the first example of Axiom 4.
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e g

Thm. 3
<

Equations 3 and 4 of the theorem can be proven similarly.

With the previous theorem we can show now that the set of (m, n) string
diagrams for m,n € N, has also a meet and join operation, expressible within
the GLA structure, as we show below.

Theorem 5 (Universal property of meet).
X < R R
B )
<
PT’OOf N . Thm 44-—‘ . ’

< . “ Thm 3 < R

The other inequality follows similarly.
Corollary 1. The partial order < is a meet semi-lattice with top, where meet of

R
R and S, written here as RN S, is ﬁ and the top element is given
5

by Theorem 3.

By duality of Axiom 6, we obtain the join and the bottom element just
switching the colours. Therefore we have:

Corollary 2. The partial order < is a lattice with top, bottom, meet and join.

In the semantics, meet is intersection RN.S, while join is the smallest subspace
containing R and S: i.e. the subspace closure of the union RU S, usually denoted
R+S.

Antipode One of the most surprising facts about this presentation of linear al-

gebra is the plethora of concepts derivable from the basic components of copying

and adding (black and white) structures. This includes the notion of antipode a,
i.e. —1. The following proofs were inspired by [14].

Definition 6 (Antipode). —{a}— E

Before proving properties of the antipode, we prove an useful lemma.



12 Joao Paixdao and Pawel Sobocinski

Lemma 1. { = — o o—

Ax. Thm. 3
Proof. —e e— S < —e o—

In the second step, we are using essentially the same idea from the second
example of Axiom 4.

Theorem 6 (Antipode properties).

1. (Hopf)@ = —e Oo—

2 - ff - @ - B @=a=d=a)

@#

3
4. —|a}— is an isomorphism
Proof.
1 @ Def. 627 SSM &Thma
Lem. 1 x2 Thm. 2
= — e e 0 O0— = —e OoO—

Y £

All other equations are proven similarly.

Def j i Thm. 4Q_QAXA 1 j

4. We postpone this proof to Section 4.

@

The complete set of equations is known as the theory of Interacting Hopf
(IH) Algebras [10]. In fact, given the results of this section (Theorems 2, 4, and
6) we have our main result.

Theorem 7. Azioms 1-6 suffice to derive all of the algebraic structure of In-
teracting Hopf (IH) algebras. In fact, they are also sound in that theory. In
particular, the prop obtained from GLA, quotiented by the axioms, is isomorphic
to LinRelg, the prop of linear relations over the rationals.

The above result justifies our claims about the canonicity of the semantics (3).
While the base language (of adding and copying) is powerful enough to express
any rational number, for other fields (e.g. the set of real numbers) we can add
additional generators to our base language in a principled way [10]. We omit the
details here.
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4 Applications

In this section, we will show how the graphical language, developed over the last
few sections, can be used to reason about classical concepts and results in linear
algebra.

4.1 Dictionary

The goal of this subsection is to provide a dictionary, showing how familiar linear
algebraic concepts manifest in the graphical language. Given a diagram R, we
first define some derived diagrams from R directly in GLA but which are inspired
by classical relations and subspaces in linear algebra and relational algebra.

Definition 7 (Derived diagrams).

the nullspace of R: N(R) := o,
the multivalued part of R: Mul(R) := o ,

the range of R: Ran(R) := ,
and the domain of R: Dom(R) := )

Definition 8 (Dictionary). Let R be a diagram. We call R

injective (INJ) if —o > o; total (TOT) if —e < ;
single-valued (SV) if o— > ; surjective (SUR) if e— < ,

Moreover, since the converses of these inequalities hold in GLA, the four
inequalities are actually equalities. We define a map to be a diagram that is
both single-valued and total, co — map is a diagram that is both surjective and
injective, and finally an Isomorphism is a diagram that is map and a co-map.
With the definition above we clearly obtain a nice symmetry.

e~

Theorem 8 (Dictionary symmetry). R is total <= R is surjective <
R is injective <= (R")° is single-valued.

The next theorem shows that the notions in Definition 8 that were described
through the converse inequalities of Axiom 2, can also be characterized by uni-
versal properties (item 1 from Theorem 9), the converse inequalities of Axioms
3 (item 3 from Theorem 9) and 4 (item 4 from Theorem 9), or by comparing
their kernel and image relation with the identity (item 5 from Theorem 9).

Theorem 9 (Total). All the following statements are equivalent.

=

1.
2.

3. X > X9
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X Y
4'2 X
Ax. 2

Y
s s
Proof. (1:>2)TR,UE<¥> < e— = e S

Ax. 1 Hyp Ax. 4 Ax. 1

(2=5— - < < -
Hyp Hyp

51 [ < :

The proofs that 1 =3 =5=1and 1 = 4 = 5 = 1 are similar.

With the symmetries described in Theorem 8, we are able to obtain the same
characterizations for injective, single-valued and surjective.

Observation When using Theorem 9 and its 3 other symmetrical variants in
proofs, we refer to the initials TOT (Theorem 9), SV, INJ, and SUR.

Theorem 10. 1. R is Total — XRCY =— X CYR°

R is Single Valued <— XRCY «<— X CYR°

R is Surjective <— XR2Y = X DYR°

R is Injective <—= XRJOY <= X DYR°

R is function (total and single valued) < XRCY <— X CYR°

R is Co-function (injective and surjective) <= RX CY <= X C R°Y
R is Injective and total <— XR=Y — X =YR°.

R is Isomorphism <— XR =Y <— X =YR°.

0N D G fo b

These properties are essentially “shunting rules” inspired from relational al-
gebra and its Galois connections [21, 2] which you can derive generic properties
from them and allow you to reason effectively. We can use them in the proof of
the following useful corollaries in GLA.

Corollary 3.

1. A function f is an isomorphism iff its converse f° is a function.
2. Smaller than injective (single valued) is injective (single valued).
3. Larger than total (surjective) is total (surjective).

To end this section, we present an antipode property that we postponed in an
earlier section.

Theorem 11. The antipode is an isomorphism.
Proof. We show that the antipode is single valued:

Def Az. 1 Lem. 1 Thm. 2
O = = = &—0 O0—r =0—r

The other three properties (surjective, injective and total) have similar proofs.
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4.2 Classical Existence Theorems

In this next subsection, we demonstrate how GLA can also prove classical exis-
tence theorems of linear algebra which connect subspaces, maps, and inverses.
We begin with a common theorem in any undergraduate linear algebra class
which gives sufficient conditions for the existence of a solution of a linear system
AX = B. In linear algebra textbooks, this theorem is usually proven with Gaus-
sian Elimination, LU decomposition, or RREF (Reduced Row Echelon Form).
Here, we prove it completely in the graphical language.

Theorem 12. If B is a map, A is an injective map, and e B}~ < ,

then there exists a map X such that = —@ )
Proof. First let = , we will first show, in the first two items,

that X is a map (single-valued and total) and then prove the equality in the last
two items using Theorem 9 and its variants.

L (X is SV) o B} {al- "o {a}—" S o—
. (X is TOT) D:Cf B ng B E BEOT—O
Def A SV

Item 3 A TOT

\4
A HB) = AxHAaH{aH{xHs) =

1
2
3. X
4 B3

<) [ [
) [ [2)

The last proof demonstrate the usefulness of Theorem 9 and its variants.
Also we are able to define the solution X even though A might not be invertible,
which shows the “high level expressivity” of GLA. The next theorem shows the
connection between existence of complementary subspaces and existence of left
inverses.

Theorem 13. Let T be an injective map, there exists a such that

Ax. 1 Ax. 4
1. Claim: “ < ﬁ-<
:

De Hyp

2. (X is TOT) = 46 > —e
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(X is SV)

Def ~_¢ T SV ﬂT TO ’_@_- Above

X is the left inverse of T

Def - T TOT @_nAbove g ?
“ O

4.3 Dotted line associativity in Block Linear Algebra

In this short section we present the power of the dotted line associativity men-
tioned in the beginning of the paper. To make one final connection with classical
linear algebra we define:
R
[S] = [R] S] = e
5 s

The notation is inspired by the semantics of the copy and add generators in
the case that R and S are matrices (linear functions), which are horizontal or
vertical block matrices R and S [24].

In GLA, we are able to immediately get the following properties by dotted
line associativity, by looking and “grouping” the 2D syntax in two different ways
such as, we did in example in Figure 2.

Theorem 14 (Dotted line associativity).

1. N( [ﬂ) — N(R) N N(S)

2. Ran([R|S]) = Ran(R) + Ran(s).

3. (Absorption) (T @ U) - {1; _ Eﬂ
4. [g:r- [g; —R?-8 MRS Sy
o 3] 2] 51

Proof. 1)N(R)NN(S) =

All the others items are also proven with dotted line assoc1at1v1ty

5 Conclusions and Future Work

We showcased Graphical Linear Algebra, a simple bichromatic diagrammatic
language for linear algebra. We introduced a high level axiomatisation—which
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we argue is especially convenient for use in calculational proofs—and showed
that it suffices to derive all of the algebraic structure of the theory of Interacting
Hopf Algebras. We also focused on the modular nature of the language and how
it captures many of the classical concepts of linear algebra.

A direction where future work will be especially fruitful is diagrammatic
descriptions of various normal form theorems and matrix factorisations (Smith
Normal Form, singular value decomposition, etc.); both in elucidating the clas-
sical theory, as well as obtaining useful relational generalisations.
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