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Abstract

We introduce a graphical syntax for signal flow diagrams based on the language
of symmetric monoidal categories. Using universal categorical constructions, we
provide a stream semantics and a sound and complete axiomatisation.

A certain class of diagrams captures the orthodox notion of signal flow graph
used in control theory; we show that any diagram of our syntax can be realised,
via rewriting in the equational theory, as a signal flow graph.
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1. Introduction

Feedback and related notions such as self-reference and recursion are at the
core of several disciplines, including Computer Science, Engineering and Control
Theory. In Control, linear dynamical systems are amongst the most extensively
studied and well-understood classes of systems with feedback. They are sig-
nal transducers with two standard interpretations: discrete, where—roughly
speaking—signals come one after the other in the form of a stream, and contin-
uous, where signals are typically well-behaved real-valued functions.

From the earliest days, diagrams played a central role in motivating the
subject matter. Graphical representations were not merely intuitive, but also
closely resembled physical manifestations (implementations) of linear dynamic
systems, such as electrical circuits. While differing in levels of formality and
minor technical details, the various notions share the same set of fundamental
features—and for this reason we will group them all under the umbrella of signal
flow diagrams. These features are: (i) the ability to copy signals, (ii) the ability
to add signals, (iii) the ability to amplify signals, (iv) the ability to delay a
signal (in the discrete, stream-based interpretation) or to differentiate/integrate
a signal (in the continuous interpretation), (v) the possibility of feedback loops
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and (vi) the concept of directed signal flow. Notably, while features (i)-(v) are
usually present in physical manifestations, (vi) seems to have been included to
facilitate human understanding as well as to avoid “nonsensical” diagrams where
the intended signal flow seems to be incompatible or paradoxical. Of course,
physical electrical wires do not insist on a particular orientation of electron flow;
both are possible and the actual flow direction depends on the context.

Signal flow diagrams were typically not considered as an interesting object of
study per se, perhaps because of the perception that they lacked rigour: in the
literature they are typically translated to sets of recurrence relations (under the
discrete interpretation) or higher-order ordinary differential equations with con-
stant coefficients (under the continuous interpretation). These are then solved
using standard techniques. Diagrams are, instead, the main actor in our devel-
opment, and we treat them rigorously as particular kinds of string diagrams [1]
– i.e. graphical representations of arrows in a (symmetric) monoidal category.
We introduce a graphical calculus of string diagrams, which we call circuits,
consisting of the following operations, sequential ; and parallel ⊕ composition.

C
−→
irc︷ ︸︸ ︷ C

←−
irc︷ ︸︸ ︷

x x

k k

︸ ︷︷ ︸
Circ

In this paper we concentrate on the discrete interpretation; thus circuits are
given a stream semantics. The intuition is that wires carry elements of a field k
that enter and exit through boundary ports. In particular, for circuits built from
components in the leftmost three columns, which we refer to as being in C−→irc ,
the signal enters from the left and exits from the right boundary. Computation
is synchronous, and at each iteration fresh elements are processed from input
streams on the left and emitted as elements of output streams on the right.
The basic components , , k (k ∈ k) and x realise features (i)-(iv).

The remaining components, and , are the units of and :

accepts any signal and discards it, while constantly outputs the signal 0.

For circuits arising from the remaining columns, C←−irc , the signal flows in the
opposite direction: from right to left. The behaviour is symmetric. Formally,
the stream semantics of circuits in C−→irc and C←−irc consists of linear transfor-
mations, thus their behaviour is functional. Circuits in Circ—built out of all
the components—do not, in general, yield functional behaviour. Signals no
longer flow in a fixed direction: indeed feature (vi)—the notion of directed sig-
nal flow—plays no part in our definitions. The semantics of circuits in Circ
is given by subspaces with relational composition, i.e., linear relations1. We

1We shall use the terms subspaces and linear relations interchangeably throughout the
paper.

2



k[x] the ring of polynomials
∑n

0 kix
i for some natural n

k(x) the field of fractions of polynomials p
q for p, q ∈ k[x] with q 6= 0

k〈x〉 the ring of rationals
∑n

0 kix
i∑m

0 ljxj
with l0 6= 0

k[[x]] the ring of formal power series
∑∞

0 kix
i

k((x)) the field of Laurent series
∑∞
d kix

i for some integer d

Table 1: Rings and fields over a field k (ki and lj range over k).

must also use an extended notion of streams, Laurent series, typical in alge-
braic approaches [2] to signal processing—roughly speaking, these streams are
allowed to start in the past. Passing from functions to relations gives meaning
to circuits that contain feedbacks—taking care of feature (v)—which increases
the expressivity w.r.t. C−→irc in that certain infinite streams can be denoted: an
example is the Fibonacci circuit (Example 7.2).

We obtain the stream semantics via both a universal property and an in-
tuitive inductive definition. Furthermore, we provide a sound and complete
axiomatization for proving semantic equivalence of circuits. To this end, we
reuse the results of [3] that generalises our earlier work [4]. For C−→irc , we exploit
the equational theory HA of Hopf algebras which is the theory of k[x]-matrices,
where k[x] is the ring of polynomials with coefficients from k. For C←−irc , we use
the dual theory HAop . For the whole Circ, we work with the equational theory
IH of Interacting Hopf algebras, which is the theory of linear relations over k(x),
the field of fractions of k[x]. Then, the passage to the stream semantics simply
consists in interpreting polynomials and their fractions as streams, as outlined
in Table 1. Using again a result in [3], also this interpretation is given by a
universal property.

The theory of IH—featuring two special Frobenius algebras [5]—plays a cen-
tral role in the paper because it is rich enough to encapsulate linear algebraic
arguments within the graphical theory, making further translations (e.g. to re-
currence relations) redundant.

Orthodox Signal Flow Diagrams. The earliest reference for signal flow diagrams
that we are aware of is Shannon’s 1942 technical report [6]. They appear to have
been independently rediscovered by Mason in the 1950s [7] and subsequently
gained foundational status in Electrical Engineering, Signal Processing and Con-
trol Theory. Traditionally only diagrams that yield functional behaviours on
ordinary streams are considered: to ensure this, circuits are restricted so that
every feedback passes through at least one delay gate. A well-known theorem
(see e.g. [8]) states that circuits in this form represent exactly those behaviours
expressible by matrices with entries from k〈x〉, the ring of rational polynomi-
als: those fractions where the constant term in the denominator is non-zero. A
novel proof of this result was recently given by Rutten in [9], using coinductive
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C←−irc� _

��

// // HAop
� _

��

∼= // Mat k[x]
op � � //

� _

��

Mat k[[x]]
op

� _

��
Circ // // IH

∼= // SVk(x)
� � // SVk((x))

C−→irc
?�

OO

// // HA
?�

OO

∼= // Mat k[x] �
� //

?�

OO

Mat k[[x]]
?�

OO

Circ // // IH
∼= // SVk(x)

SF
?�

OO

// // SF
?�

OO

∼= // Mat k〈x〉
?�

OO

C−→irc
?�

OO

// // HA
?�

OO

∼= // Mat k[x]
?�

OO

Figure 1: A technical roadmap of results. The rings k[x], k(x), k〈x〉, k[[x]] and k((x)) are
described in Table 1. For a ring R, MatR and SVR denote the category of matrices and
linear relations over R, respectively. In the diagrams, the double-headed arrows are the
interpretation of syntax within an algebraic theory (i.e. quotienting w.r.t. a set of equations);
the tailed arrows are embeddings and the arrows labeled with ∼= are isomorphisms. The middle
row in the left diagram is the factorization of the stream semantics 〈〈·〉〉 : Circ→ SVk((x)). The
diagram on the right shows the status of the class of orthodox signal flow diagrams SF.

and coalgebraic techniques. We identify “orthodox” signal flow diagrams with
a subclass SF of Circ and provide yet another proof, using the equational theory
of IH (Theorem 7.4). In Figure 1 we summarise the results mentioned thus far.

Normal Forms. Another well-known fact in signal flow diagrams theory is a
normal form: every circuit is equivalent to one where all delays occur in the feed-
backs. The proof of this result (Proposition 7.7) becomes trivial after observing
that feedbacks “guarded” by delays are a trace in the categorical sense [1].

This holds for circuits in SF. Circuits in Circ can be put either in span or
cospan normal form (Proposition 5.4). The former consists of a circuit in C←−irc
followed by one in C−→irc and the latter of a circuit in C−→irc followed by one in C←−irc .
In The Calculus of Signal Flow Diagrams II, following the development in [10],
we shall exhibit deep connections between the two normal forms for Circ and
facets of a canonical operational semantics. Normal forms also play a technical
role in several results, notably in the proof of the realisability theorem.

Realisability. In the final part of the paper we compare the expressive power of
our diagrammatic universe Circ and the class of orthodox signal flow diagrams
SF. We prove realisability (Theorem 8.4): every circuit in Circ is equivalent to
at least one suitably rewired circuit in SF. In general, circuits in Circ can be the
rewiring of several different SF circuits, depending on the chosen orientation of
signal flow (see Example 8.7). Thus Circ is not more expressive than orthodox
signal flow diagrams; viewed as transducers, they define the same class.

What are, then, the advantages of keeping the direction of signal flow out of
definitions? In his 1913 paper On the Notion of Cause [11], Russell criticised
the prominence given to causal notions in the philosophical zeitgeist:

[T]he reason why physics has ceased to look for causes is that in fact
there are no such things. The law of causality, I believe, like much
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that passes muster among philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is erroneously supposed
to do no harm.

In the last century, causality survived not just as a convenient fiction, suitable
for throw-away explanations given to undergraduates: it is deeply embedded in
conventional thinking about interacting systems across many fields. Our work
shows that, for linear dynamical systems, discarding it is beneficial in several
ways: the resulting formalism is simpler to define (compare the definitions of
Circ and SF), it is compositional and—most importantly—reveals the beautiful
underlying mathematical structure of IH. Similar conclusions about the utility
of pruning causality from mathematical models have recently been drawn by
control theorists, in particular, Willems’ behavioural approach [12] is an attempt
to re-examine the central concepts of Control without giving definitional status
to derivable causal information such as direction of flow.

Related Work. This journal version shares content with two conference publica-
tions. At CONCUR‘14 [13] we presented the stream semantics, its relationship
with IH and the connection between orthodox signal flow diagrams and matrices
of rationals. In the PoPL‘15 paper [10] we introduced an operational seman-
tics, a full abstraction result (linking operational and stream semantics) and
the realisability theorem. The realisability theorem appears in this paper; the
operational semantics of Circ, and its relationship with the denotational story
presented in [10], will appear in The Calculus of Signal Flow Diagrams II.

Some of the results shown in this paper rely on the isomorphism between
IH and SVk(x) which follows from a more general theorem proved in [3]. The
starting observation is the correspondence between Hopf algebras and matrices
which was already shown in [14]. In this paper, we sketch the proofs of these
two results—which will be formally published elsewhere—since they shed light
on the modular structure of the involved equational theories.

Our methodology—using string diagrams, which originated in the study of
free monoidal categories [1] as compositional syntax of interacting systems—
forms part of the emerging field of categorical network theory. Amongst several
recent works we mention the algebra of Petri nets with boundaries [15, 16], the
algebra of stateless connectors [17], the algebra of Span(Graph) [18], Ghica’s
work [19] on asynchronous circuits, Baez and Fong’s account of electrical cir-
cuits [20] and the ZX-calculus [21] for quantum circuits. Interestingly, the ZX-
calculus shares the same basic algebraic features of IH: two bialgebra and two
Frobenius algebra structures.

Baez and Erbele’s manuscript [22] is the most closely related: motivated by
the continuous interpretation of signal flow diagrams, the authors independently
give an equational presentation of the category of linear relations, which is
equivalent to our equational theory IH.

Finally, [9, 23] is an alternative categorical account of signal flow diagrams
that focuses on coalgebras and coinduction, rather than string diagrams. The
main difference with these works is that we give a formal syntax for circuits and
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a sound and complete axiomatisation for semantic equivalence. These features
are also present in the work of Milius [24], but its syntax is one-dimensional and
diagrams are just used for notational convenience. Also, the circuit language is
of a rather different flavour; most notably, it features primitives for recursion,
which are not needed in our approach.

Structure of the paper. In §2 we present our string diagrammatic syntax and in
§3 we recall the required categorical notions. In §4 we present the equational
theory HA of k[x]-matrices and in §5 the equational theory IH of linear relations
over k(x). In §6 we introduce the stream semantics and prove soundness and
completeness of IH. In §7 we study orthodox signal flow graphs as a subclass
of our string diagrammatic syntax. In §8 we prove the realisability theorem.

Notational conventions. C[a, b] is the set of arrows from a to b in a small cat-
egory C, composition of f : a → b, g : b → c is denoted by f ; g : a → c. For C
symmetric monoidal, ⊕ is the monoidal product and σX,Y : X ⊕ Y → Y ⊕ X
the symmetry for X,Y ∈ C. Given F : C1 → C2, Fop : Cop1 → Cop2 is the induced
functor on the opposite categories of C1,C2. If C has pullbacks, its span bicat-
egory has the objects of C as 0-cells, spans of arrows of C as 1-cells and span
morphisms as 2-cells. We denote with Span(C) the (ordinary) category obtained
by identifying the isomorphic 1-cells and forgetting the 2-cells. Dually, if C has
pushouts, Cospan(C) is the category obtained from the bicategory of cospans.

2. The Calculus of Signal Flow Diagrams: Syntax

: (1, 0) : (1, 2) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c⊕d : (n+r,m+z)

Figure 2: Sort inference rules.

In this section we define the string diagrammatic language that will be the
focus of this paper and its sequels. Our presentation is syntactic: we consider
diagrams to be certain (equivalence classes of) terms, rather than combinatorial
structures. In part, this is for convenience: keeping the term structure of our
diagrams allows the use of structural induction in proofs. Moreover, by keeping
the link to syntax explicit, we are able to use standard programming language
machinery: in The Calculus of Signal Flow Diagrams II we shall consider an
operational semantics, complementing the denotational account in this paper.

Fix an arbitrary field k. The syntax, given below, does not feature bind-
ing nor primitives for recursion, while k ranges over k. As we shall see, the
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indeterminate x plays a formal role akin to that in the algebra of polynomials.

c :: = | | k | x | | | (1)

| | k | x | | | (2)

| | | c ; c | c⊕ c (3)

A sort is a pair (n, m), with n,m ∈ N. We shall consider only terms that are
sortable, according to the rules of Fig. 2. A simple inductive argument confirms
uniqueness of sorting: if c : (n, m) and c : (n′, m′) then n = n′ and m = m′.
We shall refer to sortable terms as circuits since, intuitively, a term c : (n, m)
represents a circuit with n ports on the left and m ports on the right.

Remark 2.1. Recalling the intuition established in §1, we can consider circuits
built up of the components in row (1) as taking signals—values in k—from the
left boundary to the right: thus is a copier, duplicating the signal arriving

on the left; accepts any signal on the left and discards it, producing nothing

on the right; is an adder that takes two signals on the left and emits their

sum on the right, and constantly emits the signal 0 on the right; k is an

amplifier, multiplying the signal on the left by the scalar k ∈ k. Finally, x is
a delay, a synchronous one place buffer initialised with 0.

The terms of row (2) are those of row (1) “reflected about the y-axis”. Their
behaviour is symmetric—indeed, here it can be helpful to think of signals as

flowing from right to left. In row (3), is a twist, swapping two signals,

is the empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms are combined with two binary operators:
sequential ; and parallel ⊕ composition.

2.1. Circuit Diagrams and Symmetric Monoidal Structure

In the syntax specification we purposefully used a graphical rendering of the
components. Indeed, we shall seldom write terms in the traditional way and
instead represent them as diagrams. We adopt the common conventions:

c ; c′ is drawn c c0...
...

... c⊕ c′ is drawn
c

c0 ...

...
...

...

.

Example 2.2. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)⊕ )) ;
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(c1 ; c3)⊕ (c2 ; c4) = (c1 ⊕ c2) ; (c3 ⊕ c4)

(c1 ; c2) ; c3 = c1 ; (c2 ; c3) idn ; c = c = c ; idm
(c1 ⊕ c2)⊕ c3 = c1 ⊕ (c2 ⊕ c3) id0 ⊕ c = c = c⊕ id0

σ1,1 ;σ1,1 = id2 (c⊕ idz) ;σm,z = σn,z ; (idz ⊕ c)

Figure 3: Axioms of strict symmetric monoidal categories for Circ.

the second of the term

c2 = (( ; )⊕ ) ; ( ⊕ ( ; ))

; ((( ⊕ x )⊕ ) ; (( ; )⊕ ))

According to our intuition, in the left circuit the signal flows from right to left,
while in the right, the signal flows from left to right – indeed, the terms ;

and ; serve as “bent wires” which allow us to form a feedback loop. In
§6, we shall provide circuits with a formal semantics in terms of relations on
streams. In fact, the two circuits above will have the same semantics, despite
the apparent incompatibility in direction of signal flow – see Example 8.7.

In Example 2.2 we used dotted lines to ease the passage from each diagram to
the corresponding syntactic term. Indeed, the syntax carries more information
than the diagrams (e.g. associativity). For our purposes, this information is
redundant and is conveniently discarded by the graphical notation: we shall
never again blemish our diagrams with dotted lines. More formally, our circuits
are arrows of a symmetric monoidal category (SMC, see e.g. [1]).

Definition 2.3. The SMC Circ of circuit diagrams is defined as follows.

• objects are the natural numbers and the monoidal product ⊕ on objects
is by addition. The unit object for ⊕ is 0.

• Arrows n→ m are circuit terms of sort (n, m) quotiented by the axioms
in Figure 3. Composition ; and monoidal product ⊕ of circuits are given
by the corresponding syntactic operations in (3).

• The identities are id0 := and idn+1 := idn ⊕ . The symmetries
σn,m : n+m→ m+n are defined in the obvious way starting from σ1,1 :=

. For instance, σ2,3 is (up-to the axioms of SMCs) the circuit below.

(4)

We identify two sub-categories of Circ: C−→irc has as arrows only those circuits
in Circ that are built from the components in rows (1) and (3) and C←−irc only
those circuits built from the components in rows (2) and (3). The notation
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recalls the intuition that for circuits in C−→irc , signal flow is from left to right, and
in C←−irc from right to left. Formally, observe that C←−irc is the opposite category
of C−→irc : any circuit of C←−irc can be seen as one of C−→irc reflected about the y-axis.

We say that c ∈ Circ[n,m] is in cospan form if it is of shape c1 ; c2, with
c1 ∈ C−→irc [n, z] and c2 ∈ C←−irc [z,m] for some z. Dually, d ∈ Circ[n,m] is in span
form if it is of shape d1 ; d2, with d1 ∈ C←−irc [n, r] and d2 ∈ C−→irc [r,m] for some r.

2.2. Feedback and Signal Flow Diagrams

Beyond C−→irc and C←−irc , we identify another class of circuits of Circ that adhere
closely to the orthodox notion of signal flow diagram (see e.g. [7]), albeit without
directed wires. Here, the signal can flow from left to right, as in C−→irc , but with
the possibility of feedbacks, provided that these pass through at least one delay.
This amounts to defining, for all n, m, a map Tr(·) : Circ[n+1,m+1]→ Circ[n,m]
taking c : n+ 1→ m+ 1 to the n-to-m circuit below:

n mxc

Above and henceforward, we use the shorthand notation z for a circuit of

the form idz, for z ∈ N. Intuitively, Tr(·) equips the circuit c with a feedback
loop carrying the signal from its topmost right to its topmost left port.

Signal flow graphs form a symmetric monoidal category SF, defined as the
sub-category of Circ inductively given as follows:

(i) if c ∈ C−→irc [n,m], then c ∈ SF[n,m]

(ii) if c ∈ SF[n+ 1,m+ 1], then Tr(c) ∈ SF[n,m]

(iii) if c1 ∈ SF[n, z] and c2 ∈ SF[z,m], then c1 ; c2 ∈ SF[n,m]

(iv) if c1 ∈ SF[n,m] and c2 ∈ SF[r, z], then c1 ⊕ c2 ∈ SF[n+ r,m+ z].

Equivalently, SF is the smallest sub-category of Circ that contains C−→irc and is
closed under the Tr operation. For instance, the right-hand circuit of Exam-
ple 2.2 is in SF, whereas the left-hand is in C←−irc .

All three of C−→irc , C←−irc and SF share a common sub-category – P with arrows
only those circuits built from the components of (3). This can be seen as the
category of permutations where P[n,m] is empty if n 6= m and otherwise consists
of the permutations on an n-element set. As we shall see, P plays a special role
in our theory: all categories that we consider contain P as a sub-category.

3. Towards the Algebra of Signal Flow Diagrams

The categories Circ, P, C−→irc , C←−irc and SF are all PROPs [25, 26]: a PROP
(product and permutation category) is a strict symmetric monoidal category
with objects the natural numbers, where ⊕ on objects is addition. Morphisms
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between PROPs are identity-on-objects strict symmetric monoidal functors:
PROPs and their morphisms form the category PROP.

In this section we introduce the tool kit that we will exploit to give a de-
notational semantics and an equational theory to Circ (and its sub-PROPs).
First, §3.1 presents symmetric monoidal theories as a way of freely constructing
PROPs from generators and equations. Then, in §3.2 we show how, follow-
ing [26], PROPs can be composed together to express richer equational theories.

3.1. Symmetric Monoidal Theories

A one-sorted symmetric monoidal theory (SMT) is a pair (Σ, E) where Σ is
the signature: a set of operations o : n → m with arity n and coarity m. The
set of Σ-terms is obtained by composing operations, the identity id1 : 1 → 1
and symmetry σ1,1 : 2 → 2 with ; and ⊕: given Σ-terms t : n → z, u : z → m,
v : r → s, we construct Σ-terms t ;u : n → m and t ⊕ v : n + r → m + s. The
set E of equations consists of pairs of Σ-terms (t, t′ : n → m). Given an SMT
(Σ, E), one (freely) obtains a PROP where arrows n → m are Σ-terms n → m
modulo the laws of SMC and equations t = t′ where (t, t′) ∈ E.

We have already encountered four PROPs freely generated from SMTs with
no equations: P is freely generated by the empty theory, C−→irc by (1), C←−irc by (2),
and Circ by both (1) and (2) together—note that components in (3) are built-in
by definition of SMT. Instead, SF is not generated by any SMT, as Tr(·) cannot
be expressed as an operation with an arity and coarity.

Below we introduce three more simple examples of SMT, this time with
equations. They constitute the “building blocks” for richer theories that will be
constructed, in a modular fashion, throughout the paper.

Example 3.1 (The SMT (ΣM , EM ) of commutative monoids). The signature
ΣM consists of multiplication : 2→ 1 and unit : 0→ 1. Equations EM
assert identity (A1), commutativity (A2) and associativity (A3).

= (A1) = (A2) = (A3)

We call M the PROP freely generated from (ΣM , EM ).

Example 3.2 (The SMT (ΣC , EC) of commutative comonoids). ΣC consists
of operations : 1→ 2 and : 1→ 0 and EC consists of:

= (A4) = (A5) = (A6)

We call C the PROP freely generated from (ΣC , EC). Modulo the white vs.
black colouring, the circuits of C can be seen as those of M reflected about the
y-axis. This observation yields that C ∼= Mop.

Example 3.3 (The theory (ΣR, ER) of multiplication in k[x]). Recall that k[x]

denotes the ring of polynomials over k. ΣR contains an operation p : 1 → 1
for each p ∈ k[x] and ER consists of the following, where p1, p2 range over k[x].
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1 = (A7) p1 p2 = p1p2 (A8)

We call K[X] the PROP freely generated from (ΣR, ER).

Rather than using SMTs, one can also define PROPs “directly”: an example
is the PROP of functions F where arrows k → l are functions {0, . . . , k − 1} →
{0, . . . , l − 1}. There is an isomorphism between M and F: to give an arrow
c : n→ m in M is to give the graph of a function {0, . . . , n−1} → {0, . . . ,m−1}.
For instance, ⊕ : 2→ 2 encodes f : {0, 1} → {0, 1} constant at 0.

3.2. Constructing Richer Theories: Sum and Composition of PROPs

The SMTs introduced so far in this section were quite simple. Throughout
our development, we will deal with more involved cases, which will be convenient
to treat as the combination of basic theories. In this section we describe two
PROP operations allowing for this modular reasoning: sum and composition.

The sum of PROPs T and S is given by the coproduct T + S in PROP.
In order to compute T + S, it is useful to note that PROPs are also objects
of the coslice category P/PRO. Here PRO is the category of strict monoidal
categories (called PROs) with objects the naturals and tensor product on objects
addition; morphisms of PROs are strict identity-on-objects monoidal functors.2

Morphisms of PROPs are thus simply morphisms of PROs that preserve the
permutation structure. Working in the coslice is quite intuitive: e.g. P is the
initial PROP and to compute the coproduct T+ S in PROP one must identify
the permutation structures. When T and S are PROPs freely generated from
(ΣT , ET ) and (ΣS , ES) respectively, it then follows that T + S is the PROP
generated by (ΣT + ΣS , ET + ES). For instance, C−→irc + C←−irc is simply Circ.

The sum T + S is the least interesting way of combining PROPs, because
there are no equations that express compatibility conditions between T and S
when “interacting” in T + S. Such interactions are common in algebra: for
instance, a ring is given by a monoid and an abelian group, subject to equations
telling how the former structure distributes over the latter. Another example,
which will play a fundamental role in our work, is the PROP of co/commutative
bialgebras: it consists of M + C quotiented by the following set of equations,
expressing the interaction between the monoid and comonoid structures.

= (A9)

= (A11)

= (A10)

= (A12)

In [26] Lack shows that this interaction arises through a notion of PROP
composition, expressed in terms of distributive laws of monads. As shown by
Street [28], the theory of monads can be developed in an arbitrary bicategory.
In this perspective, small categories are monads in the bicategory Span(Set).

2For an example of a PRO which is not a PROP, see [27, Example 2.7].
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Similarly, PROPs can be described as monads on P in the bicategory Prof(Mon)
of strict monoidal categories, profunctors and natural transformations [26].

Now, any two PROPs T and S can be composed via a distributive law
λ : S ;T ⇒ T ;S between the associated monads. λ makes T ;S into a monad,
yielding a PROP whose arrows can be seen as pairs (f, g) : n → m, where
f : n → z is an arrow of T and g : z → m one of S. A key observation for our
purposes is that the graph of λ can be also seen as a set of (directed) equations
of the form (g, f) = (f ′, g′). In fact, if T and S are freely generated PROPs
then T ;S also has a presentation by generators and equations: this is the same
as the coproduct T + S, plus the equations encoded by λ.

As an example, we show how composing C and M yields the PROP of
bialgebras. First observe that C ∼= Mop ∼= Fop. Then a distributive law
λ : M ;C ⇒ C ;M has type F ;Fop ⇒ Fop ;F, that is, it maps a pair p ∈ F[n, z],
q ∈ Fop [z,m] to a pair f ∈ Fop [n, z], g ∈ F[z,m]. This amounts to saying that λ

maps cospans n
p−→ z

q←− m to spans n
f←− r

g−→ m in F. Defining n
f←− r

g−→ m as

the pullback of n
p−→ z

q←− m in F makes λ a distributive law [26]. The resulting
PROP C ;M can be presented by operations and equations—those of C + M—
together with those given by the graph of λ. One can thus obtain them from
pullback squares in F, for instance:

1 1

!!CCCC

2

¡ =={{{{
0

!1aaCCCC �� +3 2

=={{{{

!!CCCC 0

0
!2

aaCCCC ?�
id0

=={{{{
0

=={{{{

yields ; = ;

where the second diagram is obtained from the pullback by applying the iso-
morphisms F ∼= M and Fop ∼= C. In fact, all the equations can be derived from
just four pullbacks that yield the four equations (A9)-(A12) given above [26].

Therefore C ;M is the free PROP of (black-white) co/commutative bialge-
bras. One can consider the SMT of co/commutative bialgebras to be the theory
of Span(F) ∼= Fop ;F and, consequently, that each c : n → m in this PROP can
be factorised as c = c1 ; c2, with c1 ∈ C[n, z] and c2 ∈M[z,m] for some z.

4. Axiomatising C−→irc : the Theory of k[x]-Matrices

In this section we commence our investigation of the denotational semantics
of Circ. We restrict to C−→irc , to which we give a semantics in terms of matrices
over k[x], the ring of polynomials with unknown x and values over k. Later, in
§6, we will show that this is consistent with the intuitions given in Remark 2.1.

The semantic domain for C−→irc is the PROP Mat k[x] where arrows n → m
are m× n k[x]-matrices, composition A ;B is matrix multiplication B × A and

the tensor A ⊕ B is defined as the matrix
(
A 0
0 B

)
. The symmetries are the

12



rearrangements of the rows of the identity matrix. For instance σ2,3 (see (4)) is:




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0




The map
−→
[[·]] : C−→irc → Mat k[x] is inductively defined as follows. For (1):

7−→
(

1
1

)

7−→ !

7−→ (1 1)

7−→ ¡

k 7−→ (k)

x 7−→ (x)
(5)

where ! : 0→ 1 and ¡ : 1→ 0 are given by initiality and finality of 0 in Mat k[x].
For (3):

7−→ id0 7−→ id1 7−→
(

0 1
1 0

)

c1 ⊕ c2 7−→
−−→
[[c1]]⊕−−→[[c2]] c1 ; c2 7−→

−−→
[[c1]] ;

−−→
[[c2]]

(6)

From (6), it is immediate that
−→
[[·]] : C−→irc → Mat k[x] is a morphism of PROPs.

Indeed
−→
[[·]] could also have been defined as the unique PROP morphism mapping

the basic components as in (5). In the sequel, we will introduce several semantics
maps and, to be concise, we will usually adopt this second formulation.

By definition, the semantics of any 1-to-1 circuit is a polynomial in k[x].
Conversely, for any polynomial p = k0 + k1x+ k2x

2 + · · ·+ knx
n, the following

circuit, which hereafter we denote by p , has semantics (p).

. . . . . .

x
xx

x . . .x

k0

k1

k2

kn x

At this point, the connection between C−→irc and the basic theories introduced in

Section 3.1 should be more evident: the image of C−→irc through the semantics
−→
[[·]]

can be constructed as a quotient of C + K[X] + M.

Definition 4.1. The PROP HA is the quotient of C−→irc by the equations of
M, K[X] and C ((A1)-(A8)), the equations of bialgebras ((A9)-(A12)) and the
following, where p, p1, p2 ∈ k[x].

p = p
p

(A13) p = p
p

(A15)
p2

p1

= +p1 p2 (A17)

p = (A14) p = (A16) 0 = (A18)

We shall write c
HA
= d when two circuits c, d of C−→irc are equal as arrows of HA.
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Remark 4.2. As hinted by its name, HA satisfies the axioms of Hopf algebras
(see e.g. [29, 30]). Indeed, it inherits the bialgebra equations from C ;M and

�1 : 1→ 1 plays the role of the antipode — for which reason we fix notation

:= �1 . The Hopf law holds by virtue of (A7), (A17) and (A18):

= = (Hopf)

It is straightforward to check that (A1)-(A18) are sound with respect to the

semantics
−→
[[·]]. For instance, both the left and the right hand side of (A10) have

semantics
(

1 1
1 1

)
. The following result is the key to proving completeness.

Lemma 4.3 (Factorisation of HA). Any c ∈ HA[n,m] is equal to s ; r ; t ∈
HA[n,m], where s ∈ C[n, z], r ∈ K[X][z, z] and t ∈M[z,m] for some z ∈ N.

Proof. The reader is referred to [3, §3] for a proof. Since it sheds light on the
modular nature of the axioms of HA, we find instructive to sketch it below.

Following our discussion in §3.2, we can give an equivalent, modular, de-
scription of the PROP HA, as the quotient of C + K[X] + M by the equations
(A9)-(A18). In fact, (A9)-(A16) can be seen as arising by the composition of
PROPs C, K[X] and M. The axioms (A13) and (A14) present a distributive
law σ : M ;K[X] ⇒ K[X] ;M. Similarly, (A15) and (A16) present a distribu-
tive law τ : K[X] ;C ⇒ C ;K[X]. By [31, Th.2.1], these laws, together with
λ : M ;C ⇒ C ;M which is presented by (A9)-(A12) (see §3.2), yield the com-
posite C ;K[X] ;M. Now, HA is the quotient of C ;K[X] ;M by (A18) and (A17),
thus it enjoys the desired factorisation property.

Lemma 4.3 suggests a canonical form for any circuit of C−→irc , which allows to
easily read off the associated matrix.

Definition 4.4. A string diagram c ∈ HA[n,m] is in matrix form if (a) it is of
shape s ; r ; t ∈ HA[n,m], with s ∈ C[n, z], r ∈ K[X][z, z] and t ∈ M[z,m] for
some z ∈ N, (b) any port on the left boundary has exactly one connection with
any port on the right boundary and (c) any such connection passes through

exactly one scalar k . We say that there is a k-path from i to j if k is the
scalar on the path from the ith port on the left to the jth port on the right,
assuming a top-down enumeration.

When drawing matrix forms, for the sake of readability it will be often conve-
nient to massage the above definition as follows: we typically omit to draw the
scalar k = 1, by virtue of (A7), and omit the scalar k = 0, by (A18), leaving
the ports in question disconnected.

Circuits in matrix forms have an intuitive representation as k[x]-matrices,
as shown by the following example.
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Example 4.5. Consider the circuit c : 3→ 4 below and its representation as a
4× 3 matrix M . Note Mij = p exactly when there is a p-path from j to i in c.

p1

p2

(
p1 0 0
1 0 0
p2 1 0
0 0 0

)

The choice of axioms in Definition 4.1 makes this interpretation a 1-1 corre-
spondence between arrows of HA and k[x]-matrices.

Proposition 4.6. There is an isomorphisms of PROPs between HA and Mat k[x].

Proof. The map
−→
[[·]] : C−→irc → Mat k[x] induces a morphism S : HA → Mat k[x]

because it respects all the equations of HA. The proof that S is an iso relies on
showing that is full and faithful on circuits in matrix form—this is without loss
of generality by Lemma 4.3. We refer to [3, Prop. 3.7] for the details.

Corollary 4.7. For all circuits c, d in C−→irc ,
−→
[[c]] =

−→
[[d]] iff c

HA
= d.

The previous result can be conveniently exploited also for circuits in C←−irc .

Indeed,
−→
[[·]] : C−→irc → Mat k[x] induces the PROP morphism

−→
[[·]]op between the

opposite categories, that we hereafter denote by
←−
[[·]] : C←−irc → Mat k[x]

op
. The

PROP HAop , which is presented by the operations and equations of HA reflected

about the y-axis, provides a sound and complete axiomatisation for
←−
[[·]].

Corollary 4.8. For all circuits c, d in C←−irc ,
←−
[[c]] =

←−
[[d]] iff c

HAop

= d.

The reader may consult Appendix A for a reference card with the axioms
of HA (Figure A.4) and of HAop (Figure A.5).

The results of this section relied on the close connection between the algebra
of matrices and the equational theory of bialgebras. Interestingly, matrices
have also been used to reason about special Frobenius algebras, which are the
other prominent equational theory that appears in our work: in [32] Kissinger
shows that (finite) matrices with entries from a field of characteristic 0 are
complete for multigraph categories, in which every object is equipped with a
special (commutative) Frobenius algebra.

5. Axiomatising Circ: the Theory of Relational k(x)-Subspaces

We now consider the task of giving a semantics to Circ. Recall that the
semantics of a circuit in C−→irc is a matrix, or in other words, a linear transforma-
tion. As explained in Remark 2.1, the intuition for circuits in C−→irc is that the
signal flows from left to right: left ports are inputs and right ports are outputs.

These traditional mores fail in Circ—indeed, only some circuits have a func-

tional interpretation. Consider : 2 → 0: the component accepts an
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arbitrary signal while ensures that the signal is equal on the two ports. In
other words, the circuit is a “bent wire” whose behaviour is relational: its ports
are neither inputs nor outputs in any traditional sense. Indeed, the semantic
domain for Circ is linear relations over k(x), the field of fractions of k[x].

Definition 5.1. Let SVk(x) be the following PROP:

• arrows n → m are linear relations between k(x)n and k(x)m, that is,
(linear) subspaces of k(x)n × k(x)m.

• composition is relational: for subspaces G : n → z and H : z → m, their
composition is the subspace

{(u,w) ∈ k(x)n × k(x)m | ∃v ∈ k(x)z.(u, v) ∈ G ∧ (v, w) ∈ H}.

• The tensor product ⊕ on arrows is given by direct sum of spaces.

• The symmetries n→ n are induced by bijections of finite sets, ρ :n→ n is
associated with the subspace generated by {(1i, 1ρi)}i<n where 1k is the
binary n-vector with 1 at the (k+ 1)-st coordinate and 0’s elsewhere. For

instance σ1,1 : 2→ 2 is generated by {(
(

1
0

)
,
(

0
1

)
) , (
(

0
1

)
,
(

1
0

)
)}.

Let [v1, . . . ,vn] denote the space generated by the vectors v1 . . .vn and
( )

the unique element of k(x)0. The semantic map [[·]] : Circ → SVk(x) is the only
PROP morphism mapping the components in (1) as

7−→ [(1,
(

1
1

)
)]

7−→ [(1,
( )

)]

7−→ [(
(

0
1

)
, 1), (

(
1
0

)
, 1)]

7−→ [(
( )
, 0)]

k 7−→ [(1, k)]

x 7−→ [(1, x)]

and for the components in (2) is symmetric, e.g. is mapped to [(
( )
, 1)].

This semantics of Circ in term of subspaces is consistent with those of C−→irc
and C←−irc in terms of matrices, in the sense that the diagram below commutes.
The horizontal arrows in the bottom row are obtained by thinking of matrices as
the (equivalent) linear maps between free k[x]-modules: a linear map f : k[x]n →
k[x]m is thus taken to its graph {(u, fu) |u ∈ k[x]n }, considered as a (functional)
subspace of k(x)n×k(x)m. The commutativity of the diagram is straightforward:
since C−→irc and C←−irc are free, it suffices to check the generators.

C−→irc � � //

−→
[[·]]

��

Circ

[[·]]
��

C←−irc? _oo

←−
[[·]]

��
Mat k[x] �

� // SVk(x) Mat k[x]
op? _oo

Because Circ = C−→irc + C←−irc , in order to obtain a sound and complete axiomati-
zation for [[·]], we can consider the quotient of HA + HAop by laws expressing
the interactions between the two Hopf algebra structures. We call the resulting
PROP of interacting Hopf algebras IH.

Definition 5.2. The PROP IH is the quotient of Circ by the equations of HA,
HAop and the following, where p ranges over k[x] \ {0}.
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= = (S1) = = (S2)

= (S3) = (S4) p p = (S5)

= (S6) = (S7) p p = (S8)

The reader may find a reference card with all the axioms of IH in Appendix
A. Equations (S1) and (S2) are known in the literature as Frobenius laws [5].
Interestingly, equations (S5) and (S8) reflect the fact that the domain k(x) of

interpretation is a field: for any non-zero polynomial p, the circuit p has

inverse p (see also the derived law (7)). The notation replaces the

antipodes and : they are equal as arrows in IH by virtue of (S5),

(A8) and (A7). We write c
IH
= d when c and d in Circ are equal as arrows in IH.

The following result from [3] states that the axioms of IH characterise SVk(x).

Theorem 5.3. There is an isomorphisms of PROPs between IH and SVk(x).

The proof, sketched in §5.2, yields the following factorisation properties.

Proposition 5.4 (Factorisation of Circ). For all circuits c of Circ, there exist

circuits c′ in span form and c′′ in cospan form such that c
IH
= c′

IH
= c′′.

Since all the axioms of IH are sound with respect to the semantics map [[·]],
from the above theorem immediately follows also their completeness.

Corollary 5.5. For all circuits c, d in Circ, [[c]] = [[d]] iff c
IH
= d.

It is useful for later reference to conclude with the following observation.

Remark 5.6. As explained in § 4, there is a canonical way of representing
any polynomial matrix M ∈ Mat k[x][n,m] as a circuit c ∈ C−→irc [n,m], which
we called in matrix form — see Definition 4.4. We can use a similar form to
represent matrices over k(x) as circuits of Circ. Consider the following example:

N =



p1/q1 p4/q4 p7/q7

p2/q2 p5/q5 p8/q8

p3/q3 p6/q6 p9/q9


 d =

p1 q1

p2 q2

q3p3

p6 q6

p7 q7

p8 q8

p9 q9

p4 q4

p5 q5

The circuit d is a canonical representation of the matrix N , and indeed

[[d]] = {(v, Nv) | v ∈ k(x)3} = [(ei, Aei)]i≤3

where {ei | i ≤ 3} is the standard basis of k(x)3.

17



5.1. The Structure of IH: Compact Closedness and Derived Laws

For the developments of §7.1 it is useful to shed light on the self-dual compact
closed structure of IH. First, we define a sequence αn : 2n→ 0 of circuits:

α0 := id0 α1 := α2 := α3 := . . .

Semantically, they all behave as bent wires: for instance, [[α1]] = {
(
(p, p), ()

)
|

p ∈ k(x)} and [[α2]] = {
(
(p, q, p, q), ()

)
| p, q ∈ k(x)}. One can define circuits

from 0 to 2n symmetrically, starting from β2 := : 0→ 2. Now, let
n

be notation for βn,
n

for αn and n for idn. As shown in [3, §4], the βs
and the αs form a self-dual compact closed structure on the category IH, i.e.

n
n

n

n IH
= n

IH
=

n n
n

n
(CC1)

in IH for all n ∈ N . This yields a contravariant endofunctor (·)? on IH (see also
[33, Rmk 2.1]): for any c : n→ m, the arrow c? : m→ n is defined as follows.

c
n

n

m
m

Using the equational theory of IH, one can show (see [3, §4.1]) that c? is just c

reflected about the y-axis: for example,
? IH

= and
?

p
IH
= p .

We list some useful derived laws in IH below. The proofs are in [3, §4].

m
m

n c IH
=

m c?
n

n
(CC2)

m
m

nc IH
= mc?

n
n (CC3)

k
IH
= 1/k (7) IH

= (8)

We also record the following lemma; p nn is the n-fold product of p .

Lemma 5.7. For any n,m ∈ N and circuit c ∈ Circ[n,m],

C
n mx

IH
= n m

x C (9)

Proof. The proof is by induction on c. For the components in (1), the statement

is given for , , , , k and x by (A14), (A13), (A16), (A15),

(A8) and (A8) respectively. The derivations for x and k are:

xx (S8)
=

(S5)
= x x xk

(7)
= x1/k

(A8)
= x/k

(A8)
= x 1/k

(7)
= x k
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Similarly, one can easily check the statement for the remaining cases in (2)
and (3). The inductive cases of parallel (⊕) and sequential ( ; ) composition of
circuits are handled by simply applying the induction hypothesis.

5.2. Soundness and Completeness of IH: the Cube Construction

Theorem 5.3 and Proposition 5.4 follow immediately from more general re-
sults proved in [3, §6-10]. In this subsection we sketch the proof argument which
is interesting in its own right, since it is a modular account of the theory of IH.
Its components are summarised by the cube diagram (�) below.

HA + HAop

∼=
��

sshhhhhhhhhhhhh
// IHSp

vvmmmmmmmmmm

∼=

��

IHCp //

∼=

��

IH
∼=

��

Mat k[x] + Mat k[x]
op

ssgggggggg
// Span(Mat k[x])

vvllllll

Cospan(Mat k[x]) // SVk(x)

(�)

The theory IHSp is presented by the equations of IH (Definition 5.2), but
with the two leftmost axioms below replacing (S7) and (S8). Dually, IHCp is IH
with the two rightmost axioms below replacing (S4) and (S5). As equational
theories, IHSp and IHCp are weaker than IH: all the equations below are derivable
in IH [3].

k = kk k
= k

k k = k
k k = k

k

In fact, IHSp and IHCp are the theories of (i.e. their free PROPs are isomorphic
to) Span(Mat k[x]) and Cospan(Mat k[x]), respectively. First we focus on IHSp

and Span(Mat k[x]). Note that pullbacks in Mat k[x] exist and are computed
as in the category of sets in the equivalent category of free finitely generated
k[x]-modules, since k[x] is a principal ideal domain (PID).

Pullbacks give a distributive law of PROPs, and as we explained in §3.2,
pullback diagrams “add equations” to the theory HA +HAop . Indeed, for each
equation of IHSp there is a corresponding “witnessing” pullback in Mat k[x]: this
argument confirms the soundness of the theory of IHSp for Span(Mat k[x]). The
task of demonstrating the completeness of the axioms is more subtle: one has to
prove that the axioms are sufficient for deriving any equation that arises from
a pullback in Mat k[x]. The proof amounts to showing that linear algebraic
manipulations on matrices that are performed when calculating the kernel of a
linear transformation can be mimicked graphically in IHSp.

Having constructed the isomorphism between IHSp and Span(Mat k[x]), we
can use the fact that the transpose operation on matrices induces a duality in
Mat k[x] to yield the isomorphism between IHCp and Cospan(Mat k[x]).

Now let us again focus on the top face of (�). It is a pushout diagram in
PROP: as only PROPs freely generated by SMTs are involved, this simply

19



amounts to saying that the equational theory of IH can be presented as the
union of the equational theories of IHSp and IHCp. An appealing consequence
of this construction is that IH inherits the factorisation properties of both IHSp

and IHCp. This gives us immediately Proposition 5.4.
The final ingredient in the proof Theorem 5.3 is showing that the bottom

face of (�) is also a pushout in PROP — the morphisms appearing in this
face will be detailed in diagram (�

�
) below, as they play a role in § 6. We

would like to draw the reader’s attention to the remarkable fact that subspaces
over the field of fractions k(x) of k[x] arise from “glueing” spans and cospans
of k[x]-matrices. This fact holds for an arbitrary PID and its field of fractions:
the proof can be found in [3, §9].

Summing up, the top and bottom faces of (�) are pushouts, and the three
rear vertical morphisms are isomorphisms. The universal property of pushouts
now ensures that the unique morphism from IH to SVk(x) is invertible.

6. Stream Semantics

With simple extensions of the semantics morphisms, we can interpret circuits
of C−→irc and Circ in terms of streams. First we need to recall some useful notions.

A formal Laurent series (fls) is a function σ : Z → k for which there exists
i ∈ Z such that σ(j) = 0 for all j < i. The codegree of σ is the smallest d ∈ Z
such that σ(d) 6= 0. We shall often write σ as . . . , σ(−1), σ(0), σ(1), . . . with

position 0 underlined, or as formal sum
∑∞
i=d σ(i)xi. Using the latter notation,

the sum and product of fls σ =
∑∞
i=d σ(i)xi and τ =

∑∞
i=e τ(i)xi are given by:

σ + τ =

∞∑

i=min(d,e)

(
σ(i) + τ(i)

)
xi σ · τ =

∞∑

i=d+e

( ∑

k+j=i

σ(j) · τ(k)
)
xi (10)

The units for + and · are . . . 0, 0, 0 . . . and . . . 0, 1, 0 . . . . Fls form a field k((x)),
where the inverse σ−1 for the fls σ with codegree d is given as follows.

σ−1(i) =





0 if i < −d
σ(d)−1 if i = −d∑n

i=1

(
σ(d+i)·σ−1(−d+n−i)

)
−σ(d) if i = −s+ n for n > 0

(11)

A formal power series (fps) is a fls with codegree d ≥ 0. By (10), fps are closed
under + and ·, but not under inverse: it is immediate by (11) that σ−1 is a fps
iff σ has codegree d = 0. Therefore fps form a ring which we denote by k[[x]].

We shall refer to both fps and fls as streams. Indeed, fls are sequences with an
infinite future, but a finite past. Analogously to how a polynomial p can be seen
as a fraction p

1 , an fps σ can be interpreted as the fls . . . , 0, σ(0), σ(1), σ(2), . . . .

A polynomial p0 + p1x + · · · + pnx
n can also be regarded as the fps

∑∞
i=0 pix

i

with pi = 0 for all i > n. Similarly, polynomial fractions can be regarded as
fls: we define ·̃ : k(x) → k((x)) as the unique field morphism mapping k ∈ k to
. . . 0, k, 0 . . . and the indeterminate x to . . . , 0, 0, 1, 0, . . .
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Differently from polynomials, fractions can denote streams with possibly in-
finitely many non-zero values. For instance, (10) and (11) imply that x

1−x−x2

is the Fibonacci series . . . , 0, 0, 1, 1, 2, 3, . . . . Moreover, while polynomials can be
interpreted as fps, fractions need the full generality of fls: 1

x denotes . . . 0, 0, 1, 0, 0, . . .

k[[x]] �
� // k((x))

k〈x〉
. N

]];;;;

� v

))RRRRR

k[x]
+ � 99
�� //

?�

·̂

OO

k(x)
� ?

·̃

OO

These translations are ring homomorphisms and are illustrated by the commu-
tative diagram above. At the center, k〈x〉 is the ring of rationals, i.e., fractions
k0+k1x+k2x

2···+knxn
l0+l1x+l2x2···+lnxn where l0 6= 0. Differently from fractions, rationals denote

only fps—in other words—bona fide streams that do not start “in the past”.
Indeed, since l0 6= 0, the inverse of l0 + l1x + l2x

2 · · · + lnx
n is, by (11), a fps.

The streams denoted by k〈x〉 are known in literature as rational streams [34].
Hereafter, we shall often use polynomials and fractions to denote the cor-

responding streams. Moreover, Mat k[[x]] and Mat k〈x〉 denote the PROPs of
matrices over k[[x]] and k〈x〉, defined analogously to Mat k[x]. Similarly, SVk((x))

is the PROP of k((x)) subspaces, defined as SVk(x).

6.1. A stream semantics of C−→irc
The semantics

−→
[[·]] : C−→irc → Mat k[x] of §4 allows us to regard the circuits

in HA as stream transformers. Indeed, the interpretation of a polynomial in
k[x] as fps in k[[x]] can be extended pointwise to a faithful PROP morphism

·̂ : Mat k[x] → Mat k[[x]]. By taking
−→〈〈·〉〉 =

−→
[[·]] ; ·̂, the semantics

−−→〈〈c〉〉 of a circuit
c ∈ C−→irc [n,m] is a linear map of type k[[x]]n → k[[x]]m.

Remark 6.1. The semantics
−→〈〈·〉〉 captures the operational intuition for C−→irc

given in Remark 2.1. The circuits carry individual elements of a k-stream,
processing one after the other. Inputs arrive on the left and outputs are emitted

on the right. For instance,
−−−−→
〈〈 x 〉〉 = (x) maps every stream σ ∈ k[[x]] into

the stream σ ·x which, by (10), is 0, σ(0), σ(1), σ(2), . . . Thus x behaves as a

delay. Instead, for k ∈ k,
−−−−→
〈〈 k 〉〉 = (k) maps σ to σ ·k = kσ(0), kσ(1), kσ(2), . . .

Therefore k is an amplifier. For the remaining operations: is an adder,

its unit emits the constant stream 0, 0, 0 . . . , is a copier and its counit

as the transformer taking any stream as input.

One can readily check that this interpretation coincides with the semantics
given in [9, §4.1]. Our approach has the advantage of making the circuits rep-
resentation formal and allowing for equational reasoning, as shown for instance
in Example 6.2 below. Indeed, since ·̂ : Mat k[x] → Mat k[[x]] is faithful, the

axiomatization of HA is sound and complete also for
−→〈〈·〉〉.
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Example 6.2. Consider the following derivation in the equational theory of
HA, where (A15) is used at each step.

x
x x
x
x k1

k2

k3

k0

x x
x

x k1

k2

k3

k0

x
x

x
k1

k2

k3

k0

x x x
x x
x k1

k2

k3

k0

Any of the circuits above has stream semantics given by the matrix (p) ∈
Mat k[[x]][1, 1], where p = k0, k1, k2, k3, 0 . . . . Along the lines of [9, Prop. 4.12],
one can think of the derivation above as a procedure that reduces the total number
of delays x appearing in the implementation of f : σ 7→ σ · p.

6.2. A stream semantics of Circ

In §5, we gave a semantics to Circ in terms of subspaces of fraction of polyno-
mials. In this section, we extend this semantics to subspaces of streams. While
formal power series are enough to provide a stream semantics to C−→irc , for the
whole of Circ one needs the full generality of Laurent series since, as we have
discussed above, not all fractions of polynomials (e.g. 1

x ) denote fps.
The stream semantics is the unique PROP morphism 〈〈·〉〉 : Circ → SVk((x))

mapping the components in (1) as follows:

7→ {(σ,
(
σ
σ

)
) | σ ∈ k((x))}

7→ {(σ,
( )

) | σ ∈ k((x))}
k 7→ {(σ, k · σ) | σ ∈ k((x))}

7→ {(
(
σ
τ

)
, σ + τ) | σ, τ ∈ k((x))}

7→ {(
( )
, 0)}

x 7→ {(σ, x · σ) | σ ∈ k((x))}
and symmetrically for the components in (2). Here 0, x and k denote streams.

Example 6.3. In Example 2.2, we presented the circuit c2 as the composition
of four sequential chunks. Their stream semantics is displayed below.

〈〈( ; )⊕ 〉〉 = {(σ1,

(
τ1
τ1
σ1

)
) | σ1, τ1 ∈ k((x))}

〈〈 ⊕ ( ; )〉〉 = {(
(
τ2
σ2

ρ2

)
,

(
τ2

σ2 + ρ2
σ2 + ρ2

)
) | σ2, τ2, ρ2 ∈ k((x))}

〈〈( ⊕ x )⊕ 〉〉 = {(
(
τ3
σ3

ρ3

)
,

(
τ3

x · σ3

ρ3

)
) | σ3, τ3, ρ3 ∈ k((x))}

〈〈( ; )⊕ 〉〉 = {(
(
τ4
τ4
σ4

)
, σ4) | σ4, τ4 ∈ k((x))}

The composition in SVk((x)) of the four linear relations above is

{(σ1, σ4) | there exist σ2, σ3, τ1, . . . , τ4, ρ2, ρ3 s.t.

{
τ1 = τ2 = σ2 = τ3 = τ4,

σ2 + ρ2 = σ3, x · σ3 = τ4
σ1 = ρ2, σ2 + ρ2 = ρ3 = σ4

}

By simple algebraic manipulations one can check that the above systems of equa-
tions has a unique solution given by σ4 = 1

1−xσ1. Since 〈〈·〉〉 is a PROP mor-
phism and c2 is the composition of the four chunks above, we obtain

〈〈c2〉〉 = {(σ1,
1

1− x · σ1) | σ1 ∈ k((x))}.
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This relation contains all pairs of streams that can occur on the left and on the
right ports of c2. For instance if 1, 0, 0 . . . is on the left, 1, 1, 1 . . . is on the
right.

For the other circuit of Example 2.2, namely c1, it is immediate to see that

〈〈c1〉〉 = {((1− x) · σ1, σ1) | σ1 ∈ k((x))}

which is clearly the same subspace as 〈〈c2〉〉. In Example 8.7, we will prove
the semantic equivalence of the two circuits by means of the equational theory
of IH. This is always possible since, as stated by the following theorem, the
axiomatization of IH is sound and complete with respect to 〈〈·〉〉.

Theorem 6.4. For all c, d in Circ, c
IH
= d iff 〈〈c〉〉 = 〈〈d〉〉.

The argument relies on another “floor” (�

�
) below diagram (�).

Mat k[x] + Mat k[x]
op

� _

��

[ι1,ι2]ssgggggggg

[κ1,κ2] // Span(Mat k[x])

Φ
mm

vvmmm
� _

Θ

��

Cospan(Mat k[x]) Ψ //
� _

Υ

��

SVk(x)

[̃·]
��

Mat k[[x]] + Mat k[[x]]
op

[ι′1,ι
′
2]

ssgggggggg
//[κ′1,κ

′
2]

Span(Mat k[[x]])

Φ′
mm

vvmm
Cospan(Mat k[[x]]) Ψ′ // SVk((x))

(�

�
)

We shall show that, just as for [[·]] (Corollary 5.5), completeness of 〈〈·〉〉 can
be derived by a universal categorical construction: in particular, 〈〈·〉〉 is the
composition of [[·]] with [̃·] in (�

�
). To this aim, we distill the components of (�

�
).

Top face. The top face is the bottom face of (�). The map [κ1, κ2] arises from:

κ1 : Mat k[x]→ Span(Mat k[x]) κ2 : Mat k[x]
op → Span(Mat k[x])

A : n→ m 7−→ (n
id←− n A−→ m) B : n→ m 7−→ (n

B←− m id−→ m)

and, similarly, [ι1, ι2] is the pairing of

ι1 : Mat k[x]→ Cospan(Mat k[x]) ι2 : Mat k[x]
op → Cospan(Mat k[x])

A : n→ m 7−→ (n
A−→ m

id←− m) B : n→ m 7−→ (n
id−→ n

B←− m).

The morphism Φ maps n
V←− z W−→ m to the linear relation

{ (u,v) | u ∈ k(x)n, v ∈ k(x)m, ∃w ∈ k(x)z. δ(V )w = u ∧ δ(W )w = v }

where δ : Mat k[x]→ Mat k(x) is the obvious embedding, and Ψ acts as follows:

n
V−→ z

W←− m 7−→ { (u,v) | u ∈ k(x)n, v ∈ k(x)m, δ(V )u = δ(W )v }.

Theorem 3 in [3] ensures that these maps are a pushout diagram in PROP.
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Bottom face. The morphisms of the bottom face, [κ′1, κ
′
2], [ι′1, ι

′
2], Φ′ and Ψ′,

are defined analogously. Since k[[x]] is a PID and k((x)) is its field of fraction,
by Theorem 3 of [3], the bottom face is also a pushout in PROP.

Vertical edges. The rear morphism follows from the embedding ·̂ : Mat k[x] →
Mat k[[x]] described in §6.1. Θ maps a span n

V←− z W−→ m to n
V̂←− z Ŵ−→ m. To

verify that this is a morphism of PROPs, one needs to check the following.

Lemma 6.5. ·̂ : Mat k[x]→ Mat k[[x]] preserves pullbacks.

Proof. See Appendix B.

Similarly, the leftmost morphism Υ maps n
V−→ z

W←− m to n
V̂−→ z

Ŵ←− m.
Since Mat k[x] and Mat k[[x]] are both self-dual, it follows by Lemma 6.5 that ·̂
also preserves pushouts and, therefore, Υ is a morphism of PROPs.

By definition, the left hand and rear faces commute. As a consequence, there
exists [̃·] : SVk(x) → SVk((x)) given by the universal property of the top face of
(�

�
). To give a concrete description of [̃·], observe that ·̃ : k(x)→ k((x)) can be

pointwise extended to matrices and sets of vectors. For a subspace H in SVk(x),
let [H̃] be the space in SVk((x)) generated by the set of vectors H̃.

Lemma 6.6. The morphism [̃·] : SVk(x) → SVk((x)) maps H in SVk(x) to [H̃].

Proof. See Appendix B.

Proposition 6.7. 〈〈·〉〉 = [[·]] ; [̃·].
Proof. Clear from definitions of 〈〈·〉〉 and [[·]], and Lemma 6.6.

By construction, the morphism [[·]] ; [̃·] has the desired properties allowing to
infer soundness and completeness of IH with respect to the stream semantics.

Proof of Theorem 6.4. Let c and d be in Circ. By Proposition 6.7, 〈〈c〉〉 = 〈〈d〉〉
iff [[̃[c]]] = [[̃[d]]]. Now, [̃·] is given by the universal property in (�

�
): since all

vertical maps of (�

�
) are faithful, also [̃·] is faithful. It follows that [[̃[c]]] = [[̃[d]]]

iff [[c]] = [[d]] and, therefore, iff c
IH
= d by Corollary 5.5.

7. Axiomatising SF: the Theory of Rational Matrices

The relational semantics for Circ, developed in the previous sections, clearly
also gives a denotation for circuits in its sub-PROP SF. However, as outlined
in §2, we expect that signal flow graphs express functional behaviors. In this
section we shall show that this is the case: our main result is that circuits in SF,
up-to equality in IH, characterise functional subspaces given by k〈x〉-matrices.

The correspondence between (orthodox) signal-flow diagrams and rational
matrices is well-known (e.g. [9]): here we give a categorical, string-diagrammatic,
account of this characterisation where notions of “input”, “output” and direction
of flow are derivative. The following is one direction of the correspondence.
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Proposition 7.1. Suppose that c ∈ SF[n,m]. Then [[c]] is the subspace [(ei, Aei)]i≤n
for some A ∈ Mat k〈x〉[n,m], where {ei | i ≤ n} is the standard basis of k(x)n.

Proof. See Appendix B.

Note that the converse does not hold: there are functional subspaces given
by rational matrices that are in the image of circuits not in SF. In order to
obtain full completeness (isomorphism) for Mat k〈x〉, we are going to show that
all such circuits are provably equivalent in IH to one in SF. The following
example illustrates an instance of our general result.

Example 7.2. The rational x
1−x−x2 denoting the Fibonacci sequence can be

succinctly represented as the circuit x ; 1� x� x2 , which is not in SF. Indeed,

composing [[ x ]] = [(1, x)] with [[ 1� x� x2 ]] = [(1 − x − x2, 1)] yields the k(x)-

subspace [(1, x
1−x−x2 )]. In terms of streams, 〈〈 x ; 1� x� x2 〉〉 is the k((x))-

subspace [( 1, 0, 0, . . . , 0, 1, 1, 2, 3, 5, . . . )].
The derivation in the equational theory of IH below shows how we can “im-

plement” the Fibonacci circuit, by transforming it into a circuit of SF.

x 1� x� x2 x x

x x

x

xx

x
x

x

x

x

x

x

x
x

x

x x
xx + 1x2 + x

x2 + x

x

x2 + x

x

x2 + x

The strategy is to unfold 1� x� x2 (using (A17)op from HAop) and use the
Frobenius axioms (S2)-(S1) to deform the circuit to obtain the feedback loop.

Then the sub-circuit representing x2 + x is moved along using (CC2).
In the Calculus of Signal Flow Diagrams II, we will explain formally in which

sense the final circuit of the derivation can be thought as the implementation of
the first one. At an intuitive level, this can be explained in terms of flows: in
the first circuits it is not possible to assign a direction to the flow, while in the
last one signal flows from left to right. Indeed, using the intuition of Remark 2.1

and the behaviour of , as bent wires that merely forward signals from
one port to the other, the reader can see that inputing the stream 1, 0, 0, . . . on
the left yields the Fibonacci sequence 0, 1, 1, 2, 3, 5, . . . as output on the right.

In view of the above, we shall work with SF modulo IH. Since morphisms
of PROPs are identity-on-objects, we can simply take the image of SF in IH.

Definition 7.3. SF is the sub-PROP of IH given by the image of

SF→ Circ→ IH.
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One can think of SF as consisting of all the circuits of Circ that are equivalent
in IH to one of SF. We can now state the main theorem of this section.

Theorem 7.4. There is an isomorphism of PROPs between SF and Mat k〈x〉.
The direction from circuits to matrices of Theorem 7.4 is already given by

Proposition 7.1. The following statement takes care of the converse.

Proposition 7.5. Suppose that A ∈ Mat k〈x〉[n,m]. Then for any c ∈ Circ[n,m]

such that [[c]] = [(ei, Aei)]i≤n there exists a circuit c′ ∈ SF[m,n] such that c
IH
= c′.

Proof. Let 1
k+xp ∈ k〈x〉 be a rational, with k 6= 0 and p ∈ k[x]. This can be seen

as a 1 × 1 matrix of Mat k〈x〉, yielding the subspace [(1, 1
k+xp )] : 1 → 1. The

following derivation shows that a circuit of Circ, whose semantics (via [[·]]) is the
subspace [(1, 1

k+xp )], is equal to one in SF. The sequence of applied equalities

is: (A17)op, (A4) + (A4)op, (8) + (S2), (CC2), (7), (A13), (A10), (A15), (A13)
+ naturality of symmetry, (A8).

k + xp

k

xp

k

xp

xp

p/k

1/k

x
�1/k

�p/k
xp

1/k

1/k

1/k

1/k

xp

1/k

1/k

x

1/k

1/k

1/k

1/k

p

p

k
xp

k

xp

xp

1/k

1/k

1/k

Now, fix a matrix A ∈ Mat k〈x〉[n,m] and the associated subspace [(ei, Aei)]i≤n.
Let d ∈ Circ[n,m] be the circuit in matrix form constructed as in Remark 5.6
whose [[·]]-semantics is the subspace [(ei, Aei)]i≤n: each entry q of the matrix A
— that is, a (rational) fraction q = p1/p2 ∈ k〈x〉 — is encoded as a component

p1 ; p2 of d. By the observation above, we can put any such circuit p2 in
the form of a circuit of SF. Therefore, d is equal in IH to a circuit c where all
components are in SF and, since SF is closed under ⊕ and ; , then also c is a
circuit of SF.

We can now prove of our characterisation result.

Proof of Theorem 7.4. There is an obvious embedding Mat k〈x〉 → SVk(x) map-
ping A ∈ Mat k〈x〉[n,m] into the subspace [(ei, Aei)]i≤n: the idea is to show
that SF characterises its image. To do this, define F : SF→ Mat k〈x〉 as follows.
By definition, an arrow f of SF is an IH-equivalence class containing a circuit c
of SF. By Proposition 7.1, [[c]] = [(ei, Aei)]i≤m for some A in Mat k〈x〉. We let
F map f to A: Corollary 5.5 guarantees that F is well-defined and faithful. To
see that F is full, let A be a matrix in Mat k〈x〉. Because [[·]] is full on SVk(x),
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there is a circuit c in Circ such that [[c]] = [(ei, Aei)]i≤m. By Proposition 7.5,

there is also d in SF such that c
IH
= d and [[c]] = [[d]]. We conclude that F is full

and faithful and thus an isomorphism.

7.1. A Trace Canonical Form for Circuits of SF

In this section we show that circuits of SF can always be put, using the
equational theory of IH, into a convenient shape: a core given by a circuit c of
C−→irc without delays, and an exterior part given by a “bundle” of feedback loops.
We formally introduce this notion below.

Definition 7.6. For n,m, z ∈ N, c ∈ Circ[z+n, z+m], the z-feedback Trz(c) ∈
Circ[n,m] is the circuit below, for which we use the indicated shorthand notation:

z

n C

z
z

zz
mx =:

n C

z

mx

In particular, Tr1(·) coincides with the assignment Tr(·) given in §2.2.

Proposition 7.7 (Trace form for SF). Let C−→irc \x be the sub-PROP of C−→irc whose

circuits do not contain any delay x . For every circuit d ∈ SF[n,m], there are

z ∈ N and c : z + n→ z +m of C−→irc \x such that d
IH
= Trz(c).

The existence of this form is a folklore result in the theory of signal flow
diagrams. Here we provide a novel proof that consists of showing that Trz(·)z∈N
is a right trace [1, §5.1] on the category IH.

Remark 7.8. Note that Trz(·)z∈N is not the canonical trace induced by the com-
pact closed structure of IH (§ 5.1), but a version “guarded” by a register. This
makes our approach different from other works using traces to model recursion,
like those of Stefanescu [35], Hasegawa [36] and Bloom and Ésik’s axiomatisa-
tion of iteration theories [37, 38]. The traces considered there are not guarded
by a register and indeed satisfy the “yanking” law [39], which is instead false for
Trz(·)z∈N:

x

z

z z 6= z .

Proposition 7.9. The family Trz(·)z∈N is a right trace on IH.

Proof. The axioms of (right) traced categories, as presented in [1, §5.1], are:

1. Tightening:

A x

B C

z

m1 m2n1 n2
= A x

B C

z

m1 m2n1 n2
(12)
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2. Sliding:

x

n C
m

B

z1

z2

=
x

n
C m

B z1

z2

(13)

3. Vanishing:

C
xn m

0

= Cn m (14)
C

x
x

z1
z2

n m

=
C

xn m

z1 + z2

(15)

4. Strength:

xC

B

z

m1

m2

n1

n2

=
xC

B

z

m1

m2

n1

n2

(16)

Tightening and strength hold for our definition of trace simply by laws of sym-
metric monoidal categories. Therefore we focus on sliding and vanishing.

Sliding. The following derivation yields the sliding equation:

x

n C
m

B

z1

z2 (9)
=

n C
m

B

z1

z2 x (CC2)
=

n C
m

z1

z2 x

z2?
B

(CC3)
=

x

n
C m

B z1

z2

For the two last steps, observe that B∗∗ = B by definition of (·)? and (CC1).

Vanishing. Concerning vanishing, (14) holds because, by definition,
n

,
n

and n x n are all equal to id0 for n = 0. It remains to check (15). We provide
the proof for z1, z2 = 1. The general case is handled (by induction) by the
obvious generalisation of the same argument.

For this purpose, it will be useful to first introduce the following two equa-
tions, holding in Circ by naturality of symmetry.

= = (17) = (18)

By definition, the first circuit below is Tr1Tr1c and the last is Tr2c. The
first step applies (17) and (18), the second and the third follow by axioms of
symmetric monoidal categories.

n m
x

xC n m
x

xC

n m

x
xCn m

x
xC
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This concludes the proof of Proposition 7.9.

We can now give the argument for Proposition 7.7.

Proof of Proposition 7.7 . The proof goes by induction on a circuit d of SF. If
d is a component in (1) different from x , d = Tr0(d). For x , it is easy

to check that x
IH
= Tr1( ). The second clause of the inductive definition

of SF is the case in which d = Tr1(c) for some circuit c of SF. By induction

hypothesis c
IH
= Trz(c′) for some c′ in C−→irc \x and thus, by (15), d

IH
= Tr1+z(c′).

The remaining two cases are the ones in which d is given by sequential or parallel
composition of circuits of SF—which are, by induction hypothesis, of the form
described in the statement. The corresponding derivations, given below, use the
properties of the trace; the circuit c is defined by the dotted square.

BA x x

m1 m2 m3

z1 z2

BA
x
x

m1 m2 m3

z1

z2

C
x
x

m1 m3

z1
z2

C x

m1 m3

z1 + z2

A x

B x

A
x

B

x
C

x
x

C x
m1

m2

n1

n2

z1

z2 m1

m2

n1

n2

z1
z2

m1

m2

n1

n2

z1
z2

z1 + z2

m1 + m2 n1 + n2

8. Realisability

In §7 we showed that, in the equational theory of IH, restricting Circ to
the syntax SF of signal flow graphs captures the rational behaviors in SVk(x).
Moreover, the relations represented by SF give rise to particularly well-behaved
functional relations under the stream semantics 〈〈·〉〉 : Circ→ SVk((x)), since they
do not actually require the full generality of Laurent series: any rational poly-
nomial generates a fps, without the need for a “finite past.” Indeed, these kind
of stream transformers have been well-understood since at least the 1950s.

In the stream universe SVk((x)), what can we say about circuits in Circ that
do not have an equivalent circuit in SF? Do they define a more expressive family
of signal flow circuits as stream transformers under the stream semantics?

In this section we shall see that the answer to the last questions is NO, in
fact, within the equational theory of IH, Circ is nothing else but a “jumbled
up” version of SF: more precisely, while every circuit in SF has inputs on the
left and outputs on the right, for every circuit in Circ there is a way of parti-
tioning its left and right ports into “inputs” and “outputs”, in the sense that
appropriate rewiring yields an IH-equal circuit in SF. The main result of this
section is the realisability theorem (Theorem 8.4) which guarantees that such
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an input-output partition exists—i.e. every circuit in Circ is a rewired circuit
in SF. Note that such a partition is not unique, and this fact corresponds to
the physical intuition that in some circuits there is more than one way of ori-
enting flow3. Moreover, we are able to crystallise what we consider to be the
central methodological contribution of this paper: since it is only by forgetting
the input-output distinction that the algebra IH of signal flow is revealed, and
signal flow graphs can be given a compositional semantics, the notions of input
and output cannot be considered as primitive; they are, rather, derived notions.

We begin by giving a precise definition of what we mean by “jumbling up” the
wires of a circuit. First, for each n,m ∈ N, we define circuits ηn : n→ 1 + 1 + n
and εm : 1 + 1 +m→ m in Circ as illustrated below.

ηn := n εm := m

Next, we define the families of operators Ln,m : Circ[n+1,m]→ Circ[n, 1+m] and
Rn,m : Circ[n, 1+m]→ Circ[1+n,m] as follows: for any circuit c ∈ Circ[n+1,m],

Ln,m(c) = ηn ; (id1 ⊕ c)
(

n c m

)

and, for any circuit d ∈ Circ[n,m+ 1]

Rn,m(d) = (id1 ⊕ d) ; εm.

(
n md

)

Remark 8.1. When considered as operations on IH, Ln,m and Rn,m enjoy some
interesting properties. Let 1 + − : IH → IH be the functor acting on objects as
k 7→ 1 + k and on arrows as f 7→ id1 ⊕ f . This functor is self-adjoint: the unit
and the counit are the ηn and εm defined as above. The fact that IH is a SMC
implies naturality of η and ε. They satisfy the triangle equalities by (CC1):

z

IH
= z + 1

IH
=

z
(19)

The induced isomorphisms are Ln,m , Rn,m defined as above. We can see Ln,m
intuitively as “rewiring” the first port on the left to the right of the circuit. The
fact that Ln,m and Rn,m are isomorphisms means, of course, that no information
is lost – all such circuits can be “rewired” back to their original form.

Definition 8.2. A circuit c2 ∈ Circ[n2,m2] is a rewiring of c1 ∈ Circ[n1,m1]
when c2 can be obtained from c1 by a combination of the following operations:

3 In The Calculus of Signal Flow Diagrams II we shall explore the computational ramifi-
cations of the realisability theorem through its relationship with the operational semantics.
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(i) application of Ln,m, for some n and m,

(ii) application of Rn,m, for some n and m,

(iii) post-composition with a permutation,

(iv) pre-composition with a permutation.

Permutations are needed to rewire an arbitrary—i.e. not merely the first—
port on each of the boundaries. For instance, they allow to rewire the second
port on the right as the third on the left in the circuit c : 2→ 2 below:

c

In light of Remark 8.1, “is a rewiring of” is an equivalence relation on the
circuits of Circ under the equational theory of IH: we shall say that circuits c and

d are rewiring-equivalent when c
IH
= d′ for some rewiring d′ of d. Moreover, at the

semantics level, a rewiring denotes an isomorphisms between a subspace of type
k(x)n×k(x)m and one of type k(x)i×k(x)j where n+m = i+j. For instance, for
any circuit c, [[c]] ⊆ k(x)n+1×k(x)m is isomorphic to [[Ln,m(c)]] ⊆ k(x)n×k(x)m+1

as a subspace of k(x)n+m+1.

Lemma 8.3. If c is a rewiring of d in Circ, then [[c]] ∼= [[d]] as vector spaces.

Proof. It is enough to observe how Ln,m, Rn,m and permutations affect the
denoted subspaces:

(i) Ln,m induces an isomorphism [[c]]→ [[Ln,m(c)]] defined

(
(

y
v

)
,w) 7→ (v,

(
y
w

)
).

(ii) Rn,m induces an isomorphism [[c]]→ [[Ln,m(c)]] defined

(v,
(

z
w

)
) 7→ (

(
z
v

)
,w).

(iii) post-composition with a permutation σ induces an isomorphism (v,w) 7→
(v,w′) with w′ obtained from w by rearranging its rows according to σ.

(iv) pre-composition with a permutation σ induces an isomorphism (v,w) 7→
(v′,w) with v′ obtained from v by rearranging its rows according to σ−1.

We are now able to state the main result of this section.

Theorem 8.4 (Realisability). Every circuit in Circ is rewiring-equivalent to
some circuit in SF.

31



8.1. Proof of Theorem 8.4

We shall work with matrices (and the corresponding circuits) of a particular
shape. We say that a matrix over k(x) is in rational form if all its entries are
in fact rationals (in k〈x〉) and:

1. each non-zero row has an entry with value 1, called pivot.

2. if a column has a pivot entry, then the pivot is the only non-zero entry.

An example is given below, where r1, r2, r3 ∈ k〈x〉.
(

r1 0 1 0
r2 1 0 0
r3 0 0 1
0 0 0 0

)

The following lemma is the final ingredient for the proof of Theorem 8.4—its
proof, in Appendix B, is an easy exercise in linear algebra (see also Remark 8.6).

Lemma 8.5. Every k(x) matrix is row equivalent to one in rational form.

Proof of Theorem 8.4. Fix a circuit c ∈ Circ[n,m]. In the following, we will
sketch a recipe, using the equational theory of IH, with which c is transformed
into the rewiring of a circuit in SF. To improve readability, we shall draw
any circuit as if both n and m were 2. It should be clear how our argument
generalizes.

(i) First we transform c into the circuit c1 on the right: the two are equal in
IH by virtue of (CC1).

c
c

IH

Let us call c2 the circuit from n+m to 0 delimited by the dotted square in
the picture above. Since c0 is obtained by rewiring c2, it should be clear
that, if c2 can be rearranged as the rewiring of a circuit in SF, then so can
c0. Therefore, in the sequel we shift our focus to c2.

(ii) Proposition 5.4 allows us to rewrite c2 in cospan form, as the composition
along a middle boundary z of c3 and c4 below, while preserving equality
in IH. By definition of cospan form, c3 is an arrow of C−→irc , while c4 is an
arrow of C←−irc . For the sake of readability, we will draw z as if it were 2.

c3 c4c
IH

C�!irc C �irc

(iii) Since we are reasoning in IH, all the equations of HAop hold. Now, 0
is both initial and terminal in Mat k[x]; because HAop ∼= Mat k[x]

op
, this
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means that there is exactly one circuit of C←−irc , up to equality in HAop , from

z to 0. It follows that c4 and the z-fold ⊕-product of (a circuit that we

call c5) are equal in HAop — and thus in IH. In particular c3 ; c4
IH
= c3 ; c5:

c3 c4 c3
IH

(iv) Since c3 is in C−→irc we can use HA to reason about it. In particular, c3
corresponds to a z × (m + n) matrix of polynomials M , because HA ∼=
Mat k[x]. As discussed in § 4, there is a canonical way of representing M
as a circuit c6 of Circ in matrix form (Def. 4.4), below right:

M =

(
p11 p21 p31 p41

p12 p22 p32 p42

)
c6 =

p11
p12

p21
p22

p31

p32

p41
p42

Since c3 corresponds to M along the isomorphism HA ∼= Mat k[x], it fol-
lows that [[c3]] is {(σ,M · σ | σ ∈ k(x)n}. Therefore [[c3]] = [[c6]] meaning

by Theorem 5.3 that c3
IH
= c6. We can thus rewrite our circuit as follows:

c3

p11

p12

p21
p22

p31

p32

p41
p42

IH

(v) Using Lemma 8.5, we can then transform M into a matrix M̂ in rational

form — for instance, the one on the left below. Since M̂ is a matrix over
k(x), as observed in Remark 5.6, there is a canonical circuit c7 of Circ,
below right, representing it.

M̂ =

(
1 p1/q1 0 p3/q3

0 p2/q2 1 p4/q4

)
c7 =

p1 q1

p2

q3

q2

p3

p4 q4

By definition of rational form, each non-zero row R in M̂ is associated
with a pivot column C with the only non-zero value 1 at the intersection
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of R and C. In order to graphically represent this property in c7, we
assume the following choice of pivots: the first and the third column for
the first and second row respectively. Observe that an entry with value 0
corresponds to the circuit 0 , which in IH is equal to : therefore
we can avoid drawing the corresponding link in the circuit c7.

We now claim that c6 ; c5
IH
= c7 ; c5. By Theorem 5.3, to check this it

suffices to show that [[c6 ; c5]] = [[c7 ; c5]], that is:

{(σ,M · σ |M · σ = 0} = {(σ, M̂ · σ) | M̂ · σ = 0}.
This is true because the two relations above describe the kernel of M and
M̂ respectively, and M̂ is row-equivalent to M . It follows that we can
rewrite c6 ; c5 as c7 ; c5, while preserving equality in IH:

p11

p1 q1

p2

q3

q2

p3

p12

p21
p22

p31

p32

p41
p42

p4 q4

IH

Remark 8.6. One can argue in a more direct fashion by performing the
linear algebraic manipulations involved in the proof of Lemma 8.5 graph-
ically. Indeed, the row operations used to transform M into M̂ can be
mimicked at the circuit level, using the equational theory of IH. This pro-
cedure involves a sequence of row-equivalent matrices M0,M1, . . . ,Mh rep-
resented by circuits d0, d1, . . . , dh, where M0 = M , d0 = c6 and Mh = M̂ ,
dh = c7. At each step, two kinds of operation can be applied to Mi in order
to obtain Mi+1: the first is multiplying a row by an element p1

p2
∈ k(x),

the second is replacing a row R1 by R1 + p1
p2
R2, where R2 is another row.

Bearing in mind that rows correspond to entries on the right boundary of
di, the application of these two operations can be mimicked graphically as
on the left and on the right below, respectively.

p1 p2di p1 p2di

On the left, we represent the first row being multiplied by p1
p2

. On the
right, we have the second row being summed with the first one multiplied
by p1

p2
: the semantics of and confirm our description. Since

these are row operations, the resulting circuit di+1 will still correspond to
a matrix, namely Mi+1. An equational derivation can show that, modulo
composition with c5, the transformation of di into di+1 is sound in IH:

p1 p2di
IH
= di

IH
= p1 p2di
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(vi) We now focus on circuit c7 ; c5. Our next step is to use associativity and
commutativity of to make one of the two legs of each component
be always attached to the pivot-wire of the corresponding row. Also, we

use the axioms of SMCs and naturality of the symmetry to push the
pivot-wires towards the top of the circuit, as follows:

p1 q1

p2

q3

q2

p3

p4 q4

p1 q1

p2

q3

q2

p3

p4 q4

IH

(vii) We can now remove the components of shape by turning them into

rewiring structure. This can be done by using axiom (S6) of IH:

p1 q1

p2

q3

q2

p3

p4 q4

p1 q1

p2

q3

q2

p3

p4 q4

IH

(viii) Let us call c8 the rightmost circuit above: it is a rewiring of the circuit
inscribed into the dotted square, which we call c9. Since c7 was constructed

starting by a matrix in rational form, for all the components p q in

c8, pq is a rational. Thus, using the fact that SF ∼= Mat k〈x〉, we can rewrite
in IH each such component as a circuit c̃ in SF:

p1 q1

p2

q3

q2

p3

p4 q4

ec1

ec2

ec3

ec4

IH

Now, observe that c9 can be seen as the composition of circuits in SF.

ec1

ec2

ec3

ec4

It follows that c9 is also in SF and thus c8 is the rewiring of a circuit in
SF. Since c8 was obtained by c2 by only using rewriting steps allowed by
the equational theory of IH, the statement of the theorem follows.
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As remarked previously, circuits in Circ are, in general, the rewiring of more
than one signal flow graph. To illustrate this, we return to Example 2.2.

Example 8.7. The circuit 1�x is rewiring-equivalent to two different signal
flow graphs, illustrated below. Intuitively, the choice depends on whether one
considers signal to be flowing right-to-left or left-to-right.

x

x

(20)

The equivalence holds by the following derivation in IH:

x

x x

xx1�x

Note that the last circuit above is just the rightmost in (20) and the second
above is rewiring equivalent to the left-hand in (20), using the compact closed
structure of IH (see §5). The derivation also shows, by Corollary 6.4, that the
two circuits of Example 2.2 indeed have the same semantics.

We conclude with some interesting observations stemming from Theorem 8.4.

Proposition 8.8. Let c be a circuit in Circ and suppose that c′ : n → m is a
rewiring-equivalent circuit in SF. Then the dimension of [[c]] is n.

Proof. By Lemma 8.3, [[c]] ∼= [[c′]] as vector spaces. Since c′ is in SF, [[c′]] is a
functional subspace by Theorem 7.4, whence its dimension is n.

Corollary 8.9. Let c be a circuit in Circ and suppose that c1 : n1 → m1 and
c2 : n2 → m2, in SF, are rewiring-equivalent to c. Then n1 = n2 and m1 = m2.

As a consequence of Theorem 8.4, we can transform any circuit into one
where the direction of the flow, inputs and outputs are determined. Intuitively
for circuits in SF, the signal flows from the input ports on the left to the output
ports on the right. The rewiring just exchanges the positions of some ports and
therefore in a circuit which is the rewiring of an orthodox signal flow graph it
is always possible to identify inputs, outputs and the direction of the flow.

Example 8.7 shows that a circuit c ∈ Circ may be rewiring equivalent to sev-
eral circuits in SF, allowing for different flow orientations. However, by Corollary
8.9, the number of inputs is constant and coincides with the dimension of [[c]].

The operational intuitions will be made formal in the The Calculus of Signal
Flow Diagrams II, where we will show that to effectively execute our circuits as
state machines, one actually needs to identify the direction of the flow.
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Appendix A. Axiomatisation of Circ

A1
= A2

= A3
=

A4
= A5

= A6
=

1
A7
= p1 p2

A8
= p1p2

A9
=

A10
=

A11
= A12

=

p
A13
= p

p p
A14
= p A15

= p
p

p
A16
=

0
A17
= p2

p1 A18
= +p1 p2

Figure A.4: Axioms of HA, describing the interaction of the generators in (1).

A1op

= A2op

=
A3op

=

A6op

= A5op

=
A6op

=

1
A7op

= p1 p2
A8op

= p1p2

A9op

=
A10op

=
A11op

= A12op

=

p A13op

= p
p

p
A14op

= p
A15op

=
p
p p

A16op

=

0
A17op

= p2

p1 A18op

= +p1 p2

Figure A.5: Axioms of HAop , describing the interaction of the generators in (2).

S1
=

S1
=

S2
=

S2
=

S3
=

S4
= qq S5

=

S6
=

S7
= qq S8

=

Figure A.6: IH is presented by the axioms of HA, HAop and the equations S1-S8 above,
describing the interaction of generators in (1) with those in (2). q ranges over k[x] \ {0}.
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Appendix B. Omitted Proofs of Sections 6, 7 and 8

Proof of Lemma 6.5. First observe that the PROP Mat k[x] is equivalent to the
category FMod k[x] of finite-dimensional free k[x]-modules. Now, because k[x] is
a principal ideal domain (PID), submodules of free modules are also free: thus
pullbacks in FMod k[x] can be calculated as in the abelian category Mod k[x] of
k[x]-modules, where they are calculated as in the category of sets.

Now the diagram below left is a pullback in Mat k[x] if and only if, in the
diagram in Mod k[x] below right, we have

C = Ker(A| −B) ;π1 and D = Ker(A| −B) ;π2

where A| − B : k[x]n ⊕ k[x]m → k[x]z is the copairing of A : k[x]n → k[x]z and
−B : k[x]m → k[x]z and Ker(A| −B) is its kernel.

r

C

�����������
D

��=========

n

A
��<<<<<<<<< m

B
�����������

z

k[x]r

C

wwnnnnnnnnnnnnn

Ker(A|−B)

��

D

''PPPPPPPPPPPPP

k[x]n

A
''PPPPPPPPPPPPP k[x]n ⊕ k[x]m

π1oo π2 // k[x]m

B
wwnnnnnnnnnnnnn

k[x]z

The same holds for pullbacks in Mat k[[x]], since k[[x]] is also a PID. Therefore,

our proof reduces to check that, for arbitrary M in Mat k[x], Ker(M̂) = K̂er(M).
For an arbitrary PID, every matrix M can be decomposed as H = MU

where U is an invertible matrix and H is a matrix in Hermite Normal Form
(HNF), a generalization of Column Echelon Form to the setting of PIDs (see
e.g. [40, Def. 2.4.2]). A crucial aspect of HNF is that the first r columns of
H, for some natural number r, must have all entries 0. Then, Ker(M) is given
exactly by the first r columns of U (see e.g. [40, Prop. 2.4.9] and [3, Prop. 2]).

Now, given a matrix M in Mat k[x], its decomposition as H = MU can be
computed by iterating elementary column operations, expressed by the invert-
ible matrix U . Exactly the same operations can be performed in Mat k[[x]] on

the matrix M̂ . In this way, we decompose M̂ as Ĥ = M̂Û . By definition, in
order to check that a matrix is in HNF, it suffices to verify the position of the
0-entries. The embedding ·̂ preserves 0: therefore, since MU is in HNF then
also M̂Û must be in HNF. To conclude, let v1, . . . ,vr be the initial columns of
U with all entries 0, yielding Ker(M). Since M̂Û is in HNF, the same vectors

v1, . . . ,vr, now considered as the first r columns of Û , yield the matrix Ker(M̂).

Therefore K̂er(M) = Ker(M̂).

For the next proof, it is useful to first fix some notation. The embeddings
between k[x], k[[x]] k(x) and k((x)), defined in §6, lift to the faithful morphisms
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of the corresponding PROPs of matrices, as summarised below.

Mat k[[x]] �
� ν // Mat k((x))

Mat k[x] ��
δ

//
?�
·̂

OO

Mat k(x)
� ?

·̃

OO

(B.1)

Proof of Lemma 6.6. By Lemma 17 in [3], for every H ∈ SVk(x)[n,m] there

exists a span n
V←− k W−→ m in Mat k[x] such that Φ(n

V←− k W−→ m) = H, i.e.,

H = { (u,v) | u ∈ k(x)n, v ∈ k(x)m, ∃w ∈ k(x)k. δ(V )w = u ∧ δ(W )w = v }.

For 1 ≤ i ≤ k, let vi ∈ k[x]n and wi ∈ k[x]m be the i-th column vectors of V
and W , respectively. Then, {(δ(vi), δ(wi)) | 1 ≤ i ≤ k} spans H.

Since [̃·] makes the rightmost front face of (�

�
) commute, it maps H into

Φ′ ◦Θ(H) that is

{ (u,v) | u ∈ k((x))n, v ∈ k((x))m, ∃w ∈ k((x))k. ν(V̂ )w = u ∧ ν(Ŵ )w = v }

which, by (B.1), is

{ (u,v) | u ∈ k((x))n, v ∈ k((x))m, ∃w ∈ k((x))k. δ̃(V )w = u ∧ δ̃(W )w = v }.

This space is spanned by {(δ̃(vi), δ̃(wi)) | 1 ≤ i ≤ k}. This set is obtained by

embedding via ·̃ the generators of H into k((x)). Therefore [̃·](H) = [H̃].

Proof of Proposition 7.1. The proof is by structural induction on c, following
the inductive definition of SF in §2.2. If c is in C−→irc then [[c]] = [(ei, Aei)]i≤n
for some matrix A ∈ Mat k[x][n,m] and clearly any (ordinary) polynomial is
rational.

Inductively, suppose that [[c : n + 1 → m + 1]] is [(ei, Aei)]i≤n+1 for some
A ∈ Mat k〈x〉[n + 1,m + 1]. We need to show that Tr(c) is [(ei, A

′ei)]i≤n for
some A′ ∈ Mat k〈x〉[n,m].

For this purpose, suppose that σ =

(
σ1

.

.

.
σn+1

)
and τ =

(
τ1
.
.
.

τm+1

)
are k(x)-

vectors such that Aσ = τ . This means that

τ1 = A1,1σ1 +A1,2σ2 + · · ·+A1,n+1σn+1

...
τi = Ai,1σ1 +Ai,2σ2 + · · ·+Ai,n+1σn+1

...
τm = Am,1σ1 +Am,2σ2 + · · ·+Am+1,n+1σn+1

The semantics of Tr(c) is the subspace corresponding to the solution of the
above system of equations plus

σ1 = x · τ1.
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By replacing σ1 with x ·τ1 in the first equation, one can deduce that τ1(1−A1,1 ·
x) =

∑n+1
j=2 A1,jσj . Note that 1 − A1,1 · x 6= 0 since, by assumption, A1,1 6= 1

x .
Therefore we can safely conclude that

τ1 =

n+1∑

j=2

(
A1,j

1−A1,1 · x

)
σj

We can now replace σ1 by x ·∑n+1
j=2

(
A1,j

1−A1,1·x

)
σj in the above system of equa-

tions and obtain

τi = Ai,1x ·
n+1∑

j=2

(
A1,j

1−A1,1 · x

)
σj +

n+1∑

j=2

Ai,jσj

for all 2 ≤ i ≤ m+1. We thus have m equations with n variables (namely σj for
2 ≤ j ≤ n+ 1). These form a matrix A′ with m columns and n rows. In order
to conclude, we have to show that all the entries of this matrix are rationals.

Since A1,1 is a rational we can write it as p
k+q·x for some polynomials p, q

and scalar k 6= 0. So 1−A1,1 · x = k+(q−p)·x
k+q·x and 1

1−A1,1·x = k+q·x
k+(q−p)·x which is

a rational since k 6= 0. Since rationals form a ring, i.e., they are closed under +
and ·, all the entries of A′ are rationals.

The remaining inductive cases are the ones in which c = c1 ; c2 and c = c1⊕c2
for circuits c1, c2 of SF. The statement is easily verified by functoriality of [[·]]
and definition of ⊕ and ; in SVk(x).

Proof of Lemma 8.5. We show a procedure similar to Gaussian elimination that,
using elementary row operations, transforms n×m matrices to rational form.

First, we set all the entries of the first row to be polynomials p1, . . . , pm
(simply by multiplying this row by the product of all denominators). Like for
formal Laurent series, we define the codegree of a polynomial k0+k1x+· · ·+kzxz
to be the smallest ai 6= 0; for instance 1+x has codegree 0 and x+x2 has codegree
1. Amongst p1, . . . , pm, we pick pκ1

with minimal codegree and we multiply the
first row by 1

pκ1
. In the resulting row, all the entries are rationals, since they

are fractions pi
pκ1

where the denominator has codegree smaller or equal than the

nominator. Moreover in the κ1-th position there is 1. We call κ1 the pivot of
the first row and this sub-procedure rationalization of a row.

Second, we bring to 0 all the entries below the first pivot. Like in Gaussian
elimination, this can be done by simply adding to each row a scalar multiple
of the first one. This second sub-procedure is the downward substitution of a
pivot.

Rationalization and downward substitution can be iteratively applied to all
the (non zero) rows in the matrix so to obtain a novel matrix where (a) all the
entries are rationals, (b) each (non zero) row has a pivot with coefficient 1 and
(c) all the entries below a pivot are 0. For instance, one can obtain a matrix as
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the following. (
r1 r2 1 r3
r4 1 0 r5
r6 0 0 1
0 0 0 0

)

For having a matrix in rational form, we only need to transform our matrix
such that all entries above the chosen pivot entries are 0. We start from the last
(non zero) row, which we call s with pivot κs. Like for downward substitution,
we can add to each row above s a scalar multiple of s, but we have to do it
carefully, by checking that the resulting rows are in the good shape. Take a
(non-zero) row j above s, and call rjκs the κs-th entry of such row. By virtue
of (a), rjκs is a rational. By adding to the row j, the row s multiplied by −rjκs
we obtain a new row where (d) the κs-th entry is 0; (e) the entry at the the
pivot κj is 1 since, by (c), in s the κj-th entry is 0; (f) all the entries of the
row are rationals, since they are obtained by additions and multiplications of
rationals (and rationals form a ring). We can repeat this for all the pivots κu
and for all the rows above u and we will eventually obtain a matrix where by
(f) all the entries are rationals, each row has, by (e), a pivot with entry 1 and
all the entries above and below a pivot are 0 by (c) and (d).
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