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Abstract

This thesis is concerned with the development of a theory which, given a
formalism with a reduction semantics, allows the derivation of a canonical
labelled transition system on which bisimilarity as well as other other equiv-
alences are congruences; provided that the contexts of the formalism form
a category which has certain colimits.

We shall begin by extending Leifer and Milner’s theory of reactive sys-
tems to a 2-categorical setting. This development is motivated by the com-
mon situation in which the contexts of a reactive system contain non-trivial
algebraic structure with an associated notion of context isomorphism. For-
getting this structure often leads to problems and we shall show that the
theory can be extended smoothly, retaining this useful information as well
as the congruence theorems.

Technically, the generalisation includes defining the central notion of
groupoidal-relative-pushout (GRPO) (categorically: a bipushout in a pseudo-
slice category), which turns out to provide a suitable generalisation of Leifer
and Milner’s relative pushout (RPO). The congruence theorems are then re-
proved in this more general setting. We shall also show how previously intro-
duced alternative solutions to the problem of forgetting the two-dimensional
structure can be reduced to the 2-categorical approach.

Secondly, we shall construct GRPOs in settings which are general enough
to allow the theory to be applied to useful, previously studied examples. We
shall begin by constructing GRPOs in a category whose arrows correspond
closely to the contexts a simple process calculus, and extend this construc-
tion further to cover the category of bunch contexts, studied previously by
Leifer and Milner. The constructions use the structure of extensive cate-
gories.

We shall argue that cospans provide an interesting notion of “generalised
contexts”. In an effort to find a natural class of categories which allows the
construction of GRPOs in the corresponding cospan bicategory, we shall
introduce the class of adhesive categories. As extensive categories have
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well-behaved coproducts, so adhesive categories have well-behaved pushouts
along monomorphisms. Adhesive categories also turn out to be a useful
tool in the study and generalisation of the theory of double-pushout graph
transformation systems, indeed, such systems have a rich rewriting theory
when defined over adhesive categories.

Armed with the theory of adhesive categories, we shall present a con-
struction of GRPOs in input-linear cospan bicategories. As an immediate
application, we shall shed light on as well as extend the theory of rewriting
via borrowed contexts, due to Ehrig and König. Secondly, we shall examine
the implications of the construction for Milner’s bigraphs.
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Chapter 1

Introduction

1.1 Overview

This thesis develops general mathematical technology for the study of the
behavioural theory of computational formalisms with underlying reduction-
based operational semantics. Such formalisms include both syntactic mod-
els, such as functional programming languages and process-calculi, as well
as graphical models such as Petri nets or bigraphs.

The basic technical idea is very simple and can be expressed fairly con-
cisely within a single paragraph: a formalism is equipped with a labelled
transition system (lts) semantics where the labels on the transitions out of
any particular state are the smallest contexts which, when instantiated with
the term corresponding to that state, can reduce. If the notion of “smallest”
is well-behaved enough, the resulting synthesised lts is very well-behaved –
for instance many popular lts-based equivalences are congruences.

Our main source of inspiration shall be the field of process calculus,
which is concerned with foundations of concurrent and mobile computation.
The field has enjoyed wide popularity over the last 20 years, with several
successful depth-first research programs. The usual approach has been to
define a relatively simple (compared to industrial programming languages
such as ML, Java or C) syntax-based process languages, sometimes referred
to as a process algebras or process calculi. These calculi are designed so that
they exhibit some fundamental aspect of computation, and research is then
devoted to the study of the calculus’ behavioural theory, its “expressivity”
and decidability aspects. The theory of such calculi is often complicated,
perhaps because of the various design decisions involved in the design of a
calculus. This fragmented picture makes it difficult to extract generalised
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2 Chapter 1. Introduction

principles which are robust, meaning that they apply in several different
formalisms. As a result, the field has been described as being in a state of
flux [66]. Thus, while the behaviour of concurrent, distributed and mobile
systems can be difficult to understand, and techniques such as testing, while
prevalent in industry today, have no chance of scaling up to large complex
systems with concurrent and mobile aspects without the future development
of a science which sheds light on these issues; the science which has been
developed in order to study these problems is in itself in many places difficult,
mysterious and interesting from a theoretical point of view.

The approach taken in this thesis is breadth-first, in the sense that we
shall not be directly interested in such notions as synchronisation or mobility
of code. Rather, we shall focus on developing a mathematical theory that
can, to some extent, cover several basic concepts which have some role to
play in many process calculi. Such an approach can be criticised for being
too artificial; we shall, after all be concerned with “man-made” things like
process-calculi, and not “natural” things such as concurrency or mobility.
However, while most of the benefits of the (future) full development of the
theory presented in this thesis are at the meta level (with process-calculus
designers perhaps benefiting from the insight derived from a general treat-
ment several basic issues common to many calculi) it could be argued that
such a general approach may help in isolating robust common principles of
important sub-concepts under the umbrella of concurrency or mobility.

In this sense, the approach of this thesis is related to the development of
a domain theory for concurrency [81,78], which advocates the use of math-
ematics to guide the design of process calculi [79, 80], instead of the, more
common, reverse methodology of expending much effort on understanding
particular ad-hoc process languages with the use of mathematics. Similarly,
the research presented in this thesis shares the idea of finding an underlying
formalism in which one can study some of the issues which occur in existing
process languages with Milner’s work on action calculi [71] and bigraphs [73],
as well as with Gadducci and Montanari’s work on tile models [35]. Differ-
ently from the first two of these, we do not introduce a monolithic model into
which we find encodings of other formalisms. The idea is rather to build
from bottom-up instead of top-down, i.e. start with basic structures and
study their theory instead of starting with a powerful model which is capa-
ble of subsuming other formalisms via encodings. In this facet, the approach
taken in this thesis is consistent with mathematical tradition of simplifying
complex situations into a simple yet rich structure which is amenable to
systematic study.

The material presented in this thesis is intended as a contribution in the
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field of concurrency theory. Since much of it relies on using the language and
technology of category theory, parts of it may be considered to be in the field
of applied category theory. The category theory contained used and assumed
is standard and well-studied: these concepts include 2-categories [54], bicat-
egories [7], bicolimits [100, 53] and extensive categories [12]. This is largely
the point: by finding the right mathematical structures to model concur-
rent (and other) computational phenomena one can use well-understood
and elegant tools to solve problems, instead of developing specialised ad-hoc
models from scratch. Indeed, it can be argued that research which applies
well-known mathematics to problems in computer science is more valuable to
computer science in the long run than the development of novel, specialised
mathematics in order to tackle them. We shall present a little novel category
theory within this thesis, namely the classes of adhesive and quasiadhesive
categories [59] and argue that they are both natural and useful.

Reaction semantics. By a reaction1 semantics we mean an unlabelled
transition system, usually generated by closing a small set of reaction rules
under reactive (evaluation) contexts. An agents p reacts into an agent q
when there has been an interaction (specific to the calculus) inside p which,
after its application, results in the agent q. The actual technical mechanism
of performing a reaction can be seen as an instance of term rewriting; at
least in examples where terms are syntactic and not quotiented by exotic
structural congruences.

The basic setup involving contexts (which organise themselves as a cat-
egory, with substitution as composition), rules and reactive contexts corre-
sponds to a mathematical structure: Leifer and Milner’s notion of reactive
system [66]. A reactive system, thus, consists of an underlying category C
with a chosen object 0 and a collection D of arrows of C called reactive
contexts2. The arrows with domain 0 are usually called terms or agents,
other arrows are contexts. The reaction rules are of the form 〈l, r〉, where
l : 0 → C is the redex and r : 0 → C is the reactum. Notice that the
rules are ground in that they are terms and do not take parameters. One
generates a reaction relation ⊲ by closing the reaction rules under all
reactive contexts; we have p ⊲ q if, for some d ∈ D, we have p = dl and
q = dr. The advantage of a theory at least partly based in the language of

1Many authors use the term ‘reduction’ instead of ‘reaction’. We shall use ‘reaction’
because the word ‘reduction’ is related to the concept of termination, and termination is
usually not an interesting notion in concurrency theory.

2There are some additional constraints on the set of reactive contexts which we do not
specify here.



4 Chapter 1. Introduction

category theory is that the constructions and proofs are performed on an
abstract level, meaning that they are portable across a range of models.

In many cases, modern presentations of well-known process calculi have
their semantics formalised in terms of an underlying rewriting system. This
includes the more recent incarnations of CCS [70,72]3, the Pi-calculus [74,72,
89]4 and the Ambient Calculus [13]5. These calculi are all syntax based, but
have non-trivial structural congruences associated with the syntax. Taking
the terms and contexts up to structural congruence clearly results in a setting
where substitution is associative. Moreover, they all have specialised notions
of reactive contexts; in CCS for instance, any context which has its hole
under a prefix does not preserve reaction and thus, in our terminology, is
not reactive. Thus, all of these calculi can be seen as instances of reactive
systems. Much of the theoretical development which is presented in this
thesis can be seen as an effort to extend Leifer and Milner’s original theory.

Process equivalence. There have been various attempts at defining pro-
cess equivalences starting with the reaction semantics. The notion of process
equivalence is of fundamental importance, both theoretically and for prac-
tical reasons. For theorists, a natural contextual process equivalence is a
starting point in the development of bisimulation-based proof techniques,
logical characterisations, model checking of restricted classes and so forth.
More practically, process equivalence may be used, for instance, to check
that a program adheres to its specification; assuming an a priori encoding
of both the program and the specification into a chosen formalism.

The idea of generating a process equivalence using contextual reasoning
goes back to the definitions of Morris-style process equivalences of the simply
typed and the untyped variants of the lambda calculus [5], as well as other
functional formalisms. In the field of process calculus and process algebra,
such equivalences are sometimes called testing equivalences [40].

We shall now discuss some of developments in the quest of finding gen-
eral techniques for generating equivalences from reaction rules which are
relatively robust in that they are not specialised to a single process calculus.
The first is the notion of barbed congruence by Milner and Sangiorgi [75].
In that article, the authors first study reduction bisimulation which involves
comparing the internal evolutions of processes. The equivalence this gives
is very coarse, and in order to obtain something sensible, one has to close

3fundamental notion: synchronisation on names.
4fundamental notion: name passing, with the associated notion of scope extrusion.

Early exploratory work in this field was done by Engberg and Nielsen [28].
5fundamental notion: spatial mobility of process code.
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contextually (in one of two possible ways, as we shall discuss later). Milner
and Sangiorgi do this in CCS, obtaining reduction congruence. The result-
ing process equivalence is coarser than bisimilarity on the standard labelled
transition system semantics, but the correspondence is close. The reason for
the mismatch is, essentially, that a congruence built up from reactions does
not distinguish certain processes with infinite internal behaviour. To fix the
congruence, Milner and Sangiorgi proposed adding an extra ad-hoc notion
of observable based on the underlying syntax of CCS. This extra notion of
observable is known as a barb. Their work has proven very influential and
can be repeated for other calculi [13, 105, 14, 39], with the notion of barb
chosen ad-hoc in each calculus, using calculus-specific intuition.

An important study which develops a process equivalence based purely
on reactions is by Honda and Yoshida [43] who, based on intuitions from
the λ-calculus, build equational theories directly from rewrites requiring no a
priori specification of observables. They achieve this by using reduction and
contextual closure as well as the equating of insensitive terms. These are
terms which can never interact with their environment or, in other words,
can never contribute to a reaction with a context. This elegant characteri-
sation of a useful equivalence which is robust across many formalisms and
relies only on the underlying reaction semantics is close in spirit to the aims
of this thesis. The full investigation of how the theory presented within this
thesis relates with Honda and Yoshida’s approach is left as important future
work.

Given a reduction bisimulation equivalence, one can obtain a sensible
congruence in two possible ways. First, Honda and Yoshida [43] advocate
obtaining a congruence by considering the largest congruence contained in
bisimilarity which is also a bisimulation (or, equivalently, postulating con-
gruence in the definition of a bisimulation relation and then considering the
resulting bisimilarity). Similarly, an earlier work by Montanari and Sas-
sone [76] obtains a congruence from bisimilarity6 by considering the largest
congruent bisimulation. Alternatively, Milner and Sangiorgi’s barbed con-
gruence is defined as follows: two processes p and q are barbed congruent if,
given any context c, c[p] and c[q] are barbed bisimilar. This yields the largest
congruence contained in bisimilarity. The first approach gives, in general, a
finer congruence. This is because any relation which is both a congruence
and a barbed bisimulation is clearly included in barbed congruence. On the
other hand, the reverse direction is not true in general as barbed congruence
may not be a barbed bisimulation.

6More precisely, weak bisimilarity on the lts semantics of CCS.
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Fournet and Gonthier [32] have confirmed that barbed congruence in
the style of Milner and Sangiorgi coincides with the barbed congruence in
the style of Honda and Yoshida (usually called reduction equivalence) in the
setting of the Pi-calculus. In other process calculi, the situation is less clear.
Because of the close correspondence with theories for functional program-
ming languages and the elegance and canonicity of the definition, we shall
consider only congruences in the style of Honda and Yoshida, and Montanari
and Sassone.

Equivalences which are based on an underlying reduction system and
are generated contextually have both advantages and disadvantages. Their
chief advantage is their naturality, in the sense that it is often relatively easy
to justify their correctness and appropriateness as notions of equivalence. A
disadvantage of barbed congruence in particular, is that the barbs, or ob-
servables, are a usually of a rather ad-hoc syntactic nature, specific to each
calculus. An important common problem of contextually defined equiva-
lences is that it is often very difficult to prove directly that two process terms
are equivalent. The main complication follows from the quantification over
all contexts, usually an infinite number. Thus, in order to prove equivalence
directly, one has to construct a proof based on structural induction; this,
when possible, is usually a tedious and a complicated procedure.

We should note that contextually based equivalences based on reduc-
tion rules naturally come in strong and weak variants. A strong equivalence
allows one to distinguish processes which vary only in how they react in-
ternally, while weak equivalences aim to abstract away from internal reac-
tion. Although weak equivalences are more suitable as a notion of obser-
vational equivalence, we shall concentrate our theoretical development on
strong equivalences. We shall discuss weak equivalences further at a later
point in this introduction.

Labelled transition systems. An elegant solution to the problem of uni-
versal quantification over the usually infinite set of contexts is to endow a
process calculus with an appropriate labelled transition system (lts) seman-
tics. Before we explain what is meant by ‘appropriate’ in this setting, we
shall recall some of the basic theory behind lts semantics. Labelled transition
systems have been a very popular tool in theoretical computer science, not
least because of their origins in classical automata theory. Indeed, some pro-
cess calculi, including the earlier variants of the well known CCS [70], have
their semantics a priori formalised in terms of an lts; the use of reduction
based semantics and structural congruence only becoming fashionable after
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Berry and Boudol’s influential work [9] on the chemical abstract machine.
A labelled transition system consist of a set of states S and a set of

labelled transitions T . A transition has a domain state, a codomain state
and a label from some, usually fixed, set A of “actions”. Technically, the set
of transitions is usually considered to be a subset of the cartesian product
S×A×S which brings with it the usual restriction of there being at most one
transition with label a between any two states. Although the intuition may
vary between applications, it is often the case that a transition with label a
from state s to state s′ means that s can participate in an interaction which
the symbol a represents, and by doing so, evolve into s′. Although our use
of the term “interaction” is intentionally meant to be vague, when there is
an underlying reduction semantics such an interaction could be represented
by a reaction.

Labelled transition system semantics facilitate a large number of equiv-
alences which vary depending on how much branching structure is taken
into consideration. Thus, one of the coarsest (relates most) is the trace
preorder and associated equivalence because no branching is taken into con-
sideration. Park’s notion of bisimilarity [82], adapted for labelled transition
systems by Milner [70], is at the other end of the spectrum [104], meaning
that it examines all branching structure and is the finest (relates least) of
such equivalences. Bisimilarity is often denoted ∼.

The notion of bisimilarity has stimulated much research because it is
canonical from a number of perspectives. Firstly, it has a elegantly sim-
ple coinductive definition, meaning that in order to prove that two states
of an lts are bisimilar, it is enough to construct a bisimulation which con-
tains them. Secondly, it has an elegant game-theoretic characterisation in
terms of the so-called bisimulation game. Thirdly, there is an elegant and
simple logical characterisation in terms of the well-known Hennessy-Milner
logic [41]. Finally, there are two, so far largely unrelated general approaches
to bisimilarity. The first is usually known as the coalgebraic approach, where
a bisimulation is sometimes defined as a spans of coalgebra morphisms for
some functor [88]. This is a very general approach which recovers the notion
of ordinary bisimulation for a particular endofunctor on the category of sets,
namely P(A×X) where A is the set of labels of the lts and P is the power
set. Usually one restricts to the finite power set Pf (which corresponds to
the technical assumption of requiring the lts to be finitely branching) in or-
der for the final coalgebra to exist [3, 6]. Observational equivalence, when
final coalgebras exist, is sometimes taken to mean equality under the unique
mapping to the final coalgebra. Span bisimilarity and observational equiv-
alence via the map to the final coalgebra yield the same equivalence under
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certain assumptions on the underlying endofunctor. The second general ap-
proach to bisimulation is the open map approach [48], where a bisimulation
is taken as a span of so called open maps in a category of transition systems
and simulations. Open maps are taken with respect to an ad-hoc underly-
ing subcategory of open maps, which led to the study of presheaf categories
where such path categories are canonical via the Yoneda embedding.

While all of the above form an impressive body of theory on bisimilarity,
they all start off with the following assumption - a predefined set of actions
A over which the labelled transition systems are built in some, usually un-
specified way. Indeed, even the fact that the states of the lts correspond to
the terms of some formalism is usually abstracted away.

A work in the general area of combining lts semantics with some notion
of syntax is the seminal paper by Turi and Plotkin [102] which combines
the coalgebraic approach with structural operational semantics [84] (and
in particular the GSOS [10] format) in a comprehensive theory known as
bialgebraic semantics. Similar ideas have recently been pursued by Corra-
dini, Heckel and Montanari [17], who used a coalgebraic framework to define
labelled transition systems on algebras.

The area of bialgebraic semantics is an exciting field with ongoing re-
search into extending the basic theory with the generation of new names [31,
30] and equivalences other than bisimilarity [56,55]. Such developments yield
insights into labelled transition systems and subformats of GSOS which
guarantee congruence properties in such settings. However, even in bialge-
braic semantics, the labels of the lts are assumed to come from some fixed
ad-hoc set of observable behaviours which one is meant to provide a priori
for each setting.

Labelled transition systems for reactive systems. Returning to the
question of what constitutes an appropriate labelled transition system for a
formalism with an underlying reaction semantics, certainly bisimilarity on
such an lts should be at least sound with respect to the contextually-defined
equivalence, meaning that to prove that two terms are contextually equiva-
lent it is enough to show that they are bisimilar. In some cases, bisimilarity
is also complete (or fully-abstract) with respect to the contextually-defined
equivalence, meaning that the two notions of process equivalence – bisimi-
larity and contextually-defined equivalence – actually coincide, and one can
always, in principle, find a bisimulation for any two contextually equivalent
processes.

Thus the chief advantage of such a suitable lts is that, in order to prove
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the equivalence of two processes, one can use the power of coinduction and
construct a bisimulation which includes the two processes. This task is
usually more attractive and easier then the messy structural inductions in-
volved in proving contextual equivalence defined using quantification over
an infinite set of contexts.

There has been much research concerned with finding suitable labelled
transition system semantics for different reaction-based formalisms. Unfor-
tunately, from a theoretical point of view, the labels of such a semantics, if
it exists, may seem ad-hoc; they need to be tailored and locally optimised
for each process language under consideration. Indeed, the task of identify-
ing a “natural” lts for a particular calculus is often far from obvious, even
when its semantics is well understood. On the contrary, labelled transition
systems are often intensional: they aim at describing observable behaviours
in a compositional way and, therefore, their labels may not be immediately
justifiable in operational terms. For example there are two alternative la-
belled transition system semantics for the Pi-calculus [74], the early and the
late version, each giving a different bisimulation equivalence.

An additional benefit of full abstraction and a property of considerable
importance in its own right is compositionality of lts bisimilarity (and of
other useful lts preorders and equivalences). A relation is compositional, in
other words a congruence, if whenever we have tRu then we have c[t]Rc[u]
for any context c[−] of the underlying language. It can be argued that
congruence should be a required property of any reasonable notion of ob-
servational equivalence – if we prove that a and b are indistinguishable then
they certainly should behave equivalently in any given environment.

Compositionality and coinduction work together: compositionality al-
lows one to use modular reasoning to simplify coinductive proofs. Indeed,
compositionality is highly desirable because it usually makes equivalence
proofs considerably simpler. In particular, it allows the familiar methods of
equational reasoning, such as substituting “equals for equals”, sound. As an
example, consider two nontrivial systems, each of which can be expressed
as a parallel composition of two smaller systems, in symbols p ≡ q ‖ r and
p′ ≡ q′ ‖ r′. To show that p ∼ p′, using compositionality it is enough to
show that q ∼ q′ and r ∼ r′.

It is a serious problem, then, that given an lts designed ad-hoc for a par-
ticular calculus, bisimilarity is not automatically a congruence. Even when
it is a congruence, proving that it is can be a very difficult and technical task.
For example, the well-known Howe’s method [44] is a technique for proving
that lts bisimilarity is a congruence for certain languages with higher-order
features. In the field of process calculus, such proofs usually involve finding
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a close connection between the labels of an lts and the syntactic contexts of
the calculus.

Interestingly, from a historical perspective, labelled transition systems as
a way of formalising semantics of process calculi actually were used before
reaction semantics. In particular, the original presentation [70] of Milner’s
CCS formalised the semantics with a labelled transition system presented
with SOS-style rules. An early paper by Larsen [61] identified the impor-
tance of congruence results for lts based process equivalences. Starting with
an lts, Larsen introduced the notion of a context (itself an lts) which is ca-
pable of consuming the actions of a state in the lts. By adding constructors
(action prefix and nondeterministic choice) to the set of contexts, he proved
a congruence theorem for bisimilarity. This early work can be seen as related
to CCS-like calculi, since Larsen’s environments can be otherwise understood
as ordinary CCS contexts (with input-actions changed to output-actions and
vice-versa) – with the consumption of lts labels by the context being handled
by CCS interaction. Even in the basic setting of CCS, it quickly became ap-
parent that the labelled transition systems is not the ideal technology with
which to define notions of observational equivalence. For instance, weak
bisimilarity in CCS is not a congruence. Because, as we have demonstrated,
compositionality is a very useful property, Montanari and Sassone [77, 76]
considered the largest congruent bisimulation contained in weak bisimilar-
ity. Alternatively, weak observational congruence [70] considers the largest
congruence contained in bisimilarity (the difference is similar to the differ-
ence between Milner and Sangiorgi’s and Honda and Yoshida’s approaches).
These approaches became for some time accepted techniques for obtaining
satisfactory notions of observational equivalence in calculi. The advent of
reaction semantics and congruences obtained from reactions have since ar-
guably replaced these approaches as “canonical” methods of obtaining an
observational equivalence.

Weak equivalences. Another yardstick to measure the appropriateness
of an lts for a formalism with reactions is how the lts simulates internal
reduction within terms. For example, in CCS and many other calculi, there
are “silent” transitions; traditionally labelled τ . Such τ transitions usually
correspond closely to the underlying reaction semantics.

Having τ labels as part of an lts allows one to define a notion of weak
bisimulation and the resulting equivalence: weak bisimilarity. Roughly, weak
bisimilarity does not distinguish processes which differ only in internal be-
haviour as represented by the τ -labelled transitions. Such equivalences are
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considered to be more useful from a practical point of view since it can be
argued that any reasonable notion of observational equivalence should not
take internal behaviour into consideration.

There are a number inequivalent ways [103] to define precisely what is
meant to be a weak equivalence and the appropriateness to any particular
application depends on the ad-hoc design of the particular lts. The tech-
niques involved are usually not specialised to bisimilarity and thus one may
easily define a notion of weak trace equivalence or a weak failures equiva-
lence. One popular definition pioneered by Milner [70] is allow a (non-τ)
label a to be matched by a “weak” a, which means a (possibly empty) se-
quence of τ labels followed by a and followed again by a (possibly empty)
sequence off τs. A τ label is normally allowed to be matched by any (possibly
empty) string of τs. Weak bisimilarity in CCS is not a congruence.

Weak equivalences have traditionally been difficult to handle in general
categorical settings. Indeed, there is still no general approach based on
coalgebras, although there has recently been an attempt [69] to develop
the theory in this direction. The theory has been developed to a more
satisfactory level in the field of open maps [29], yet the general approach
advocated there is, arguably, quite technical. Surprisingly, the theory of
weak bisimulation seems to be quite easily and elegantly handled in the
theory of reactive systems, see Jensen’s upcoming PhD thesis [45].

Deriving bisimulation congruences. We have discussed attempts by
Milner and Sangiorgi [75] and by Honda and Yoshida [43] to identify general
techniques at arriving at a reasonable notion of process congruence through
contextual means. We have also discussed some of the problems inherent in
contextual definitions and discussed one solution to the difficulties involved
in quantifying over an infinite set of contexts, finding a suitable labelled
transition system. A third development, which has led in a direct line to
the the theory developed in this thesis, is by Sewell [98]. Sewell’s idea is to
derive a labelled transition system directly from the reaction semantics so
that useful lts based equivalences, including bisimilarity, are automatically
congruences.

Sewell’s approach involved a new way of obtaining a labelled transi-
tion: the labels of transitions from a particular term should be the contexts
which allow the term to react (that is, a rewrite of the term inside the con-
text should be possible in the underlying rewriting semantics). Moreover,
the labels should be, in some sense, the smallest such contexts. The no-
tion of smallest was elegantly expressed in categorical terms by Leifer and
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Figure 1.1: Redex square.

Milner [66].

Leifer and Milner’s characterisation of the notion of smallest context
utilises the fact that contexts can be organised in a category as part of
a reactive system. First, the notion that a term a can be instantiated in
a context f and react can be summed up by giving a commutative redex
square, as illustrated in Figure 1.1, where d is some reactive context and l
is the redex or a reaction rule.

Using Leifer and Milner’s characterisation, the context f is the smallest
such context when the diagram is an idem pushout (IPO). Categorically,
it means that it is a pushout in the slice category over I4. Starting with
an arbitrary redex square, one obtains an IPO by constructing a relative
pushout (RPO), which amounts to constructing a pushout in the relevant
slice category.

The advantages of such a definition is that we have the universal proper-
ties of such contexts at our disposal. Indeed, Leifer and Milner [66] showed
that a labelled transition system with labels being precisely the contexts
which come from IPOs is very well behaved. In particular, bisimilarity is a
congruence. In his PhD dissertation, Leifer [64] complemented this result by
showing that trace equivalence and failures equivalence are also congruences.
In the examples treated by Sewell, Leifer and Milner, bisimilarity on the la-
belled transition semantics obtained using this approach have corresponded
closely to the expected process equivalences.

A 2-categorical approach. When applied naively, Leifer and Milner’s
theory has proven inadequate in reactive systems where contexts have non-
trivial algebraic structure. In some cases, IPOs do not give the expected
labels in the lts [93], while in others, they do not exist [92]. The trou-
blesome contexts often exhibit non-trivial automorphisms, which naturally
form a part of a 2-dimensional structure on the underlying category C. It
is important to notice that such situations are the norm, rather than the
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Figure 1.2: Redex square in a 2-category.

exception. Context isomorphisms arise naturally already in simple process
calculi, where terms are up to structural congruence.

In more accessible terms, whereas Leifer and Milner consider categories
where the objects are “holes” and arrows are contexts, we shall consider
2-categories where the intuition for the objects and arrows is the same as
for Leifer and Milner, but there is additional structure, the 2-cells. The
suggested intuition that the 2-cells is a term isomorphism, in a loose sense,
a “derivation” or “proof” of structural congruence. To give a redex square
in this setting, it is not enough to say that a in the context of f equals a
redex l in a reactive context d, one needs to provide an explicit isomorphism
α, as illustrated in Figure 1.2. It turns out that this 2-dimensional structure
is crucial and solves many of the problems involved in Leifer and Milner’s
original theory. The idea of using 2-cells as part of the theory of reactive
systems was independently proposed by Sewell [99].

We shall demonstrate suitable generalisations of IPO and RPO (dubbed
GIPO and GRPO) to this 2-dimensional setting. The associated categorical
notion is no longer a pushout in a slice category but rather a bipushout [53,
100] in a pseudo-slice category. It turns out, however, that these extra
complications do not detract from the good behaviour of the resulting lts;
bisimilarity as well as trace and failures equivalences are congruences.

Leifer and Milner, aware of the problems which arise as a consequence
of discarding the 2-dimensional structure, have also introduced technology
in order to deal with these issues. The main developments have centered
around Leifer’s functorial reactive systems and Milner’s S-precategories [46],
also known as well-supported precategories and S-categories. These solu-
tions have a similar flavour: decorate the contexts by so-called “support
sets” which identify elements of the contexts so as to keep track of them
under arrow composition. This eliminates any confusion about which au-
tomorphism to choose since diagrams can now be commutative in only one
way. Unfortunately, such supported structures no longer form categories –
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arrow composition is partial – which has the effect of making the theory
laborious and based in part on set theoretical reasoning and principles.

We shall present a general translation which maps reactive systems on
precategories to reactive systems on 2-categories in a way which ensures that
the lts generated using the 2-categorical approach is the same as the lts gen-
erated using the technology functorial reactive systems or S-precategories.
The translation derives a notion of isomorphism, specific to the particular
structure in hand, from the precategory’s support information. Such isomor-
phisms constitute the 2-cells of the derived 2-category. We shall argue that
this yields an approach mathematically more elegant and considerably sim-
pler than precategories. Moreover, while subsuming the previous theories,
it appears that the 2-categorical theory is more general: there is no obvi-
ous way of reversing the translation and obtaining an S-precategory from a
general 2-category.

One of the contributions of this thesis which follows directly from the
2-categorical approach to reactive systems and structural congruence is a
“categorisation” of bigraphs. Bigraphs were introduced by Milner in his
conference presentation [73] and later in the comprehensive technical report
by Jensen and Milner [46]. They aim at modelling systems with two orthog-
onal modes of connectivity. The first mode is a physical link structure, which
may for instance correspond to a physical nesting of systems similar to the
nesting of process terms in the ambient calculus [13], or Alastair living next
door to Beatrice. The second mode of connectivity is a logical link structure,
which may correspond to processes knowing a reference to a resource of an
another process, as, for example a process in the Pi-calculus [74] knowing
a free name of another process, or Alastair knowing Beatrice’s email ad-
dress. The two sorts of connectivity are orthogonal in the sense that the
physical separation of processes should not have an effect on the ability to
maintain logical links. Bigraphs are algebraic structures with an underlying
carrier set. Thus, in this sense they are like ordinary graphs, groups, mod-
ules, fields and many other well-studied mathematical objects. However,
bigraphs, unlike the aforementioned structures, do not have an associated
notion of homomorphism. F. W. Lawvere has written in [63]: “The crystal-
lized philosophical discoveries which still propel our subject include the idea
that a category of objects of thought is not specified until one has specified
the category of maps which transform these objects into one another and by
means of which they can be compared and distinguished.” When applying
our translation from the precategory of bigraphs to a 2-category we obtain
a natural notion of bigraph isomorphisms as the 2-cells.

There have been several applications of the theory of 2-categories to
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computer science, see for example [8, 97, 101, 34, 16]. The 2-dimensional
structure has been typically used to model a small-step reduction relation,
say in the simply-typed lambda calculus. As in our examples, the objects
of the 2-categories are types and the arrows are terms. However, for us the
2-dimensional structure consists of isomorphisms between terms, in other
words, structural congruence, and the rewrite relation is external to the 2-
category. Indeed, there is a fundamental problem in modelling the rewrite
relation as 2-cells in our examples, if we allow non-reactive contexts (as, say,
prefix in CCS or lambda abstraction in the lazy lambda calculus) as arrows
in the category. This is because the axioms of 2-categories ensure that all
arrows preserve reaction through horizontal composition with identity 2-
cells; otherwise known as “whiskering”. In symbols, if α : f ⇒ g : X → Y
is a 2-cell then for any h : Y → Z we have that hα : hf ⇒ hg : X → Z is a
2-cell.

Adhesive categories. In order to understand constructions on structures
like bigraphs at a general level, we shall require a natural class of categories
which includes many different notions of graphical structures used in com-
puter science and at the same time has enough structure which allows us
to prove useful results. This leads to the novel category theory introduced
within the thesis: the classes of adhesive and quasiadhesive categories. We
shall develop enough of their theory in order to illustrate some of their
structure, as well as to justify their use in the fields of graph transformation
systems. They have been developed as joint work together with S. Lack, see
the conference paper [59].

As is the case with the well-known class of extensive [63, 96, 12] cate-
gories, adhesive categories have a simple axiomatic definition as well as an
elegant “equivalence” of categories definition. Indeed, the idea behind the
development of adhesive categories was to find a class of categories in which
pushouts along monomorphisms are “well-behaved” – meaning they satisfy
some of the properties of such pushouts in the category of sets and functions
Set – in much the same way as coproducts are “well-behaved” in extensive
categories.

An example of the good behaviour of such pushouts is that they are
stable under pullback (the dual notion to pushout). The idea is analogous
to that of extensive categories [12], which have well-behaved coproducts in a
similar sense. Since coproducts can be obtained with pushouts and an initial
object, and an initial object is “well-behaved” if it is strict, one might expect
that adhesive categories with a strict initial object would be extensive, and
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Figure 1.3: Double pushout.

this indeed turns out to be the case.

Adhesive categories include as examples many of the graphical structures
used in computer science. This includes ordinary directed graphs, typed
graphs [4] and hypergraphs [23], amongst others. The structure of adhesive
category allows us to derive useful properties. For instance, the union of
two subobjects is calculated as the pushout over their intersection, which
corresponds well with the intuition of pushout as generalised union.

One can develop a rich general theory of double-pushout (dpo) rewrit-
ing [27] within adhesive categories. Dpo graph rewriting was first introduced
in order to formalise a way of performing rewriting on graphs. It has been
widely studied and the field can be considered relatively mature [87,20,26].

In dpo rewriting, a rewrite rule is given as a span L← K → R. Roughly,
the intuition is that L forms the left-hand side of the rewrite rule, R forms
the right-hand side and K, common to both L and R, is the sub-structure
to be unchanged as the rule is applied. To apply the rule to a structure
C, one first needs to find a match L → C of L within C. The rule is then
applied by constructing the missing parts (E, D and arrows), as illustrated
in Figure 1.3, in a way which ensures that the two squares are pushout dia-
grams. Once such a diagram is constructed we may deduce that C ⊲D,
that is, C rewrites to D.

Dpo rewriting is formulated in categorical terms and is therefore portable
to structures other than directed graphs. There have been several at-
tempts [23, 21] to isolate classes of categories in which one can perform
dpo rewriting and in which one can develop the rewriting theory to a satis-
factory level. In particular, several axioms were put forward in [23] in order
to prove a local Church-Rosser theorem for such general rewrite systems.
Additional axioms were needed to prove a general version of the so-called
concurrency theorem [57].

We shall define adhesive grammars which are dpo rewrite systems on ad-
hesive categories and show that the resulting rewriting theory is satisfactory
by proving the local Church-Rosser theorem and the concurrency theorem
without the need for extra axioms. Indeed, we shall argue that adhesive
categories provide a natural general setting for dpo rewriting. We also ex-
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Figure 1.4: Cospan from I1 to I2.

amine how adhesive categories fit within the previously conceived general
frameworks for rewriting [23, 21]. Many of the axioms put forward in [23]
follow elegantly as lemmas from the axioms of adhesive categories.

Cospans. Several constructions of RPOs have been proposed in the litera-
ture for particular categories of models. For example, Leifer [64] constructed
RPOs in a category of action graphs, while Jensen and Milner did so in the
(pre)category of bigraphs [73]. A construction of (G)RPOs in a general
setting has so far been missing.

A general construction, provided that it covers several different models
and the techniques used are robust, is quite useful. The reasons for this
include:

−−− it provides a general intuition of how to construct GRPOs in many dif-
ferent settings, without having to provide model-specific constrictions
and proofs;

−−− it allows the relating of different models as subcases of a more general
setting;

−−− it allows one to vary the model within the specified constraints and
retain the construction.

Throughout the thesis we shall deal with categories where the arrows
represent contexts. An interesting question thus arises; what is a reasonable
general notion of context which nonetheless has more structure than an
arrow of an arbitrary category? We shall argue that the notion of cospan
is suitable. Given objects I1 and I2 of some category C, a cospan from I1
to I2 is simply a diagram in C, as illustrated in Figure 1.4, where C is an
object of C and the arrows are arbitrary. We shall refer to ι : I1 → C and
o : I2 → C as, respectively, the input and output interface of the cospan.
Note that, as it stands, the notion of cospan is symmetric, and the same
diagram forms a cospan from I2 to I1 with o forming the input interface and
ι the output interface.

The rough intuition is that C corresponds to a “black box” computa-
tional environment, with some of its parts available through I1 to its sub-
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Figure 1.5: Composition in Cospan(C)

components, or variables; and others available publicly through I2, which
can be used to embed C in a larger system.

Given two cospans, I1
ιC−→ C

oC←− I2 and I2
ιD−→ D

oD←− I3, one can
compose them to obtain a cospan from I1 to I3 by constructing the pushout,
as illustrated in Figure 1.5, and letting the input interface be pιC and the
output interface be qoD. Such composition has an identities, the identity

cospan on I1 is I1
id
−→ I1

id
←− I1.

Cospans in C actually organise themselves as arrows of another category,
or more accurately, the bicategory Cospan(C). This bicategory has the same
objects as C but the arrows from I1 to I2 are cospans and the 2-cells are
cospan isomorphisms - isomorphisms f : C → C ′ of C which preserve input
and output interfaces, that is fι = ι′ and fo = o′.

A bicategory [7] can be described roughly as a 2-category where the
horizontal composition is associative and has identities up to an isomorphic
2-cell. Composition of cospans is not associative on the nose because com-
position uses the pushout construction which is defined up to isomorphism.
The associativity and identity isomorphisms are required to satisfy the so-
called coherence conditions (including the famous Mac Lane pentagon for
associativity [7,68]). It turns out that the canonical isomorphisms obtained
using the universal property of pushouts do satisfy these conditions.

As an example of these concepts, consider the simple model of a coffee
vending machine, illustrated by the leftmost diagram of Figure 1.6. It has an
output interface consisting of two nodes, $ and C, which one can think of as a
money slot and the coffee out-tray. These are the parts of the coffee machine
accessible to the environment, the internal components, represented by S,
are invisible. The middle diagram represents a coffee drinker. He expects to
see a money slot and a coffee out-tray, which are his input interfaces. As the
output interface of the coffee machine and the input interface of the coffee
drinker match, one may compose them and obtain the system pictured in
the rightmost diagram. (The input interface of the vending machine and
the output interface of the coffee drinker have been omitted.)
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Figure 1.6: Example of a contextual system.

Construction of GRPOs. The central contribution of this thesis is the
construction of GRPOs, our generalisation of RPOs to a 2-categorical set-
ting, in input-linear cospan bicategories over adhesive categories. By an
input linear cospan, we mean a cospan as in Figure 1.4 but where the input
interface ι is mono. Observe that this breaks the symmetry of cospans: to
give an input-linear cospan from I1 to I2 is not the same thing as to give
an input-linear cospan from I2 to I1. When C is an adhesive category, the
composition of two input-linear cospans in C gives an input-linear cospans:
they form the bicategory ILC(C).

Although technical in nature, the linearity condition does have an intu-
itive account. As alluded in the coffee drinker example, one can consider a
cospan as a “black box,” with an input interface and an output interface.
The environment cannot see the internals of the system and only interacts
with it through the output interface. The fact that the output interface need
not be linear means that the system is free to connect the output interface
arbitrarily to its internal representation. For example, the coffee machine
could have two extra buttons in its output interface; the “café latte” button
and the “cappuccino” button. The machine internals could connect both
these buttons to the same internal trigger for coffee with milk; the point is
that the system controls its output interface and is able to equate parts of
it. On the other hand, the system cannot control what is plugged into one
of its holes. Thus, an assumption of input-linearity is essentially saying that
the system does not have the right to assume that two components coming
in through the input interface are equal.

The construction arose from an effort to understand the structure of GR-
POs in categories of contexts where the contexts have graphical structure.
Incidentally, it is the non-trivial algebraic structure of such contexts that
makes it essential to consider 2-dimensional structure in of such categories;
it is not enough to deal with the “abstract” versions (where the contexts are
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quotiented by isomorphism) and consider RPOs. The construction is the
first construction of GRPOs for general class of models.

We shall demonstrate two applications of the construction. Firstly, using
an insight of Gadducci and Heckel [33] we notice that dpo graph rewriting
systems can be seen as certain rewriting systems on cospan categories over
the category of directed graphs and homomorphisms Graph, and thus can
be seen as reactive systems. Since Graph is an adhesive category, we are
able to derive labelled transition systems for a general class of dpo graph
rewriting systems. One of the advantages of this technology is that it facili-
tates a transfer of concepts between the theories and technologies of process
algebra and graph rewriting. Indeed, it becomes possible to think of graph
rewriting systems as certain calculi, with cospans providing a notion of con-
text. Interestingly, the construction of labelled transition systems captures
and extends the borrowed context approach of Ehrig and König [25] who
also derive labelled transition systems for double-pushout graph rewriting
systems. Indeed, it becomes possible to see their work as part of the frame-
work of reactive systems and GRPOs. The transfer of technology is in both
directions, using Ehrig and König’s characterisation of labels, we are able
to provide a pleasantly simple characterisation of GIPOs in our setting.

Our second application shall consider Milner’s bigraphs [73]. We shall
see how bigraphs can be presented as cospan bicategories (which, inciden-
tally, gives an automatic notion of bigraph homomorphism). It turns out
that we do not capture Milner’s theory of RPOs for bigraphs precisely, in-
deed, in order to apply our construction we need to deal with input-linear
cospans. Requiring input-linearity corresponds to taking a slightly different
notion of bigraph then the one treated by Milner. Indeed, it turns out that
the category of bigraphs in Milner’s sense is actually isomorphic to a certain
bicategory of output-linear cospans over an adhesive category. As a conse-
quence, it shall be interesting to investigate whether a general construction
of GRPOs can be given for output-linear bicategories.

Cospans as well as spans have been used in computer science before. As
previously mentioned, Gadducci and Heckel [33] have used cospans to shed
light on connections between dpo graph rewriting and standard rewriting
theory. In an effort to study a general notion of “partial map”, Robin-
son and Rosolini investigated a particular class of span bicategories in [85].
Spans have also been studied by Katis, Sabadini and Walters [50, 51] in an
effort to generalise ordinary automata theory in a modular way using spans.
Moreover, using the technology of traced monoidal categories [49], they were
able to include a “feedback” operation. Thus, as our cospans can be thought
of as generalised contexts, their spans can be thought of as generalised au-
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tomata. It is unclear at this stage what connection can be made between
the two theories.

The π-calculus and the λ-calculus. The theory developed in this thesis
aims at the further development of a general theory which deals uniformly
with formalisms which have an underlying reduction semantics. This, on
the surface, includes both the λ-calculus and the more recent work on the
π-calculus. However, we do not deal with either of these fundamental calculi
in any great detail within the thesis. The main reason for this is that the
theory of the calculi, while sharing some essential features, are specialised
for their particular domains – thus it is perhaps unreasonable to expect one
theory to cover the semantics of both the calculi in a canonical way, in the
sense that there are no questionable encodings of the calculi within a third
calculus. However, the theory is in an early stage and future developments
may suggest canonical approaches to cover the specialised theories of the
two calculi to a greater extent.

1.2 Structure of the thesis

We shall start with section 1.3 which introduces some very basic but useful
lemmas which we shall rely on throughout. Chapter 2 is a self-contained
introduction to Leifer and Milner’s theory of reactive systems [66] and its
extension to 2-dimensional categories [91,93].

Chapter 3 begins with of an introduction to bicolimits, which are used
throughout the thesis under the guise of GRPOs. Secondly, several technical
lemmas used for the congruence theorems presented in Chapter 2 are proved
in full detail.

In Chapter 4 we shall provide constructions of GRPOs in for the simple
yet illustrative examples studied in Chapter 2, thus demonstrating that the
2-categories can be used to successfully solve the problematic issues asso-
ciated with RPOs. The chapter starts with an introduction to extensive
categories [12], which are used in the construction. Finally, we show how
previously introduced theory by Leifer and Milner (which includes the con-
cepts of functorial reactive systems and precategories) can be translated into
the 2-categorical setting [92]. Because the 2-categorical setting with the as-
sociated congruence theorems appears to be more general, and is arguably
more elegant than the other approaches, we shall argue that this theory
subsumes these previous efforts.
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In Chapter 5 we shall introduce adhesive [59] and quasiadhesive cat-
egories and argue that they are natural, robust (under typical categori-
cal constructions) and useful classes. Adhesive categories can be described
roughly as categories with well-behaved pushouts along monos, while quasi-
adhesive categories have well-behaved pushouts allow regular monos. After
presenting the definition, we shall develop several useful properties of adhe-
sive categories. Finally we show that one can derive a rich dpo theory within
adhesive categories by proving some of the more well-known theorems such
as local Church-Rosser and the concurrency theorem.

Chapter 6 combines much of the theory presented in the other parts of
the thesis and presents the main result of the thesis: GRPOs exist in a
general class of cospan bicategories - the class of input-linear cospans over
adhesive categories. While the construction and the proof are done at the
level of pure category theory, there are several applications. Firstly, we are
able to relate the fields of reactive systems (with the associated process cal-
culus heritage) and graph-transformation – facilitating a transfer of concepts
and introducing a “contextual” point of view to graph rewriting. This is be-
cause any dpo graph rewriting system corresponds to a reactive system on
a cospan bicategory [33]. The (concrete) labelled transition system derived
using the technology presented in this thesis in for a reactive system over
the input-linear cospan bicategory over the (adhesive) category of directed
graphs is equal to the labelled transition system obtained independently by
Ehrig and König in their rewriting via borrowed contexts [25].

Much of the content of chapters 2 and 3 appeared first in the workshop
paper [91] and its journal version [93] as joint work with Vladimiro Sas-
sone. The main results of chapter 4 appeared as the conference paper [92]
and shall appear in the upcoming journal version [95], also joint work with
Vladimiro Sassone. Much of the development in chapter 5 has appeared in
the conference paper [59] and is joint work with Stephen Lack. Finally, the
results of chapter 6 have appeared in the technical report [94] as joint work
with Vladimiro Sassone.

1.3 Preliminaries

While a basic knowledge of category theory is assumed, standard categorical
concepts like 2-categories and bicolimits shall be introduced in some detail
within the body of the thesis. Here we recall a few basic categorical results
which shall be used in many places throughout the thesis.

We shall follow the convention of not labelling identity morphisms in



1.3. Preliminaries 23

diagrams. All composition shall be written in the “function” order and
usually denoted by juxtaposition, so that the composition of f : X → Y
and g : Y → Z shall be written gf .

Pushouts and pullbacks First, we recall a basic characterisation of
monos (arrows g : Y → Z such that, for any pair f1, f2 : X → Y , if
gf1 = gf2 then f1 and f2) and, dually, epis.

Proposition 1.3.1. An arrow f : X → Y is mono if and only if diagram (i)
is a pullback. Dually, f : X → Y is epi if and only if diagram (ii) is a
pushout.

X

��

// X

f
��

X
f

// Y

(i)

X

f
��

f // Y

��
Y // Y

(ii)

We shall repeatedly use basic properties of pushouts and pullbacks, and
in particular, the following well-known lemma, sometimes referred to as
the pasting lemma. Since pushouts and pullbacks are dual, there are two
versions of the lemma.

Lemma 1.3.2. Given a commutative diagram:

A
k //

l
��

B

s

��

k // E

v

��
C u

// D w
// F

−−− Pullback version - If the right square is a pullback then the left square
is a pullback iff the whole rectangle is a pullback.

−−− Pushout version - If the left square is a pushout then the right square
is a pushout iff the whole rectangle is a pushout.

Lemma 1.3.3. If m : B → C is mono then for any f : A→ B the following
diagram is a pullback.

A

id
��

f // B

m

��
A

mf
// C
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Proof. Given an arbitrary object X and morphisms α : X → A and β : X →
B such that mfα = mβ, we use the fact that m is mono to get fα = β which
gives immediately that α is the required unique mediating morphism.

We say that a pullback diagram is a pullback along a morphism f : A→
B if it is a pullback of f : A→ B and some g : C → B as illustrated below:

P
q //

p
��

C
g
��

A
f
// B.

Similarly, if the diagram above is a pushout, then it is a pushout along p.
It is a pushout along a mono if (at least) one of p and q are mono.

The following is a very simple lemma which relates pushouts and coprod-
ucts. It can actually be seen as a consequence of the more general principle
of pushouts and coproducts “commuting”, since they are both just certain
colimits.

Lemma 1.3.4. Suppose that the diagram (i), below, is a pushout. Then
diagram (ii) is also a pushout.

A

f
��

g // C

f ′

��
B

g′
// D

(i)

A+ E

f+idE

��

g+idE // C + E

f ′+idE

��
B + E

g′+idE

// D + E

(ii)

Proof. Suppose there exist ϕ : B + E → X and ψ : C + E → X so that
ϕ(f + idE) = ψ(g + idE). This implies that ϕi1f = ψi1g and ϕi2 = ψi2.
Using the fact that the left square is a pushout, there exists a unique map
h : D → X such that hg′ = ϕi1 and hf ′ = ψi1. Then [h, ϕi2] : D + E → X
is the required unique morphism.
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Reactive systems and GRPOs

Perhaps the majority of the formalisms which have been developed in or-
der to express different kinds (sequential, concurrent, probabilistic, etc.) of
computation can trace their ancestry to the untyped lambda calculus. In
this chapter we shall isolate several primitive notions common to many dif-
ferent formalisms and study a technique of deriving well-behaved labelled
transition system semantics in this general setting.

The untyped lambda calculus can be considered as a simple formal term
rewriting system, modulo an equivalence relation on terms, known as α-
equivalence. The application of a rewriting step in such a term rewriting
system is often referred to as a reduction. The main “computation” in the
setting of untyped lambda is performed by the so-called β-reduction rule

(λx.M)N ⊲M [N/x].

Indeed, languages such as PCF [83], lazy lambda calculus [1] and other
developments in the field of functional languages have a similar style un-
derlying reduction semantics. An operational semantics for such functional
languages is then a reduction strategy which is, essentially, a way of choos-
ing where to perform a reduction in a given term at a given time during the
evaluation.

In modern presentations of process calculi with concurrency and mobil-
ity, there is usually also an underlying reduction semantics which is often
defined as a rewriting system on the set of terms modulo a structural con-
gruence. For example, in CCS [70], there is a reduction rule

a!.P + P ′ | a?.Q+Q′ ⊲P | Q, (2.1)

which expresses that two processes can synchronise along a channel with
name a and continue. For readers familiar with the original presentation
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of the semantics of CCS via a labelled transition system, the reduction
semantics corresponds exactly to the silent τ ◮ action.

There are several concepts which reappear in many different formalisms.
The first is the notion of term. A term is a syntactic entity (perhaps modulo
some equivalence) which represents, or models, a process. Second is a re-
duction system, a relation on the set of terms which captures computation,
the behaviour of the term. Since reduction is a term with syntactic conno-
tations, and we shall be interested in treating also non-syntactic examples,
we shall henceforth refer to reductions as reactions. Third is a notion of
context. The classic intuitive description of a context is that it is a “term
with a hole” C[−]. The idea is that “plugging a term” a into a context C[−]
yields a term C[a]. One can learn about a by plugging it into various con-
texts and studying the behaviour of the resulting term. Indeed, this style of
reasoning leads to what is normally called a Morris-style contextual equiva-
lence for functional languages, which usually aim to model finite sequential
computations. For more sophisticated languages, it is not enough to observe
just the reactions, even if one is able to observe branching structure. Indeed,
one has to add extra observational power, such as barbs [75].

In this chapter we shall explore a technique, first due to Sewell [98], of
obtaining a congruent process equivalence with an associated coinductive
proof method. This involves deriving a labelled transition systems with
particular contexts forming the labels. We shall begin in section 2.1 by
recalling Leifer and Milner’s theory of reactive systems and the associated
categorical tool, relative pushouts [66]. In section 2.2 we shall motivate
and introduce an extension of the theory to a 2-categorical setting. Finally,
in section 2.3 we shall show that the labelled transition systems derived
using this technology are well-behaved in the sense that bisimilarity, trace
equivalence and failures equivalence are congruences.

2.1 Reactive systems

In this section we shall recall Leifer and Milner’s framework of reactive sys-
tems [66]. After motivating a general approach, in §2.1.1 we shall present
the definition of reactive systems and give several examples. In §2.1.2, after
recalling some of the basic theory associated with the notion of labelled tran-
sition system, we shall consider the idea of using contexts as labels. Finally,
in §2.1.3 we shall recall the definition of relative pushouts, a categorical tool
used by Leifer and Milner to characterise when a context is the smallest
which allows a reaction to occur.
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2.1.1 Definition and examples

Although the notion of context is specific to each formalism, there are some
aspects of the notion which hold in greater generality. For example, we would
certainly expect substitution to be associative, that is, plugging a into C and
obtaining a term C[a] which is then plugged into D[−] should result in the
same term as plugging C[−] into D[−] to obtain a context D[C[−]] and then
plugging in a – D[C[a]]. We would also expect an identity context, say −,
so that plugging in a yields a back again.

It is also useful to consider what structure can be expected of the “hole”.
Firstly, the hole may have attached type information, so that only certain
terms may be plugged in. Secondly, it may be reasonable to extend the
definition of context to allow more than one hole.

The algebraic structure described so far is a description of a category
C with objects being the holes, arrows the contexts and composition sub-
stitution. Such a category could perhaps be extended with extra structure
in order to allow operations on the holes and the terms. Thus an arrow
I1

c
−→ I2 is a context with I1 giving a description of its holes. The context

itself may be plugged into a context with I2-holes.

Let’s consider such a category of holes and contexts. The next question
to consider is: what are terms? One answer to this question is to consider a
term as a sort of singular context with no hole, then one may pick an object
0 ∈ C which describes the “empty hole” and consider the terms as being
arrows with domain 0.

As an example, consider the (meaningless) programming language ex-
pression

(−1 + charToAscii(−2) ) ∗ 0.1

which can be interpreted as a context int× char→ float and can be, for
example, composed with the expression sin(−1) which is a context float→
float. To obtain a term, one could substitute in 〈0, a〉 : 0 → int × char

to obtain the expression sin((0 + charToAscii(a)) ∗ 0.1) of type float, in
other words, an arrow 0→ float

The next step is describing the reaction relation. As is the case with
the formalisms described previously, we would like to take relatively simple
generating rules and generate the reaction relation by closing the rules under
context substitution.

Here there is one complication. In many formalisms there exist contexts
which do not preserve reaction, that is, we may have that

a ⊲ b, but c[a] 6⊲ c[b] for some c.
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For example, in the lazy lambda calculus, reaction is not performed under
a lambda abstraction, that is the context λx.[−] does not preserve reac-
tion. Similarly, in CCS, the prefix operation does not preserve reaction: for
instance, we have a | a ⊲ 0 yet b.(a | a) 6⊲ . Thus, one should iden-
tify a subclass of contexts which do preserve reaction and form the reaction
relation by closing the reaction rules under these reactive contexts.

We shall make the first of a number of simplifications in order to study
the theory we have identified so far. Firstly, we shall only consider ground
reaction rules, that is, reaction rules which do not have any process variables.
Thus, for example, we shall not allow a rule of the form (2.1). To study
a system like CCS, we shall first have to instantiate the variables by all
required processes. The extension of the framework to cover reaction rules
with process variables is the subject of ongoing work.

We shall now introduce the central concept of reactive system. It ap-
peared first in Leifer and Milner’s seminal paper [66]. We shall first state
the definition and then discuss its components.

Definition 2.1.1 (Reactive system). A reactive system C consists of:

(i) a category C;

(ii) a distinguished object 0 ∈ C;

(iii) a composition-reflecting subcategory D of reactive contexts;

(iv) a set or pairs R ⊆
⋃
C∈C

C(0, C)×C(0, C) of reaction rules.

By composition-reflecting we mean that dd′ ∈ D implies d and d′ ∈ D.
As discussed before, the reactive contexts are those contexts inside which
evaluation may occur.

Notice that the two components of a rule 〈l : 0→ C, r : 0→ C〉 in R are
required to have the same codomain. This is necessary in order to define a
reaction relation by closing the rules under reactive contexts: if there is a
(reactive) context c into which one can plug l, obtaining a term cl, then we
should be able to replace l by r and obtain cr.

Definition 2.1.2 (Reaction relation). Given a reactive system C with
reactive contexts D and reaction rules R, the reaction relation ⊲ is
defined as follows:

t ⊲u iff t = dl, u = dr for some d ∈ D and 〈l, r〉 ∈ R.
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In the remainder of this section we shall illustrate the concepts presented
so far with the aid of several examples. In particular, the simple process
calculus of Example 2.1.7 and the category of bunches and wires of Defini-
tion 2.1.13 shall serve as the motivation and as test cases for much of the
theory presented in this thesis.

Term rewriting. For syntactic examples, it shall be useful to consider
a canonical way of obtaining a category where the arrows are terms and
contexts.

Definition 2.1.3 (Lawvere Theory). Consider a syntactic signature Σ
with an associated arity function Σ → N. The (free) Lawvere theory for
Σ [62], denoted as Th(Σ), is a category with objects natural numbers and
morphisms t : m → n being n-tuples of m-holed terms. Composition is
substitution of terms, which is associative. The category is Identities n→ n
are 〈−1,−2, . . . ,−n〉. cartesian, with 0 the terminal object and n being the
product of 1 with itself n times. The theory is free in the sense that there
are no equations between composite terms, apart from those imposed by the
cartesian structure.

Example 2.1.4. Consider a signature Σ = {0, s,+} where 0 has arity 0, s
has arity 1 and + has arity 2.

We shall give several examples of arrows in Th(Σ). The term 0 denotes
an arrow 0 → 1 (it is a 1-tuple with no holes), the term s(−1) is an arrow
1 → 1; composing the two yields s(0) : 0 → 1. The product of s(0) with
itself yields 〈s(0), s(0)〉 : 0 → 2. The term (−1) + (−2) denotes an arrow
2→ 1 of Th(Σ); composing it with 〈s(0), s(0)〉 yields s(0) + s(0) : 0→ 1.

Thus, given a signature Σ, the arrows of Th(Σ) can be thought of as
contexts. However, the contexts are non-linear in the sense that the holes
may be appear any number of times. For instance 0 also defines an arrow
1→ 1, it is a context which ignores its input (the hole does not appear in the
term). It can be defined by taking the product of 0 : 0→ 1 with the unique
arrow 1 → 0. Thus, for example, (0 : 1 → 1) ◦ (s(0) : 0 → 1) = 0 : 0 → 1.
As well as ignore their “inputs” the contexts can also duplicate them, for
example s(−1) + (−1) is an arrow 1→ 1 and s(−1) + (−1) ◦ 0 = s(0) + (0).

The non-linear arrows of Th(Σ) can be argued to be unreasonable con-
texts for many applications. Thus, for our purposes, it makes sense to
restrict our attention to the subcategory of linear contexts.
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Definition 2.1.5 (CΣ). An arrow t : m→ n of Th(Σ) is said to be linear if
each of the m “holes” is used exactly once in t. Let CΣ denote the subcat-
egory of Th(Σ) with objects being the objects of Th(Σ) (natural numbers),
but the arrows being just the linear morphisms. Notice that this restriction
makes sense, since all the identities are linear and linearity is preserved by
composition. For a signature Σ, we shall refer to CΣ as the term category.

Example 2.1.6 (Ground term rewriting system). A term rewriting
system can be given as a set R of pairs 〈l, r〉 where l, r : n → 1 are arrows
of CΣ. The rewrite relation ⊲ is derived from R by substitution under
contexts and parameters, that is a ⊲ a′ if a = clp, a′ = crp for some
c, p ∈ CΣ. 1 A ground term rewriting system has R consisting only of pairs
〈l, r〉 with l, r : 0 → 1. Then any ground term rewriting system defines
a reactive system, with CΣ being the underlying category, R being the
reaction rules and D = CΣ, that is, all contexts are reactive.

Simple Process Calculus. We shall now introduce a very simple process
calculus which can be considered as an almost trivial subset of CCS. While
it is simple, it does exhibit some interesting features which shall guide us in
the development of the theory.

Example 2.1.7. Assume some set of channel names N and consider the
language generated by the following specification:

P ::= 0 | a | a | P | P ′ where a ∈ N.

The signature consists of a set of input and output constants parametrised
over the channel names, the null process constant and a binary operator,
that is Σ = {a, a}a∈N ∪ {0, −1 | −2}.

The intuition for the dynamics is that an occurrence of a and a can
interact and disappear, that is, rewrite to the null process 0; in symbols
a | a ⊲ 0.

Our first attempt at building the reactive system to capture this calculus
is to let the underlying category be CΣ and let all contexts be reactive. We
let the reaction relation be the closure of the relation { 〈a | a, 0〉 | a ∈ N }
under all contexts.

There are several problems with the reactive system described in Exam-
ple 2.1.7. First, notice that the term (b | a) | a cannot react. This is because

1For many applications it is reasonable to expect only l to be linear. Since we shall con-
centrate exclusively on ground term rewriting (and all arrows with domain 0 are trivially
linear), we do not elaborate here.
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there is nothing in the theory which makes sure that the parallel composition
operator should be associative. If we assume associativity, there are further
problems: a | a and a | b | a cannot react. One solution would be to include
extra rewrite rules to consider all these extra subcases, but this solution
isn’t elegant and feels like a hack since the basic interaction a | a is already
described by one rewrite rule – and the problematic cases we’ve identified
can all be seen as special cases of this basic reduction. An elegant solution
to this sort of problem was first proposed by Berry and Boudol in their work
on the Chemical Abstract Machine (CHAM) [9] – they argued that one one
could think of the basic components of a parallel composition as molecules
in a chemical solution, they are free to move around and interact with any
other molecule.

Their work has led to the development of the idea of a structural congru-
ence relation ≡ which relates processes which are syntactically different but
which are trivially semantically equivalent, as for example a | a and a | a or
a | 0 and a are. Then the terms of a process calculus are not really syntactic
any more, they are equivalence classes of syntactic terms with respect to ≡.
A reduction semantics (as well as labelled transition systems) are given “up
to” structural congruence. This means, essentially, that reduction semantics
have an implicit or explicit rule of the form

P ′ ≡ P P ⊲Q Q ≡ Q′

P ′ ⊲Q′.

Structural congruence has been a very influential concept and the majority
of modern calculi come equipped with such a relation.

At this point it is useful to formalise exactly what is meant by a congru-
ence on the terms and the contexts of a reactive system.

Definition 2.1.8 (Congruence). Given a reactive system C = {C, 0, D, R}
a relation R ⊆

⋃
C∈C

C(0, C) ×C(0, C) on the terms of C is a congruence
if the following condition is satisfied: whenever 〈a : 0→ C, b : 0→ C〉 ∈ R
then for any arrow c : C → D, we have that 〈ca : 0→ D, cb : 0→ D〉 ∈ R.

Thus, if a congruence relates two terms a and b then it relates the terms
ca and cb which result from substituting a and b into an arbitrary context
c. Notice that we shall only consider relations which respect the codomain
of the terms.

Returning to the simple calculus of Example 2.1.7, the expected struc-
tural congruence should include the associativity, commutativity and iden-
tity (ACI) laws of the parallel composition operator.
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Example 2.1.9. Consider the term category CΣ. We would like to consider
a category where the terms are quotiented by structural congruence. The
structural congruence relation ≡ is the smallest congruence which ensures
that for any terms p, q and r, p | (q | r) = (p | q) | r (associativity),
p | q = q | p (commutativity), and p | 0 = p (identity). The relation can be
extended in the obvious way to contexts (arrows m→ n of CΣ where m 6= 0)
– so for example −1 | −2 ≡ −2 | −1 : 2 → 1 and −1 | 0 ≡ −1 : 1 → 1. Let
C≡

Σ be the category with objects that of CΣ, but with arrows [f ] : m → n
in C≡

Σ being equivalence classes of arrows f : m→ n in CΣ with respect to
≡. It is easy to check that the composition operator is well defined and that
C≡

Σ is indeed a category.

Defining reaction rules as in Example 2.1.7 and taking all contexts to be
reactive yields a reactive system. It is easy to see that the reaction relation
is as expected.

Bunch contexts. In the examples examined so far, terms and contexts
have been syntactic. The following is a simple example of an underlying
category Bun of a class of reactive systems where the contexts have an
algebraic definition. This category shall be the focus of Chapter 4. The
study of this category shall be useful in order to treat more sophisticated
examples such as the bicategory of cospans of graphs of Chapter 6.

The category of ‘bunches and wires’ was introduced by Leifer and Milner
in [66] as a skeletal algebra of shared wirings, abstracting over the notion
of names in, for example, the π-calculus. It is related to various models
studied in the theory of action calculi [71].

Note that the definition we give here is the natural definition of such an
algebraic structure; the definition which appears in [66] has extra informa-
tion, the so-called trailing, which is an ad-hoc way of avoiding some of the
problems posed by the structural congruence of bunches.

A bunch context of type m0 → m1 consists of an ordered set of m1 trees
of depth one containing exactly m0 holes. Leaves are unordered and labelled
from an alphabet K. These data represent m1 bunches of unspecified con-
trols (the roots), together with m0 places (the holes) where bunch contexts
can be plugged into.

Diagrams (i), (ii) and (iii) are pictures of three bunches 1→ 2, that is,
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they





66
66

66

K L [−1]

(i)





66
66

66

L [−1] K

(ii)

��
��

��

11
11

11

[−1] L K

(iii)

have one hole and two roots. Diagrams (i) and (ii) represent two differ-
ent bunches, because roots are ordered; conversely Diagrams (ii) and (iii)
represent the same bunch, because leaves are not.

We would like to capture this structure with a formal definition. We
start by defining concrete bunch contexts.

Definition 2.1.10 (Concrete bunch contexts). Let m0 and m1 be finite
ordinals. A concrete bunch context c : m0 → m1 is a tuple

c = 〈X, ch : X → K, rt : m0 +X → m1〉 ,

where X is a finite carrier set, rt : m0 + X → m1 is a surjective function
linking leaves (X) and holes (m0) to their roots (m1), and ch : X → K is a
leaf labelling function.

Given concrete bunch contexts c0 : m0 → m1 and c1 : m1 → m2, we can
compose them to obtain a concrete bunch context c1c0 : m0 → m2. Roughly,
this involves ‘plugging’ the m1 trees of c0 orderly into m1 holes of c1; leaves
and holes of c0 are ‘wired’ to the roots of c1, alongside c1’s leaves. Formally,
c1c0 is 〈X, rt, ch〉 with

X = X0 +X1, rt = rt1(rt0 + idX1
), ch = [ch0, ch1],

where [−, −] is copairing. The root function of the composite is perhaps
best illustrated by writing its components individually:

m0 +X0 +X1

rt0 +X1

−−−−−→ m1 +X1

rt1
−−→ m2.

Diagrams (iv), (v) and (vi) illustrate the concept of composition of con-
crete
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K L K

a : 0→ 2

(iv)
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��

33
33

33
3

[−1] M [−2]

b : 2→ 2

(v)
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33
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33
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ba : 0→ 2

(vi)
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bunch contexts. Diagram (iv) represents a concrete bunch context a : 0→ 2
where X = 3, ch(0) = ch(2) = K, ch(1) = L, rt(0) = 0 and rt(1) = rt(2) =
1. Diagram (v) represents a concrete bunch context b : 2 → 2 where b has
X = {∗}, ch(∗) = M , rt(0) = rt(∗) = 1 and rt(1) = 1. Finally, diagram (vi)
represents ba : 0→ 2, the result of composing a and b.

Remark 2.1.11. Notice that this composition is not associative “on the
nose” because the coproduct (disjoint union) of finite sets is not; it is as-
sociative up to a canonical bijection. This is not an important problem
because in order to obtain associativity one can work in a category in which
it is easy to define a coproduct which is associative, such as the category of
finite ordinals. Here we shall ignore the details and deal with this technical
issue in Chapter 4.

A homomorphism of concrete bunch contexts α : c ⇒ c′ : m0 → m1 is
a function α : X → X ′ which respects rt and ch, i.e. rt′(idm0

+α) = rt and
ch′ α = ch. An isomorphism is a bijective homomorphism.

When reasoning about bunch contexts, we are interested in the struc-
ture, not in the set theoretical identity of the underlying carrier sets. It
makes sense, therefore, to identify bunches which are related by an isomor-
phism – that is, a bijection on the underlying carrier sets which preserves
all structure. The notion of isomorphism of concrete bunch contexts is thus
the right notion of structural congruence in this setting.

Definition 2.1.12 (Abstract bunch contexts). An abstract bunch con-
text [c] : m0 → m1 is an isomorphism class of concrete bunch contexts.
Thus, [c] = [c′] if and only if c ∼= c′. Abstract bunch contexts may be com-
posed, given [c0] : m0 → m1 and [c1] : m1 → m2 we let [c1] ◦ [c0] = [c1 ◦ c0].
It is easy to check that this composition is well-defined. It is associative
(see Remark 2.1.11) since we are dealing with isomorphism classes.

The composition of abstract bunch contexts also has identities. Indeed,
given an ordinal m0, let idm0

denote the concrete bunch context with empty
carrier set, the unique character function and the root function m0+0→ m0

being the identity on the first coproduct injection. Graphically, such a bunch
context looks as follows:

...

[−1] [−m0
]

and it is easy to check that for any abstract bunch context [c] : m0 → m1

we have [idm1
] ◦ [c] = [c] = [c] ◦ [idm0

].
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Definition 2.1.13 (Bun0). The category of abstract bunch contexts Bun0

has

1. objects the finite ordinals, written as m0,m1, . . . ;

2. arrows from m0 to m1 are abstract bunch contexts [a] : m0 → m1.

2.1.2 Contexts as labels

Reduction semantics is often relatively simple and intuitive. Moreover, the
underlying mechanisms are general and are based on term rewriting, which is
a well-studied area of computer science. It is, therefore, an important ques-
tion whether an interesting process equivalence can be already be generated
from the reaction rules without the need for extra “semantic” technology,
such as labelled transition systems or barbs. Moreover, such a process equiv-
alence should be generated in a “general” way; that is, without resorting to
the ad-hoc syntactic structure of the underlying formalism. Clearly, if such
a theory could be developed to a satisfactory level, it would allow the study
of semantic issues across a wide number of formalisms, without the need to
redevelop constructions and proofs from scratch.

Here we shall study the idea of Sewell [98], who proposed to generate a
labelled transition system (see Definition 2.1.14) from reaction rules in a way
which would ensure that the resulting bisimilarity is a congruence. The basic
idea is that the labels of such an lts should be the smallest contexts which
allow reaction. Leifer and Milner [66] later proposed relative pushouts, a
categorical way of making precise this intuition. The work in this thesis
continues in this direction.

The advantage of a contextually defined process equivalence based on
reductions is simplicity and elegance. Such equivalences usually intuitive, in
that it is often relatively easy to argue why such an equivalence is “natural”.
In fact, barbed congruence is usually considered to be the canonical process
equivalence. Thus, barbed congruence can be considered as a Morris-style
process equivalence for process calculi. Just as Morris-style equivalences,
barbed congruence suffers from the quantification over all contexts in its
definition. Thus, many important contributions in the field of process cal-
culus have been about the development of methods for proving that pro-
cesses are barbed congruent. Usually, this involves the development of a
labelled transition system semantics on which bisimilarity is sound with re-
spect to barbed congruence. Bisimilarity is even more valuable when it is
also complete with respect to barbed congruence; the two equivalences then
coincide.
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We recall the basic definitions of labelled transition systems and bisimi-
larity below.

Definition 2.1.14 (Labelled Transition System). A labelled transition
system (lts) is a triple 〈S, L, T 〉, where:

−−− S is a set of states ranged over by a, b, . . . ;

−−− L is a set of labels ranged over by f, g, . . . ;

−−− a set of transitions T ⊆ S × L× S.

A transition 〈a, f, a′〉 ∈ T shall usually be written a
f

◮a′.

Labelled transitions systems can be generated in a number of ways. A
popular and influential framework for the derivation of labelled transition
systems is called structural operational semantics or SOS [84]. An SOS style
presentation of an lts involves presenting a number of natural-deduction like
proof rules for each of the elements of a syntactic signature. This style
of semantics has attracted much research, see for example the handbook
chapter [2].

Example 2.1.15. Recall the simple calculus of Example 2.1.7. A labelled
transition system can be generated, in a way which resembles SOS, by the
following rules,

a a ◮ 0 a a ◮ 0 a | a τ ◮ 0

P x ◮P ′

Q | P x ◮Q | P ′
P ≡ P ′ P x ◮Q Q′ ≡ Q

P ′ x ◮Q′

where ≡ is the structural congruence relation introduced in Example 2.1.9.

Bisimilarity in its modern coinductive presentation was first introduced
by Park [82]. In the setting of labelled transition systems it was introduced
by Milner [70]. It is interesting for several reasons, firstly, it is the finest
possible “reasonable” equivalence on a labelled transition system, where
by reasonable we mean that the equivalence can only take into account the
labels and the branching structure of the transitions out of a state. Secondly,
it has several elegant characterisations: in terms of games, logics [41] and
general categorical approaches [48,88].
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Definition 2.1.16 (Bisimulation). A relation R on the states of a labelled
transition system T is a bisimulation if the following symmetric conditions
are satisfied:

1. if 〈a, b〉 ∈ R and a
f

◮ a′ then there exists b′ such that b
f

◮ b′ and
〈a′, b′〉 ∈ R;

2. if 〈a, b〉 ∈ R and b
f

◮ b′ then there exists a′ such that a
f

◮a′ and
〈a′, b′〉 ∈ R.

It is an easy exercise to show that an arbitrary union of bisimulations is
a bisimulation. Thus, there exists a largest bisimulation.

Definition 2.1.17 (Bisimilarity). Given a labelled transition system, let
bisimilarity, denoted by ∼, be the largest bisimulation.

It is easy to verify that bisimilarity is an equivalence relation. Because
of the definition of ∼, in order to verify that a ∼ b, it suffices to find a
bisimulation R such that aRb.

As well as bisimilarity, labelled transition systems lend themselves to
other equivalences and preorders. Some of the more important ones include
the trace preorder (and the corresponding trace equivalence, obtained by a
symmetric closure) and the failures preorder/equivalence. For a comprehen-
sive survey see the paper by Van Glabbeek [104].

Bisimilarity, and other preorders/equivalences are most useful when they
are congruences (Definition 2.1.8). This is because, as well as the technique
of coinduction, one can use the technique of equational reasoning (commonly
referred to as “substituting equals-for-equals”). In particular, suppose that
we need to prove that a system consisting of a parallel composition p | q is
bisimilar to p′ | q′ and we have bisimulations relating p and p′ and q and q′.
If bisimilarity is a congruence then p | q ∼ p′ | q and p′ | q ∼ p′ | q′ and
therefore p | q ∼ p′ | q′, since bisimilarity is transitive.

In this chapter, and in the thesis in general, we shall restrict out inves-
tigation to strong equivalences. That is, the internal behaviour of processes
is distinguished. Of course, weak equivalences are more useful for practi-
cal purposes, as normally one wants to equate processes that differ only in
their internal behaviour. As discussed in Chapter 1, weak bisimilarity has
traditionally been problematic for categorical approaches, however, ongoing
research by Jensen [45] suggests that many of the technical developments
presented within this thesis are orthogonal to whether one is interested in a
strong or weak equivalence.
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We shall now introduce a notion of reaction congruence in the style of
Honda and Yoshida [43]. This differs from the reduction congruence of Mil-
ner and Sangiorgi [75] in a subtle point: whereas Milner and Sangiorgi con-
sider the largest congruence contained within reaction bisimilarity, Honda
and Yoshida consider the greatest congruent bisimulation. Thus, Honda and
Yoshida’s approach gives, in general, a finer equivalence.

Definition 2.1.18 (Reaction congruence). Given a reactive system C,
we let ≃R be the largest symmetric relation on the terms of C such that

if a ≃R b then ∀c ∈ C : ca ⊲ a′ ⇒ ∃b′ cb ⊲ b′ and a′ ≃R b
′, (2.2)

where C is the underlying category of the reactive system. Notice that the
≃R relates only terms which are arrows with the same codomain in C.

A moment’s thought confirms that an arbitrary union of relations which
satisfy equation (2.2) satisfies the equation. In particular, to prove that
two processes are reaction congruent it suffices to show that they are in a
relation which satisfies (2.2). Thus, for example, ≃R is reflexive, since the
identity relation clearly satisfies (2.2). Also, it is easy to check that ≃R is
transitive; if a relation satisfies (2.2), its transitive closure satisfies it also.

Proposition 2.1.19. The relation ≃R is an equivalence.

It is trivial to check that ≃R defines a congruence, it suffices to show
that

{ 〈ca, cb〉 | a ≃R b }

satisfies (2.2). Indeed, if c′(ca) ⊲ b then (c′c)a ⊲ b and as a ≃R b, there
exists a b′ such that c′cb ⊲ b′ and a′ ≃R b

′.
There is a simply-defined labelled transition system which captures re-

action congruence, in the sense that bisimilarity on the labelled transition
system is fully abstract with respect to it.

Definition 2.1.20 (Reaction labelled transition system). Define a
labelled transition system RLTS(C) as follows

−−− States: arrows a : 0→ I in C, where I is arbitrary and not fixed;

−−− Transitions: a c ◮ b if ca ⊲ b.

Denote bisimilarity on RLTS(C) by ∼R.

Lemma 2.1.21.
a ≃R b iff a ∼R b
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Proof. ≃R⊆∼R: a c ◮ b ⇔ ca ⊲ b ⇒ ca′ ⊲ b′ and b ≃R b
′. But then,

by definition a′ c ◮ b′ and so ≃R is a bisimulation. ∼R⊆≃R: Suppose that
ca ⊲ b. Then a c ◮ b and so a′ c ◮ b′ (ca′ ⊲ b′) with b ∼R b

′. Clearly,
∼R satisfies equation 2.2.

It should be mentioned that we are, in a way, cheating. Labelled tran-
sition systems, on which bisimilarity is fully abstract with respect to a cer-
tain contextually-defined process equivalence, are useful because, in practice,
constructing bisimulations is easier than quantifying over all possible con-
texts. The labelled transition system of Definition 2.1.20 would usually be
infinitely branching, since the labels are all contexts which allow reaction.
As a consequence, the labelled transition system would not be very useful
in practice.

A problem associated with taking all contexts allowing reaction as labels
is that we admit labels which are redundant. For example, consider the
term a of simple CCS (Example 2.1.7). The environment can learn about
the term by putting it in the context a | − and observe a reaction. This

corresponds to the label a
a|−

◮ 0 of the reaction labelled transition system.

However, we also have a
c|a|−

◮ c as a transition, yet c contributes nothing to
the reaction. In particular, it would seem that we could add more power to
the environment by only allowing labels which contain just the right amount
of information in order to interact with the term.

Indeed, in certain examples ≃R does not give the expected process equiv-
alence.

Example 2.1.22 (≃R in simple CCS). We shall show that a | a ∼R b | b.
Suppose that a | a c ◮ d. Then c(a | a) ⊲ d. If the reaction is already in
the term (a | a ⊲ 0), then d = c0 and we can use the reaction b | b ⊲ 0
to obtain a label b | b c ◮ d. Clearly, if the reaction is within c then we
can match it with the same reaction. On the other hand, suppose that a | a
nontrivially reacts with c to produce d. Without loss of generality, suppose
that c[−] = c′ | a | [−] and the a from c reacts with the a from our term.
Then d = c′ | a. We can match the reaction by again reducing b | b ⊲ 0
(without using the context) to obtain c(b | b) ⊲ c[0] = c′ | a = d and so
b | b c ◮ d.

Remark 2.1.23. As an aside, the problem demonstrated in Example 2.1.22
is not possible in full CCS because the contexts there have enough power to
distinguish between a | a and b | b. Indeed, it suffices to consider a context

a.d. Then a | a a.d◮ a | d but the only possible transition with that label

for b | b is b | b a.d◮ a.d; clearly a | d ≇R a.d.
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We have presented a natural congruent process equivalence ≃R built up
only with the use of reactions and contexts, and we have demonstrated that
it may be defined using bisimilarity on a certain labelled transition system.
In the course of the development, we have identified two problems with ≃R.
Firstly, the labelled transition system, as presented, is large, and contains
redundant information. Secondly, in several examples the resulting process
equivalence does not match with the expected process equivalence. In order
to fix these problems, we shall restrict the labels of the labelled transition
system only to the smallest contexts which allow reaction.

The idea of using such smallest contexts is originally due to Sewell [98]
and was later taken up by Leifer and Milner in their pioneering paper [66].
It was later used by Leifer in his PhD thesis [64] and by Jensen and Milner
in their work on bigraphs [46,47]

Leifer and Milner’s original contribution [66] was to identify a possible
way of formalising the notion of “smallest context allowing reaction” in terms
of a universal property in the language of category theory. They defined
relative-pushouts, or RPOs, of which idem-relative-pushouts, or IPOs are a
special case. Relative-pushouts can be described concisely as pushouts in
slice categories. One may define a well-behaved labelled transition system
using IPOs. It is well-behaved because bisimilarity, as well as some other
equivalences in the van Glabbeek spectrum [104] are congruences.

Let us now present an intuitive account of the idea of what should con-
stitute a smallest context which allows a reaction. In the previous sections
we have settled on using categories where arrows correspond to contexts and
where composition corresponds to context substitution.

The following definition formalises what it means for a reactive system
context to allow reaction.

Definition 2.1.24 (Redex square). Suppose that C is a reactive system
and a : 0 → I2 is some arrow. A redex square (see below) consists of a left
hand side l : 0→ I3 of a reaction rule 〈l : 0→ I3, r : 0→ I3〉 ∈ R, a context
f : I2 → I4 and a reactive context d : I3 → I4 so that fa = dl.

I4

I2

f ??�����
I3

d
__?????

0
a

``AAAAA l

>>}}}}}

(2.3)
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A redex square tells us that a in the context of f can react. Thus,
another way of defining the labelled transition system of Definition 2.1.20

would be to say that a
f

◮ dr iff diagram (2.3) is a redex square.

Of course, as mentioned previously, a redex square does not tell us about
which parts of f are really needed for for the reaction and which parts are
not necessary. As demonstrated in Example 2.1.22 the congruence derived
by using the labels which correspond to such contexts may be too coarse.

In the following section we recall an elegant characterisation, due to
Leifer and Milner [66], of the redex squares which correspond to such smallest
contexts.

2.1.3 Relative-pushouts

In this section we give a brief review of the theory of RPOs, a more complete
presentation may be found in [64].

Definition 2.1.25 (RPO). Let C be a category and (i) a commutative
diagram.

I4

I2

c
??�����

I3

d
__?????

I1
a

__?????
b

??�����

(i)

I4

I2 e //

c
??�����
I5

g

OO

I3foo

d
__?????

I1
a

__?????
b

??�����

(ii)

I6

I2

e′
??�������

e
// I5

h

OO

I3f
oo

f ′
__???????

(iii)

I4

I6

g′
??�������
I5

g

OO

h
oo

(iii)

Any tuple 〈I5, e, f, g〉 which makes (ii) commute is called a candidate
for (i). A relative-pushout is the “smallest” such candidate. More for-
mally, it satisfies the universal property that given any other candidate
〈I6, e

′, f ′, g′〉, there exists a unique mediating morphism h : I5 → I6 such
that (iii) and (iv) commute.

Another way of viewing RPOs is as ordinary pushouts in a slice-category.
Indeed, the commuting square (i) above is simply a span

〈I2, c〉
a
←− 〈I1, ca〉

b
−→ 〈I3, d〉

in the slice category C/I4. It is straightforward to verify that to give a
relative-pushout of diagram (i) above is to give a pushout of the span in
C/I4.
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The following notion of idem-relative-pushout, or IPO, is central in the
derivation of labelled transition systems. While RPOs allow us to calculate
a minimal candidate for a particular redex square, IPOs characterise such
minimal candidates. Lemma 2.1.28, due to Leifer and Milner [66] formally
explains the relationship between RPOs and IPOs.

Definition 2.1.26 (IPO). A commuting square like diagram (i) of Defini-
tion 2.1.25 is a idem-relative-pushout (IPO) if 〈I4, c, d, idI4〉 is its RPO.

Equipped with a notion of IPO, we are now ready to define a labelled
transition system with labels being the smallest contexts.

Definition 2.1.27 (LTS). Let C be a reactive system with an underlying
category C, distinguished object 0, a suitable collection of reactive contexts
D and a set of reaction rules R. We define a labelled transition system
LTS(C) as follows:

−−− the states of LTS(C) are arrows a : 0→ I2 of C, where I2 is arbitrary
and not fixed;

−−− there is a transition from a : 0 → I2 to dr : 0 → I4 with label f :

I2 → I4, written a
f

◮ dr if the following condition holds: there exists
〈l, r〉 ∈ R and d ∈ D such that fa = dl and the redex square below

I4

I2

f ??~~~
I3

d__@@@

0
a

``AAAA
l

>>}}}}

is an IPO.

In other words, if insertion in context f makes a match l in context d
(commutation of the diagram), where l is a redex, and f is the “smallest”
such context (IPO condition), then a moves to dr with label f , where r is
the reduct of l.

A reactive system C is said to have redex RPOs if every redex square
(Definition 2.1.24) has an RPO. One of Leifer and Milner’s central results
is that if this condition is satisfied then ∼, bisimilarity on LTS(C), is a
congruence [66] (Theorem 2.1.30). The congruence theorem relies on an
important property of IPOs, namely that they compose and decompose in
a manner similar to pushouts. We first recall a simple result which relates
the definitions of IPOs and RPOs.
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Lemma 2.1.28 (RPOs are IPOs; IPOs are RPOs).

I5

I2

c′
??������

I3

d′
__??????

I1

a

__?????? b

??������

(i)

I5

I2

c′
??������

c // I4

u

OO

I3doo

d′
__??????

I1

a

__?????? b

??������

(ii)

I4

I2

c
??������

I3

d
__??????

I1

a

__?????? b

??������

(iii)

In an arbitrary category, the following hold:

1. (RPOs to IPOs) if 〈I4, c, d, u〉 is an RPO for diagram (i), as illustrated
in diagram (ii), then diagram (iii) is an IPO;

2. (IPOs to RPOs) if diagram (iii) is an IPO, diagram (i) has an RPO,
and 〈I4, c, d, u〉 is a candidate for it as shown in diagram (ii), then
〈I4, c, d, u〉 is an RPO for diagram (i).

In section 2.2 we shall prove Lemma 2.2.19, which is a more general
version of Lemma 2.1.28. The following lemma can be found in [66] and
can also be seen as a special case of Lemma 2.2.20 about the properties of
a 2-categorical generalisation of IPOs.

Lemma 2.1.29 (Composition and decomposition). Suppose that dia-
gram (i) below has an RPO. Then:

I6

I2

fe ??�����
I3

gd__?????

I1
a

__?????
b

??�����

(i)

I6

I4

f ??�����
I5

g__?????

I2
e

__????? c

??�����
I3

d
__?????

I1
a

__?????
b

??�����

(ii)

I6

I4

f ??�����
I3

gd__?????

I1
ea

__?????
b

??�����

(iii)

1. (Composition.) if both squares in diagram (ii) are IPOs then the
exterior (diagram (iii)) is also an IPO;

2. (Decomposition.) if the lower square and the exterior (diagram (iii))
of diagram (ii) are IPOs then so is the upper square.
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We are now ready to recall and prove Leifer and Milner’s congruence
theorem for bisimilarity [66]. It shall be useful for us to recall the proof
because the proofs of the more general results in section 2.3 shall follow a
very similar underlying proof strategy.

Theorem 2.1.30 (Leifer and Milner [66]). Suppose that C has redex
RPOs. Then bisimilarity ∼ on LTS(C) is a congruence.

Proof.

I6

I4

f ??�����

I2
c

__?????

I3

d

^^=============

0
a

__>>>>> l

??�����

(i)

I6

I4

f ??�����
I5

d′′
__?????

I2
c

__????? g

??�����
I3

d′
__?????

0
a

``AAAAA l

>>}}}}}

(ii)

I6

I4

f ??�����
I5

d′′
__?????

I2
c

__????? g

??�����
I3

e
__?????

0
b

``AAAAA l′

>>}}}}}

(iii)

We need to show that, assuming a ∼ b and an arbitrary c ∈ C, we have
ca ∼ cb. It is enough to show that the contextual closure S of bisimilarity

S = { 〈ca, cb〉 | a ∼ b, c ∈ C }

is a bisimulation. We can do this directly: suppose that ca
f

◮a′. Then
for some 〈l, r〉 ∈ R and d ∈ D we have that diagram (i) is an IPO and
a′ = dr. Because C has redex GRPOs, we are able to construct a GRPO as
illustrated in diagram (ii). Using the first part of Lemma 2.1.28 we are able
to conclude that the lower square is an IPO. Now using the fact that IPOs
decompose (second part of Lemma 2.1.29 we are able to conclude that the
upper square is an IPO also.

Since the lower square is an IPO, we have that a
g

◮ d′r. Using our
assumption, b

g
◮ er′, for some e ∈ D and 〈l′, r′〉 ∈ R. Moreover, d′r ∼ er′

and the lower square of diagram (iii) is an IPO. But then composing this
IPO with the upper square of diagram (ii) yields an IPO – the exterior of di-

agram (iii) – using the first part of Lemma 2.1.29. We get that cb
f

◮ d′′er′.
But since dr = d′′d′r and since d′r ∼ er′ we have that 〈dr, d′′er′〉 ∈ S, which
completes the proof.

This congruence theorem is a special case of a more general theorem,
stating the bisimilarity on the labelled transition system generated using a
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generalisation of the theory developed by Leifer and Milner to 2-dimensional
categories. We shall motivate and present this development in the next
section and prove the congruence theorem in Section 2.3.

2.2 Structural congruence and isomorphisms

We shall now motivate and develop an extension to the theory of reactive sys-
tems and RPOs – the ability to consider structural congruence/isomorphism
as an integral part of the theory. This idea of generalising reactive systems
to a 2-categorical setting was proposed independently by Sewell [99]. The
technical tools used are 2-categories and a certain notion of colimit for bi-
categories.

We shall start in §2.2.1 by motivating the extension. After a brief in-
troduction to the technical concepts involved, in §2.2.2 we shall introduce
the main technical contributions of this chapter: G-reactive systems and
GRPOs. Finally, in §2.2.3 we shall state several important properties of
GRPOs.

2.2.1 Limitations of RPOs

In this subsection we shall discuss the motivation for a notion of relative-
pushout in a 2-categorical setting. Indeed, it turns out that in many natural
examples RPOs either do not exist or do not give the expected congru-
ence. We shall illustrate these problems using our two running examples,
the simple process calculus of Example 2.1.7 and abstract bunch contexts of
Definition 2.1.12.

Simple Process Calculus. Recall the simple calculus introduced in Ex-
ample 2.1.7 and its associated reactive system introduced in Example 2.1.9.
Recall that the underlying category of the reactive system is C≡

Σ , the arrows
of which are contexts of the process calculus modulo structural congruence.

Example 2.2.1. We shall consider what happens when we use RPOs to
generate a labelled transition system for this calculus. Consider the term
a | a. Using the operational semantics introduced in Example 2.1.15 we
should expect three transitions,

a | a a ◮ a, a | a a ◮ a and a | a τ ◮ 0.

Consider the three squares in C≡
Σ below, where we use subscripts to distin-

guish different occurrences of the term a (that may float around in larger
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terms because of ≡). Observe that such distinction is for the sake of ex-
position only: arrows in C≡

Σ up to structural congruence, and therefore
individual occurrences of terms are not discernible.

1

1

−
@@�����

1

−
^^=====

0
a1|a2

^^=====
a1|a2

@@�����

1

1

−|a3
@@�����

1

−|a1
^^=====

0
a1|a2

^^=====
a3|a2

@@�����

1

1

−|a3
@@�����

1

−|a2
^^=====

0
a1|a2

^^=====
a1|a3

@@�����

Only the left one could possibly be an IPO, and it is easy to see that it is a
candidate for the middle and the right squares. Indeed, since the term and
the left hand side of the reaction rule are identical, the identity context is
clearly the smallest upper bound.

However, also the upper bounds given in the middle and the right square
are in some sense minimal. Indeed, if we keep track of the place in the term
where the reaction occurs, then the middle square is the smallest upper
bound whose redex (a3 | a2) only uses a (as opposed to both a and a) from
the term. Similarly, in the right square the redex created by insertion into
a context (a3 | −) only uses a. It is precisely the fact that terms in C≡

Σ are
quotiented by ≡ that makes it impossible to place reaction within a term.

For many applications it makes sense to have the extra power of locating
reaction. Indeed, the reader may verify that the lts generated using RPOs
on C≡

Σ generates the same set of labels for the terms a | a and b | b and thus
no operational equivalence can distinguish between these two terms. That
is, against the intuition, a | a and b | b would be bisimilar. However, when
reaction can be located within the redex, bisimulation equivalence coincides
with the standard one. We shall demonstrate this for our running process
calculus example in Examples 2.2.4 and 2.2.13.

At this point it is important to focus on what exactly is a commuting
square in C≡

Σ. In order to verify that a diagram like (i) below is commuta-
tive, one has to exhibit a proof of structural congruence.

m4

m2

c
;;xxxxx

m3

d
ccFFFFF

m1

a

ccFFFFF
l

;;xxxxx

(i)

m4

m2
α +3

c
;;xxxxx

m3

d
ccFFFFF

m1

a

ccFFFFF
l

;;xxxxx

(ii)
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Different proofs can be chosen to exhibit commutativity, corresponding to
different ways of rearranging the redex using structural congruence. Such
“proofs” will for us be appropriate isomorphisms which preserve the struc-
ture of the terms, they shall be represented as 2-cells and used to give a
2-categorical structure on CΣ.

Abstract bunch contexts. Our second example of the theory of RPOs
failing concerns the category Bun0 of abstract bunch contexts, introduced
in Definition 2.1.13. Alternatively from the graphical presentation used
previously, an abstract bunch context [c] : m0 → m1 can be depicted as a
string of m1 nonempty multisets on K+m0 (the bunches of leaves and holes
connected to the same root), with the proviso that elements m0 must appear
exactly once in the string. In the examples, we represent elements of m0 as
numbered holes −i.

Example 2.2.2. The category Bun0 of abstract bunch contexts does not
have RPOs. For a simple counterexample, consider diagram (i) below.

1

1

{K,−1}
@@��������

1

{K,−1}
^^>>>>>>>>

0

{K}

@@��������{K}

^^>>>>>>>>

(i)

Diagrams (ii) and (iii) illustrate two candidates for diagram (i). We shall
demonstrate that a common ‘lower bound’ candidate does not exist.

1

1

{K,−1}

<<yyyyyyyyyyyyyyy
{−1} // 1

{K,−1}

OO

1{−1}oo

{K,−1}

bbEEEEEEEEEEEEEEE

0

{K}

<<yyyyyyyyyyyyyyy
{K}

bbEEEEEEEEEEEEEEE

(ii)

1

1

{K,−1}

<<yyyyyyyyyyyyyyy
{−1}{K} // 2

{−1,−2}

OO

1{K}{−1}oo

{K,−1}

bbEEEEEEEEEEEEEEE

0

{K}

<<yyyyyyyyyyyyyyy
{K}

bbEEEEEEEEEEEEEEE

(iii)
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Indeed, it easily checked that the only candidate which factors the can-
didate illustrated in diagram (ii) is the trivial identity candidate. This is
because {−1} : 1 → 1 has an empty carrier set, and it is the only such
arrow with domain 1. Thus it remains to show that there doesn’t exist an
an abstract bunch context [c] : 1→ 2 such that diagram (iv) commutes.

2

1

{−1}{K}

<<yyyyyyyyyyyyyyy

{−1}
// 1

[c]

OO

(iv)

1
{−1}

oo

{K}{−1}

bbEEEEEEEEEEEEEEE

Clearly, c has to have a singleton carrier set with the singleton having label
K. Then the only two possibilities are [c] = {−1}{K} and [c] = {K}{−1},
neither of which works.

The point here is that by taking the arrows of Bun0 up to isomorphism
we lose information about how diagrams of bunch contexts commute. Dia-
gram (i), for instance, can be commutative in two different ways: the K in
the bottom left part may correspond either to the one in the bottom right
or to the one in the top right, according to whether we read {K,−1} or
{−1,K} for the top rightmost arrow. The point is therefore exactly which
occurrences of K correspond to each other. The fundamental contribution
of this section is to equip our structures of interest with an explicit structure
to track such correspondences and to extend the machinery of RPOs to such
richer settings.

2.2.2 2-categories, G-categories, GRPOs and GIPOs

Throughout this thesis, we shall be concerned with reactive systems with
underlying categories which have 2-dimensional structure, that is “arrows
between arrows” or 2-cells. Moreover, in all of our examples, the 2-cells
shall all be isomorphisms. One may think of the 2-dimensional structure
as providing information about the structural congruence between terms.
As demonstrated by the examples in § 2.2.1, it is important to keep this
information for two reasons. Firstly, as demonstrated in 2.2.1, forgetting
the 2-cells sometimes results in a labelled transition system on which bisim-
ilarity is too coarse. Secondly, and more importantly, as demonstrated in
Example 2.2.2, in categories like the category of bunches and contexts RPOs
do not exist. In this subsection we shall recall the standard categorical tech-



2.2. Structural congruence and isomorphisms 49

nology we shall need, and introduce one of the main technical contributions
of this thesis, the notion of groupoidal-relative-pushout (GRPO).

2-categories. We shall start by recalling the definition of 2-categories.
For a more thorough introduction we refer the reader to [67, 101, 54]. A
2-category C is a category where every homset (that is the collections of
arrows between any pair of objects X and Y ) is the class of objects of some
category C(X,Y ) and, correspondingly, whose composition “functions”

C(Y,Z)×C(X,Y )→ C(X,Z)

are functors. Explicitly, a 2-category C consists of the following.

(i) A class of objects X,Y,Z, . . ..

(ii) For any X,Y ∈ C, a category C(X,Y ). The objects C(X,Y ) are called
1-cells, or simply arrows, and denoted by f : X → Y . Its morphisms
are called 2-cells, are written α : f ⇒ g : X → Y and drawn as

X

f
))

g

55
�� ��
�� α Y.

Composition in C(X,Y ) is denoted by • and referred to as ‘vertical ’
composition. Identity 2-cells are denoted by 1f : f ⇒ f . Isomorphic
2-cells are occasionally denoted as α : f ∼= g. As an example of vertical
composition, consider 2-cells α : f ⇒ g and β : g ⇒ h as below.

X

f

""
�� ��
�� α

g //
==

h

�� ��
�� β

Y

They can be composed, yielding β •α : f ⇒ h.

(iii) For each X,Y,Z there is a functor ◦ : C(Y,Z)×C(X,Y )→ C(X,Z),
the so-called ‘horizontal ’ composition, which we often denote by mere
juxtaposition. Horizontal composition is associative and admits 1idX
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as identities. As an example, consider 2-cells α : f ⇒ f ′ and β : g ⇒ g′,
as illustrated below.

X

f
((

f ′
66

�� ��
�� α Y

g
((

g′
66

�� ��
�� β Z

They can be composed horizontally, obtaining βα : g ◦ f ⇒ g′ ◦ f ′.

Moreover, we require that horizontal composition of 2-cells is associative
and has two sided identities: given α : f ⇒ g : X → Y , we have 1idY

α =
α = α1idX

. This is where 2-categories differ from bicategories; in bicategories
horizontal composition is associative and has identities only up to coherent
isomorphisms (see Chapter 3 for further details).

As a convenient notation, we shall write α ◦ f and g ◦α for, respectively,
α ◦ 1f and 1g ◦ α. We follow the convention that horizontal composition
binds tighter than vertical composition.

The fact that horizontal composition ◦ is a functor can be otherwise said
as follows:

(i) for any f : X → Y and g : Y → Z we have that 1g ◦ 1f = 1gf

(ii) the middle-four interchange law : for f, f ′, f ′′ : X → Y and g, g′, g′′ : Y →
Z and α : f ⇒ f ′, α′ : f ′ ⇒ f ′′, β : g ⇒ g′ and β′ : g′ ⇒ g′′, as illus-
trated by

X

f

""
�� ��
�� α

<<

f ′′

�� ��
�� α′

f ′ // I3

g

""
�� ��
�� β

==

g′′

�� ��
�� β

′
g′ // Z

we have

β′α′
•βα = (β′ • β)(α′

•α).

In 2-categories, the order of composition of 2-cells is not important. More
precisely, as a consequence of the middle-four interchange law, it can be
shown that any diagram of 2-cells defines at most one composite 2-cell; that
is, all the possible different ways to combine together vertical and horizontal
composition, yield the same composite 2-cell. This primitive operation is
referred to as pasting.
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In order to illustrate the notion of pasting, we shall consider the following
diagrams.

B

q

��

h

  @
@@

@@
@@

A

00p

����|� β

f
44

g

II
>>>> �#
α

C

rnn
>>>>[c

γ

D

A

g

����

f >>>> �#
α

h

��

����|� β

B C
q //poo D

E

t

OO

s

OO

����|� γ

OO

u

>>>> �#δ

The left diagram features 2-cells α : f ⇒ g, β : qg ⇒ p and γ : rh⇒ q. They
can be pasted together uniquely to obtain a 2-cell rhf ⇒ p. This 2-cell can
be written as either β • qα • γf : rhf ⇒ p, or equally, β • γg • rhα : rhf ⇒ p.
Now consider the right diagram with 2-cells α : f ⇒ pg, β : h ⇒ qg,
γ : pt⇒ s and δ : qt⇒ u. There is no way of composing these 2-cells.

The canonical example of a 2-category is Cat, the 2-category of cate-
gories, functors and natural transformations. The fact that natural trans-
formations satisfy the middle-four interchange property was first identified
by Godement [38].

Two objects C, D of a 2-category C are said to be equivalent when there
are arrows f : C → D, g : D → C and isomorphic 2-cells α : idC ⇒ gf ,
β : fg ⇒ idD. We refer to f and g as equivalences.

G-categories. Since the role of 2-cells in our approach is to represent
(proofs of) structural congruences, we shall usually consider 2-categories
whose 2-cells are all isomorphisms. As the categories all of whose morphisms
are iso are commonly known as groupoids, our 2-categories are precisely the
groupoid-enriched categories, or G-categories. See the book by Kelly [52]
for a thorough treatment of enriched category theory.

Definition 2.2.3 (G-Category). A G-category is a category enriched over
G, the category of groupoids. In other words, it is a 2-category whose 2-cells
are all isomorphisms.

The two examples which we have introduced thus far can presented as
G-categories. Firstly, in Example 2.2.4, we shall present a G-category for
the simple process calculus of Example 2.1.7. Secondly, in Definition 2.2.5,
we present the G-category of concrete bunch contexts, introduced in Defi-
nition 2.1.10.

Example 2.2.4. Consider the subset of CCS introduced in Example 2.1.7
and its structural congruence relation introduced in Example 2.1.9.
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Instead of studying GRPOs in a two-dimensional version of C≡
Σ intro-

duced in Example 2.1.9 and used in Example 2.2.1 we shall simplify the
setting down to a one object category. This is done in order to simplify
the constructions of GRPOs as far as possible without losing the “flavour of
their two dimensionality”.

Let MΣ be the G-category with:

−−− a single object •;

−−− arrows strings a0 | a1 | . . . | an−1, ai ∈ N with composition by jux-
taposition (e.g. (a0 | a1)(a0 | a1) = a0 | a1 | a2 | a3) and the empty
string denoted by 0 serving as the identity;

−−− 2-cells permutations; namely, each arrow a0 | a1 | . . . | an−1 is the
source of n! 2-cells determined by the permutations ϕ : n → n, where
n = {0, 2, . . . , n− 1}. Each such ϕ determines a 2-cell

ϕa0,a1,...,an−1
: a0 | a1 | · · · | an−1 ⇒ aϕ−1(0) | aϕ−1(1) | · · · | aϕ−1(n−1).

For clarity we will usually leave out the subscripts. So, for example,
there are two 2-cells a | a ⇒ a | a: the identity, and the permuta-
tion that “swaps” the two as. Vertical composition is via composi-
tion of permutations, horizontal composition is via juxtaposition, i.e.
for ϕ : m → m and ψ : n → n, we define ψϕ : m + n → m + n by
(ψϕ)(i) = ϕ(i) for i < m and (ψϕ)(i) = m+ ψ(i−m) for i ≥ m.

It should be clear to the reader that p ≡ q iff there exists a 2-cell α : p⇒ q.

Our second example of a G-category concerns concrete bunch contexts
introduced in Definition 2.2.5.

Definition 2.2.5 (Bun). The G-category of bunch contexts, Bun has:

1. objects: finite ordinals m0, m1, . . . ;

2. arrows: concrete bunch contexts c : m0 → m1;

3. 2-cells: isomorphisms of concrete bunch contexts.

Recall that there is a small problem with associativity; the naive formu-
lations of a two-dimensional category with objects ordinals, arrows concrete
bunch contexts and 2-cells bunch context isomorphisms actually yields a
bicategory. However, as mentioned in Remark 2.1.11, this problem is easily
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fixed by working in a category where the operation of coproduct is associa-
tive. We shall treat this in more detail in Chapter 4.

There is a functor (−)0 from the category G-Cat of of G-categories and 2-
functors to the category Cat of categories and functors2. Given a G-category
C, C0 is the category with the same objects as C, but arrows C → D are
equivalence classes [f ] of arrows f : C → D, where f and f ′ are in the same
equivalence class iff there exists α : f ⇒ f ′. Composition in C0 is defined
by letting [g][f ] = [gf ]. It is easy to check that the composition operator is
well-defined, if α′ : g′ ⇒ g and α : f ′ ⇒ f then (α′f) • (g′α) : g′f ′ ⇒ gf . It
is easy to check that the identity and associativity laws hold.

A 2-functor F : C → D is taken to the functor F0 : C0 → D0 which
acts as F on objects, but sends [f ] : C → D to [Ff ] : FC → FD. This
is well defined because 2-functors respect 2-structure, that is if α : f ′ ⇒ f
then Fα : Ff ′ ⇒ Ff ′.

As an example, applying the functor (−)0 to the G-category Bun of
Definition 2.2.5 yields the category Bun0 of Definition 2.1.13.

G-reactive systems and GRPOs. We can generalise the notion of re-
active system (Definition 2.1.1) to the setting of G-categories.

Definition 2.2.6 (G-reactive system). A G-reactive system C consists
of

1. a G-category C,

2. a collection D of arrows of C which shall be referred to as the re-
active contexts; it is required to be closed under 2-cells and reflect
composition,

3. a distinguished object 0 ∈ C,

4. a set of pairs R ⊆
⋃
C∈C

C(0, C)×C(0, C) called the reaction rules.

The reactive contexts are those contexts inside which evaluation may
occur. By composition-reflecting we mean that dd′ ∈ D implies d ∈ D and
d′ ∈ D, while the closure property means that given d ∈ D and α : d ⇒ d′

in C implies d′ ∈ D. The reaction relation ⊲ is defined by taking

a ⊲ a′ if there exists 〈l, r〉 ∈ R, d ∈ D and α : dl⇒ a, α′ : a′ ⇒ dr

2In fact, (−)0 is a 2-functor from the 2-category G-Cat of G-categories, 2-functors and
pseudo-natural transformations to the 2-category Cat of categories, functors and natural
transformations.
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As illustrated by the diagram below, this represents the fact that, up to
structural congruence (as witnessed by α), a is the left-hand side l of a
reaction rule in a reactive context d, while a′ is, up to structural congruence
(witness α′), the corresponding right-hand side r of the reaction rule in the
reactive context d.

0

l
��

a

&&MMMMMMMMMMMM

C

α 4<qqqqq
qqqqq

d
// C ′

0

r
��

a′

&&MMMMMMMMMMMM

C

α′ 4<qqqqq
qqqqq

d
// C ′

The set R of reaction rules is, therefore, a set of base rules with which
one generates the reaction relation ⊲ by closure under suitable contexts.
For pragmatic reasons, we choose not to stipulate that R is to be closed
under structural congruence; that is, in our formalism, under 2-cells. More
precisely, we do not require that 〈l′, r′〉 ∈ R if there exist 〈l, r〉 ∈ R and
2-cells α : l⇒ l′, β : r ⇒ r′. Indeed, modern process calculi often have very
simple reaction rules and the closure under structural congruence comes
at the point of defining the reaction relation. For example, the standard
textbook definition of CCS [72] lists the single reaction rule, for each name
a, without listing, additionally, all

a.P + P ′ | a.Q+Q′ ⊲P | Q

of its structurally congruent variants. It is easy to check that, if we did
choose to impose this condition (R closed under 2-cells) then the reaction
relation ⊲ , as well as the canonical labelled transition system (Defini-
tion 2.2.16) would remain unchanged.

There is a canonical way of getting from a G-reactive system to a reac-
tive system, via a canonical way of getting from a G-category to a category
- the functor (−)0. Intuitively, this involves quotienting all arrows by iso-
morphism. From a process calculus point of view, this means quotienting
the set of terms and contexts by structural congruence.

Definition 2.2.7 (G-reactive systems to reactive systems). Given a
G-reactive system C with underlying G-category C, reactive contexts D and
reaction rules R, let C0 denote the reactive system with underlying category
C0, reactive contexts D0 and reaction rules R0 = { 〈[l], [r]〉 | 〈l, r〉 ∈ R}

This translation preserves the relevant structure of reactive systems,
namely the reaction relation.
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Lemma 2.2.8. Suppose that C is a G-reactive system. Then

a ⊲ a′ in C iff [a] ⊲ [a′] in C0

Proof. If a ⊲ a′ in C then there exists 〈l, r〉, d ∈ D and α : dl ⇒ a,
α′ : a′ ⇒ dr, then we have 〈[l], [r]〉 ∈ R0, [d] ∈ D and [a] = [dl] = [d][l],
[a′] = [dr] = [d][r] which gives [a] ⊲ [a′] in C0.

On the other hand, if [a] ⊲ [a′] in C0 then [a] = [d][l] and [a′] = [d][r]
for some 〈[l], [r]〉 ∈ R0, and [d] ∈ D0. Then, we have β : dl ⇒ a and
β′ : a′ ⇒ dr for some β and β′. By the closure property on D, we can
conclude that d ∈ D. By the definition of R0 we know that there exist
〈l′, r′〉 ∈ R such that γ : l′ ⇒ l and γ′ : r ⇒ r′ for some γ and γ′. Now
β • dγ : dl′ ⇒ a and dγ′ •β′ : a′ ⇒ dr′ which gives a ⊲ a′.

We shall now present a generalisation of the notion of RPO to G-categories.

Definition 2.2.9 (GRPO). Let C be a G-category. A candidate for
square (i) below

I4

I2

c
??������
α +3 I3

d
__??????

I1

a

__?????? b

??������

(i)

γ
@@@@

�#
@@@@

I4

I2

c
11

e //

β
+3

I5

δ~~~~

;C
~~~~g

OO

I3foo

d
mm

I1

a

__?????? b

??������

(ii)

ϕ
@@@@

�#
@@@@

I6

I2

e′
11

e // I5

ψ~~~~

;C
~~~~h

OO

I3foo

f ′mm

(iii)

I4

I6

g′ 11

τkkkk
19kkkk

I5h
oo

g

OO

(iv)

is a tuple 〈I5, e, f, g, β, γ, δ〉 such that δb • gβ • γa = α. In other words, the
2-cells γ, β and δ, illustrated in diagram (ii), paste together to give α.

A groupoidal-relative-pushout (GRPO) for (i) is a candidate which satis-
fies a universal property, namely, for any other candidate as specified below,

〈I6, e
′ : I2 → I6, f

′ : I3 → I6, g
′ : I6 → I4,

β′ : e′a⇒ f ′b, γ′ : c⇒ g′e′, δ′ : g′f ′ ⇒ d〉

there exists a mediating morphism: a quadruple

〈
h : I5 → I6, ϕ : e′ ⇒ he, ψ : hf ⇒ f ′, τ : g′h′ ⇒ g

〉

illustrated in diagrams (iii) and (iv). The equations that need to be satisfied
are:
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1. τe • g′ϕ • γ′ = γ ;

2. δ′ • g′ψ • τ−1f = δ;

3. ψb • hβ •ϕa = β′.

Such a mediating morphism must be essentially unique, namely, for any
other mediating morphism 〈h′, ϕ′, ψ′, τ ′〉 there must exist a unique 2-cell
ξ : h⇒ h′ which makes the two mediating morphisms compatible, i.e.:

1. ξe •ϕ = ϕ′;

2. ψ • ξ−1f = ψ′;

3. τ ′ • g′ξ = τ .

We shall sometimes refer to such ξ as a modification between two mediating
morphisms.

Observe that whereas RPOs are defined up to isomorphism, GRPOs,
since they are certain bicolimits (see Section 3.1), are defined up to equiv-
alence. It is easy to show that GRPOs directly generalise RPOs: if one
considers a category as a discrete 2-category (the only 2-cells are identities)
then a GRPO is an RPO.

Lemma 2.2.10 (GRPOs in MΣ). The 2-category MΣ of Example 2.2.4
has GRPOs.

We shall delay a proof of Lemma 2.2.10 to Chapter 4. Instead, we shall
now present the central concept of GIPO and show a simple characterisation
of GIPOs in MΣ.

Definition 2.2.11 (GIPO). Diagram (i) of Definition 2.2.9 is said to be
a G-idem-pushout (GIPO) if 〈I4, c, d, idI4, α, 1c, 1d〉 is its GRPO.

Lemma 2.2.12 (Characterisation of GIPOs in MΣ). A diagram

•

• α +3

v
??~~~~~~

•

w
__@@@@@@

•
t

__@@@@@@ u

??~~~~~~

in the 2-category MΣ of Example 2.2.4 is a GIPO iff condition

α(i+ |t|) < |u| for all 0 ≤ i < |v| (2.4)

is satisfied.
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Proof. Suppose that condition (2.4) is satisfied and that diagram (i) below

γ
@@@@

�$
@@@@

•

•

v
11

x //

β
+3

•

δ~~~~

:B
~~~~z

OO

•yoo

w
mm

•
t

__@@@@@@@@ u

??~~~~~~~~

(i)

γ
@@@@

�$
@@@@

•

•

v
11

cvk
//

β
+3

•
δiiii iiii

08iii iii
vk

OO

•̂wαk−|u|
oo

w
oo

•
t

__@@@@@@@@ u

88ppppppppppppp

(ii)

is a candidate. It is easy to see that g = 0, if this wasn’t the case then
α(γ−1(|x| + 1) + |t|) ≥ |u|, which contradicts condition (2.4). Then the
components of

〈
0, γ−1, δ−1, id

〉
form a mediating morphism. This mediat-

ing morphism is unique (since there is only one automorphism 0 → 0) and
therefore essentially unique.

On the other hand, suppose that the condition doesn’t hold, namely,
there exists 0 ≤ k < |v| such that α(k + |t|) ≥ |u|. Here we introduce
some notation, for an arrow w of MΣ and 0 ≤ l < |w| we let ŵl denote
w0 | . . . | wl−1 | wl+1 | . . . | w|w|. Consider diagram (ii) where β, γ and
δ are defined in the obvious way so that they compose to give α. Clearly〈
v̂k, ŵαk−|u|, vk, β, γ, δ

〉
is a non-trivial candidate, which means that the

exterior is not a GIPO.

Example 2.2.13. Consider the category MΣ from Example 2.2.4 and the
problem of RPOs not giving “enough” smallest contexts in Example 2.2.1.
By remembering the position of the redex in the composite term with the
help of 2-cells, the first three of the following diagrams

•

• id +3
0 ??~~~

•

0__@@@

•a|a

__@@@
a|a

??~~~

•

• α +3
a ??~~~

•

a__@@@

•a|a

__@@@
a|a

??~~~

•

•
β +3

a ??~~~
•

a__@@@

•a|a

__@@@
a|a

??~~~

•

•
γ +3

a|b ??~~~
•

a|b__@@@

•a|a

__@@@
a|a

??~~~

•

• δ +3

a|a ??~~~
•

a|a__@@@

•a|a

__@@@
a|a

??~~~

where α(0) = 2, α(1) = 1 and α(2) = 0, and β(0) = 0, β(1) = 2 and β(2) = 1
are GIPOs. Informally, the two copies of a and a are swapped, respectively,
in the second and third diagram. One can check that the diagrams are
GIPOs by using the characterisation of GIPOs given in Lemma 2.2.12.

On the other hand, one may also use the characterisation to show that
for any b 6= a, a and any γ, the fourth diagram cannot be a GIPO as either
b or a | b can be factored out.
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The final diagram is a GIPO if we take δ(0) = 2, δ(1) = 3, δ(2) = 0
and δ(3) = 1. That is, the entire redex is given by the context with our
term playing no part in the reduction. Such contexts clearly do not give any
information about the term, and thus should be avoided. Jensen and Milner,
in their report on bigraphs [46], refer to such transitions as not engaged. We
conjecture that adding a tensor product structure on the category of contexts
would allow one to characterise such labels in a general way and thus allow
one to avoid them. However, it is clear that such labels do not change the
congruence because every term is equipped with them. We plan to pursue
this problem in more detail as future work.

Recall from Example 2.2.2 that RPOs do not exist in the category Bun0

of abstract bunches. On the other hand, GRPOs do exist in the G-category
Bun. The general construction is beyond the scope of this chapter and shall
be presented in Chapter 4.

Labelled transition systems. We are now ready to define a labelled
transition system generated with help of GRPOs.

Definition 2.2.14 (Concrete lts). For C a reactive system whose under-
lying category C is a G-category, define CTS(C) as follows:

−−− the states CTS(C) are arrows a : 0 → I2 in C, where I2 is arbitrary
and not fixed;

−−− there is a transition a
f

◮ a′ iff there exists 〈l, r〉 ∈ R, d ∈ D and a
2-cell α : fa ⇒ dl such that the redex square below is a GIPO and
a′ = dr.

I4

I2
α +3

f ??�����
I3

d
__?????

0
a

``AAAAA l

>>}}}}}

The labelled transition system of Definition 2.2.14 is not satisfactory
because the states and the labels are not quotiented by isomorphism. For
reasoning purposes it is more useful to consider an abstract lts, this is the
usual case in process calculi where terms in the lts are assumed to be taken
up to structural congruence. Thus the states of the final lts should be taken
up to isomorphism, since intuitively, structurally congruent terms should
allow the same interactions with the environment. Similarly, intuition tells
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us that isomorphic contexts provide “the same” information for the term
in order to interact, thus it is an overkill to allow two isomorphic labels.
This intuition is supported by the theory of GIPOs, as demonstrated by
Lemma 2.2.15

Lemma 2.2.15. Suppose that diagram (i) below is a GIPO and than
ǫ : a′ ⇒ a, ǫ′ : d⇒ d′ are isomorphisms.

I4

I2
α +3

c
??������

I3

d
__??????

I1

a

__?????? b

??������

(i)

I4

I2
α

(0ZZZZZZZZ
ZZZZZZZZ

c
??������

I3

d
__??????

I1

ǫ :B~~~ ~~~

a′

RR a

mm

b

??������

(ii)

I4

I2

ǫ′ :B~~~
~~~

α
(0ZZZZZZZZ

ZZZZZZZZ

c
??������

I3
d

RR d′
mm

I1

a

__?????? b

??������

(iii)

Then:

1. the exterior of diagram (ii) is a GIPO;

2. the exterior of diagram (iii) is a GIPO.

Proof. (1). Suppose that C, as defined below, is a candidate for the exterior
of diagram (ii).

C =
〈
I5, e, f, g, β : ea′ ⇒ fb, γ : c⇒ ge, δ : gf ⇒ d

〉

Then by definition we have that δb • gβ • γa′ = α • cǫ, and thus

α = δb • gβ • γa′ • cǫ−1 = δb • gβ • geǫ−1
• γa′ = δb • g(β • eǫ−1) • γa′

which means that C ′ =
〈
I5, e, f, g, β • eǫ−1, γ, δ

〉
is a candidate for dia-

gram (i). We obtain a mediating morphism

〈h : I4 → I5, ϕ : e⇒ hc, ψ : hd⇒ f, τ : gh⇒ idI4〉 (∗)

between 〈I4, c, d, idI4, α, 1c, 1d〉 and C ′. In particular,

τc • gϕ • γ = 1c, δ • gψ • τ−1d = 1d and ψb • hα •ϕa = β • eǫ−1.

If we precompose the arrow described by the last equation with eǫ−1 and use
the middle-four interchange, we obtain ψb • h(α • cǫ) •ϕa = β, which means
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that (∗) is also a mediating morphism between 〈I4, c, d, idI4 , α • cǫ, 1c, 1d〉
and C. Conversely, any such mediating morphism translates into a medi-
ating morphism between 〈I4, c, d, idI4, α, 1c, 1d〉 and C ′, and thus essential
uniqueness follows.

(2). If 〈I5, e, f, g, β : ea⇒ fb, γ : c⇒ ge, δ : gf ⇒ d′〉 is a candidate
for the exterior of diagram (iii), then δb • gβ • γa = ǫ′b •α and by simple
rearranging it follows that (ǫ′−1 • δ)b • gβ • γa = α which in turn means that〈
I5, e, f, g, β, γ, ǫ

′−1 • δ
〉

is a candidate for (i). Hence there is a mediating
morphism

〈h : I4 → I5, ϕ : e⇒ hc, ψ : hd⇒ f, τ : gh⇒ idI4〉

satisfying

τc • gϕ • γ = 1c, (ǫ′−1
• δ) • gψ • τ−1d = 1d and ψb • hα •ϕa = β.

The second equation transforms to δ • g(ψ • hǫ′−1) • τ−1d′ = 1d′ and it follows
that

〈
h, ϕ, ψ •hǫ′−1, τ

〉
is a mediating morphism for the region. Essential

uniqueness follows for the same reason as in case (1).

We shall now introduce the definition of the abstract labelled transi-
tion systems. Here, the states as well as the transitions are quotiented by
structural congruence. This reduces the size of the labelled transition sys-
tem and is the usual procedure in the theory or process calculi. Intuitively,
the 2-dimensional information, while crucial in order to determine where
the redex is in the term for an individual interaction, is not important when
considering all the possible interactions, which is the function of the labelled
transition system.

Definition 2.2.16 gives the definition of the abstract labelled transi-
tion system. The central result about the abstract transition system is
Lemma 2.2.17, which utilises the conclusions of Lemma 2.2.15 to show that
we retain the elegant characterisation of labels in terms of GIPOs, as in
Definition 2.2.14.

Definition 2.2.16 (Abstract lts). For C a reactive system whose under-
lying category C is a G-category, define ATS(C) as follows:

−−− the states ATS(C) are iso-classes of arrows [a] : 0→ I2 in C, where I2
is arbitrary and not fixed;

−−− there is a transition [a]
[f ]

◮ [a′] if there exists a transition a
f

◮ a′ in
CTS(C).
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Lemma 2.2.17. There is a transition [a]
[f ]

◮ [a′] in ATS(C) if and only if
there exists 〈l, r〉 ∈ R, d ∈ D and a 2-cell α : fa⇒ dl such that

I4

I2
α +3

f ??�����
I3

d
__?????

0
a

``AAAAA l

>>}}}}}

is a GIPO and a′ ∼= dr.

Proof. The “if” part is easy, if the diagram is a GIPO then a
f

◮ dr in

CTS(C) and so [a]
[f ]

◮ [dr] in ATS(C). But a′ ∼= dr which means that

[a′] = [dr] and so [a]
[f ]

◮ [a′].

Suppose that [a]
[f ]

◮ [a′]. Then, for some a′′ ∼= a, f ′ ∼= f and a′′′ ∼=

a′ (∗) we have a′′
f ′

◮ a′′′. Then there exists 〈l, r〉R, d ∈ D and a 2-cell
α′ : f ′a′′ ⇒ dl such that diagram (i) below

I4

I2

f ′ ??�����
α′

+3 I3

d
__?????

I1
a′′

__?????
l

??�����

(i)

I4

I2
α′

+3

f
33

f ′

KK???? �#ǫ
′

I3

d
__?????

I1
a

SS a′′
kk

����
;Cǫ

l

??�����

(ii)

is a GIPO and a′′′ = dr (∗∗). Let ǫ : a ⇒ a′′ and ǫ′ : f ⇒ f ′ be arbitrary
isomorphisms, and let α = α′ • ǫ′a′′ • fǫ, illustrated in diagram (ii). Using
the two parts of Lemma 2.2.15 allows us to conclude that diagram (ii) is a
GIPO, and (∗) together with (∗∗) give us a′ ∼= dr, as required.

As a companion to the previous lemma, we state a way of relating the
transitions of the concrete and the abstract labelled transition systems.

Lemma 2.2.18. If there is a transition [a]
[f ]

◮ [a′] in ATS(C) then there

exists a′′ such that a′′ ∼= a′ and a transition a
f

◮ a′′ in CTS(C).

Proof. The if direction is trivial and follows from the definition of the ab-
stract labelled transition system.

If [a]
[f ]

◮ [a′], using Lemma 2.2.17 we obtain a redex square which im-

plies that a
f

◮ dr and a′ ∼= dr.
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2.2.3 Composition and decomposition

In order to show the good behaviour of the labelled transition system of
Definition 2.2.16 we shall need to develop the theory of GRPOs and GIPOs
further. In this section we state the main technical results needed for the
congruence theorems in this chapter. We defer the proofs until Chapter 3.

The following lemma explains the relationship between GIPOs and GR-
POs.

Lemma 2.2.19 (GRPOs are GIPOs; GIPOs are GRPOs). Given
diagrams (i), (ii) and (iii)

I5

I2

c′
??������
α′

+3 I3

d′
__??????

I1

a

__?????? b

??������

(i)

η
@@@@

�#
@@@@

I5

I2

c′
11

c //

α
+3

I4

µ~~~~

;C~~~~u

OO

I3doo

d′
mm

I1

a

__?????? b

??������

(ii)

I4

I2

c
??������
α +3 I3

d
__??????

I1

a

__?????? b

??������

(iii)

in an arbitrary G-category, the following hold:

1. (GRPOs to GIPOs) if (2.5)

〈
I4, c, d, u, α : ca⇒ db, η : c′ ⇒ uc, µ : ud⇒ d′

〉
(2.5)

is a GRPO for diagram (i), as illustrated in diagram (ii), then dia-
gram (iii) is a GIPO;

2. (GIPOs to GRPOs) if diagram (iii) is a GIPO, diagram (i) has a
GRPO, and (2.5) is a candidate for it as shown in diagram (ii),
then (2.5) is a GRPO for diagram (i).

The following lemma states that, if the underlying category has GRPOs
then GIPOs behave somewhat like ordinary pushouts (see Lemma 1.3.2).
The lemma generalises Lemma 2.1.29.

Lemma 2.2.20 (Composition and decomposition). Suppose that dia-
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gram (i) below has a GRPO. Then:

I6

I2
gα •σa +3

fe
??������

I3

gd
__??????

I1

a

__?????? b

??������

(i)

I6

I4

f
??������
σ +3 I5

g
__??????

I2

e

__??????
α +3

c���

??���

I3

d
__??????

I1

a

__?????? b

??������

(ii)

I6

I4
gα •σa +3

f
??������

I3

gd
__??????

I1

ea

__?????? b

??������

(iii)

1. if both squares in diagram (ii) are GIPOs then the exterior (dia-
gram (iii)) is also a GIPO;

2. if the lower square and the exterior (diagram (iii)) of diagram (ii) are
GIPOs then so is the upper square.

2.3 Congruence theorems

In this section we formulate and prove our central Theorem 2.3.6 which
states that bisimilarity on the labelled transition system derived using the
procedure outlined in Definition 2.2.16 is a congruence, provided that suf-
ficient GRPOs exist. Following a proof strategy similar to that of [64], the
proof depends on Lemmas 2.2.19 and 2.2.20.

The following notion is the only assumption made on the reactive system
considered in order to prove the congruence theorems.

Definition 2.3.1 (Redex GRPOs). A G-reactive system C is said to have
redex GRPOs if in its underlying G-category C there exist GRPOs for all
redex squares (Definition 2.1.24). Recall that a redex square is a diagram

I4

I2

f
??������
α +3 I3

d
__??????

0

a

``@@@@@@@ l

>>~~~~~~~

where l is the left-hand side of a reaction rule 〈l, r〉 ∈ R, and d ∈ D and f ,
a and α are arbitrary.
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Example 2.3.2. Recall that in Example 2.2.13 we showed that MΣ of
Example 2.2.4 has all GRPOs. In particular, this implies that MΣ has
redex GRPOs for any choice of R.

Observe that this means that there exists a GRPO for each possible
interaction between a term and a context. We are therefore able to determine
a ‘smallest’ label f to capture each of them in ATS(C).

In addition to proving that bisimilarity is a congruence in §2.3.1, we
shall show that the trace and failures preorders are compositional in §2.3.2
and §2.3.3.

2.3.1 Bisimilarity

We first observe that it is enough to prove that bisimilarity is a congruence
on the concrete lts of Definition 2.2.14. In this section we assume that C is
an arbitrary reactive system.

Definition 2.3.3. Recall that bisimilarity refers to the largest bisimulation
relation. We shall refer to bisimilarity on the concrete labelled transition
system CTS(C) as concrete bisimilarity and denote it by ∼c.

Bisimilarity on the abstract labelled transition system ATS(C) shall be
referred to as abstract bisimilarity or simply bisimilarity. It shall be denoted
by ∼.

First, we shall show that structurally congruent terms are bisimilar over
CTS(C).

Lemma 2.3.4. If a ∼= b then a ∼c b.

Proof. It suffices to show that

{ (a, b) | a ∼= b }

is a bisimulation. Indeed, suppose that ǫ : b⇒ a is an isomorphism and there

is a transition a
f

◮ a′, then there exists a GIPO, illustrated in diagram (i)
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f ??�����
I3

d
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0
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(ii)
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where 〈l, r〉 ∈ R, d ∈ D and a′ = dr. But then, using the conclusion

of Lemma 2.2.15, diagram (ii) is also a GIPO and thus b
f

◮ a′. Clearly
a′ ∼= a′ and we are finished.

The following lemma relates the two bisimilarities.

Lemma 2.3.5.

a ∼c b iff [a] ∼ [b]

Proof. The proof is very simple because of the similarity of the label deriva-
tion procedures of Definitions 2.2.14 and the characterisation of the labels
of the abstract transition system of Lemma 2.2.17.

First we shall show the “only if” part, that is a ∼c b implies [a] ∼ [b]. It
suffices to show that

S = { 〈[a], [b]〉 | a ∼c b }

is a bisimulation over ATS(C). Indeed, suppose that [a]
[f ]

◮ [a′]. Using

the conclusion of Lemma 2.2.18, there exists a′′ such that a
f

◮ a′′ and
a′ ∼= a′′ in CTS(C). Using Lemma 2.3.4, a′ ∼c a

′′ (∗). Using a ∼c b we get

b
f

◮ b′ with a′′ ∼c b
′ (∗∗). By definition there is a transition [b]

[f ]
◮ [b′]

But ([a′], [b′]) ∈ S since (∗) and (∗∗) hold and bisimilarity is transitive.

The “if” part of the proof is similar. Indeed, it suffices to prove that

S′ = { 〈a, b〉 | [a] ∼ [b] }

is a bisimulation on CTS(C). Suppose that a
f

◮ a′, then [a]
[f ]

◮ [a′],

and therefore, [b]
[f ]

◮ [b′] such that [a′] ∼ [b′] (∗). Using the conclusion of

Lemma 2.2.18, there exists b′′ such that b′ ∼= b′′ and b
f

◮ b′′. Then [b′] =
[b′′] and using (∗) we obtain [a′] ∼ [b′′] which means that 〈a′, b′′〉 ∈ S′.

The close correspondence between bisimilarities on the concrete transi-
tion system and and the abstract transition system shall be useful in order
to prove the congruence theorem for bisimilarity. In particular, it is enough
to prove the theorem for concrete bisimilarity, the congruence of abstract
bisimilarity follows as an easy corollary.

Theorem 2.3.6. Let C be a reactive system whose underlying G-category
C has redex GRPOs. Then bisimilarity ∼ on CTS(C) is a congruence.
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Proof. It suffices to show that

S = { 〈u, v〉 | u ∼= ca, v ∼= cb, c in C and a ∼c b }

is a bisimulation. Suppose that a ∼c b, ǫ : u⇒ ca and u
f

◮ a′. Then
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0
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(iii)

there exists 〈l, r〉 ∈ R, d : I3 → I6 and α • fǫ : fu⇒ dl such that the exterior
of diagram (i) is a GIPO and a′ = dr. Using the first part of Lemma 2.2.15
we obtain that also the rectangle of diagram (i) is a GIPO. Since C has
redex-GRPOs, there exists a GRPO

〈
I5, g, d

′, d′′, β : ga⇒ d′l, γ : fc⇒ d′′g, δ : d′′d′ ⇒ d
〉

as shown in diagram (ii). By the first part of Lemma 2.2.19, the lower
square in diagram (ii) is a GIPO.

Thus a
g

◮ d′r, and since a ∼c b, b
g

◮ b′ where b′ ∼c d
′r. By def-

inition, there is a pair 〈l′, r′〉 ∈ R, an arrow e : I3 → I5 and a two-cell
β′ : gb⇒ el′ so that the lower square of diagram (iii) is a GIPO and b′ = er′.

The second part of Lemma 2.2.15 implies that the composite of the two
squares in diagram (ii) is a GIPO and therefore, since the lower square is
also a GIPO, applying part 2 of Lemma 2.2.20 allows us to conclude that
the upper square is a GIPO. Since we have deduced that both the squares
in diagram (iii) are GIPOs, part 1 of Lemma 2.2.20 ensures that the entire

region is a GIPO and therefore cb
f

◮ d′′er′. Since d′r ∼c er
′ and d′′d′r ∼= dr

we conclude that 〈dr, d′′er′〉 ∈ S, which finishes the proof.

The following easy corollary is the central result of this chapter.

Corollary 2.3.7. Abstract bisimilarity ∼ on ATS(C) is a congruence.
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Proof. Suppose that [a] ∼ [b]. First, by Lemma 2.3.5 a ∼c b. By Theo-
rem 2.3.6, ca ∼c cb, for any context c, and finally, again using Lemma 2.3.5,
[ca] ∼ [cb].

The next two subsections complement this result by proving congruence
theorems for trace and failure equivalence. Theorems and proofs in this
section follow closely those for RPOs [64].

2.3.2 Traces preorder

Trace semantics [86] is a simple notion of equivalence which equates pro-
cesses if they can engage in the same sequences of actions. Even though
it lacks the fine discriminating power of branching time equivalences, such
as bisimilarity, it is nevertheless interesting because many safety properties
can be expressed as conditions on sets of traces.

We say that a sequence f1 · · · fn of labels of a labelled transition system
is a trace of a state a if

a
f1 ◮ a1 · · · an

fn ◮ an+1

for some states a1, . . . , an+1. We shall also use the notation a
f1···fn◮an+1

as abbreviation for such a sequence of transitions. The trace preorder .tr

is then defined as follows: a .tr b if all traces of a are also traces of b.

We say that a preorder is a congruence if a .tr b implies that ca .tr cb
for all contexts c. Some authors refer to this property as precongruence and
reserve the term congruence for the contextual property of an equivalence
relation. We shall prove that .tr is a congruence in on both the concrete
and the abstract lts. Alternatively to the way we dealt with bisimilarity,
we first prove the congruence theorem for the abstract lts (Theorem 2.3.8)
– the result for the concrete lts follows as Corollary 2.3.11.

Theorem 2.3.8 (Trace congruence). .tr is a congruence on ATS(C).

Proof. Assume [a] .tr [b]. We shall prove that [ca] .tr [cb] for all contexts
[c] ∈ C. Suppose that [ca] has a trace [f1] · · · [fn]. Letting ā1 = ca, we have

[ā1]
[f1]◮ [ā2] · · · [ān]

[fn]
◮ [ān+1].

for some ā2, . . . , ān+1.
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We shall first show that, for i = 1, . . . , n, there exists a sequence of
reaction rules 〈li, ri〉 ∈ R, diagrams (i) and (ii)

Ii,6

Ii,4

fi
??������

Ii,2

ci

__>>>>>>
αi +3
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di

__>>>>>>>>>>>>>>>>
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0

āi
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^^======
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^^===

0
bi

__??????? l′i

??������

(iii)

where a1 = a, c1 = c, āi ∼= ciai, ci+1 = d′′i , ai+1 = d′iri and each
square of diagrams (i) and (ii) is a GIPO. The ith induction step proceeds

as follows. Since [āi]
[fi]◮ [āi+1], using Lemma 2.2.17 implies that there

exists 〈li, ri〉 ∈ R, α′
i : fiāi ⇒ dili, for some 〈li, ri〉 ∈ R and di ∈ D, with

āi+1
∼= diri and the resulting redex square a GIPO. Since āi ∼= ciai, we

can write α′
i = αi • fiǫi for some αi : ficiai ⇒ dili and ǫi : āi ⇒ ciai (see

diagram (i)). Moreover, using the first part of Lemma 2.2.15, the interior
redex square is a GIPO.

Since C has redex GRPOs (Definition 2.3.1), using the procedure de-
scribed in the proof of Theorem 2.3.6 this can be split in two GIPOs:
βi : giai ⇒ d′ili and γi : fici ⇒ d′′i gi with δi : d′′i d

′
i ⇒ di, as illustrated in

diagram (ii). Now āi+1
∼= diri ∼= d′′i d

′
iri = ci+1ai+1 and so the induction

hypothesis is maintained.

We obtain a trace

[a] = [a1]
[g1]◮ [a2] · · · [an]

[gn]
◮ [an+1]

and, by assumption, a .tr b must be matched by a corresponding trace of
b. This means that, for i = 1, . . . , n, there exist GIPOs β′i : gibi ⇒ eil

′
i,

for some 〈l′i, r
′
i〉 ∈ R and ei ∈ D, once we take bi+1

∼= eir
′
i. We can then

paste each of such GIPOs together with the corresponding γi : fici ⇒ d′′i gi
obtained before, as illustrated in diagram (iii). Now using the first part of
Lemma 2.2.20, we conclude that there exist GIPOs ficibi ⇒ d′′i eil

′
i, which

means that [cibi]
[fi]◮ [d′′i eir

′
i]. As [cb] = [c1b1], in order to construct a trace

[cb] = [b̄1]
[f1]

◮ · · ·
[fn]

◮ [̄bn+1] and complete the proof, we only need to
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verify that for i = 1, . . . , n, we have that d′′i eir
′
i
∼= ci+1bi+1. This follows at

once, as ci+1
∼= d′′i and bi+1

∼= eir
′
i.

Before we show that .tr is also a congruence on CTS(C), it shall be
convenient to extend the conclusion of Lemma 2.2.18 to traces.

Lemma 2.3.9. If [a]
[f1]···[fn]

◮ [a′] in ATS(C) then there exists a′′ such that

a′ ∼= a′′ and a
f1···fn◮ a′′ in CTS(C).

Proof. Easy induction on the length of trace. For n = 1, the result follows
after an application of Lemma 2.2.18. Assuming that the result holds for all

1 ≤ k < n, we have [a]
[f1]···[fn−1]

◮ [an]
[fn]

◮ [an+1] and using the induction

hypothesis, a
f1···fn−1◮ a′n such that an ∼= a′n. Then [an] = [a′n] and so

[a′n]
[fn]

◮ [an+1]; using Lemma 2.2.18 yields a′n
fn ◮ a′n+1 such that a′n+1

∼=
an+1.

We can now relate the abstract and the concrete trace preorders.

Lemma 2.3.10.

a .tr b iff [a] .tr [b]

Proof. If a .tr b and [a] has a trace [f1] · · · [fn] then using Lemma 2.3.9
allows us to conclude that a has a trace f1 · · · fn. By assumption, b has a
trace f1 · · · fn and by the definition of the abstract transition system, [b] has
a trace [f1] · · · [fn] and thus [a] .tr [b].

If [a] .tr [b] and a has a trace f1 · · · fn then [a] has a trace [f1] · · · [fn],
by assumption [b] has a trace [f1] · · · [fn] and using Lemma 2.3.9, b has a
trace f1 · · · fn; we conclude that a .tr b.

Corollary 2.3.11. Trace preorder .tr is a congruence on CTS(C).

Proof. Suppose that a .tr b, then using Lemma 2.3.10 yields [a] .tr [b]
and by Theorem 2.3.8, [ca] .tr [cb] for any c. Suppose that ca has a trace
f1 · · · fn. Then [ca] has a trace [f1] · · · [fn]. Using the fact that [ca] .tr [cb],
[cb] has a trace [f1] · · · [fn] and using Lemma 2.3.9, cb has a trace f1 · · · fn.
Since the trace f1 · · · fn was arbitrary, this means that ca .tr cb.

2.3.3 Failures preorder

Failure semantics [42] enhances trace semantics with limited branch-inspecting
power. More precisely, failure sets allow to test when processes do not have
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the capability of engaging in certain actions after performing any particular
trace.

Formally, for a a state of a labelled transition system over a reactive
system, a failure of a is a pair 〈f1 · · · fn, X〉, where f1 · · · fn and X are
respectively a nonempty sequence and a set of labels, such that:

−−− f1 · · · fn is a trace of a, a
f1 ◮ · · ·

fn ◮ an+1;

−−− an+1, the final state of the trace, is stable, i.e. an+1 6 ⊲ ;

−−− an+1 refuses X, i.e. an+1 6
x ◮ for all x ∈ X.

The failure preorder .f is defined as a .f b if all failures of a are also failures
of b.

As we did with the trace preorder, we shall prove that the failures pre-
order is a congruence on the abstract labelled transition system ATS(C)
and use it derive that it is a congruence on the concrete labelled transition
system CTS(C) as a corollary.

If X is some set of contexts of a G-reactive system C, let [X] = { [x] |
x ∈ X } be the corresponding set of isomorphism classes of contexts in the
underlying reactive system C0 (see Definition 2.2.7).

Theorem 2.3.12 (Failures congruence). .f is a congruence.

Proof. Assume [a] .f [b]; we shall prove that [ca] .f [cb] for all contexts
c ∈ C. The following proof extends the proof of Theorem 2.3.8.

Let 〈[f1] · · · [fn], [X]〉, n > 0, be a failure of [ca]. Thus starting with such
a failure

[ca]
[f1]◮ [ā2] · · · [ān]

[fn]
◮ [ān+1]

we proceed exactly as in the proof of Theorem 2.3.8 to obtain a trace [a] =

[a1]
[g1]◮ [a2] · · · [an]

[gn]
◮ [an+1].

First, we claim that [an+1] is stable. In fact, were it not, it would follow
from cn+1 ∈ D (which equals d′n) that also [ān+1] = [cn+1an+1] ⊲ . But
this is impossible, since [ān+1] is stable. Secondly, [an+1] refuses both

Y ={g | there exists a GIPO δg : xcn+1 ⇒ dg, for x ∈ X, d ∈ D} and

Z ={g | there exists a 2-cell ǫg : cn+1 ⇒ dg, for d ∈ D},

which can be seen as follows. If [an+1]
[g]

◮ for [g] ∈ [Y ], then there exists a
GIPO α : gan+1 ⇒ d′l, for some rule 〈l, r〉, which could be pasted together
with δg to yield, using the first part of Lemma 2.2.20, a GIPO xcn+1an+1 ⇒
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dd′l, which is impossible since it means that [ān+1]
[x]

◮ , for [x] ∈ [X].

Similarly, if [an+1]
[g]

◮ for [g] ∈ [Z], pasting the corresponding GIPO with
ǫg, we see that ān+1 ⊲ , contradicting the hypothesis that ān+1 is stable.

If follows from a .f b that there exists a trace [b1]
g1 ◮ [b2] · · · [bn]

gn ◮ [bn+1]
and that bn+1 is stable and refuses [Y ∪ Z]. It is then easy to complete the
proof by transferring stability and [X]-refusal to [b̄n+1]. First, suppose that
[b̄n+1] ⊲ . This means that there exists a 2-cell dl ⇒ b̄n+1. Since C

has redex-GRPOs, we can factor cn+1 out and obtain from this a GRPOs
α : gbn+1 ⇒ d′l together with a 2-cell d′′g ⇒ cn+1. But this would mean

that [bn+1]
[g]

◮ , for [g] ∈ [Z], which is a contradiction.

Suppose finally that [b̄n+1]
[x]

◮ , for [x] ∈ [X]. Again, by definition
of the transition relation, and exploiting the existence of redex-GRPOs, we

find GRPOs [xcn+1]⇒ [d′′g] and gbn+1 ⇒ d′l, which mean that [bn+1]
[g]

◮ ,
for [g] ∈ [Y ].

One should notice that our restriction to failures 〈[f1] . . . [fn], X〉 where
[f1] . . . [fn] is a nonempty trace is crucial for the proof to work. Indeed, the
proof relies on the fact that the final state, after performing the trace, is
of the form [cn+1an+1], where cn+1 is a reactive context. An empty trace
results in [ca] where c is arbitrary.

There is, again, a very close relation between the concrete and the ab-
stract versions of the failure preorder. We investigate this relationship by
proving Lemmas 2.3.13 and 2.3.14.

Lemma 2.3.13. 〈[f1] · · · [fn], [X]〉 is a failure of [a] iff 〈f1 · · · fn, X〉 is a
failure of a.

Proof. Suppose that 〈[f1] · · · [fn], [X]〉 is a failure of [a]. Let [a]
[f1]···[fn]

◮ [a′]

be a witness for the failure. Using Lemma 2.3.9, we get a a
f1···fn◮ a′′ such

that a′ ∼= a′′. It is easy to show that a′′ is stable and rejects any x′ such
that x′ ∼= x ∈ X. Similarly, if 〈f1 · · · fn, X〉 is a failure of a, with witness

a
f1···fn◮ a′ then [a]

[f1]···[fn]
◮ [a′] is a trace of [a]. It is easy to see that it is

stable and rejects any [x] ∈ [X].

Lemma 2.3.14.

a .f b iff [a] .f [b]

Proof. Suppose that a .f b and that 〈[f1] · · · [fn], [X]〉 is a failure of [a].
Using Lemma 2.3.13, 〈f1 · · · fn, X〉 is a failure of a, and by assumption, a
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failure of b; using Lemma 2.3.13 again, 〈[f1] · · · [fn], [X]〉 is a failure of [b].
The other direction is similar.

Corollary 2.3.15. Failures preorder .f on CTS(C) is a congruence.

Proof. Suppose that a .f b, then [a] .f [b] by Lemma 2.3.14. Suppose that
〈f1 · · · fn, X〉 is a failure of ca, for some c. Then, using Lemma 2.3.13 al-
lows us to derive 〈[f1] · · · [fn], [X]〉 as a failure of [ca]. Using Theorem 2.3.12,
〈[f1] · · · [fn], [X]〉 is a failure of [cb] and, again using Lemma 2.3.13, 〈f1 · · · fn, X〉
is a failure of cb.



Chapter 3

Bicolimits

The results of this chapter offer a more complete picture of GRPOs, from
a mathematical point of view. In particular, we shall recall some of the
basic concepts of 2-dimensional category theory and show that GRPOs are
an instance of a more general theory of bicolimits. We shall also provide
detailed proofs of several of the basic properties of GRPOs which we have
relied on in Chapter 2.

In section 3.1 we shall recall some basic theory behind (co)limits in 2-
categories and bicategories. We shall be especially interested in the notion
of bicolimit. Indeed, we shall show that as RPOs are pushouts in a slice cate-
gory so GRPOs are bipushouts (Definition 3.1.12) in a pseudo-slice category
(Definition 3.1.1). The fact that GRPOs are certain bicolimits is helpful, for
example we are able to conclude “for free” that GRPOs are defined up to
an equivalence (see Definition 3.1.5). Also, the fact that GRPOs are an in-
stance of a natural categorical construction helps to justify their definition,
as stated in Chapter 2.

In section 3.2 we shall prove, in detail, the key lemmas stated in Chap-
ter 2 which were crucial for the arguments used in the congruence theorems
of section 2.3.

3.1 Bicolimits

Bicolimits were introduced by [100] in the context of bicategories [7], which
consist of the same basic data as 2-categories where associativity and iden-
tity laws for 1-cells hold only up to coherent isomorphisms. Any 2-category
may be thought of as a special kind of bicategory (where the coherent iso-
morphisms are all identities), and indeed the notion of bicolimit applies to

73
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2-categories as well. Bicolimits are also briefly discussed by [53] along with
other notions of 2-categorical (co)limits.

We shall begin this section with §3.1.1 where we recall some basic 2-
categorical concepts such as 2-functors, pseudo-natural transformations and
modifications, necessary for a satisfactory development of notions of colimits
in 2-categories. Secondly, in §3.1.2 we shall present a general definition of
bicolimits, and derive an elementary presentation. Finally, in §3.1.3 we shall
present a particular type of bicolimit, the bipushout, and show that to give
a GRPO is to give a bipushout in a pseudo-slice category.

While all the category theory of this section is quite standard and well-
understood, the explicit derivation of the notion of GRPO from a general
notion of a standard 2-categorical limit is important in order to facilitate a
deeper understanding of the concept. For instance, the fact that GRPOs are
a certain type of bicolimit automatically implies that GRPOs are defined
up to equivalence (Definition 3.1.5).

3.1.1 2-categorical preliminaries

In this section we shall recall some standard notions from the theory of 2-
categories. For a more complete overview the reader is referred to [54]. In
particular, we shall only develop the underlying theory needed in order to
understand the notion of GRPO (see Remark 3.1.6).

The following definition recalls the 2-categorical notion of slice category
which shall be appropriate for our needs.

Definition 3.1.1 (Pseudo-slice category). Given a 2-category C and an

C

f
��
Z

(i)

C
h //

f ��6
66

66
D

g����
��
��

Z

ǫ 19kkkk kkkk

(ii)

C

h′
''
77� �� �

KS
ξ

f ��6
66

66
D

g����
��
��

Z

ǫ
19kkkk kkkk

(iii)

object Z, a pseudo-slice category C/Z is a 2-category with

(i) objects C
f
−→ Z;

(ii) arrows 〈C, f〉
〈h, ǫ〉
−→ 〈D, g〉 where h : C → D and ǫ : f ⇒ gh is an

isomorphism; and
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(iii) 2-cells ξ : 〈h, ǫ〉 ⇒ 〈h′, ǫ′〉 being 2-cells ξ : h⇒ h′ satisfying the obvious
compatibility requirement, namely gξ • ǫ = ǫ′.

Composition and identities are defined in the obvious way.

There is a natural notion of homomorphism of 2-categories which is a
generalisation of the notion of functor.

Definition 3.1.2. A 2-functor F : C→ D maps objects to objects, arrows
to arrows and 2-cells to 2-cells in a way which respects all identities and
composition. Let ob C, arr C and cel C denote, respectively, the class of
objects, arrows and 2-cells.

In more detail, a 2-functor F consists of:

−−− a map F : ob C→ ob D

−−− a map F : arr C→ arrD which preserves domains and codomains (i.e.
F (f : X → Y ) = Ff : FX → FY ), identities (i.e. F (idX) = idFX)
and composition (i.e. F (gf) = FgFf)1;

−−− a map F : cel C→ cel D which preserves domains and codomains (i.e.
F (α : f ⇒ g) = Fα : Ff ⇒ Fg), identities (i.e. F (1f ) = 1Ff ), vertical
composition (i.e F (βα) = FβFα)2, and horizontal composition (i.e.
F (β ◦ α) = Fβ ◦ Fα) ;

The notion of natural transformation between 2-functors which shall be
useful for us is that of pseudo-natural transformation.

Definition 3.1.3 (Pseudo-natural transformation). A pseudo-natural
transformation α between 2-functors F,G : C → D consists of an arrow
αC : FC → GC in D for every object C ∈ C, and for every arrow f : C → C ′

in C an invertible 2-cell αf : (Gf)αC ⇒ αC′(Ff) in D, as illustrated below:

FC

Ff
��

αC // GC

Gf
��

αf

v~ uu
uu

u
uu

uu
u

FC ′
αC′

// GC ′.

Additionally, we require the following compatibility conditions with the
structure of C:

1That is, F is a functor on the category obtained by forgetting the 2-cells.
2That is, F defines a functor C(X, Y ) → D(FX, FY ).
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(i) for any object C ∈ C, αidC
= 1αC

;

(ii) for any arrows f : C → C ′, g : C ′ → C ′′ of C, αgf is the pasting
composite of αf and αg (i.e. αgf = αg(Ff) • (Gg)αf );

(iii) for any 2-cell β : f ⇒ g in C, αC′(Fβ) •αf = αg • (Gβ)αC .

The 2-dimensional structure allows us to go one level further and de-
fine mappings between pseudo-natural transformations, these are usually
referred to as modifications.

Definition 3.1.4. A modification ξ between two pseudo-natural transfor-
mations α and β between 2-functors F and G is a family of ξC : αC ⇒ βC
of 2-cells in D which is suitably compatible with the structures of α and β,
that is for any f : C → C ′ in C, we require that βf • (Gf)ξC = ξC′(Ff) •αf .
We illustrate the 2-cells involved in the two sides of this last equation below.

FC

αC ))

βC

55
�� ��
�� ξC

Ff

��

GC

βf
jjjjjj

px jjjjjj
Gf

��
FC ′

βC′

// GC ′

FC

Ff

��

αC // GC
αf jjjjjj

px jjjjjj Gf

��
FC ′

αC′
**

βC′

44
�� ��
�� ξC′GC ′

It is easy to verify that 2-functors from C to D, pseudo-natural trans-
formations and modifications form a 2-category3 . We shall denote such a
2-category by Psd[C,D].

The terminal 2-category 1 has one object, one identity arrow and one
identity 2-cell. For any 2-category C, we shall denote by ! the unique 2-
functor to 1.

The following definition is of importance as it shall form for us an ap-
propriate notion of when two objects of our 2-dimensional categories may
be considered to be the same. It shall turn out that as RPOs are defined up
to isomorphism so GRPOs are defined up to equivalence.

Definition 3.1.5 (Equivalence). Two objects X, Y of a 2-category C
are equivalent when there are arrows f : X → Y , g : Y → X and 2-cells
α : idX ⇒ gf , β : fg ⇒ idY . We refer to f and g as equivalences. Given any
equivalence f in any 2-category, one can always find 2-cells α and β so that

3In fact, 2-categories, 2-functors, pseudo-natural transformations and modifications
actually form a 3-category, but we leave it to the reader to define this concept.
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they form the unit and the counit of an adjunction. Such an equivalence is
usually called an adjoint equivalence. The additional equations that α and

α
CC

C
CC

C

�%
CCCC

X
f //

β
BBBBBB

�$
BBBB

Y

X

idX
22

f
// Y

g

OO

idY

LL Y

idY --

g // X

β||||||

z� |||| f
��

idX

��
α{{

{{{
{

y� {{{{

Y g
// X

β are required to satisfy are sometimes referred to as triangle equations; they
specify that the 2-cells obtained by pasting the components of the diagrams
above are equal to 1f and 1g, respectively.

Remark 3.1.6. We have concentrated on pseudo (up-to-isomorphism) vari-
ants of the definitions of natural transformations and slice categories as these
turn out to fit our needs precisely. There are also alternative definitions
which give different structures. Roughly, instead of requiring isomorphic
2-cells one can get away with less by taking arbitrary 2-cells – resulting
in lax -natural transformations and lax -slice categories. Alternatively, one
can be more strict and require identity 2-cells instead of isomorphisms –
resulting in 2 -natural transformations and 2 -slice categories.

3.1.2 Bicolimits

We shall now recall the notion of bicolimit. Bicolimits were first introduced
by Street [100]. They are also discussed in Kelly’s overview paper [53],
amongst other notions of limits an colimits in the setting of 2-categories,
We remark that our exposition here is simplified, as the more general notion
of indexed-bicolimits, which comes from enriched category theory [52], is not
needed for our purposes. Such simple colimits are sometimes referred to as
conical in categorical literature.

Definition 3.1.7 (Bicolimit). Let G : J→ C be a 2-functor. A bicolimit
object of G is an object BicG of C which satisfies

C(BicG, A) ≃ Psd[Jop, Cat](!, C(G−, A)) (3.1)

where ≃ denotes an equivalence of categories. This equivalence is required
to be natural in A ∈ C.4 We shall usually refer to the bicolimit of G as the

4This means that the functor H = λA.Psd[Jop,Cat](!, C(G−, A)) : C → Cat ad-
mits a birepresentation, that is an object Bic G ∈ C such that λA.C(Bic G, A) and H

are equivalent as objects of [C, Cat], the 2-category of functors C → Cat, 2-natural
transformations and modifications.
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pair 〈BicG, η〉 where η is the unit of (the image of the object idBicG under
the equivalence) (3.1).

Remark 3.1.8. Varying (3.1) allows one to capture other notions of 2-
categorical limits and colimits. In particular, one may replace the equiva-
lence of categories with an isomorphism of categories and vary the kinds of
natural transformations in the right hand side, i.e. instead of pseudo-natural
transformations one may consider 2-natural transformations or lax-natural
transformations, see [53] for details.

Bicolimits are defined up to equivalence (Definition 3.1.5). Certainly, an
equivalence f : C → D induces an equivalence of categories C(D, A) ≃
C(C, A) natural in A. This, together with the fact that equivalences of
categories compose, proves that C is a bicolimit of G if and only if D is. It
also holds that if C and D are two bicolimits of G, they must be equivalent
as objects of C.

We can spell out Definition 3.1.7 in elementary terms. We shall be-
gin by examining the right hand side of (3.1) in detail. Let G : J → C
be a 2-functor. To give an arbitrary object of the (ordinary) category
Psd[Jop,Cat](!, C(G−, A)) of pseudo-natural transformations and modi-
fications is to give a pseudo-natural transformation τ : !⇒ C(G−, A) : J→
Cat.

That is, it is to give a collection of (ordinary) functors τj : 1→ C(Gj, A)
parametrised over objects j ∈ J and (ordinary) natural isomorphisms τu :
C(u, A)τj ⇒ τi, parametrised over morphisms u : i→ j in J. We illustrate
the components of such a collection in the diagram below.

1

id
��

τj // C(Gj , A)

τu

qy kkkkkkkkkk

kkkkkkkkkk
C(Gu,A)
��

1 τi
// C(Gi, A)

To choose a functor τj : 1 → C(Gj, A) is to choose an object of C(Gj, A),
that is, a morphism τj : Gj → A in C. Then to give a natural isomorphism
τu : C(u, A)τj ⇒ τi is to give an invertible 2-cell τu : τj(Gu)⇒ τi.

Moreover, the compatibility conditions for pseudo-natural transforma-
tions as stipulated in Definition 3.1.3 amount to requiring that τidi

= 1τi ,
τvu = τu • τv(Gu) and, for any 2-cell µ : u⇒ u′ : i→ j of J, τu′ • (τjGµ) = τu.

When J is an ordinary category, we can rephrase the above with the
following notion of pseudo-cocone.
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Definition 3.1.9 (Pseudo-cocone). Suppose that J is an ordinary cate-
gory and G : J→ C is a 2-functor (which is the same thing as an ordinary
functor from J to the category obtained from C by forgetting its 2-cells). A
pseudo-cocone τ from G to A ∈ C is a family of arrows τi : Gi → A for i ∈ J
and invertible 2-cells τu : τjGu ⇒ τi for u : i→ j in J as illustrated below:

Gi

τi   A
AA

AA
AA

Gu // Gjτu
nv dddddddddddddddd

τj~~||
||

||

A.

Additionally, τidi
= 1τi and τvu must be the pasting composite of τu and τv.

We have verified that objects of Psd[Jop,Cat](!, C(G−, A)) are pseudo-
cocones. The arrows are modifications between pseudo-natural transforma-
tions τ, υ : ! → C(G−, A). But as the pseudo-natural transformations
consist of functors τi : 1 → C(Gi, A), so modifications ϕ are families of
natural transformations between such functors. Thus we have a collec-
tion of natural transformations ϕi : τi ⇒ υi : 1 → C(Gi, A) which satisfy
υu • (C(Gu, A)ϕj) = ϕi • τu, as illustrated below.

1

id
��

τj ,,

υj

22
�� ��
�� ϕj C(Gj , A)

υuow ggggggggggggg

ggggggggggggg
C(Gu,A)
��

1 υi

// C(Gi, A)

1

id
��

τj // C(Gj , A)
τu

px iiiiiiiiiiii

iiiiiiiiiiii

C(Gu,A)
��

1

τi ,,

υi

22
�� ��
�� ϕi C(Gi, A)

As the τi are precisely arrows Gi → A in C so ϕj : τi ⇒ τj are 2-cells in
C. In other words, they constitute modifications between pseudo-cocones,
which we shall define below.

Definition 3.1.10 (Modifications between pseudo-cocones). Given
pseudo-cocones τ and υ from G to A ∈ C, a modification ϕ : τ ⇒ υ between
pseudo cocones is a family of 2-cells ϕi : τi ⇒ υi such that υu •ϕj(Gu) =
ϕiτu, as illustrated in the diagrams below.

Gi

υi --

Gu // Gj
υu

u} rrr
rrr

rrr
rrr

τjtt

υj




>>>>[cϕj

A

Gi
τi

��υi **

����|� ϕi

Gu // Gj

τu
ow ffffffffffff

τjqqA
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Pseudo cocones from G : J → C to A ∈ C and their modifications
form a category PsdCocone(G,A). Using the notions of pseudo-cocone
and pseudo-cocone modification, we can give an elementary definition of
(conical) bicolimits. Note that we shall specialise to the case when J is an
ordinary category. This is because we shall only be interested in such simple
cases; it is nonetheless trivial to extend to the more general situation when
J is a 2-category.

Rephrasing our arguments above, there is an isomorphism of categories
and the right hand side of (3.1):

PsdCocone(G,A) ∼= Psd[Jop,Cat](!,C(G−, A)). (3.2)

Moreover, for any f : A → B, there is a functor PsdCocone(G, f) :
PsdCocone(G,A) → PsdCocone(G,B), inherited from the right hand
side (3.2), which takes τi : Gi → A to fτi : Gi → B and τu : τjGu ⇒ τi to
fτu : fτjGu ⇒ fτi. We shall write fτ to refer to such a cocone.

Using (3.1) together with (3.2) yields an equivalence of categories

C(BicG, A) ≃ PsdCocone(G,A)

which is natural in A. As with any such equivalence, it is completely deter-
mined by where the identity idBicG of C(BicG,BicG) is mapped to. Thus
we obtain a pseudo cocone η from G to BicG.

We shall use the fact that a functor is an equivalence of categories iff it
is fully-faithful and essentially surjective on objects. Note that the “if” part
of this characterisation relies on the axiom of choice. Using this characteri-
sation, we obtain the following:

(i) Essential surjectivity: for every pseudo-cocone α from G to A, there
exists an arrow h : BicG → A and an isomorphic modification ϕ :
hη ⇒ α;

(ii) Fullness: given arrows h, h′ : BicG → A and a modification ϕ : hη ⇒
h′η between cocones, there exists a 2-cell ξ : h→ h′ such that ϕ = ξη;

(iii) Faithfulness: different 2-cells ξ, ξ′ : h ⇒ h′ (ξ 6= ξ′) give different
modifications ξη 6= ξ′η between cocones.

The first property allows us to derive the existence of a mediating mor-
phism, while the second and the third ensure that such a mediating mor-
phism is essentially unique. We are now ready to give a completely elemen-
tary account of a conical bicolimit.
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Definition 3.1.11 (Bicolimit). Suppose that J is an ordinary category
and that G : J → C is a functor. A bicolimit is a tuple 〈BicG, η〉 where
BicG ∈ C and η is a pseudo-cocone from G to BicG. Two properties are
required to ensure equivalence (3.1):

(i) (Existence of mediating morphism). For any pseudo-cocone α from
G to A there exists an arrow h : BicG → A and a family of 2-cells
ϕi : hηi ⇒ αi which make the pseudo-cocones hη and α compatible,
that is αu •ϕjGu = ϕi •hηu, as illustrated below.

Gi

αi

��

Gu // Gjαu

qy lllll
lllll

αj
sss

s

yyssss
ηj

��
A BicG

ϕj

fn TTT
TTT

h
oo

Gi

αi

��
ηi

KKK
K

%%KK
KK

Gu // Gjηu

rz nnnnnnnn

ϕi

fn TTTTTTT
TTTTTTT

ηj

��
A BicG

h
oo

(ii) (Essential uniqueness). Given another arrow h′ : BicG → A and a
family of 2-cells ψi : hηi ⇒ h′ηi which makes the two pseudo-cocones
compatible (i.e.. αu •ψjGu = ϕi • h

′ηj), there exists a unique 2-cell
ξ : h⇒ h′ such that ψi • ξηi = ϕi.

3.1.3 Bipushouts and GRPOs

We shall now experiment with a particular choice of J to examine the ‘bi’-
version of pushouts, as this will be useful in the definition of relative bi-
pushouts, which specialise to GRPOs in 2-categories where all 2-cells are
invertible.

Definition 3.1.12 (Bipushout). Suppose that J = · ← · → ·. Then to

give a 2-functor G : J→ C is to give a span I2
a
←− I1

b
−→ I3 in C.

Using Definition 3.1.11, a bicolimit of such a cospan, which we shall
refer to as bipushout, consists of the following data: an object I4, arrows
c : I2 → I4, e : I1 → I4 and d : I3 → I4 and isomorphic 2-cells αa : ca ⇒ e
and αb : db⇒ e, as illustrated in diagram (i).

I4

I2
αa +3

c
;;wwwwwww

I3
αbks

d
ccGGGGGGG

I1
a

ccGGGGGGG b

;;wwwwwww

e

OO

(i)

I5

I2
α′

a +3

c′
;;wwwwwww

I3
α′

bks

d′
ccGGGGGGG

I1
a

ccGGGGGGG b

;;wwwwwww

e′

OO

(ii)

I5

I2

c′ //

c
// I4

ϕc

bj NNNNN
NNNNN

ϕd
4<ppppp

ppppp

ϕe

ks

h

OO

I3d
oo

d′oo

I1

e
OO

e′

AA

(iii)
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The universal property can be stated as follows:

(i) for any other object I5, arrows c′ : I2 → I5, e′ : I1 → I5 and d′ :
I3 → I5, and invertible 2-cells α′

a : c′a ⇒ e′ and α′
b : d′b ⇒ e′, there

exists a mediating morphism consisting of an arrow h : I4 → I5 and
invertible 2-cells ϕc : hc ⇒ c′, ϕe : he ⇒ e′ and ϕd : hd ⇒ d′ so that
α′
a •ϕca = ϕe • hαa and α′

b •ϕdb = ϕe •hαb;

(ii) such a mediating morphism is essentially unique: given an arrow h′ :
I4 → I5 and 2-cells η : hc ⇒ h′c, θ : he ⇒ h′e and µ : hd ⇒ h′d such
that θ •hαa = h′αa • ηa and θ •hαb = h′αb •µb, there exists a unique
2-cell ξ : h⇒ h′ such that η = ξc, θ = ξe and µ = ξd.

Remark 3.1.13. The 2-cells η, θ and µ may seem slightly mysterious. Here
we give a brief explanation.

Clearly, given another mediating morphism 〈h′, ϕ′
c, ϕ

′
e, ϕ

′
d〉 which satis-

fies analogous equations to the ones specified in part (i) of Definition 3.1.12,
one can define η = ϕ′−1

c •ϕc, θ = ϕ′−1
e •ϕe and µ = ϕ′−1

d •ϕd which then sat-
isfy the required equations as specified in part (ii) of Definition 3.1.12. The
existence of a unique ξ : h⇒ h′ then implies that ϕ′

c • ξc = ϕc, ϕ
′
e • ξe = ϕe

and ϕ′
d • ξd = ϕd. Moreover, ξ is in this case an isomorphism.

Conversely, starting with 2-cells η, θ and µ which are isomorphisms,
one may recover the isomorphisms ϕ′

c = ϕc • η
−1, ϕ′

e = ϕe • θ
−1 and ϕ′

d =
ϕd •µ−1. However, η, θ and µ do not have to be, in general, isomorphism.

Definition 3.1.12 actually contains redundant information as demon-
strated by the following lemma.

Lemma 3.1.14. Suppose that 〈I4, c, d, e, αa, αb〉 is a bipushout of I2
a
←−

I1
b
−→ I3. Then so is 〈I4, c, d, e

′, α′
a, α

′
b〉 for any e′ : I1 → I4, α′

a and α′
b

such that α′
b
−1

•α′
a = α−1

b •αa.

Proof. It suffices to note that
〈
id : I4 → I4, 1c, α

′
b •α

−1
b , 1d

〉
is a mediating

morphism and id is clearly an equivalence.

Throughout this thesis we are interested in 2-categories where all 2-cells
are isomorphisms, of G-categories (Definition 2.2.3). The insights provided
by Remark 3.1.13 and Lemma 3.1.14 allow us to simplify the definition of
bipushout in G-categories as follows.

Definition 3.1.15 (Bipushout). A bipushout of arrows I2
a
←− I1

b
−→ I3

in a G-category C is a quadruple 〈I4, c, d, α〉 where c : I2 → I4, d : I3 → I4
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and α : ca⇒ db is an isomorphism, as illustrated in diagram (i). Moreover,
for any other such quadruple 〈I5, c

′, d′, α′〉, as illustrated diagram (ii), we
have the following:

I4

I2
α +3

c
;;wwwwwww

I3

d
ccGGGGGGG

I1
a

ccGGGGGGG b

;;wwwwwww

(i)

I5

I2
α′

+3

c′
;;wwwwwww

I3

d′
ccGGGGGGG

I1
a

ccGGGGGGG b

;;wwwwwww

(ii)

I5

I2

c′ //

c
// I4
"*

ϕNNNNN
NNNNN

ψ 4<ppppp
ppppp

h

OO

(iii)

I3d
oo

d′oo

(i) there exists an arrow h : I4 → I5 and isomorphisms ϕ : c′ ⇒ hc,
ψ : hd⇒ d′ satisfying the obvious compatibility condition, namely

ψb • hα •ϕa = α′;

(ii) for any other arrow h′ : I4 → I5 and isomorphisms ϕ′ : c′ ⇒ h′c,
ψ′ : h′d ⇒ d′ which satisfy ψ′b •h′α •ϕ′a = α′ there exists a unique
isomorphism ξ : h⇒ h′ such that ξc •ϕ = ϕ′ and ψ • ξ−1d = ψ′.

Analogously to Leifer and Milner’s RPO being a pushout in a slice-
category, we shall define a relative bipushout to be a bipushout in a pseudo-
slice category. Specialising these to G-categories results in the GRPOs of
Definition 2.2.9.

Definition 3.1.16 (Relative bipushout). Let α : ca ⇒ db : I1 → I4
be an isomorphic 2-cell in a 2-category C, as illustrated in diagram (i). A
relative bipushout for α is a bipushout of the pair or arrows 〈a, 1ca〉 : ca→ c
and 〈b, α〉 : ca→ d of C/I4. The reader will notice that to close such a span
is to give an object g : I5 → I4, arrows 〈e, γ〉 : c → g,

〈
f, δ−1

〉
: d → g, and

an isomorphic 2-cell β : ea ⇒ fb. Moreover, since β is actually a 2-cell of
C/I4, it is required to satisfy a compatibility condition: gβ • γa = δ−1b •α,
or equivalently: δb • gβ • γa = α. In other words, the 2-cells γ, β and δ,
illustrated in diagram (ii), are required to paste together to yield α. We
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shall often refer to 〈I5, e, f, g, β, γ, δ〉 as a candidate for α.

I4

I2

c
??������
α +3 I3

d
__??????

I1

a

__?????? b

??������

(i)

γ
@@@@

�#
@@@@

I4

I2

c
11

e //

β
+3

I5

δ~~~~

;C
~~~~g

OO

I3foo

d
mm

I1

a

__?????? b
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(ii)

ϕ
@@@@

�#
@@@@

I6

I2

e′
11

e // I5

ψ~~~~

;C
~~~~h

OO

I3foo

f ′mm

(iii)

I4

I6

g′ 11

τkkkk
19kkkk

I5h
oo

g

OO

(iv)

Such data defines a bipushout when, given another way of closing the span,
i.e. a candidate 〈I6, e

′, f ′, g′, β′, γ′, δ′〉 for α, there exists a mediating mor-
phism: an arrow h : I5 → I6 and 2-cells ϕ : e′ ⇒ he and ψ : hf ⇒ f ′

(diagram (iii)); moreover h is required to be a morphism in C/I4, meaning
that there is an additional 2-cell τ−1 : g ⇒ g′h (diagram (iv)).

The fact that ϕ is a 2-cell in C/I4 means that g′ϕ • γ′ = τ−1e • γ which is
the same as τe • g′ϕ • γ′ = γ, similarly, the fact that ψ is a 2-cell means that
g′ψ • τ−1f • δ−1 = δ′−1 which is the same as saying that δ′ • g′ψ • τ−1f =
δ. From the definition of bipushout, we know that ψb • hβ •ϕa = β′. We
summarise the conditions required of the 2-cells below:

(i) τe • g′ϕ • γ′ = γ ;

(ii) δ′ • g′ψ • τ−1f = δ;

(iii) ψb • hβ •ϕa = β′.

Such a mediating morphism must be essentially unique, namely, given
an arrow h′ : I5 → I6 together with an isomorphism τ ′−1 : g ⇒ g′h′ and
arbitrary 2-cells η : he ⇒ h′e and µ : hf ⇒ h′f which satisfy h′β • ηa =
µb • hβ as well as g′η • τ−1e = τ ′−1e and g′µ • τ−1f = τ ′−1f , then there
exists a unique 2-cell ξ : h ⇒ h′ such that g′ξ • τ−1 = τ ′−1, η = ξe and
µ = ξf .

When working in a G-category (see Remark 3.1.13), we can write the
essential uniqueness condition as follows: for any other mediating morphism
〈h′, ϕ′, ψ′, τ ′〉 there must exist a unique invertible 2-cell ξ : h ⇒ h′ which
makes the two mediating morphisms compatible, i.e.:

1. ξe •ϕ = ϕ′;

2. ψ • ξ−1f = ψ′;

3. τ ′ • g′ξ = τ .
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I5

I2
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??������
α′
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??������
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@@@@
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c′
11

c //
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µ~~~~

;C
~~~~u

OO

I3doo

d′
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(ii)

I4

I2

c
??������
α +3 I3

d
__??????

I1

a

__?????? b

??������

(iii)

3.2 Properties of GIPOs

In this section we shall prove the crucial properties of GRPOs and GIPOs
stated in §2.2.3 and used, for instance, in the proof of the congruence the-
orems of section 2.3. The proofs are rather lengthy, but not complicated.
Indeed, the interested reader should first prove the one-dimensional versions
of the results (replacing GRPOs with RPOs and GIPOs with IPOs), as first
done by Leifer and Milner [66]. The 2-dimensional versions follow basically
the same proof strategies with the extra complications coming because di-
agrams commute only up-to invertible 2-cells and ordinary uniqueness of
arrows is replaced with essential uniqueness - arrows are unique up to a
unique invertible 2-cell.

The proof of Lemma 2.2.19 is divided into two parts. First, in §3.2.1 we
shall prove that decomposing an arbitrary GRPO and taking the resulting
closure of the original span yields a GIPO. Conversely, in §3.2.2 we shall
show that starting with a GIPO which can be extended into a candidate
for a square which has a GRPO then the resulting candidate is actually a
GRPO. In §3.2.3 we shall prove that GIPOs compose and decompose in a
manner similar to pushouts (see Lemma 1.3.2).

3.2.1 From GRPOs to GIPOs

Recall the first part of Lemma 2.2.19. It states that in an arbitrary G-
category, if (3.3)

〈
I4, c, d, u, α : ca⇒ db, η : c′ ⇒ uc, µ : ud⇒ d′

〉
(3.3)

is a GRPO for diagram (i), as illustrated in diagram (ii), then diagram (iii)
is a GIPO;
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Proof. As (3.3) is GRPO for diagram (i), it is a candidate and thus equa-
tion (3.4) holds.

µb •uα • ηa = α′ (3.4)

Suppose that 〈I6, e, f, g, β : ea⇒ fb, γ : c⇒ ge, δ : gf ⇒ d〉 is a candidate
for diagram (iii) as illustrated in diagram (iv), that is equation (3.5) holds.

γ
@@@@

�#
@@@@

I4

I2

c
11

e //

β
+3

I6

δ~~~~

;C
~~~~g

OO

I3foo

d
mm

I1

a

__?????? b

??������

(iv)

δb • gβ • γa = α (3.5)

Then it is easy to verify that

〈
I6, e, f, ug, β, uγ • η : c′ ⇒ (ug)e, µ • uδ : (ug)f ⇒ d′

〉

is a candidate for (i): substituting equation (3.5) into equation (3.4) yields

α′ = µb •u(δb • gβ • γa) • ηa

= µb •uδb • ugβ •uγa • ηa

= (µ • uδ)b • ugβ • (uγ • η)a.

Thus there exists h : I4 → I6 and isomorphisms

ϕ : e⇒ hc, ψ : hd⇒ f and τ : ugh⇒ u

satisfying

τc • ugϕ • uγ • η = η, (3.6)

µ • uδ •ugψ • τ−1d = µ, and (3.7)

ψb • hα •ϕa = β. (3.8)

It follows that

〈gh, gϕ • γ, δ • gψ, τ〉

is a mediating morphism between 〈I4, c, d, u, α, η, µ〉 and itself as a GRPO
of diagram (i). Indeed, equations (3.6) and (3.7) can be rearranged slightly
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into τc • u(gϕ • γ) • η = η and µ •u(δ • gψ) • τ−1d = µ. It remains to show
that

(δ • gψ)b • ghα • (gϕ • γ)a = α,

and this is a simple diagram chase:

(δ • gψ)b • ghα • (gϕ • γ)a = δb • gψb • ghα • gϕa • γa

= δb • g(ψb • hα •ϕa) • γa

=(3.8) δb • gβ • γa

=(3.5) a

On the other hand, 〈idI4 , 1c, 1d, 1u〉 is clearly also a mediating morphism.
Using essential uniqueness, there exists a unique 2-cell ξ : gh ⇒ idI4 such
that

ξc • gϕ • γ = 1c, (3.9)

δ • gψ • ξ−1d = 1d and (3.10)

uξ = τ. (3.11)

Equations (3.9), (3.10) and (3.8) imply that

〈h : I4 → I6, ϕ : e⇒ hc, ψ : hd⇒ f, ξ : gh⇒ idI4〉

is a mediating morphism from 〈I4, c, d, id, α, 1c, 1d〉 to 〈I6, e, f, g, β, δ, γ〉
as candidates for diagram (iii).

It remains to show that the mediating morphism is essentially unique.
Let 〈

h′ : I4 → I6, ϕ
′ : e⇒ h′c, ψ′ : h′d⇒ f, ξ′ : gh′ ⇒ idI4

〉

be another such mediating morphism, thus

ξ′c • gϕ′
• γ = 1c, (3.12)

δ • gψ′
• ξ′−1d = 1d, and (3.13)

ψ′b •hα •ϕ′a = β. (3.14)

It is easy to verify that 〈h′, ϕ′, ψ′, uξ′〉 constitutes another mediating
morphism from 〈I4, c, d, u, α, η, µ〉 to 〈I5, e, f, ug, β, u ◦ γ • η, µ •u ◦ δ〉:
indeed

uξ′c •ugϕ′
• uγ • η = u(ξ′c • gϕ′

• γ) • η

=(3.12) u(1c) • η = η
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??������

(iii)

and similarly, using equation (3.13) we derive µ • uδ •ugψ′ •uξ′−1d = µ, and
equation (3.14) ends the verification.

Thus there exists a unique λ : h⇒ h′ which satisfies

λc •ϕ = ϕ′, (3.15)

ψ •λ−1d = ψ′, and (3.16)

uξ′ •ugλ = τ. (3.17)

It remains to check that ξ′ • gλ = ξ. Recall that ξ : gh ⇒ idI4 was
the unique isomorphism which satisfies equations (3.9), (3.10) and (3.11).
Equation (3.17) demonstrates that ξ′ • gλ, substituted in place of ξ satisfies
the last of these. Also

(ξ′ • gλ)c • gϕ • γ = ξ′c • gλc • gϕ • γ

= ξ′c • g(λc •ϕ) • γ

=(3.15) ξ
′c • gϕ′

• γ

=(3.12) 1c

and similarly, using equations (3.16) and (3.13) allows us to derive

δ • gψ • (ξ′ • gλ)−1d = 1d.

Thus ξ • gλ = ξ, as required.

3.2.2 From GIPOs to GRPOs

Recall the second part of Lemma 2.2.19. In an arbitrary G-category, if
diagram (iii) is a GIPO, diagram (i) has a GRPO, and (3.18) is a candidate
for it as shown in diagram (ii), then (3.18) is a GRPO for diagram (i).

〈
I4, c, d, u, α : ca⇒ db, η : c′ ⇒ uc, µ : ud⇒ d′

〉
(3.18)
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Proof. Using the fact that a GRPO for diagram (i) is assumed to exist, let

〈
I6, e, f, g, β : ea⇒ gb, γ : c′ ⇒ fe, δ : fg ⇒ d′

〉

illustrated in diagram (v) be a GRPO for diagram (i).

γ
@@@@

�#
@@@@

I5

I2

c′
11

e //

β
+3

I6

δ~~~~

;C
~~~~g

OO

I3foo

d′
mm

I1

a

__?????? b

??������

(v)

Because of the candidate illustrated in diagram (ii) we use the defining
property of GRPOs in order to derive the existence of a mediating morphism

〈v : I6 → I4, ϕ : c⇒ ve, ψ : vf ⇒ d, τ : uv ⇒ g〉

The equations satisfied are:

τe • uϕ • η = γ, (3.19)

µ •uψ • τ−1f = δ, and (3.20)

ψb • vβ •ϕa = α. (3.21)

Equation (3.21) asserts that 〈I6, e, f, v, β, ϕ, ψ〉 is a candidate for dia-
gram (iii) and using the fact that diagram (iii) is a GIPO, there exists
a mediating morphism

〈
w : I4 → I6, ϕ

′ : e⇒ wc, ψ′ : wd⇒ f, τ ′ : vw ⇒ idI4
〉

the isomorphisms of which satisfy

τ ′c • vϕ′
•ϕ = 1c, (3.22)

ψ • vψ′
• τ ′

−1
d = 1d, and (3.23)

ψ′b •wα •ϕ′a = β. (3.24)

We claim that

〈wv : I6 → I6, wϕ •ϕ′ : e⇒ wve, ψ′
•wψ : wvf ⇒ f,

τ •uτ ′v • τ−1wv : gwv ⇒ g〉
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is a mediating morphism from 〈I6, e, f, g, β, γ, δ〉 to itself as a GRPO.
The equations that need to be checked are:

(τ • uτ ′v • τ−1wv)e • g(wϕ •ϕ′) • γ = γ (3.25)

δ • g(ψ′
•wψ) • (τ • uτ ′v • τ−1wv)−1f = δ (3.26)

(ψ′
•wψ)b •wvβ • (wϕ •ϕ′)a = β (3.27)

Equation (3.27) is easy to check, indeed:

(ψ′
•wψ)b •wvβ • (wϕ •ϕ′)a = ψ′b •wψb •wvβ •wϕa •ϕ′a

= ψ′b •w(ψb • vβ •ϕa) •ϕ′a

=(3.21) ψ
′b •wα •ϕ′a

=(3.24) β

We shall now show that equation (3.25) holds. First notice that we can
transform equation (3.19) into

uϕ • η = τ−1e • γ. (3.28)

Now

(τ • uτ ′v • τ−1wv)e • g(wϕ •ϕ′) • γ = τe • uτ ′ve • τ ′wve • gwϕ • gϕ′
• γ

=(pasting) τe • uϕ • uτ ′c • uvϕ′
• τ−1e • γ

=(3.28) τe • uϕ • uτ ′c • uvϕ′
• uϕ • η

= τe • uϕ • u(τ ′c • vϕ′
•ϕ) • η

=(3.22) τe • uϕ • u(1c) • η

= τe • uϕ • η

=(3.19) γ

The method of showing that equation (3.26) holds is similar.

Since 〈idI6 , 1e, 1f , 1g〉 is clearly also a mediating morphism, there exists
a unique ξ : wv ⇒ idI6 which makes the two mediating morphisms compat-
ible, that is, equations

ξe •wϕ •ϕ′ = 1e, (3.29)

ψ′
•wψ • ξ−1f = 1f and (3.30)

gξ = τ • uτ ′v • τ−1wv (3.31)

hold.
We have derived the existence of isomorphisms

τ ′−1 : idI4 ⇒ vw and ξ : wv ⇒ idI6 .

Since GRPOs are defined up to an equivalence, this completes the proof.
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3.2.3 Composition and Decomposition

Here we shall be concerned with Lemma 2.2.20. We shall first restate it
below and then proceed to give a detailed proof. The lemma holds in any
G-category.

I6
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(ii)

I6

I4
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f
??������

I3

gd
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I1
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__?????? b

??������

(iii)

Suppose that diagram (i) has a GRPO. Then:

1. if both squares in diagram (ii) are GIPOs then the exterior (dia-
gram (iii)) is also a GIPO;

2. if the lower square and the exterior (diagram (iii)) of diagram (ii) are
GIPOs then so is the upper square.

Proof. (1). Using the conclusion of the second part of Lemma 2.2.19, the
components of 〈I5, c, d, g, α, 1gd, σ〉 form a GRPO for diagram (i), as il-
lustrated in the diagram (iv) below.

σ
@@@@

�#
@@@@

I6

I2

fe 11

c //

α
+3

I5

1~~~~

;C
~~~~g

OO

I3doo

gdmm

I1

a

__?????? b

??������

(iv)

γ
@@@@

�#
@@@@

I6

I4

f 11

u //

β
+3

I7

δ~~~~

;C
~~~~w

OO

I3voo

gdmm

I1

ea

__?????? b

??������

(v)

γe
@@@@

�#
@@@@

I6

I2

fe 11

ue //

β
+3

I7

δ~~~~

;C
~~~~w

OO

I3voo

gdmm

I1

a

__?????? b

??������

(vi)

γ
@@@@

�#
@@@@

I6

I4

f 11

u //

ϕ
+3

I7

τ~~~~

;C
~~~~w

OO

I5moo

gmm

I2

e

__?????? c

??������

(vii)

Suppose that, as illustrated in diagram (v),

〈I7, u : I4 → I7, v : I3 → I7, w : I7 → I6,

β : uea⇒ vb, γ : f ⇒ wv, δ : wv ⇒ gd〉
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is a candidate for diagram (iii), that is δb •wβ • γea = gα •σa.
It follows immediately that 〈I7, ue, v, w, β, γe, δ〉 is a candidate for di-

agram (i), as illustrated in diagram (vi), and thus there exists a mediating
morphism

〈m : I5 → I7, ϕ : ue⇒ mc, ψ : md⇒ v, τ : wm⇒ g〉

satisfying the usual compatibility requirements, namely:

τc •wϕ • γe = σ, (3.32)

δ •wψ • τ−1d = 1gd and (3.33)

ψb •mα •ϕa = β. (3.34)

In particular, equation (3.32) implies that 〈I7, u, m, w, ϕ, γ, τ〉 is a can-
didate for upper square of diagram (ii). By assumption, this in a GIPO and
thus there exists an mediating morphism

〈
n : I6 → I7, ϕ

′ : u⇒ nf, ψ′ : ng ⇒ m, τ ′ : wn⇒ idI6
〉

the components of which satisfy

τ ′f •wϕ′
• γ = 1f , (3.35)

τ •wψ′
• τ ′−1g = 1g and (3.36)

ψ′c •nσ •ϕ′e = ϕ. (3.37)

Now it follows that

〈
n : I6 → I7, ϕ

′ : u⇒ nf, ψ •ψ′d : ngd⇒ v, τ ′ : wn⇒ idI6
〉

constitutes a mediating morphism from 〈I6, f, gd, idI4, gα •σa, 1f , 1gd〉 to
〈I7, u, v, w, β, γ, δ〉. Indeed, the first equation that needs to be checked is
equation (3.35). The second equation can be derived as follows:

δ •wψ •wψ′d • τ ′−1gd =(3.33) τd •wψ′d • τ ′−1gd

= (τ •wψ′
• τ ′−1g)d

=(3.36) 1gd

We have derived the existence of a mediating morphism. We shall now
show that it is essentially unique. Indeed, suppose that

〈
n′ : I6 → I7, ϕ

′′ : u⇒ n′f, ψ′′ : n′gd⇒ v, τ ′′ : wn′ ⇒ idI6
〉
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is another such mediating morphism. Then

τ ′′f •wϕ′′
• γ = 1f , (3.38)

δ •wψ′′
• τ ′′−1gd = 1gd and (3.39)

ψ′′b •n′gα •n′σa •ϕ′′ea = β. (3.40)

Then it follows that

〈
n′g : I5 → I7, n

′σ •ϕ′′e : ue⇒ n′gc, ψ′′ : n′gd⇒ v, τ ′′g : wn′g ⇒ g
〉

is a mediating morphism from 〈I5, c, d, g, α, σ, 1gc〉 to 〈I7, ue, v, w, β, γe, δ〉.
Indeed, the only equation that needs to be checked is

τ ′′gc •wn′σ •wϕ′′e • γe = σ • τ ′′fe •wϕ′′e • γe

= σ • (τ ′′f •wϕ′′
• γ)e

=(3.38) σ.

We have already seen the two other conditions as equations (3.39) and (3.40).
Since we know that 〈m, ϕ, ψ, τ〉 is also such a mediating morphism,

there exists a unique ξ : m⇒ n′g so that

ξc •ϕ = n′σ •ϕ′′e, (3.41)

ψ • ξ−1d = ψ′′ and (3.42)

τ ′′g •wξ = τ. (3.43)

We are now ready to conclude that

〈
n′ : I6 → I7, ϕ

′′ : u⇒ n′f, ξ−1 : n′g ⇒ m, τ ′′ : wn′ ⇒ idI6
〉

is a mediating morphism between the two candidates for the upper square
of diagram (i):

〈I6, f, g, idI6, σ, 1f , 1g〉 and 〈I7, u, m, w, ϕ, γ, τ〉 .

Indeed, two candidates are made compatible because:

1. equation (3.38);

2. τ •wξ−1 • τ ′′−1 = 1g as a result of rearranging equation (3.43);

3. ξ−1c •n′σ •ϕ′′e = ϕ as a result of rearranging equation (3.41).
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Thus there exists a unique ξ′ : n ⇒ n′ which makes the mediating mor-
phism compatible with 〈n, ϕ′, ψ′, τ ′〉, which means that

ξ′f •ϕ′ = ϕ′′, (3.44)

ψ′
• ξ′−1g = ξ−1 and (3.45)

τ ′′ •wξ′ = τ ′. (3.46)

It is easy to check that ξ′ makes 〈n, ϕ′, ψ •ψ′d, τ ′〉 compatible with
〈n′, ϕ′′, ψ′′, τ ′′〉 also. Indeed, the equations that we need to check are just
equation (3.44),

ψ •ψ′d • ξ′−1gd = ψ • (ψ′
• ξ′g)d

=(3.45) ψ • ξ−1d

=(3.42) ψ
′′

and equation (3.46).

If there is another such ξ′′ : n⇒ n′ which satisfies equations

ξ′′f •ϕ = ϕ′′, (3.47)

ψ •ψ′d • ξ′′−1gd = ψ′′ and (3.48)

τ ′′ •wξ′′ = τ ′, (3.49)

then to check that ξ′′ is a modification between the mediating morphisms
〈n, ϕ′, ψ′, τ ′〉 and

〈
n′, ϕ′′, ξ−1, τ ′′

〉
we need only check that ψ′ • ξ′′−1g = ξ−1.

This follows by uniqueness of ξ, it suffices to check that (ψ′ • ξ′′−1g)−1 =
ξ′′g •ψ′−1 is a modification between mediating morphisms 〈m, ϕ, ψ, τ〉 and
〈n′g, n′σ •ϕ′′e, ψ′′, τ ′′g〉. Indeed,

(ξ′′g •ψ′−1)c •ϕ = ξ′′gc •ψ′−1c •ϕ

=(3.37) ξ
′′gc •nσ •ϕ′e

= n′σ • ξ′′fe •ϕ′e

= n′σ • (ξ′′f •ϕ′)e

=(3.47) n
′σ •ϕ′′e,

ψ • (ψ′
• ξ′′−1g)d = ψ •ψ′d • ξ′′−1gd

=(3.48) ψ
′′ and
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τ ′′g •w(ξ′′g •ψ′−1) = τ ′′g •wξ′′g •wψ′−1

= (τ ′′ •wξ′′)g •wψ′−1

=(3.49) τ
′g •wψ′−1

=(3.36) τ

as required.

(2). Suppose that 〈I5, u, v, w, β, δ, γ〉 is a candidate for the upper square

γ
@@@@

�#
@@@@

I6

I4

f 11

u //

β
+3

I7

δ~~~~

;C
~~~~w

OO

I5voo

gmm

I2

e
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??������

(viii)

γ
@@@@

�#
@@@@

I6

I4

f 11

u //

vα •βa
+3

I7

δd~~~~

;C
~~~~w

OO

I3vdoo

gdmm
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ea
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??������

(ix)

γe
@@@@

�#
@@@@

I6

I2

fe 11

ue //

vα •βa
+3

I7

δd~~~~

;C
~~~~w

OO

I3vdoo

gdmm

I1

a

__?????? b

??������

(x)

of diagram (ii), as illustrated in diagram (viii). Then

〈I7, u, vd, w, vα •βa, γ, δd〉

is a candidate for diagram (iii), as illustrated in diagram (ix ). In particular,
this means that

δc •wβ • γe = σ. (3.50)

This, by assumption, is a GIPO so there exists a mediating morphism

〈m : I6 → I7, ϕ : u⇒ mf, ψ : mgd⇒ vd, τ : wm⇒ idI6〉

satisfying
τf •wϕ • γ = 1f , (3.51)

δd •wψ • τ−1gd = 1gd and (3.52)

ψb •mgα •mσa •ϕea = vα •βa (3.53)

Notice that also

〈I7, ue, vd, w, vα •βa, γe, δd〉

is a candidate for diagram (i). Recall that by using the conclusion of the
second part Lemma 2.2.19 we have that candidate

〈I5, c, d, g, α, σ, 1gd〉
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is a GRPO for diagram (i), as illustrated in diagram (iv).
Now 〈v : I5 → I7, β, 1vd, δ〉 is a mediating morphism, indeed equation (3.50)

confirms that δc •wβ • γe = σ, clearly δd •w1vd • δ−1d = 1gd and 1vdb • bα • βa =
vα • βa.

But also 〈mg, mσ •ϕe, ψ, τg〉 is such a mediating morphism, indeed:

τgc •wmσ •wϕw • γe = σ • τfe •wϕe • γe

= σ • (τf •w • γ)e

=(3.51) σ,

while the second and third equations are just equations (3.52) and (3.53).
Thus there exists a unique two-cell ξ : v ⇒ mg making the two mediating

morphisms compatible, we have that:

ξc •β = mσ •ϕe, (3.54)

ξ−1d = ψ and (3.55)

τg •wξ = δ. (3.56)

These equations imply that

〈
m : I6 → I7, ϕ : u⇒ mf, ξ−1 : mg ⇒ v, τ : wm⇒ idI6

〉

is a mediating morphism from 〈I6, f, g, idI6, σ, 1f , 1g〉 to 〈I7, u, v, w, β, γ, δ〉
in the upper square of diagram (ii). Indeed, τf •wϕ • γ = 1f by equa-
tion (3.51),

δ •wξ−1
• τ−1g =(3.56) τg •wξ •wξ−1

• τ−1g

= 1g

and ξ−1c •mσ •ϕe = β as a result of rearranging equation (3.54).
We need only to show that the mediating morphism is essentially unique.

Suppose that

〈
m′ : I6 → I7, ϕ

′ : u⇒ m′f, ψ′ : m′g ⇒ v, τ ′ : wm′ ⇒ idI6
〉

is another such morphism, then:

τ ′f •wϕ′
• γ = 1f , (3.57)

δ •wψ′
• τ ′−1g = 1g and (3.58)

ψ′c •m′σ •ϕ′e = β. (3.59)
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Now 〈
m′, ϕ′, ψ′d, τ ′

〉

is a mediating morphism, guaranteed by equation (3.57), δd •wψ′d • τ ′−1gd =
(δ •wψ′ • τ ′−1g)d = 1gd using equation (3.58) and

ψ′db •m′gα •m′σa •ϕ′ea = vα •ψ′ca •m′σa •ϕ′ea

= vα • (ψ′c •m′σ •ϕ′e)a

=(3.59) vα •βa.

Hence there is a unique ξ′ : m ⇒ m′ which makes this mediating mor-
phism compatible with 〈m, ϕ, ψ, τ〉 meaning that we have

ξ′f •ϕ = ϕ′, (3.60)

ψ • ξ′−1gd = ψ′d and (3.61)

τ ′ •wξ′ = τ. (3.62)

To show that ξ′ is also a modification between mediating morphisms〈
m, ϕ, ξ−1, τ

〉
and 〈m′, ϕ′, ψ′, τ ′〉 it remains to show that ξ−1 • ξ′−1g = ψ′.

We shall show, equivalently, that ξ′−1g •ψ′−1 = ξ, using the fact that ξ was
defined as the unique 2-cell satisfying equations (3.54), (3.55) and (3.56).
Indeed, we have

(ξ′−1g •ψ′−1)c • β = ξ′−1gc •ψ′−1c • β

=(3.59) ξ
′−1gc •ψ′−1c •ψ′c •m′σ •ϕ′e

= ξ′−1gc •m′σ •ϕ′e

= mσ • ξ′−1fe •ϕ′e

= mσ • (ξ′−1f •ϕ′)e

=(3.60) mσ •ϕe

(ψ′
• ξ′g)d = ψ′d • ξ′gd

=(3.61) ψ

τg •w(ξ′−1g •ψ−1) = τg •wξ′−1g •wψ−1

= (τ •wξ′−1)g •wψ−1

=(3.62) τ
′g •wψ−1

=(3.58) δ
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It remains only to show that ξ′ is the unique such modification. Indeed,
suppose that there is another ξ′′ : m⇒ m′ which satisfies

ξ′′f •ϕ = ϕ′, (3.63)

ξ−1
• ξ′′−1g = ψ′ and (3.64)

τ ′ •wξ′′ = τ. (3.65)

We shall use the fact that ξ′ was originally defined as the unique modification
between 〈m, ϕ, psi, τ〉 and 〈m′, ϕ′, ψ′d, τ ′〉, it remains only to check that

ψ • ξ′′−1gd =(3.55) ξ
−1d • ξ′′−1gd

= (ξ−1
• ξ′′−1g)d

=(3.64) ψ
′d

which confirms that ξ′′ = ξ′.



Chapter 4

Extensive categories and bunch contexts

In this chapter we shall continue our study of GRPOs, giving fully worked
out constructions of GRPOs for the two running examples of Chapter 2:
the G-category MΣ, the arrows of which model the terms of the simple
process calculus (see Examples 2.1.7 and 2.2.4) and the G-category Bun
of concrete bunch contexts (Definition 2.2.5). The constructions and the
proofs of universality are done categorically. Thus, for instance, we do not
need to talk about the elements of the carriers of the bunch contexts.

In fact, we assume only that the the carriers are objects of an exten-
sive [12] category; for the construction of GRPOs in Bun we also need this
category to have pushouts. Extensive categories have an associated slogan:
“coproducts exist and are well-behaved”. Of course, the paradigm for good
behaviour is the category Set of sets and functions. The good behaviour of
coproducts is useful for us because, for example, the carrier set of the com-
posite of two bunch contexts is the coproduct of their carrier sets. Extensive
categories are also a precursor to adhesive categories of Chapter 5. Indeed,
the main axiom in the axiomatic presentation of the definition of extensive
categories, is very similar to the main axiom of adhesive categories.

The second main contribution of this chapter is a translation of the the-
ory of S-precategories developed by Milner [73], and more recently by Jensen
and Milner [46], into the theory of G-reactive systems and GRPOs. We shall
also briefly discuss the theory of functorial reactive systems of Leifer [64].
These theories have been developed in order to deal with the problems
caused by non-trivial structural congruences and isomorphism (see §2.2.1).
We shall show, via the translation, that the theory of G-reactive systems and
GRPOs provides a unifying, elegant and general framework which subsumes
the previous theories.

The structure of this chapter is as follows: in section 4.1 we shall recall
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the definition of extensive categories and prove several lemmas which shall
be needed later in this chapter, as well as in Chapter 5. In section 4.2 we
shall present the construction of GRPOs in the G-categories MΣ and Bun.
Finally, in section 4.3 we show how previously introduced theory developed
in order to treat examples such as bunch contexts can actually be seen as a
special case of the theory of G-reactive systems and GRPOs.

4.1 Extensive categories

In this section we shall introduce the theory of extensive categories. First,
in §4.1.1, we briefly recall the theory of distributive categories, which led
to the development of extensive categories. We shall recall the definition
of extensive categories in §4.1.2. Finally, in §4.1.3, we shall derive several
properties of extensive categories which give an intuition of their structure
and which shall be needed in section 4.2 as well as in Chapter 5.

4.1.1 Distributive categories

Extensive categories arose in the process of investigations into the structure
of distributive categories, which are categories with products and coproducts
where the canonical arrow

A×B +A× C → A× (B + C) (4.1)

defined by idA×iB→B+C : A×B → A× (B + C) on the first injection and
idA×iC→B+C : A× C → A× (B +C) on the second, is invertible.

Distributive categories have been used in computer science, see the book
by Walters [107] for an introduction. In particular, they have been used to
model circuits [37] and data-types [106].

Several different definitions of the concept of “distributive category” have
been considered in literature. One, advocated by Walters [107], is that a
category is distributive when it has finite products and coproducts and (4.1)
is invertible.

Alternatively, Schanuel [96] and Lawvere [63] proposed a category with
all finite limits (not just products) and finite coproducts and additionally,
the canonical functor

+ : C/A×C/B → C/(A+B) (4.2)

defined on objects by taking objects 〈r : X → A, s : Y → B〉 to r+ s : X +
Y → A+B and sending arrows 〈f : X → X ′, g : Y → Y ′〉 to f+g : X+Y →
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X ′ + Y ′, is required to be an equivalence of categories. In such categories
one can verify that (4.1) is indeed invertible.

Such categories have been interesting to category theorists, not least be-
cause they can be seen to generalise the theory or rings, which are algebraic
structures with addition, multiplication and where multiplication distributes
over addition. More precisely, they generalise rigs, which are “rings without
additive inverses”; additive inverses, in the naive sense, are impossible for
categories: if A+B ∼= 0 then it follows that A ∼= 0 and B ∼= 0 (see [96]).

Carboni, Lack and Walters [12] argued that requiring (4.2) is actually
a property of coproducts which they dubbed extensivity. Indeed, it makes
sense without requiring the category to have products, and it implies that
coproducts have useful additional structure, not necessarily present in ordi-
nary categories. However, as mentioned before, in the presence of products
the fact that functor (4.2) is an equivalence does guarantee that (4.1) is
invertible.

4.1.2 Extensive categories

This subsection is meant as a very brief introduction to the theory of exten-
sive categories – in particular, we shall only concentrate on the properties
of extensive categories which shall be useful later in the thesis. For a more
complete introduction to extensive categories, the reader is directed to [12]
and also Gates’ PhD dissertation [37].

We shall first present the axiomatic definition of extensive categories [12],
this is equivalent to requiring the canonical functor (4.2) to be an equivalence
in a category with finite products (see Proposition 4.1.2).

Definition 4.1.1 (Extensive category). A category C is said to be ex-
tensive when

(i) it has finite coproducts

(ii) it has pullbacks along coproduct injections

(iii) given a diagram where the bottom row is a coproduct diagram

X

r

��

m // Z

h
��

Y

s

��

noo

A // A+B Boo

the two squares are pullbacks if and only if the top row is a coproduct.
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The third axiom is the most interesting. Notice that it implies that
coproduct diagrams are stable under pullback – but this just the only if
part of the axiom. The second part of the axiom states that if we have
a commutative diagram in which the top and bottom rows are coproducts
then the two squares are pullbacks.

Indeed, it is the third axiom of Definition 4.1.1 that captures what we
mean when we say that the coproduct A+B is “well-behaved”: it includes
the fact that coproducts are stable under pullback, and it implies that co-
products are disjoint1 and that initial objects are strict.2 It also implies a
cancellativity property of coproducts: given an isomorphism A+B ∼= A+C
compatible with the injections, one can construct an isomorphism B ∼= C.3

For an object Z of an extensive category, the lattice Sub(Z) of coproduct
summands of Z is a Boolean algebra [12,37].

The proof of the following proposition, which relates the axiomatic and
the “equivalence of categories” definitions of extensive categories, can be
found in [12].

Proposition 4.1.2. Given a category C, the following conditions are equiv-
alent if they hold for all objects A and B:

(i) the functor C/A×C/B → C/(A+B), which forms the coproducts of
morphisms in C, is an equivalence of categories;

(ii) in a commutative diagram

X
m //

r

��

Z

h
��

Y
noo

s

��
A // A+B Boo

the top row is a coproduct diagram if and only if the squares are
pullbacks;

Examples of extensive categories include Set, and more generally any
topos. The category of topological spaces and continuous functions Top is
extensive. Any category with freely generated coproducts is extensive [12].

The category of sets and partial functions Par, isomorphic to the coslice
category 1/Set, fails to be adhesive. This follows easily, since every set has
the fully undefined map to the initial object (the singleton), in other words,
the initial object is not strict.

1The pullback of the coproduct injections is initial, see Lemma 4.1.3, part (i).
2Any arrow to an initial object must be an isomorphism, see Lemma 4.1.3, part (ii).
3See Lemma 4.1.3, part (iv).
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4.1.3 Properties of extensive categories

In order to provide the reader with some intuition for the good behaviour
of coproducts in extensive categories, we recall below some of their proper-
ties. The individual parts of Lemma 4.1.3 have appeared previously in [12].
We include the proofs here because we shall prove similar properties, about
pushouts along monos instead of coproducts, for adhesive categories in Chap-
ter 5. Several of these properties shall also be used in section 4.2 during the
construction of GRPOs in the G-category of bunch contexts.

Lemma 4.1.3. Let C be an extensive category. Then,

(i) sums are disjoint; that is, the pullback of the two injections of a binary
coproduct is the initial object;

(ii) coproduct injections are mono;

(iii) summand “complements” are unique up to isomorphism: if we have

coproduct diagrams A
i1−→ C

i2←− B and A′ i′1−→ C
i2←− B then there

exists a unique isomorphism ϕ : A→ A′ such that i′1ϕ = i1;

(iv) if ϕ : A+C → B+C is an isomorphism such that ϕiC→A+C = iC→B+C

then there exists a unique isomorphism ψ : A→ B so that ϕ = ψ+C;

(v) initial objects are strict, that is, any arrow ϕ : C → 0 is necessarily an
isomorphism.

Proof. We shall begin by proving (i) and (ii).

0

!
��

! // B

i2
��

B
idoo

id
��

A
i1

// A+B B
i2

oo

and the two squares are clearly commutative. Using the definition of ex-
tensivity, the two squares are, therefore, pullbacks. The left square being a
pullback means that coproducts are disjoint. The fact that the right hand
side is a pullback implies that i2 is mono. By a similar argument, i1 is also
mono.
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We shall now proceed with (iii). Consider the following diagram,

X
a′

  A
AA

AA
A

a

~~~~
~~

~~

A
i1

  @
@@

@@
@ A′

i′1

~~}}
}}

}}

0

!   @
@@

@@
@@

!

OO

C 0

!

OO

!~~||
||

||
|

B

i2

OO

using part (i), we deduce that the two lower regions are pullbacks. Let

the upper region be a pullback. Using extensivity, 0
!
−→ A

a
←− X and

0
!
−→ A′ a′

←− X are coproduct diagrams, and therefore, it follows that a and
a′ are isomorphisms. Let ϕ = a′a−1, which satisfies i′1ϕ = i1, as required.
Given another such ϕ′, we have i′1ϕ = i1 = i′1ϕ. We can now use part (ii)
to deduce that i′1 is mono, and therefore, that ϕ = ϕ′.

It remains to prove (iv). Consider the diagram below, where

X

ψ′

��

f // A+ C

ϕ
��

C
i2

oo

id
��

B
i1

// B + C C
i2

oo

the right square can be verified to be pullback, using the fact that ϕ is mono.
Let the left-square be a pullback. Note that ψ′ is an isomorphism, since it
is a pullback of an isomorphism. Using extensivity, the resulting top row is
a coproduct diagram, and using part (iii), we can deduce that there exists
an isomorphism ϕ : A → X such that fϕ = i1 : A → A + C. Letting
ψ = ψ′ϕ, we obtain ϕ = ψ + C. The fact that i1 : B → B + C is mono
implies uniqueness.

Finally, to prove part (v), suppose that there exists an arrow ϕ : C → 0.
In the following commutative diagram, the two squares are clearly pullbacks.

C

ϕ
��

id // C

ϕ
��

C

ϕ
��

idoo

0
id

// 0 0
id

oo

Then C is a coproduct of two copies of itself with identity injections. Thus
C admits at most one arrow to any other object. Since there is an arrow to
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the initial object, it admits exactly one arrow to any other object. Thus C
is initial and therefore ϕ is invertible.

The following lemma is actually a simple corollary of the fact that co-
product injections are mono in extensive categories (Lemma 4.1.3, part (ii)).
However, because it shall prove to be useful in the next section, we include
it here.

Lemma 4.1.4. In an extensive category, if for any pair of arrows ϕ,ψ :
A → B and any object C we have ϕ + C = ψ + C : A + C → B + C then
ϕ = ψ.

Proof. We have iB→B+Cϕ = (ϕ+C)iA→A+C = (ψ+C)iA→A+C = iB→B+Cψ.
The conclusion follows because iB→B+C is mono (Lemma 4.1.3, part (ii)).

The following is a straightforward lemma about pullbacks in extensive
categories. It says, roughly, that the class of pullbacks is closed under co-
product and it shall be useful for us in Chapter 5.

Lemma 4.1.5. Suppose that C is an extensive category and that dia-
grams (i) and (ii) below are pullbacks in C.

A1
f1 //

g1
��

B1

u1

��
C1 v1

// D1

A2
f2 //

g2
��

B′

u2

��
C2 v2

// D2

A1 +A2

g1+g2
��

f1+f2 // B1 +B2

u1+u2

��
C1 + C2 v1+v2

// D1 +D2

Then diagram (iii) is a pullback in C.

Proof. Take an arbitrary object X with maps α : X → B1 + B2 and β :
X → C1 +C2 satisfying (u1 + u2)α = (v1 + v2)β. Using extensivity, we can
express X as a coproduct of X1 and X2 by taking pullbacks

X1

β1 ��

i1 // X
β
��

X2
i2oo

β2��
C1 i1

// C1 + C2 C2i2
oo

as above. Now, observe that the exteriors of the two diagrams below are
pullbacks, given that they are constructed by pasting two pullbacks together;
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the right-hand side squares are pullbacks because of extensivity.

A1

g1
��

f1 // B1

u1��

i1 // B1 +B2

u1+u2��
C1 v1

// D1 i1
// D1 +D2

A2

g2
��

f2 // B2

u2��

i2 // B1 +B2

u1+u2��
C2 v2

// D2 i2
// D1 +D2

Now (u1 + u2)αiX1→X = (v1 + v2)βiX1→X = (v1 + v2)iC1→C1+C2
β1 =

iD1→D1+D2
v1β1 and we obtain a unique map h1 : X1 → A1 satisfying g1h1 =

β1 and i1f1h1 = αiX1→X . Similarly, we obtain a unique h2 : X2 → A2

satisfying g2h2 = β2 and i2f2h2 = αiX2→X . Together they induce h1 + h2 :
X → A1 + A2 which is easily checked to satisfy (g1 + g2)(h1 + h2) = β
and (f1 + f2)(h1 + h2) = α. Uniqueness of h1 + h2 follows easily from the
uniqueness of the two components.

4.2 Constructing GRPOs

In this section we shall construct GRPOs in two simple G-categories which
correspond to the two running examples of Chapter 2.

The first of these is the G-category MΣ of Example 2.2.4, the arrows
of which model the terms of the simple process calculus introduced in Ex-
ample 2.1.7. The construction shall actually be performed in a simpler
G-category, which we denote Prl, to which there is a 2-functor from MΣ

which creates GRPOs. The second is the G-category of bunch contexts. We
started in Definition 2.1.10 by identifying the algebra of bunch contexts.
Bunch contexts can be composed, although the composition may not be
associative on the nose (see Remark 2.1.11). We argued that isomorphic
bunches should not be distinguished – this resulted in the definition of ab-
stract bunch contexts (Definition 2.1.12) and an ordinary category Bun0

(Definition 2.1.13) with arrows the abstract bunch contexts.

Unfortunately, quotienting the arrows by isomorphism introduces some
complications. Indeed, as we have demonstrated in Example 2.2.2, Bun0

does not have RPOs. The solution suggested in Chapter 2 is to keep the
2-dimensional structure of bunches - that is work with the G-category Bun
(Definition 2.2.5) and construct GRPOs (Definition 2.2.9). We get the best
of both worlds in that we can use this extra information to derive labels – as
we shall show in this section, GRPOs do exist in Bun – but we can forget
about the 2-dimensional information, when reasoning about dynamics, by
using the abstract labelled transition system of Definition 2.2.16.
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The example of bunches is important for us for several reasons. Firstly,
it gives a simple test case for the theory of G-reactive systems and GRPOs.
Secondly, it provides a nice example of the relationship between the theory of
G-reactive systems and the various solutions proposed by Leifer and Milner;
we shall exhibit this relationship in section 4.3. Thirdly, it is a nice “warm-
up” for us before embarking on the more involved construction of GRPOs
in cospan bicategories – the subject of Chapter 6.

Starting in §4.2.1 with the definition of the two G-categories we shall be
dealing with in this section, Prl and Bun, we shall proceed with presenting
a construction of GRPOs in Prl in §4.2.2 and finally, a construction of
GRPOs in Bun in §4.2.3.

4.2.1 Prl and Bun

We have introduced concrete bunch context in Definition 2.1.10. Recall
that such a bunch context of type m1 → m2 consists of an ordered set of m2

trees of depth one containing exactly m1 holes. Leaves are labelled from an
alphabet K. These data represent m2 bunches of unspecified controls (the
leaves), together with m1 places (the holes) where further bunch contexts
can be plugged to.

Composition of two (composable) bunch contexts is performed by taking
the disjoint union of the carrier sets of the two bunches. This leads to a
problem – the operation of disjoint union is not associative on the nose but
up to a canonical isomorphism.

For example, a standard ad-hoc way of defining disjoint union for sets
is to let A + B = { 〈a, 0〉 | a ∈ A } ∪ { 〈b, 1〉 | b ∈ B }. Then (A + B) + C
has elements of the form 〈〈a, 0〉 , 0〉, 〈〈b, 1〉 , 0〉 and 〈c, 1〉 while A+(B+C)
has elements of the form 〈a, 0〉, 〈〈b, 0〉 , 1〉 and 〈〈c, 1〉 , 1〉. Thus the sets
(A + B) + C and A + (B + C), while being clearly bijective in a canonical
way, are not equal.

However, this problem is easily solved by replacing finite sets with finite
ordinals, or indeed, any category with a natural definition of an associative
binary coproduct and a forgetful functor to the category of finite sets Setf .

Replacing the carrier set X with a finite ordinal x allows us to avoid the
unnecessary burden of working in a bicategory, which would arise because
sum on sets is only associative up to isomorphism. Observe that this sim-
plification is harmless since the set-theoretical identity of the elements of
the carrier is irrelevant. We remark, however, that GRPOs are naturally a
bicategorical notion, being a local bicolimit (see Chapter 3). Thus they pose
no particular challenge in the setting of bicategories. Indeed, in Chapter 6
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we shall construct GRPOs in a particular bicategory of cospans.
Before restating the definition of the G-category of bunch contexts, we

shall first recall the definition of the category of ordinals.

Definition 4.2.1 (Ord). Let Ord denote the category of finite ordinals.
The objects of this category are the natural numbers 0, 1, 2, . . . . The mor-
phisms from m to n are the all the functions from the ordered m-element
set [m] = {0, 2, . . . m−1} to [n] = {0, 2, . . . n−1}. Composition is the usual
compositions of functions. The category is skeletal, in that we have n ∼= n′

if and only if n = n′. We assume that Ord has chosen coproducts, namely
ordinal addition ⊕. One possible way to define this is to let, on objects,
m ⊕ n = m + n, while on arrows, given f : m → m′ and g : n → n′, let
f ⊕ g : m + n → m′ + n′ be the function defined (f ⊕ g)(x) = f(x) for
0 ≤ x < m and (f ⊕ g)(x) = g(x −m) + m′ otherwise. Intuitively, f + g is
constructed by putting f and g side by side.

For any finite set x, let ord(x) be the finite ordinal of the same cardinality
and tx : x → ord(x) be a chosen isomorphism. There is an equivalence of
categories F : Setf → Ord. On objects it sends x to ord(x); on morphisms,
it maps f : x→ y to tyft

−1
x : ord(x)→ ord(y).

Having illustrated a way of avoiding the problem of non-associativity,
we are ready to give a full version of Definition 2.2.5 and introduce the
G-category Bun. We shall first define a G-category which is simpler than
Bun, and which we have seen already in the guise of MΣ of Example 2.2.4.

Definition 4.2.2 (Prl). Let Prl denote the G-category with

−−− a single object •;

−−− arrows the finite ordinals m, n, . . . , with composition defined m ◦n =
n⊕m;

−−− if m 6= n then there are no 2-cells between m and n, otherwise all
bijections m→ m.

Clearly 0, the empty ordinal, is the identity arrow of •. Vertical composition
is function composition. Horizontal composition is defined as follows: given
f : m→ m′ and g : n→ n′, gf : m⊕ n→ m′ ⊕ n′ is defined by putting the
functions “side by side”; see Example 2.2.4 for a more detailed presentation.

Definition 4.2.3 (Bun). The G-category of bunch contexts Bun has:

−−− objects the finite ordinals, denoted m1,m2, . . .



4.2. Constructing GRPOs 109

−−− arrows c = 〈x, ch, rt〉 : m1 → m2 consist of a finite ordinal x, a sur-
jective function rt : m1 ⊕ x→ m2 and a labelling function ch : x→ K.

−−− 2-cells α are isomorphisms between bunches’ carriers which preserve
the structure, that is respect ch and rt.

Composition of arrows is defined as follows: given bunch contexts c0 : m1 →
m2 and c1 : m2 → m3, let c1c0 : m1 → m3 = 〈X, rt, ch〉 where X = X0⊕X1,
rt = rt1(rt0⊕ idX1

) and ch = [ch0, ch1] (see also Definition 2.1.10). Vertical
composition of 2-cells is function composition, horizontal composition of
α : c0 ⇒ c′0 : m1 → m2 and β : c1 ⇒ c′1 : m2 → m3 is α ⊕ β : c1c0 ⇒
c′1c

′
0 : m1 → m3. Notice that since ⊕ is associative, composition in Bun is

associative. Therefore Bun is a G-category.

4.2.2 GRPOs in MΣ

When constructing GRPOs, we shall use general categorical constructions
defined using universal properties. This not only simplifies the proofs, free-
ing one from unnecessary set-theoretical detail but also makes them more
robust in that the proofs lift relatively easily to other models.

Theorem 4.2.4. Prl has GRPOs.

The proof is divided into two sections. Firstly we shall construct a can-
didate and secondly we shall show that this candidate satisfies the required
universal property (see Definition 2.2.9). The only structure of the ordinals
which we shall use is that Ord is an extensive category.

Construction of candidate. Consider diagram (i) below.

•

• α +3

c
??~~~~~

•

d
__@@@@@

•
b

??~~~~~a

__@@@@@

(i)

e
c1

��

b1 // b

��

h
b2oo

a1
��

c // a⊕ c
α // b⊕ d c⊕ a

αoo aoo

g

c2

OO

d1
// d

OO

(ii)

f
d2

oo

a2

OO

Now consider diagram (ii) where the unlabelled morphisms are the canonical
coproduct injections and e, f , g and h as well as ai, bi, ci and di are chosen
so as to make the four rectangles pullbacks. Using the fact that we are in
an extensive category, we can deduce that each of the sides of the exterior
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of diagram (ii) is a coproduct diagram. The intuition is that e is the set of
elements common to c and b when related by α; with similar intuitions for
f , g and h.

Using the fact that the sides of diagram (ii) are coproduct injections, we
are able to deduce the existence of isomorphisms γ = [c1, c2]−1 : c → e ⊕ g,
δ = [d2, d1] : f ⊕ g → d and β : a⊕ e→ b⊕ f defined as the composite

a⊕ e
[a2,a1]−1⊕e
−−−−−−−−→ f ⊕ h⊕ e

f⊕[b2,b1]
−−−−−−→ f ⊕ b

tw

−−→ b⊕ f,

where tw is the canonical “twist” isomorphism.

We shall show that 〈e, f, g, β, γ, δ〉 is a candidate for diagram (i). In
order to do this, one must check that

(b⊕ δ)(β ⊕ g)(a ⊕ γ) = α (4.3)

It is straightforward but tedious to check that equation (4.3) holds, we start
by rearranging the equation

(b⊕ [d2, d1])(tw ⊕g)(f ⊕ [b2, b1]⊕ g)([a2, a1]−1 ⊕ e⊕ g)(a⊕ [c1, c2]−1) = α

into

(b⊕ [d2, d1])(tw ⊕g)(f ⊕ [b2, b1]⊕ g) = α(a⊕ [c1, c2])([a2, a1]⊕ e⊕ g)

and checking each of the four coproduct injections to xf ⊕xh⊕xe⊕xg. The
equality on the first injection follows because αixa→xc⊕xaa2 = ixd→xb⊕xd

d2,
as shown in the lower right rectangle of diagram (ii). Similarly, the equality
on the second, third and fourth injections follows, respectively, from the
commutativity of the upper right, upper left and lower left rectangles of
diagram (ii).

We have shown the existence of the candidate illustrated in diagram (iii).

γ
@@@@

�$
@@@@

•

•

c 00

e //

β
+3

•

δ~~~~

:B~~~~g

OO

•foo

dnn

•
a

__@@@@@@ b

??~~~~~~

(iii)

γ′
@@@@

�$
@@@@

•

•

c 00

e′ //

β′
+3

•
δ′~~~~

:B~~~~g′
OO

•f ′oo

dnn

•
a

__@@@@@@ b

??~~~~~~

(iv)
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Verification of universal property. Suppose that

〈
e′, f ′, g′, β′ : a⊕ e′ → b⊕ f ′, γ′ : c→ e′ ⊕ g′, δ′ : f ′ ⊕ g′ → d

〉
,

forms another candidate, as illustrated in diagram (iv). Then

(b⊕ δ′)(β′ ⊕ g′)(a⊕ γ′) = α, (4.4)

which rearranges to (b ⊕ δ′)(β′ ⊕ g′) = α(a ⊕ γ′−1) : a ⊕ e′ ⊕ g′ → b ⊕ d.
Precomposing this last equation with the injection g → a ⊕ e′ ⊕ g′ implies
the commutativity of diagram (v).

g′

��

// f ′ ⊕ g′
δ′ // d

��

e′ ⊕ g′

γ′−1

��
c // a⊕ c

(v)

α
// b⊕ d

u

v

��

j // g

c2

��

g′
koo

id

��
e′
γ′−1i

// c

(vi)

g′
γ′−1i
oo

u

w

��

j // g

d1

��

g′
koo

id

��
f ′

δ′i
// c

(vii)

g′
δ′i

oo

Using the fact that the lower left rectangle of diagram (ii) is a pullback, we
obtain an arrow k : g′ → g which satisfies c2k = γ′−1ig′→e′⊕g′ and d1k =
δ′ig′→f ′⊕g′ . The first of these equations implies that the right rectangle of
diagram (vi) is commutative. Using the fact that injections are mono in
extensive categories (see part (ii) of Lemma 4.1.3), c2 : g → c is mono. This
in turn, using Lemma 1.3.3, implies that the right rectangle of diagram (vi)
is a pullback. We obtain an object u and arrows j : u → g and v : u → e′

by taking the pullback of c2 and γ′−1ie′→e′⊕g′ .

Then the top row of diagram (vi) is a coproduct diagram, using exten-
sivity. Using the second of k’s defining equations and Lemma 1.3.3 we derive
that the right rectangle of diagram (vii) is a pullback. Using extensivity, any
pullback diagram of d1 and δ′if ′→f ′⊕g′ makes the top row of diagram (vii)

a coproduct diagram. Since we already know that u
j
−→ g

k
←− g′ is a co-

product diagram, we can use part (iii) of Lemma 4.1.3 which allows us to
conclude that there exists an arrow w : u→ f ′ so that the left rectangle of
diagram (vii) is a pullback.
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Let τ : u⊕ g′ → g be the isomorphism defined τ = [j, k]. Now consider

e

id

��

m // e′

γ′−1i

��

uvoo

j

��
e c1 // c gc2oo

0

!

OO

!
// g′

(viii)

γ′−1i

OO

g′
id

oo

k

OO

f

id
��

n // f ′

δ′i

��

uwoo

j

��
f d2 // d gd1oo

0

!

OO

!
// g′

(ix)

δ′i

OO

g′
id

oo

k

OO

diagram (viii). We know (see diagram (vi)) that the upper right and lower
right squares are pullbacks. Because c1 and c2 form a coproduct diagram,
extensivity implies that lower left square is a pullback. Using the fact that
γ′−1ie′→e′⊕g′ and γ′−1ig′→e′⊕g′ form a coproduct diagram, and part (iii) of
Lemma 4.1.3 implies that also the upper left square is a pullback, for some
m : e → e′. Moreover, the top row is a coproduct diagram. Repeating all
this for diagram (ix ) allows us to obtain n : f → f ′ which makes the upper
left square a pullback and the top row a coproduct diagram.

Define ϕ = [m, v]−1 : e′ → e⊕ u and ψ = [n,w] : f ⊕ u→ f ′. To check

(e⊕ τ)(ϕ⊕ g′)γ′ = γ, (4.5)

we rearrange the equation to [c1, c2]−1γ′−1([m, v]⊕g′) = e⊕[j, k] : e⊕u⊕g′ →
e ⊕ g and check each of the three injections. Equality on the first injection
follows from the commutativity of the upper left square of diagram (viii), on
the second injection from the upper right square and on the third injection
from the lower right. One shows that the corresponding equation

δ′(ψ ⊕ g′)(f ⊕ τ−1) = δ, (4.6)

relating δ and δ′, holds in a similar way, using the commutativity of dia-
gram (ix ).

Finally, consider diagram (x ) below, the exterior of which is commutative
owing to equation (4.3).

a⊕ c
a⊕γ′ //

α
��

a⊕ e′ ⊕ g′

β′⊕g′

��

a⊕ϕ⊕g′ // a⊕ e⊕ u⊕ g′

β⊕u⊕g′

��

a⊕e⊕τ // a⊕ e⊕ g

β⊕g
��

b⊕ d b⊕ f ′ ⊕ g′
b⊕δ′

oo b⊕ f ⊕ u⊕ g′

(x)

b⊕ψ⊕g′
oo b⊕ f ⊕ g

b⊕f⊕τ−1

oo
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Equation (4.4) implies that the leftmost region is commutative and the right-
most region is easily seen to be commutative. Because all of the components
of the diagram are isomorphisms, we may conclude that the middle region of
the diagram is commutative, that is (b⊕ψ⊕g′)(β⊕u⊕g′)(a⊕ϕ⊕g′) = β′⊕g′.
Using Lemma 4.1.4, we obtain

(b⊕ ψ)(β ⊕ u)(a⊕ ϕ) = β′ (4.7)

which proves that 〈u, ϕ, ψ, τ〉 is a mediating morphism.
It remains to show essential uniqueness. Indeed, suppose that the com-

ponents of 〈u′, ϕ′, ψ′, τ ′〉 constitute another mediating morphism. Then

(e⊕ τ ′)(ϕ′ ⊕ g′)γ′ = γ, (4.8)

δ′(ψ′ ⊕ g′)(f ⊕ τ ′−1) = δ (4.9)

and (b⊕ ψ′)(β ⊕ u′)(a⊕ ϕ) = β′. Recall from Definition 2.2.9 that we need
to show that there exists a unique ξ : u→ u′ such that

(e⊕ ξ)ϕ = ϕ′, (4.10)

ψ(f ⊕ ξ−1) = ψ′ and (4.11)

τ ′(ξ ⊕ g′) = τ. (4.12)

We start by noticing that equations (4.5) and (4.8) together imply that

(e⊕ τ)(ϕ⊕ g′) = (e⊕ τ ′)(ϕ′ ⊕ g′). (4.13)

Precomposing this equation with ig′→e′⊕g′ gives τ ′ig′→u′⊕g′ = τig′→u⊕g′ = k.
In particular, we have two coproduct diagrams:

u
j // g g′

koo and u′
τ ′iu′→u′⊕g′ // g g′.

koo

Using part (iii) of Lemma 4.1.3, we obtain a unique isomorphism ξ : u→ u′

such that τ ′iu′→u′⊕g′ξ = j, and therefore equation (4.12) holds. Substituting
equation (4.12) into equation (4.13) yields (e ⊕ τ ′)(e ⊕ ξ ⊕ g′)(ϕ ⊕ g′) =
(e⊕ τ ′)(ϕ′ ⊕ g′) which one can manipulate to get ((e ⊕ ξ)ϕ) ⊕ g′ = ϕ′ ⊕ g′.
A straightforward application of Lemma 4.1.4 yields equation (4.10) One
derives equation (4.11) in a similar way, using equations (4.6) and (4.9) in
the process. �

There is a simple characterisation of GIPOs in Prl.
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Lemma 4.2.5. [GIPOs in Prl] Diagram (i), below, is a GIPO if and only

•

• α +3

c
??~~~~~

•

d
__@@@@@

•
b

??~~~~~a

__@@@@@

(i)

0

!

��

! //

!

��

d

i

��
c

i
// a⊕ c

(ii)

α
// b⊕ d

if diagram (ii) is a pullback.

Proof. If diagram (ii) is a pullback then the GRPO construction of Theo-
rem 4.2.4 yields the identity candidate. On the other hand, starting with a
diagram (i) which is a GIPO, notice that any candidate must be of the form
〈e, f, 0, β, γ, δ〉 since 0 is the only arrow which factorises 0 in Prl. Using
the fact that we construct the components of the candidate in the proof of
Theorem 4.2.4 by taking pullbacks, this means that the pullback of αic→a⊕c

and id→b⊕d must be 0.

Corollary 4.2.6. MΣ has GRPOs.

Proof. There is an obvious 2-functor which takes • to •, a0 | . . . | an−1 to the
ordinal n and acts as an identity on the 2-cells. Thus the functor can be said
to forget names. It is easy to see that this functor creates GRPOs, in the
sense that one can construct the required candidate in Prl and reintroduce
names in a unique way to obtain a candidate in MΣ which satisfies the
required universal property.

4.2.3 GRPOs in Bun

In the proof of Theorem 4.2.7 below, we use only the fact that Ord is an
extensive category with pushouts.

Theorem 4.2.7. Bun has GRPOs.

The proof is only slightly more involved than the proof of Theorem 4.2.4.
Indeed, the candidate is constructed in the same way, the extra work involved
is in showing that all the arrows constructed in that proof can be given the
structure of a bunch contexts – i.e. the root function rt and the character
function ch.

Another way of saying the above is that the 2-functor Bun → Prl,
which sends all objects to •, sends a bunch context c : m0 → m1 =
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〈xc, chc : xc → K, rtc : m0 ⊕ xc → m1〉 is sent to xc while bunch homomor-
phisms are sent to the their underlying functions, creates GRPOs.

The proof is divided into two parts. In the first part we construct the re-
quired candidate and in the second part we verify that the universal property
holds.

Construction of candidate. Suppose that we have an isomorphic 2-cell
α : ca⇒ db as illustrated below.

m4

m2
α +3

c
<<yyyyyyyy

m3

d
bbEEEEEEEE

m1

b

<<yyyyyyyy
a

bbEEEEEEEE

The intuition here is that, for an ‘agent’ a and a left hand side b of some
reaction rule, we are given bunch contexts c and d so that ca is db, up to α
(in symbols, ca ∼=α db). We shall find the smallest upper bound of a and b
which ‘respects’ α.

Using α : xa⊕xc → xb⊕xd we take four pullbacks obtaining the following
diagram. (as in diagram (ii) in the proof of Theorem 4.2.4)

xe
c1

��

b1 // xb

��

xh
b2oo

a1
��

xc // xa ⊕ xc
α // xb ⊕ xd xc ⊕ xa

αoo xaoo

xg

c2

OO

d1
// xd

OO

(i)

xf
d2

oo
a2

OO

We shall show that xe and xf form the nodes of the minimal candidate.
Using the morphisms from the diagram above as building blocks, we can

construct bijections γ : xc → xe ⊕ xg, δ : xf ⊕ xg → xd and β : xa ⊕ xe →
xb ⊕ xf such that

xb ⊕ δ.β ⊕ xg.xa ⊕ γ = α, (4.14)

more precisely, γ = [c1, c2]−1, δ = [d2, d1] and β is the following composition,

xa ⊕ xe
[a2,a1]−1⊕xe

−−−−−−−−−→ xf ⊕ xh ⊕ xe
xf⊕[b2,b1]

−−−−−−−→ xf ⊕ xb
tw
−−→ xb ⊕ xf
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where tw : xf ⊕ xb → xb ⊕ xf is the ‘twist’ isomorphism. One checks that
the equation (4.14) holds in the same way as in the proof of Theorem 4.2.4.

Let m5 and morphisms rte : m2 ⊕ xe → m5 rtf : m2 ⊕ xf → m5 be such
so that diagram (ii), below, a pushout diagram.

m1 ⊕ xa ⊕ xe

rta ⊕xe

��

m1⊕β // m1 ⊕ xb ⊕ xf
rtb ⊕xf // m3 ⊕ xf

rtf

��
m2 ⊕ xe rte

// m5

(ii)

γ
IIIIII

 (IIII

m4

m2

c
22

e //

β
+3

m5

δuuuuuu

6>uuuug

OO

m3foo

d
ll

m1

a

bbEEEEEEEE b

<<yyyyyyyy

(iii)

We can then define che = chc c1, chf = chd d2 and chg = chc c2. Notice that
the commutativity of diagram (ii) implies that β is a bunch homomorphism.

In order to form bunch contexts e, g and f which make diagram (iii),
above, a candidate, it remains to define rtg and prove that γ and δ are bunch
homomorphisms.

Consider diagram (iv), below.

m1 ⊕ xa ⊕ xe ⊕ xg

(†)rta ⊕xe⊕xg

��

m1 ⊕ β ⊕ xg

// m1 ⊕ xb ⊕ xf ⊕ xg
rtb ⊕xf ⊕ xg

// m3 ⊕ xf ⊕ xg
m3⊕δ//

rtf ⊕xg

��

m3 ⊕ xd

rtd

��

m2 ⊕ xe ⊕ xg

m2⊕γ−1

��

rte ⊕xg

// m5 ⊕ xg
rtg

((
m2 ⊕ xc rtc

// m4

(iv)

The exterior of diagram (iv) is commutative since α is a bunch homomor-
phism, this can be verified by precomposing with m1⊕xa⊕γ : m1⊕xa⊕xc →
m1 ⊕ xa ⊕ xe ⊕ xg and using (4.14). Now, since digram (ii) is a pushout,
an application of Lemma 1.3.4 yields that (†) is a pushout. We obtain a
morphism rtg : m5 ⊕ xg → m4 which makes the remaining regions of dia-
gram (iv) commute. The commutativity of these two regions amounts means
that γ and δ are bunch homomorphisms. We can deduce that rtg is epi since
rtg . rtf ⊕xg = rtd .m3 ⊕ δ, rtd is epi and m3 ⊕ δ is an isomorphisms.

Thus, diagram (ii) is indeed a candidate for the 2-cell α : ca⇒ db.
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Verification of universal property. Suppose that 〈m6, r, s, t, β
′, γ′, δ′〉

is another candidate for α, i.e. δ′b • tβ′ • γ′a = α.

Using the same process as in the proof of Theorem 4.2.4 we obtain xu
and coproduct diagrams

xu
j
−→ xg

k
←− xg′ , xf

n
−→ xf ′

w
←− xu and xe

m
−→ xe′

v
←− xu.

From these coproduct diagrams one defines isomorphisms τ : xu⊕xg′ → xg,
ϕ : xe′ → xe⊕xu and ψ : xf⊕xu → xf ′ which satisfy the required equations:

(xe ⊕ τ)(ϕ ⊕ xg′)γ
′ = γ, (4.15)

δ′(ψ ⊕ xg′)(xf ⊕ τ
−1) = δ and (4.16)

(xb ⊕ ψ)(β ⊕ xu)(xa ⊕ ϕ) = β′. (4.17)

In order to show that 〈u : m5 → m6, ϕ, ψ, τ 〉 is a mediating morphism it
remains to show that xu can be equipped with appropriate structure which
makes it into a bunch context, and that ϕ, ψ and τ are bunch homomor-
phisms.

m1 ⊕ xa ⊕ xe ⊕ xu

rta ⊕xe⊕xu

��
m1⊕xa⊕ϕ−1

TTTT
T

))TTTT
T

m1 ⊕ β ⊕ xu

// m1 ⊕ xb ⊕ xf ⊕ xu
rtb ⊕xf⊕xu //

m1⊕xb⊕ψ
))SSSSSSSSSSSS

(⋆)

m3 ⊕ xf ⊕ xu

m3⊕ψ
��

m2 ⊕ xe ⊕ xu

m2⊕ϕ−1

��

m1 ⊕ xa ⊕ xe′

rta ⊕xe′
jjjjj

ttjjjjj

m1⊕β′
// m1 ⊕ xb ⊕ xf ′

(‡)

rtb ⊕xf ′

// m3 ⊕ xf ′

rtf ′

��
m2 ⊕ xe′ rte′

// m6

(x)

Consider diagram (x ), above. The commutativity of region (⋆) follows from
equation (4.17). Region (‡) is commutative because β′ is a bunch homomor-
phism. Thus, the exterior of the diagram is commutative. The commutativ-
ity of diagram (x ) implies that the exterior of diagram (xi) is commutative.
Applying the conclusion of Lemma 1.3.4 to diagram (ii) implies that the
inner region is a pushout diagram, and therefore, that there exists a unique
morphism rtg : m5 ⊕ xg → m4 which renders regions (*) and (**) commu-
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tative.

m1 ⊕ xa ⊕ xe ⊕ xu

rta ⊕xe⊕xu

��

m1 ⊕ β ⊕ xu

// m1 ⊕ xb ⊕ xf ⊕ xu
rtb ⊕xf ⊕ xu

// m3 ⊕ xf ⊕ xu

rtf ⊕xu

��

m3 ⊕ ψ
// m3 ⊕ xf ′

rtf ′

��

m2 ⊕ xe ⊕ xu

m2⊕ϕ−1

��

rte ⊕xu //

(∗)

m5 ⊕ xu

(∗∗)

rtu

''
m2 ⊕ xe′ rte′

// m6

(xi)

Thus u : m5 → m6 is a bunch context. Regions (*) and (**) of di-
gram (xi) imply that ϕ : e′ ⇒ ue and ψ : uf ⇒ f ′, respectively, are ho-
momorphisms. To see that τ : g′u ⇒ g is a homomorphism, consider dia-
gram (xii), below.

m2 ⊕ xc

m2⊕γ

**

rtc

��

m2⊕γ′
// m2 ⊕ xe′ ⊕ xg′

rtr ⊕xg′

��

m2 ⊕ ϕ⊕ xg′

// m2 ⊕ xe ⊕ xu ⊕ xg′

rte ⊕xu⊕xg′

����

m2 ⊕ xe ⊕ τ
// m2 ⊕ xe ⊕ xg

rte ⊕xg

��
m4 m6 ⊕ xg′

rtg′oo m5 ⊕ xu ⊕ xg′
rtu ⊕xg′

oo m5⊕τ // m5 ⊕ xg

rtg

jj

(xii)

The three rectangles are commutative since, the leftmost since γ′ is a ho-
momorphism, the middle since ϕ is a homomorphism and the rightmost for
trivial reasons. Using equation (4.15), the top row is equal to m2⊕γ. Using
the fact that γ is a homomorphism, we conclude that the exterior is com-
mutative. Finally, the fact that the marked arrow is epi, we conclude that
rtg(m5 ⊕ τ) = rtg′(rtu⊕xg′). Thus 〈u, ϕ, ψ, τ〉 is a mediating morphism.

Now consider any other mediating morphism 〈u′, τ ′, ϕ′, ψ′〉. We have
that

(xe ⊕ τ
′)(ϕ′ ⊕ xg′)γ

′ = γ, (4.18)

δ′(ψ′ ⊕ xg′)(xf ⊕ τ
′−1) = δ and (4.19)

(xb⊕ψ
′)(β⊕xu′)(xu⊕ϕ

′) = β′. Using the process described in the proof of
Theorem 4.2.4, we obtain a unique ξ : xu → xu′ which satisfies τ ′(ξ⊕xg′) =
τ , ϕ′ = (xe ⊕ ξ)ϕ and ψ(xf ⊕ ξ

−1) = ψ′. It remains only to check that ξ is
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a homomorphism, that is rtu = rtu′(m5 ⊕ ξ). We do this by showing that
rtu′(m5⊕ ξ) also serves as the indicated morphism in diagram (xi); equality
then follows from the universal property of pushouts. Indeed,

rtu′(m5 ⊕ ξ)(rtf ⊕xu) = rtu′(rtf ⊕xu′)(m3 ⊕ xf ⊕ ξ)

= rtf ′(m3 ⊕ ψ
′)(m3 ⊕ xf ⊕ ξ) (ψ′ homo.)

= rtf ′(m3 ⊕ ψ) (4.19)

Similarly, using the fact that ϕ′ is a homomorphisms and equation (4.18)
yields that rtu′(m5 ⊕ ξ)(rte⊕xu) = rte′(m2 ⊕ ϕ

−1). �

Recall that in Example 2.2.2 we showed that Bun0, the category of
abstract bunch contexts obtained by quotienting the arrows of Bun by iso-
morphism, does not have RPOs. We demonstrated this by considering to
candidates which had no common smaller candidate. It turns out that both
of those candidates are actually minimal, in the sense that they are GRPOs.

Example 4.2.8. Let γ : 2 → 2 be the function taking 1 7→ 2 and 2 7→ 1.
We give below on the right the GRPOs for the squares on the left.

1

1
γ +3

{K,−1}
>>}}}}}}}

1

{K,−1}
``AAAAAAA

0
{K}

>>}}}}}}}{K}

``AAAAAAA

1
ZZZZ ZZZZ

(0ZZZZ ZZZZ

1

1

γ
+3

{K,−1} ..

{−1}{K} // 2
1dddd dddd

.6dddd dddd{−1,−2}

OO

1{K}{−1}oo

{K,−1}pp

0 {K}

BB

{K}

\\

1

1
1 +3

{K,−1}
>>}}}}}}}

1

{K,−1}
``AAAAAAA

0
{K}

>>}}}}}}}{K}

``AAAAAAA

1
ZZZZ ZZZZ

(0ZZZZ ZZZZ

1

1

1
+3

{K,−1} ..

{−1} // 1
1dddd dddd

.6dddd dddd{K,−1}

OO

1{−1}oo

{K,−1}pp

0 {K}

BB

{K}

\\

The ambiguity in Bun0 about ‘how’ the diagrams commute – which
ultimately leads to Bun0 failing to have RPOs – is resolved here by the
explicit presence of 2-cells 1 or γ.

Finally, we remark that Bun clearly inherits the simple characterisation
of GIPOs from Prl (See Lemma 4.2.5).
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Proposition 4.2.9. [GIPOs in Bun] Diagram (i), below, is a GIPO if and

m4

m2
α +3

c
;;xxxxx

m3

d
ccFFFFF

m1
b

;;xxxxxa

ccFFFFF

(i)

0

!

��

! //

!

��

xd

i

��
xc

i
// xa ⊕ xc

(ii)

α
// xb ⊕ xd

only if diagram (ii) is a pullback.

4.3 2-categories vs S-precategories

In this section we shall compare the theory of G-reactive systems and GR-
POs, developed in Chapter 2, and the theory introduced by Leifer [64] and
refined by Jensen and Milner [46] which also deals with the problems of
RPOs not existing when the 2-dimensional structure of categories is forgot-
ten.

Leifer, Jensen and Milner’s solution is to decorate the categorical struc-
ture – either objects, as in Leifer’s functorial reactive systems, or arrows,
as in Jensen and Milner’s S-precategories – with sets. The idea is that,
starting with some structure which has an underlying carrier set, the extra
set theoretical information allows one to specify precisely the identity of the
various components; avoiding problems such as Example 2.2.2. Because of
the extra book-keeping introduced, there are complications. For example,
in the theory of S-precategories, ordinary composition of arrows is not al-
ways defined – it is defined only if the sets associated with the arrows to be
composed are disjoint. Interestingly, Leifer and Milner were already aware
of these problems when they introduced the theory of reactive systems [66]
– they present the category of bunch contexts in the style of Leifer’s track
category (see §4.3.3).

The main contribution of this section is the proof that this arguably
ad-hoc theory can be actually seen as an instance of the general theory
introduced in Chapter 2. This is meant in a strong sense - given a func-
torial reactive system or an S-precategory, one can perform the translation
specified in this section and obtain a G-category. This translation is, of
course, well-behaved meaning that the labelled transition systems proposed
by Leifer and Milner are identical to the abstract labelled transition system
(Definition 2.2.16) obtained using GRPOs.
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We shall start in §4.3.1 with the definition of S-precategory and related
technology. In §4.3.2 we prove the main result of this section, that the theory
of S-precategories is a special case of the theory of G-categories. In §4.3.3
we briefly recall Leifer’s functorial reactive systems, which is also easily seen
to fit within the framework of Chapter 2.

4.3.1 S-precategories

Other categories which, besides Bun0, lack RPOs include the categories of
closed shallow action contexts [64, 65] and bigraph contexts [73, 46]. The
solution adopted by Milner [46] is to introduce a notion of an S-precategory,
where the algebraic structures at hand are decorated by finite ‘support sets.’
The result is no longer a category – since composition of arrows is defined
only if their supports are disjoint.

In this section we present a translation from arbitrary S-precategories to
G-categories. Our main result shows that the lts derived using precategories
and functorial reactive systems is identical to the (abstract) lts of Defini-
tion 2.2.16 derived using GRPOs. We begin with a brief recapitulation of
the definitions from [65], to which the reader is referred for further details.

In the following we shall use the symbol ⊎ to mean set-theoretical union
when we additionally know a priori that the sets under consideration are
disjoint.

Definition 4.3.1 (Precategory). A precategory Á consists of the same
data as a category. The composition operator ◦ is, however, a partial func-
tion which satisfies:

1. for any arrow f : A→ B, idB ◦f and f ◦ idA are defined and idB ◦f =
f = f ◦ idA;

2. for any f : A → B, g : B → C, h : C → D, (h ◦ g) ◦ f is defined iff
h ◦ (g ◦ f) is defined and then (h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 4.3.2 (S-precategory). Let Setf be the category of finite sets.
A supported precategory, or S-precategory is a pair 〈́A, |−|〉, where Á is a
precategory and |−| is a map from the arrows of Á to Setf , the so-called
support function, satisfying:

1. g◦f is defined iff |g|∩|f | = ∅, and if g◦f is defined then |g◦f | = |g|⊎|f |;

2. | idA | = ∅.
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For any f : A → B and any injective function α in Setf the domain
of which contains |f | there exists an arrow α�f : A → B called the support
translation of f by α. The following axioms are to be satisfied.

1. α� idA = idA; 4. α�(g ◦ f) = α�g ◦ α�f ;
2. id|f | �f = f ; 5. (α1 ◦ α0)�f = α1�(α0�f);

3. α0|f | = α1|f | implies α0�f = α1�f ; 6. |α�f | = α|f |.

We illustrate these definitions giving a definition of the S-precategory
of bunch contexts. The reader can compare this to Definition 4.2.3 of the
G-category of bunch contexts.

Example 4.3.3. The precategory of bunch contexts ABun has objects as
in Bun (Definition 4.2.3), namely finite ordinals. Also as in Bun, arrows are
concrete bunch contexts. The support of c = 〈X, ch, rt〉 is X. Composition
c1c0 = 〈X, ch, rt〉 : m1 → m3 of c0 = 〈X0, ch0, rt0〉 : m1 → m2 and c1 =
〈X1, ch1, rt1〉 : m2 → m3 is defined if and only if X0 ∩X1 = ∅ and, if so,
we have X = X0 ⊎ X1. Functions ch and rt are defined as in Bun, with
X taking the place of X0 ⊕ X1. The identity arrows are the same as in
Bun. Given an injective function α : X → Y , the support translation α�c
is

〈
αX, ch α−1, rt (idm1

+α−1)
〉
. It is easy to verify that this satisfies the

axioms of precategories.

We shall now recall the construction of the support quotient category
from a S-precategory Á. The support quotient category “forgets” the sup-
port information, in much the same way the functor (−)0 : G-Cat→ Cat,
defined in Chapter 2, forgets the 2-dimensional structure of a G-category.

Definition 4.3.4 (Support quotient). The support quotient of Á is a
category A with

−−− objects: as in Á;

−−− arrows: equivalence classes [f ] of arrows of Á, where f and g are
equated if there exist a bijective α such that α�f = g.

Example 4.3.5. The support quotient of ABun is Bun0 of Definition 2.1.13.

There is a straightforward way of defining a reactive system over an S-
precategory, akin to the definition of G-reactive system for a G-category
(Definition 2.2.6). For the reader familiar with Jensen and Milner’s de-
velopment [46], we do not treat the wide aspects of the theory – we shall
concentrate on narrow contexts and stay in the realm of ordinary reactive
systems. However, it appears that this development is independent of the
translation from S-categories and G-categories presented in §4.3.2.
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Definition 4.3.6 (Reactive system). A reactive system A over an S-
precategory Á consists of

1. a collection D of arrows of Á, the reactive contexts; it is required to
be closed under support translation and to be composition-reflecting,

2. a distinguished object 0 ∈ Á,

3. a set of pairs R ⊆
⋃
A∈ Á

Á(0, A) × Á(0, A) called the reaction rules.
These are required to be pointwise closed under support translation,
that is, given 〈l, r〉 ∈ R and support translations α, α′ whose domains
contain respectively |l| and |r|, we require that 〈α�l, α′�r〉 ∈ R.

Notice that a reactive system A over a precategory Á translates in the
obvious way to an ordinary reactive system over the support quotient cate-
gory A.

The notions of RPO and IPO (see §2.1.3) can be easily extended to
precategories, see Jensen and Milner [46]. Thus one can define an lts using
IPOs.

Definition 4.3.7 (LTS). Let A be a reactive system over an S-precategory
Á. The lts STS(A) has

−−− States: arrows [a] : 0→ I2 in A;

−−− Transitions: [a]
[f ]

◮ [dr] if and only if 〈l, r〉 ∈ R, d ∈ D, and

I4

I2

f ??�����
I3

d
__?????

0
a

``AAAAA l

>>}}}}}

is an IPO in Á.

It is shown in [46] that if the underlying S-precategory Á of a reactive
system A has enough RPOs then bisimilarity on STS(A) is a congruence.
This result is akin to Corollary 2.3.7, in which we proved that bisimilarity
on the abstract lts (Definition 2.2.16) is a congruence.

4.3.2 S-precategories are G-categories

All the theory presented so far can be elegantly assimilated into the theory
of GRPOs. In [65], Leifer predicted that instead of precategories, one could
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consider a bicategorical notion of RPO in a bicategory of supports. This
is indeed the case, with GRPOs being the bicategorical notion of RPO.
However, working with ordinals for support sets we can avoid bicategories
and, as in the case of Bun, stay within the realm of 2-categories. It is
worth noticing, however, that a bicategory of supports as above and the
G-category we introduce below would be (bi)equivalent (in the precise sense
of [100]).

Definition 4.3.8 (G-Category of Supports). Given an S-precategory
Á, the G-category of supports B has

−−− objects: as in Á;

−−− arrows: f : A → B, where f : A → B is an arrow of Á and |f | (the
support) is an ordinal;

−−− 2-cells: α : f ⇒ g when α is a ‘structure preserving’ support bijection,
i.e. α�f = g in Á.

Composition is defined as follows. Given f : A→ B and g : B → C,

g ◦B f = i|g|→|f |⊕|g|�g ◦ Á i|f |→|f |⊕|g|�f

where |f | → |f | ⊕ |g| ← i2|g| is the chosen coproduct diagram in Ord.
Recall that, as stated in Definition 4.2.1, we assume that for every finite set
x we have a chosen bijection t : x → ord(x), where ord(x) is the unique
finite ordinal with x’s cardinality. Given an arrow f in Á, we use f̃ = t|f |�f
in B, the ‘canonical representative’ of f in B. To simplify the notation
in the following we write tf for t|f |. Observe that, with these conventions,

tf : |f | → |f̃ |.

Notice that the translation can be easily extended to reactive systems.
That is, starting with a reactive system A over an S-precategory Á, one
uses the translation of Definition 4.3.8 to obtain a G-reactive system B over
the G-category of supports B.

The following theorem guarantees that the lts generated is the same as
the one generated with the theory of functorial reactive systems. Unfor-
tunately, the proof of this theorem, while trivial, is quite awkward (and
therefore, technical) because of the clash of philosophies: the idea that we
should compare algebraic structures through the set theoretical identity of
their underlying carriers – championed by the idea of S-precategories versus
the idea that they should be compared via a natural notion of homomor-
phism, suggested by the G-categorical point of view.
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Theorem 4.3.9. Let A be a reactive system over a supported precategory
Á, and let B and B be respectively the G-reactive system and G-category
obtained as above. Then, STS(A) = ATS(B).

Proof. It is enough to present a translation between GIPOs in B and IPOs
in Á which preserves the resulting label in the derived lts. Although the
details appear technical, there is nothing deep going on – it is just a series
of translations between support translations and 2-cells.

Suppose that diagram (i), below, is a GIPO.

I4

I2

c
??������
α +3 I3

d
__??????

0

a

``@@@@@@@ l

>>~~~~~~~

(i)

I4

I2

αic→a⊕c�c
??������

I3

id→l⊕d�d
__??????

0
αia→a⊕c�a

``@@@@@@@ il→l⊕d�l

>>~~~~~~~

(ii)

Then we claim that digram (ii) above is an IPO in Á. Note that (ii) is
commutative since α is by definition a structure-preserving support bijec-
tion and, therefore, (αic→a⊕c�c) ◦ (αia→a⊕c�a) = α�(ic→a⊕c�c ◦ ia→a⊕c�a) =
(id→l⊕d�d) ◦ (il→l⊕d�l).

I4

I2 e //

αic→a⊕c�c 11

I5

g

OO

I3

id→l⊕d�dmm

foo

0
αia→a⊕c�a

``@@@@@@@ il→l⊕d�l

>>~~~~~~~

(iii)

γ
@@@@

�#
@@@@

I4
;C

δ
~~~~

~~~~

I2

β
+3

ee //

c
11

I5

eg

OO

I3efoo

d
mm

0

a

``@@@@@@@ l

>>~~~~~~~

(iv)

Suppose that 〈I5, e, f, g〉 is a candidate for diagram (ii), as illustrated in
diagram (iii). We shall show how to find β, γ and δ such that the compo-

nents of
〈
I5, ẽ, f̃ , g̃, β, γ, δ

〉
form a candidate for diagram (i), as illustrated

in diagram (iv). This amounts to showing that β, γ, and δ are structure-
preserving bijections and that they paste together to give α.

In the following, in order to simplify notation, we shall leave out the
support function, that is, we shall write a instead of |a|. Let β represent the
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following composite

a⊕ ẽ
[αia→a⊕c, t

−1
e ]

−−−−−−−−−−→ (αia→a⊕c)�a ⊎ e = e ◦ (αia→a⊕c�a)

= f ◦ (il→l⊕d�l) = (il→l⊕d)�l ⊎ f
[i

l→l⊕ ef
i−1
l→l⊕d

, i ef→l⊕ ef
tf ]

−−−−−−−−−−−−−−−−−−→ l ⊕ f̃ ,

and similarly let γ and δ be respectively

c
αic→a⊕c

−−−−−−→ αic→a⊕c�c = g ◦ e = e ⊎ g
[iee→ee⊕eg te, ieg→ee⊕eg tg]

−−−−−−−−−−−−−−−→ ẽ⊕ g̃

and

f̃ ⊕ g̃
[t−1

f
, t−1

g ]

−−−−−−→ f ⊎ g = g ◦ f = i2 ◦ d
i−1
2

−−→ d

It is easy to check that the pasting composite of γ, β and δ yields α:

(l ⊕ δ)(β ⊕ g̃)(a⊕ γ) = α : a⊕ c⇒ l ⊕ d.

We shall now show that γ is a structure-preserving bijection, which means
that it is a 2-cell in B. The argument for the other morphisms is similarly
trivial. Since αic→a⊕c�c = g ◦ e we have [iee→ee⊕eg te, ieg→ee⊕eg tg]αic→a⊕c�c =
[iee→ee⊕eg te, ieg→ee⊕eg tg]�g ◦ e and so γ�c = g̃ ◦ ẽ.

Thus
〈
I5, ẽ, f̃ , g̃, β, γ, δ

〉
is a candidate for diagram (i). Thus there ex-

ists h : I4 → I5 and 2-cells (structure-preserving support bijections) ϕ : ẽ⇒
hc, ψ : hd⇒ f̃ and τ : g̃h⇒ idI4.

From the existence of τ and the definition of supported category, we can
deduce that |g̃| = |g| = ∅ and |h| = ∅. Note that τ = id, since there is only
one endofunction on ∅. We can therefore conclude that g̃ = g.

I5

I2

e
99ssssssssss

αic→a⊕c�c
// I4

(iii)

h

OO

I3
id→l⊕d�d
oo

f
eeKKKKKKKKKK

I4

I5

g

OO

I4h
oo

id
ccFFFFFFFF

(iv)

We also get immediately that diagram (iv) above commutes. We shall show
that the left triangle of diagram (iii) commutes, the proof for the right one is
similar. From the definition of GRPO, we have that idc = τc • g̃ϕ • γ = gϕ • γ
which then implies that ϕ = γ−1. Using the definition of γ, αic→a⊕c •ϕ • te =
id which amounts to saying that the triangle is commutative.
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Uniqueness in Á easily follows from essential uniqueness in B (which is
in this case the same as uniqueness, since there is only one endofunction on
the ∅).

Going the other way, suppose that diagram (v) below

I4

I2

c
??������

I3

d
__??????

0
l

>>~~~~~~~a

``@@@@@@@

(v)

I4

I2
α +3

ec
??������

I3

ed
__??????

0
ea

``@@@@@@@ el

>>~~~~~~~

(vi)

is a RPO. Then we claim that diagram (vi) is a GRPO where α is

ã⊕ c̃
[t−1

a , t−1
c ]

−−−−−−→ a ⊎ c = l ⊎ d
[iel→el⊕ ed

tl, i ed→el⊕ ed
td]

−−−−−−−−−−−−−−→ l̃ ⊕ d̃

It is trivial to show that that α is structure-preserving, i.e. α�(c̃ ◦ ã) = d̃ ◦ l̃.
Now consider a candidate 〈I5, e, f, g, β, γ, δ〉 for diagram (vi), above. Since
the pasting composite of γ, β and δ yields α, we have that t−1

c γ−1ig→e⊕g�g =
t−1
d δig→f⊕g�g = g′. Let e′ = t−1

c γ−1ie→e⊕g�e and f ′ = t−1
d δif→f⊕g �f . It is

easy but tedious to check that 〈I5, e
′, f ′, g′〉 is a candidate for diagram (i).

By assumption, there exists an arrow h : I4 → I5 which satisfies hc = e′,
hd = f ′ and g′h = f ′. This can be translated in the by-now standard
way into a mediating morphism 〈h, ϕ, ψ, τ〉 where τ is again the unique
endofunction on the ∅. Essential uniqueness again follows.

Example 4.3.10. The G-category of supports of the precategory ABun is
Bun. Note that a ‘structure preserving’ support bijection is, in this case,
exactly a bunch homomorphism. Indeed, α : 〈X, ch, rt〉 ⇒

〈
X ′, ch′, rt′

〉
if

X ′ = αX, ch′ = ch α−1 and rt′ = rt(id⊕α−1) which is the same as saying
ch = ch′ α and rt = rt′(id⊕α).

In other words, our general construction translating from S-precategories
to G-categories applied to the particular case of bunch contexts extracts
Bun out of ABun. It is worth remarking how in Definition 4.3.8 precat-
egories’ support-translation isomorphisms are subsumed in G-categories as
2-cells. It is also worth reflecting on the fact that the natural notion of
bunch homomorphism comes “for free” out of the ad-hoc definition of the
S-precategory ABun when translated into a G-category.



128 Chapter 4. Extensive categories and bunch contexts

One consequence of Theorem 4.3.9 is that Jensen and Milner’s congru-
ence theorem [46] follows from of the fact that bisimilarity is a congruence
on the abstract lts generated by GIPOs (Corollary 2.3.7). Indeed, it ap-
pears that the congruence results presented in this thesis are more general
then the congruence results for S-precategories – this is because the trans-
lation of Theorem 4.3.9 is a one way translation (from S-precategories to
G-categories) and it is unclear how one would go about providing a general
translation going the other way. Indeed, an arbitrary G-category does not
need to have 2-cells which behave like bijections.

4.3.3 Functorial reactive systems

In this section we shall briefly recall the theory of functorial reactive systems
due to Leifer [64] (see also [65]) which is an alternative to reactive systems
over S-precategories. Similarly to the translation exhibited in Theorem 4.3.9,
there is a general translation from any functorial reactive systems to a G-
reactive system so that the labelled transition systems generated are equal.

Functorial reactive systems. While staying with the idea of using sets
to keep track of the concrete identity of algebraic objects, Leifer considers an
ordinary category (composition is always defined), called the track category
which also has the concrete set theoretical identities on the arrows, but also
the objects have extra set theoretical information built in. This extra data
in the objects essentially ensures that the support sets in any composition
are disjoint. There is an ordinary functor relating the track category and the
support quotient category, defined in a similar way to the support quotient
of an S-precategory ( Definition 4.3.4). This functor is required to satisfy the
properties which Leifer identifies and uses in order to prove his central con-
gruence theorem. The congruence theorem essentially states that if enough
RPOs exist in the track category then one may generate an lts with states
and transitions from the support quotient category, and bisimilarity (as well
as other equivalences/preorders) is a congruence. In [65] Leifer showed that
starting with an S-precategory one can generate a track category, so that
the functor from the track to the support quotient categories automatically
satisfies the required properties.

The track has the support information built into the objects. On the
contrary, the support quotient consists of isomorphism classes of arrows with
respect to support translation.

Definition 4.3.11 (Track category). The track category Â of an S-
precategory Á has:
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−−− objects: pairs 〈A, M〉 where A ∈ Á and M ∈ Setf ;

−−− arrows: 〈A,M 〉
f
−→ 〈B, N〉 where f : A → B is in Á, M ⊆ N and

|f | = N\M .

Composition of arrows is as in Á. Observe that the definition of |f | ensures
that composition of arrows is always defined. We leave it to the reader to
check that the data defines a category (cf. [65]).

There is an obvious functor F : Â→ A, the support-quotienting functor.
It is proved in [65] that this functor satisfies the conditions required by
the theory of functorial reactive systems [64,65]. One can define a reactive
system on the track category in a similar way to the reactive system over an
S-precategory (Definition 4.3.6). The data of such a reactive system maps
down to the support-quotient category giving an ordinary reactive system.

Roughly, one can generate a labelled transition system for a reactive
system in A by using the labels of redex squares which are IPOs “upstairs”
in the track category. Then if the track category Â has enough RPOs,
bisimulation on the resulting labelled transition systems is a congruence.

Every functorial reactive system can be translated, in a manner almost
identical to the translation given in the proof of Theorem 4.3.9, to a G-
reactive system. Moreover, the labelled transition systems generated are
the same. Because the proofs are almost identical, we shall not give the
details here and refer the interested reader to [92].
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Chapter 5

Adhesive and quasiadhesive categories

In this chapter we shall introduce and develop the theory of adhesive cat-
egories. They are categories in which pushouts along monomorphisms are
“well-behaved”, where the paradigm for the good-behaviour is given by the
category of sets. The idea is analogous to that of extensive categories [12],
briefly recalled in Chapter 4, which have well-behaved coproducts in a sim-
ilar sense.

Various notions of graphical structures used in computer science form ad-
hesive categories. This includes ordinary directed graphs, typed graphs [4]
and hypergraphs [23], amongst others. The structure of adhesive category
allows us to derive useful properties. For instance, the union of two subob-
jects is calculated as the pushout over their intersection.

While the structure of adhesive categories shall be used in Chapter 6
in order to construct GRPOs in a suitable bicategory of cospans over an
arbitrary adhesive category, it turns out that adhesive categories have a more
direct application. As we shall demonstrate, adhesive categories provide an
elegant setting in which one can develop the well-known theory of double-
pushout (dpo) graph rewriting [27].

The advantages provided by suitable categorical settings for theoretical
computer science is that proofs of various useful properties are provided
uniformly across a wide range of models. The usual approach is to find
a natural class of categories with the right structure to support the range
of constructions particular to the application area. The structure should,
ideally, be robust with respect to common operations on categories, such
as product or slice category which allow one to construct new models from
old. Such robustness means that each of the properties that the structure
implies is also robust under such operations. A well-known example of a
natural class of categories which capture the relevant structure is the class of

131
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cartesian-closed categories, which provides models for simply typed lambda
calculi [60].

The chapter is divided into three sections. In section 5.1 we shall define
adhesive categories, give examples and derive several of their basic proper-
ties. Section 5.2 recalls the notion of dpo graph rewriting [27] and high level
replacement (hlr) categories [23], which are a class of categories designed to
provide a general class of models for dpo rewriting. We show that many of
the axioms of hlr-categories hold in adhesive categories and develop some
of the rewriting theory for dpo systems over adhesive categories. Finally,
in section 5.3 we develop the theory of quasiadhesive categories which are
a weaker version of adhesive categories, meaning that every adhesive cate-
gory is quasiadhesive, but not vice-versa. This weakening of the theory is
crucial in order to cover interesting examples from the theory of algebraic
specifications [90].

5.1 Adhesive categories

In this section we shall introduce the theory of adhesive categories. First, in
§5.1.1, we shall introduce the notion of Van Kampen square, which is central
to the definitions of both adhesive and quasiadhesive categories. We shall
state the definition of adhesive categories, give several examples and prove
that the notion of adhesivity is robust under several categorical operations
in §5.1.2. Finally, in §5.1.3 we shall state and prove several of the basic
properties which hold in any adhesive category.

5.1.1 Van Kampen squares

The definition of adhesive category is stated in terms of something called a
van Kampen square, which can be thought of as a “well-behaved pushout”,
in a similar way to which coproducts can be thought of as “well-behaved”
in an extensive category; essentially this means that they behave as they do
in the category of sets.

The name van Kampen derives from the relationship between these
squares and the van Kampen theorem in topology, in its “coverings ver-
sion”, as presented for example in [11]. This relationship is described in
detail in [58].

Definition 5.1.1 (van Kampen square). A van Kampen (VK) square (i)
is a pushout which satisfies the following condition: given a commutative
cube (ii) of which diagram (i) forms the bottom face and the back faces
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are pullbacks, the front faces are pullbacks if and only if the top face is
a pushout. Another way of stating the “only if” condition is that such a
pushout is required to be stable under pullback.

C
f

  A
AA

AAm

~~~~
~~

~

A

g   @
@@

@@
B

n~~}}
}}

}

D

(i)

C ′
m′

vvmmmmmmm f ′
!!CC

c

��

A′

a

��

g′
!!DD

B′

b

��

n′
vvmmmmmm

D′

d
��

Cm
lll

vvlll
f
""EE

E

A
g ""EE
E B

nvvlllllll

D

(ii)

Another, equivalent, way of defining a VK square in a category with pull-
backs is as follows. A VK square (i) is a pushout which satisfies the property
that given a commutative diagram (iii), the two squares are pullbacks if and
only if there exists an object C ′ and morphisms

A′

a
��

g′ // D′

d��

B′n′
oo

b��
A g

// D Bn
oo

(iii)

A′

a
��

C ′m′
oo

c
��

f ′ // B′

b��
A Cm

oo
f

// B

(iv)

C ′
f ′

!!D
Dm′

}}{{

A′

g′
!!C

C B′

n′
}}zz

D′

(v)

so that the squares in diagram (iv) are pullbacks and diagram (v) is a
pushout.

By a pushout along a monomorphism we mean a pushout, as in dia-
gram (i) above, in which m is a monomorphism. Similarly, if m is a coprod-
uct injection, we have a pushout along a coproduct injection.

A crucial class of examples of VK squares is provided by:

Theorem 5.1.2. In an extensive category, pushouts along coproduct injec-
tions are VK squares.

Proof. If m : C → A is a coproduct injection, say C → C + E, then the
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diagrams (i) and (ii) have the form

C f
%%LL

LLL
wwooooo

C + E

f+E ''NNN
NN

B
yyssss

B + E

(i)

C ′

ssgggggggggg f ′
$$J

J

c

��

C ′ + E′

c+e

��

u ((QQQQ
B′

b

��

v
tthhhhhhhhh

Z

h
��

Cggggg
ssgggggg

f
%%KK

K

C + E

f+E
((QQQ

B
tthhhhhhhh

B + E

(ii)

where the unnamed arrows are coproduct injections.

If the top face is a pushout then we may take Z = B′ + E′, it then
follows that h = b + e. The front right face of the cube is then a pullback,
using extensivity. The front left face is a pullback using the conclusion of
Lemma 4.1.5; it is constructed by “adding together” two pullbacks, namely
the back right face of the cube and the pullback of the identity on E and
e : E′ → E.

Conversely, suppose that the front faces are pullbacks. Then, as the
bottom row of the following diagram

E′

e
��

// C ′ + E′

c+e
��

u // Z

h��

B′

b
��

voo

E // C + E
f+E

// B + E Boo

is a coproduct diagram and all the squares are pullbacks, we may deduce
that the top row is a coproduct diagram, that is Z = B′ +E′. Thus the top
face of the cube is a pushout.

We have the following important properties of VK squares:

Lemma 5.1.3. In a VK square as in diagram (i), if m is a monomorphism
then n is a monomorphism and the square is also a pullback.
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Proof. Suppose that the bottom face of the cube

C
vvnnnnnn f

  AA

��

C

m

��

f
  AA

B

��

vvnnnnnn

B

n
��

Cm
nnn

vvnnn
f
  AA

A
g   AA

B
nvvnnnnnn

D

is VK. Then the top and bottom squares are pushouts, while the back
squares are pullbacks if m is a monomorphism. Thus the front faces will be
pullbacks: the front right face being a pullback means that n is a monomor-
phism, and the front left face being a pullback means that the original square
is a pullback.

There is an alternative way of defining a VK square which involves re-
quiring a certain functor to be an equivalence of categories. This is akin
to the alternative way of presenting the main axiom of extensive categories
(see Proposition 4.1.2).

In the following we shall assume that C is a category with all pullbacks.

Definition 5.1.4. Given a span A
m
←− C

f
−→ B, let C/A×C/CC/B denote

the category with:

−−− objects: commutative diagrams, as illustrated below, where both squares
are pullbacks;

A′

a
��

C ′m′
oo f ′ //

c
��

B′

b
��

A Cm
oo

f
// B

−−− arrows: given two such diagrams, as illustrated below, an arrow is a
triple p : A′ → A′′, q : C ′ → C ′′ and r : B′ → B′′ so that a′p = a,
c′q = c and b′r = b.

A′

a
p

xxqqq
qqq

q C ′m′
oo

c
q

xxpppppp

f ′ // B′
r

xxqqqqqq

b

��
A′′

a′ &&NNNNNNN C ′′m′′
oo

�� c′ &&NNNNNNN
f ′′ // B′′

�� b′ &&NNNNNN

A Cm
oo

f
// B
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Composition and identities are obvious.

For a morphism u : U → V we shall write u∗ : C/V → C/U for the
functor given by pulling back along u. Now, suppose that we have a pushout
diagram as below.

C
f

  A
AA

AAm

~~~~
~~

~

A

g   @
@@

@@
B

n~~}}
}}

}

D

Then the functors n∗ and g∗ induce a functor

Pb : C/D → C/A×C/C C/B

which takes an arrow d : D′ → D and gives the object of C/A ×C/C C/B
obtained by taking the rear faces of the cube illustrated in diagram (ii).
One constructs the cube by taking pullbacks, first in order to construct the
front faces and then the back faces. It is easy to verify that this definition
defines the functor

On the other hand, if C has pushouts (or pushouts along monos, if we
assume m to be mono) we can define a functor

Po : C/A×C/C C/B → C/D

as follows: starting with the back faces of diagram (ii) we construct the
pushout of m′ and f ′ and obtain a unique arrow d : D′ → D given by the
universal property of pushouts.

Proposition 5.1.5. Pb is right adjoint to Po.

The composite PoPb is given by pulling back d : D′ → D and then
forming a pushout; thus the counit of the adjunction is invertible if and
only if, in the cube, if the vertical faces are pullbacks then the top face
is a pushout; in other words, if the pushout (i) is stable under pullback.
On the other hand, the unit of the adjunction is invertible if and only if,
whenever the back faces are pullbacks, and the top (and bottom) faces are
pushouts, then the front faces are also pullbacks. We may summarize all
this as follows:

Proposition 5.1.6. For the pushout diagram (i), the following conditions
are equivalent:
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(i) Pb is an equivalence;

(ii) Po is an equivalence;

(iii) diagram (i) is a VK-square;

(iv) the pushout is stable under pullback, and the functor Pb is essentially
surjective on objects.

Condition (i) of the proposition makes sense without assuming all pushouts,
and should be taken as the definition of van Kampen square when not
all pushouts are assumed to exist. Furthermore, if m in diagram (i) is a
monomorphism, then Po will exist provided that pushouts along monomor-
phisms do so, and the proposition will hold in that generality.

5.1.2 Adhesive categories

We shall now proceed to define the notion of adhesive category, and provide
various examples and counterexamples.

Definition 5.1.7 (Adhesive category). A category C is said to be adhe-
sive if

(i) C has pushouts along monomorphisms;

(ii) C has pullbacks;

(iii) pushouts along monomorphisms are VK-squares.

Just as the third axiom of extensive categories (Definition 4.1.1) en-
sures that coproducts are “well-behaved”, it is the third axiom of adhesive
categories which ensures that pushouts along monomorphisms are “well-
behaved”. This includes the fact that such pushouts are stable under pull-
back.

Since every monomorphism in Set is a coproduct injection, and Set is
extensive, we immediately have:

Example 5.1.8. Set is adhesive.

Observe that the restriction to pushouts along monomorphisms is neces-
sary: there are pushouts in Set which are not VK squares. Consider the 2
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element abelian group Z2 (the following argument works for any non-trivial
group). In the diagram

Z2 × Z2π1

uulllllll π2

%%LLLL

+

��

Z2

��

��@
@@

Z2

��

ttiiiiiiiiiiiii

1

��

Z2
kkkkk

uukkkk &&MMMMMM

1
  A

AA
A 1

tthhhhhhhhhhhhhh

1

both the bottom and the top faces are easily verified to be pushouts and the
rear faces are both pullbacks. However, the front two faces are not pullbacks.

Even with the restriction to pushouts along a monomorphism, many
well-known categories fail to be adhesive.

Counterexample 5.1.9. The categories Pos, Top, Gpd and Cat are not
adhesive.

Proof. For the case of the category of posets, write [n] for the ordered set
{0 ≤ 1 ≤ . . . n− 1}. The pushout square

[1]
0 //

1 ��

[2]

��
[2] // [3]

is not van Kampen, since it is not stable under pullback along the map
[2]→ [3] sending 0 to 0 and sending 1 to 2. Thus Pos is not adhesive. The
same pushout square, regarded as a pushout of categories, shows that Cat
is not adhesive. For the case of Gpd, one simply replaces the poset [n] by
the groupoid with n objects and a unique isomorphism between each pair
of objects.

Finally consider the category Top of topological spaces. A finite poset
induces a finite topological space on the same underlying set: the topology
is determined by specifying that y is in the closure of x if and only if x ≤ y.
Applying this process to the previous example yields an example showing
that Top is not adhesive.

Since the definition of adhesive category only uses pullbacks, pushouts,
and relationships between these, we have the following constructions involv-
ing adhesive categories:
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Proposition 5.1.10.

(i) If C and D are adhesive categories then so is C×D;

(ii) If C is adhesive then so are C/C and C/C for any object C of C;

(iii) If C is adhesive then so is any functor category [X,C].

Since Set is adhesive, part (iii) of the proposition implies that any
presheaf topos [X,Set] is adhesive. In particular, the category Graph of
directed graphs is adhesive. Indeed, if C is adhesive, then so is the category
Graph(C) = [·⇉ ·, C] of internal graphs in C.

Part (ii) implies that categories of typed graphs [4], coloured (or la-
belled) graphs [15], ranked graphs [36] and hypergraphs [23], considered in
the literature on graph grammars, are adhesive.

As a consequence, all proof techniques and constructions in adhesive
categories can be readily applied to any of the aforementioned categories of
graphs. In fact, more generally, we have:

Proposition 5.1.11. Any elementary topos is adhesive.

This is somewhat harder to prove than the result for presheaf toposes; the
proof can be found in [58].

Part (ii) of Proposition 5.1.10 also allows us to construct examples of
adhesive categories which are not toposes.

Example 5.1.12. The category Set∗ = 1/Set of pointed sets (or equiv-
alently, sets and partial functions) is adhesive, but is not extensive, and
therefore, is not a topos.

Proof. In the category of pointed sets, the initial object is the one-point set
1. Since every non-initial object has a map into 1, the initial object is not
strict, and so the category is not extensive [12, Proposition 2.8].

5.1.3 Basic properties of adhesive categories

Here we provide several simple lemmas which hold in any adhesive cate-
gory. Lemma 5.1.13 demonstrates why adhesive categories can be consid-
ered as a generalisation of extensive categories. Lemmas 5.1.15, 5.1.16, 5.1.18
and 5.1.19 shed some light on pushouts along monos in adhesive categories.

Lemma 5.1.13. An adhesive category is extensive if and only if it has a
strict initial object.
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Proof. In an extensive category the initial object is strict [12, Proposi-
tion 2.8]. On the other hand, in an adhesive category with strict initial
object, any arrow with domain 0 is mono. Consider the cube

0
ttiiiiiiiiii

��?
?

��

X

r

��

m &&LLLL Y

s

��

nuullllllll

Z

t
��

0
iiiii

ttiiiii ��?
?

A
i

%%LLL B
juulllll

A+B

in which the bottom square is a pushout along a monomorphism, while the
back squares are pullbacks since the initial object is strict. By adhesiveness,
front squares are pullbacks if and only if the top squares is a pushout; but
this says that the front squares are pullbacks if and only if the top row of
these squares is a coproduct (Z=X+Y).

Remark 5.1.14. Notice that coproducts in coslice categories are pushouts.
It is then perhaps useful to point out that a category which is extensive in
every coslice is not the same thing as an adhesive category.1

Indeed, categories which are extensive in every slice are equivalent to
the terminal category 1. This is because extensive categories have strict
initial objects, meaning that if X/C is extensive and if there exist arrows
f : X → Y and g : Y → X such that gf = idX then f must be an
isomorphism. Applying this to the codiagonal X + X → X yields that
X ∼= X + X for every X ∈ C. This is another way of saying that C is
a preorder. But every extensive preorder is equivalent to 1: indeed, since
coproducts are disjoint we have X = X ∩X ∼= ⊥.

Axiomatically, a category which is extensive in every coslice satisfies the

1This question was posed to the author by Paul-André Melliès.
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following axiom: for any cube, as in diagram (i)
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where the bottom face is a pushout, the top face is a pushout if and only if the
front faces are pullbacks. It is easy to see that Set fails to satisfy this axiom,
apart from the fact that Set is not equivalent to 1, we may consider the cube
illustrated in diagram (ii), where the top and the bottom faces are pushouts,
yet the front left face is not a pullback. This problem persists even if we
restrict the sort of pushouts we allow by requiring m and m′ in diagram (i)
to be mono: indeed, consider the cube in diagram (iii), the top and bottom
faces are pushouts but neither of the front faces are pullbacks. Finally, one
may strengthen the axiom of extensive categories, requiring extensivity only
when the “vertical” morphisms of the diagram in the definition of extensive
categories (Definition 4.1.1) are mono. It then follows by Lemma 1.3.3 that
the two rear squares of diagram (i) are pullbacks and the axiom follows as
a special case of adhesivity. However, such categories are then less general
then adhesive categories.

The conclusions of the following two lemmas are used extensively in
literature on algebraic graph rewriting. Indeed, they are usually assumed
as axioms (see [21] and section 5.2.2) in attempts at generalising graph
rewriting. They hold in any adhesive category by Lemma 5.1.3:

Lemma 5.1.15. Monomorphisms are stable under pushout.

Lemma 5.1.16. Pushouts along monomorphisms are also pullbacks.

The notion of pushout complement [27] is vital in algebraic approaches
to graph rewriting.

Definition 5.1.17. Let m : C → A and g : A→ B be arrows in an arbitrary
category (m is not assumed to be mono). A pushout complement of the pair
(m, g) consists of arrows f : C → B and n : B → D for which the resulting
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square commutes and is a pushout. We shall sometimes refer to pushout
complements of monos, this refers to pushout complements of pairs (m, g)
where m is mono.

The conclusion of the following lemma is a crucial ingredient in many
applications of graph rewriting. It has also been assumed as an axiom [23]
in order to prove the concurrency theorem (cf. Theorem 5.2.14). It is
important mainly because it assures that once an occurrence of a left hand
side of a rewrite rule is found within a structure, then the application of
the rewrite rule results in a structure which is unique up to isomorphism
(see section 5.2). In other words, rewrite rule application is functional up
to isomorphism.

Lemma 5.1.18. Pushout complements of monos (if they exist) are unique
up to isomorphism.

Proof. Suppose that the following diagrams

Cm ~~}}
f
  BB

A
g
  AA

B
n
~~||

D

Cm ~~~~
f ′
!!CC

A
g
  @@

B′

n′
}}{{

D

are pushouts and that m is mono. Consider the cube

C
vvmmmmmmm h

  AA

��

C

m

��

f ′
!!BB

U

l

��

kvvnnnnnn

B′

n′

��

Cm
mmm

vvmmm
f
  AA

A
g !!C
C B

nvvmmmmmm

D

in which the front right face is a pullback, h : C → U is the map induced by
f and f ′, and the unnamed arrows are identities. Then the front faces and
the back left face are pullbacks, hence the back right face is also a pullback;
and the bottom face is a pushout, hence the top face is a pushout. But this
implies that k is invertible, since it is the pushout of 1C . By symmetry, so
too is l. The induced isomorphism j = kl−1 : B → B′ satisfies n′j = n and
jf = f ′.

The following lemma will be used in §5.2.2 to show that adhesive cate-
gories are high-level replacement categories:
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Lemma 5.1.19. Consider a diagram

A��

l
��

k // B // r //
��

s

��

E��
v

��
C u

// D //
w

// F

in which the marked morphisms are mono, the exterior is a pushout and
the right square is a pullback. Then the left square is a pushout, and so all
squares are both pullbacks and pushouts.

Proof. This amounts to stability of the exterior pushout under pullback
along w : D → F . We illustrate this in the diagram below, where we leave
the identity morphisms unlabelled.

A

��
k

  A
AA

AA~~
l

~~}}
}}

}

C

��

u

  A
AA

AA
A

k

  A
AA

AA~~
c}}

~~}}

B

��   A
AA

AA

C

u   A
AA

AA
D

��   A
AA

AA
B   rAA

  AA
B��
r
��

~~
s

~~}}
}}

}

D   

w   A
AA

AA
D��
w
��

E~~

v~~}}
}}

}

F

The following lemma is of a similar nature and it shall be useful in the
construction of GRPOs of Chapter 6.

Lemma 5.1.20. Consider a diagram

A

l
��

// k // B

s

��

// r // E

v

��
C //

u
// D //

w
// F

in which the marked morphisms are mono, the exterior is a pushout, the
right square is a pullback, and morphisms k, r, u and w are mono. Then the
left square is a pushout.
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Proof. The exterior pushout is stable under pullback along the morphism
w, as illustrated below.

A

��
k

  A
AA

AAl

~~}}
}}

}

C

��

u

  A
AA

AA
A

k

  A
AA

AA
l
}}

~~}}

B

��   A
AA

AA

C

u   A
AA

AA
D

��   A
AA

AA
B   rAA

  AA
B��
r
��

s
~~}}

}}
}

D   

w   A
AA

AA
D��
w
��

E

v~~}}
}}

}

F

The following lemma shows that all monomorphisms in adhesive cat-
egories are regular. For a monomorphism to be regular, it has to be an
equaliser

A
m // B

f //

g
// C

of two morphisms. In fact, it follows easily from the universal property of
equalisers that any equaliser is mono.

Lemma 5.1.21. Monomorphisms are regular.

Proof. Given m : A→ B, construct the pushout of m with itself:

A
m //

m ��
B
n1��

B n2

// C.

Since m is mono, the diagram above is also a pullback (Lemma 5.1.16). It
is now easy to show that m is the equaliser of n1 and n2. Indeed, suppose
we’re given a morphism p : X → B such that n1p = n2p. Using the pullback
property, there exists a unique morphism h : X → A such that mh = p.

The following lemma can be seen as an easy corollary of the former.
Indeed, it is easy to show that in any category, if a morphism is both epi
and regular mono then it is an isomorphism. Nonetheless, we include it as
it has a very simple direct proof.
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Lemma 5.1.22. Adhesive categories are balanced. That is, a morphism
which is both a monomorphism and an epimorphism is an isomorphism.

Proof. Suppose that f : A→ B is mono and epi. Because it is epi,

A
f ��

f // B
��

B // B

the diagram above is a pushout. Since f is mono, using Lemma 5.1.16 we
can conclude that it is also a pullback. This implies that there exists an
arrow g : B → A such that fg = idB . Then fgf = f and since f is mono,
gf = idA.

We can put a preorder on monomorphisms into an object Z of an arbi-
trary category by defining a monomorphism a : A → Z to be less than or
equal to a monomorphism b : B → Z precisely when there exists an arrow
c : A → B such that bc = a. A subobject (of Z) is an equivalence class
with respect to the equivalence generated by this preorder. For example,
subobjects in Set are subsets while subobjects in Graph are subgraphs.

Here we shall demonstrate that, in adhesive categories, unions of two
subobjects can be constructed by pushout over their intersection. This pro-
vides further evidence of how pushouts behave in adhesive categories as
well as making more precise the intuition that the pushout operation “glues
together” two structures along a common substructure. As a corollary, it
follows that in an adhesive category the lattices of subobjects are distribu-
tive.

Let C be an adhesive category, and Z a fixed object of C. We write
Sub(Z) for the category of subobjects of Z in C; it has products (=intersec-
tions), given by pullback in C. It has a top object, given by Z itself. If C
has a strict initial object 0, then the unique map 0→ Z is a monomorphism,
and is the bottom object of Sub(Z).

Theorem 5.1.23. For an object Z of an adhesive category C, the cate-
gory Sub(Z) of subobjects of Z has binary coproducts: the coproduct of two
subobjects is the pushout in C of their intersection.

Proof. We shall show how to form binary coproducts (=unions) in Sub(Z).
Let a : A→ Z and b : B → Z be subobjects of Z, and form the intersection
A ∩ B → Z, with projections p : A ∩ B → A and q : A ∩ B → B; and now
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the pushout

A ∩B
q //

p
��

B
v
��

A u
// C

in C. Let c : C → Z be the unique map satisfying cu = a and cv = b. We
shall show that c is a monomorphism, and so that C is the coproduct A∪B
in Sub(Z) of A and B. Suppose then that f, g : K → C satisfy cf = cg.
Form the following pullbacks

L1

f1 ��

l1 // K
f
��

L2
l2oo

f2��
A u

// C Bv
oo

M1

g1
��

m1 // K
g
��

M2
m2oo

g2
��

A u
// C Bv

oo

N11
m11 //

l11 ��

M1

m1
��

N12

l12��

m12oo

L1
l1 // K L2

l2oo

N21

l21

OO

m21

//M2

m2

OO

N22

l22

OO

m22

oo

and note that each of the following pairs are the coprojections of a pushout,
hence each pair is jointly epimorphic: (l1, l2), (m1,m2), (m11,m12), and
(m21,m22). We are to show that f = g; to do this, it will suffice to show
that fm1 = gm1 and fm2 = gm2; we shall prove only the former, leaving
the latter to the reader. To show that fm1 = gm1 it will in turn suffice to
show that fm1m11 = gm1m11 and fm1m12 = gm1m12.

First note that af1l11 = cuf1l11 = cf l1l11 = cgl1l11 = cgm1m11 =
cug1m11 = ag1m11, so that f1l11 = g1m11 since a is monic; thus fm1m11 =
fl1l11 = uf1l11 = ug1m11 = gm1m11 as required.

On the other hand, bf2l12 = cvf2l12 = cf l2l12 = cgl2l12 = cgm1m12 =
cug1m12 = ag1m12, so by the universal property of the pullback A∩B, there
is a unique map h : N12 → A ∩ B satisfying ph = g1m12 and qh = f2l12.
Now fm1m12 = fl2l12 = vf2l12 = vqh = uph = ug1m12 = gm1m12, and so
fm1 = gm1 as claimed. As promised, we leave the proof that fm2 = gm2

to the reader, and deduce that f = g, so that c is monic.

Since pushouts are stable it follows that intersections distribute over
unions:

Corollary 5.1.24. The lattice Sub(Z) is distributive.

5.2 Adhesive grammars

In this section we shall demonstrate that adhesive categories have structure
which allows a development of a rich general theory of double-pushout (dpo)
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rewriting [27]. Dpo graph rewriting has been widely studied and the field
can be considered relatively mature [87,20,26].

Dpo rewriting is formulated in categorical terms and is therefore portable
to structures other than directed graphs. There have been several at-
tempts [23,21] to isolate classes of categories in which one can perform dpo
rewriting and in which one can develop the rewriting theory to a satisfactory
level. In particular, several axioms were put forward in [23] in order to prove
a local Church-Rosser theorem (Theorem 5.2.10) for such general rewrite
systems. Additional axioms were needed to prove a general version of the
so-called concurrency theorem [57] (Theorem 5.2.14). Categories satisfying
such axioms are referred to in the literature as hlr-categories. Hlr-categories
are usually parametrised by a class of morphisms M . In the majority of the
relevant examples covered by hlr theory, M is the class of monomorphisms.
We shall show that many of the axioms of hlr-categories, when M is the
class of monomorphisms, hold in adhesive categories.

First, in §5.2.1, we shall recall the basic definitions of dpo-rewriting. In
§5.2.2 we shall examine the relationship between adhesive categories and hlr-
categories. This shall include proving, in the setting of adhesive categories,
several of the axioms put forward in the literature on hlr-categories. Finally,
in §5.2.3 we shall prove two of the classic results from the theory of hlr-
systems, the local Church-Rosser and the concurrency theorems.

5.2.1 Double-pushout graph rewriting

Here we shall recall the basic notions of double-pushout rewriting [27, 87]
and show that it can be defined within an arbitrary adhesive category.

Henceforth we shall assume that C is an adhesive category.

Definition 5.2.1 (Production). A production p is a span

L K
loo r // R (5.1)

in C. We shall say that p is left-linear when l is mono, and linear when both
l and r are mono. We shall let P denote an arbitrary set of productions and
let p range over P.

In order to develop an intuition of why a production is defined as a
span, we shall restrict our attention to linear production rules. One may
then consider K as a substructure of both L and R. We think of L and R
as respectively the left-hand side and the right-hand side of the rewrite rule
p. In order to perform the rewrite, we need to match L as a substructure of
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a redex C. The structure K, thought of as a substructure of L, is exactly
the part of L which is to remain invariant as we apply the rule to C.

Thus, an application of a rewrite rule consists of three steps. First we
must match L as a substructure of the redex C; secondly, we delete all of
parts of the redex matched by L which are not included in K. Thirdly, we
add all of R which is not contained in K, thereby producing a new structure
D. The deletion and addition of structure is handled, respectively, by finding
a pushout complement and constructing a pushout.

Definition 5.2.2 (Gluing Conditions). Given a production p as in (5.1),
a match in C is a morphism f : L → C. A match f satisfies the gluing
conditions with respect to p precisely when there exists an object E and
morphisms g : K → E and v : E → C such that

L
f ��

K
loo

g��
C Ev

oo

is a pushout diagram. (In other words, there exists a pushout complement
of (l, f) in the sense of Definition 5.1.17.)

Definition 5.2.3 (Derivation). Given an object C ∈ C and a set of
productions P, we write C ⊲ p,fD for a production p ∈ P and a morphism
f : L→ C if (a) f satisfies the gluing conditions with respect to l, and (b)
there is a diagram

L
f ��

K
g ��

loo r // R
h��

C Ev
oo

w
// D

in which both squares are pushouts.

The object E in the above diagram can be thought of as a temporary
state in the middle of the rewrite process. Returning briefly to our informal
description, it is the structure obtained from C by deleting all the parts of
L not contained in K. Recall from Lemma 5.1.18 that if l is mono (that
is, if p is left-linear) then E is unique up to isomorphism. Indeed, if p is
a left-linear production, C ⊲ p,fD and C ⊲ p,fD

′ then we must have
D ∼= D′. This is a consequence of Lemma 5.1.18 and the fact that pushouts
are unique up to isomorphism.

Definition 5.2.4 (Adhesive Grammar). An adhesive grammar G is a
pair 〈C,P〉 where C is an adhesive category and P is a set of linear produc-
tions.
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Assuming that all the productions are linear allows us to derive a rich
rewriting theory on adhesive categories. Henceforward we assume that we
are working over an adhesive grammar G.

5.2.2 Adhesive vs. high-level replacement categories

High-level replacement categories [21,22,23] or hlr-categories encompass sev-
eral attempts to isolate general categorical axioms which lead to categories
in which one can define double-pushout graph rewriting and prove useful
theorems such as the local Church-Rosser theorem and the concurrency the-
orem.

Hlr-categories usually have axioms which are parametrised over an ar-
bitrary class of morphisms M. Here we give a simplified version of the
definition which appears in [21]. The simplification is that we takeM to be
the class of monomorphisms: we justify this by noting that this is the case
in the majority of examples.

Definition 5.2.5 (Hlr-categories). A category S is an hlr-category if it
satisfies the following axioms:

1. pairs C ← A→ B with at least one of the arrows mono have a pushout;

2. pairs B → D ← C with both morphisms mono have pullbacks;

3. monos are preserved by pushout;

4. finite coproducts exist;

5. pushouts along monos are pullbacks;

6. pushout-pullback decomposition holds: that is, given a diagram

A��
l ��

k // B // r //
��
s
��

E��
v
��

C u
// D //

w
// F

if the marked morphisms are mono, the whole rectangle is a pushout
and the right square is a pullback, then the left square is a pushout.

Lemma 5.2.6. Any adhesive category with an initial object is an hlr-
category.

Proof. This follows immediately from Lemmas 5.1.15, 5.1.16, and 5.1.19.



150 Chapter 5. Adhesive and quasiadhesive categories

The axioms listed above are enough to prove the local Church-Rosser
theorem (cf. Theorem 5.2.10), but not the concurrency theorem (cf. Theo-
rem 5.2.14). To prove the latter, extra axioms had to be introduced in [23],
such as the conclusion of the following lemma. Interestingly, it is almost the
dual of the main axiom of adhesive categories.

Lemma 5.2.7 (Cube-pushout-pullback-lemma [23]). Given a cube in
which all arrows in the top and bottom faces are mono, if the top face is a
pullback and the front faces are pushouts, then the bottom face is a pullback
if and only if the back faces are pushouts.

Proof. Since the front faces are pushouts along monomorphisms, they are
also pullbacks.

If the bottom face is a pullback, then the back faces are pushouts by
stability of the pushouts on the front faces. Suppose conversely that the
back faces are pushouts; since they are pushouts along monomorphisms,
they are also pullbacks. One now simply “rotates the cube”: since the
front right and back left faces are pushouts, and the top and back right
faces are pullbacks, it follows by adhesiveness that the bottom square is a
pullback.

An hlr-category which has the conclusion of Lemma 5.2.7 as an addi-
tional axiom is sometimes referred to as an hlr2-category [23]. It is im-
mediate, therefore, that any adhesive category with an initial object is an
hlr2-category.

The strongest axiom system for general rewriting is enjoyed by the so-
called hlr2*-categories [23]. These are hlr2-categories which, additionally,
have the conclusion of Lemma 5.1.18 as an axiom, that is, pushout com-
plements of monos are, if they exist, unique up to isomorphism. Finally,
they satisfy an axiom known as the twisted-triple-pushout condition. We
believe that this axiom does not hold in an arbitrary adhesive category, al-
though it does hold, for instance, in any topos. Indeed, it is possible to
extend the definition of adhesive categories in a natural way so that the
twisted-triple-pushout-condition holds.

Lemma 5.2.8. If C is adhesive and, additionally, all pushouts are stable
under pullback then C satisfies the twisted-triple-pushout condition: that
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is, given a diagram

A

(i)f
��

k // B

(iii)g

��

G
uoo

h
��

C

(ii)p

��

l // D

q

��

Hv
oo

E m
// F

with k, l and m mono, diagram (i) is a pushout when (i)+(ii) a pushout,
(ii) a pullback, (iii) a pushout and u, h forming a pullback of qg and qv.

Proof. First note that, using Lemma 5.1.16, (i)+(ii) is a pullback. Using
the pullback version of Lemma 1.3.2 it follows that diagram (i) is a pullback.
It is easy to verify that diagram (iii) is a pullback.

Consider diagram (iv) below. By assumption, the front right face is a
pullback, while the front left face is (i)+(ii), a pushout.

A′

r

��

s
!!B

BBB

a

wwnnnnnnnnnnnnnnnnnnn
!!B

BBB

G

h

��

u

vvnnnnnnnnnnnnnnnnnnnn

A

pf

��

k
  A

AA

B

qg

��

X x2

!!C
CCCx1

vvnnnnnnnn

Cp
nnn

n

wwnnnn l   A
AA

H

vvvmmmmmmmmm

E

m   A
AA

D

qwwnnnnnnnn

F

(iv)

A′
a

vvnnnnnnnn s
!!B

BBB

r

��

A

f

��

k
  A

AA
G

h

��

uvvmmmmmmmmm

B

g

��

Xx1
nnn

n

vvnnnn
x2

!!C
CCC

C

l   A
AA

H

vvvmmmmmmmmm

D

(v)

Furthermore, the leftmost half of the bottom face is (ii) which is, by assump-
tion, a pullback. We obtain X and morphisms x1 : X → C and x2 : X → H
by taking the pullback of l : C → D and v : H → D. We can now complete
the diagram with an object A′, and morphisms a : A′ → A, r : A′ → X and
s : A′ → G so that the back left face and the top face are pullbacks. Using
adhesivity, the back right face is a pushout.

We obtain diagram (v) by “cutting off” the bottom left corner of dia-
gram (iv). The front left face is (i), the front right face is (iii), which is,
by assumption, both a pushout and a pullback. The bottom and back right
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faces are pullbacks, since they were constructed as such in diagram (iv). To
see that the back left face is commutative, note that lfa = gka = gus =
vhs = vx2r = lx1r and use the fact that l is mono. It is also a pullback,
using the pullback version of Lemma 1.3.2. Using the fact that arbitrary
pushouts are stable under pullback, we can conclude that the back left face
is a pushout. Summarising, we have assumed that the front right face is a
pushout and deduced that both the back left and right faces are pushouts.
It follows from the pushouts version of Lemma 1.3.2 that the front left face,
(i), is a pushout.

Finally, the following lemma has been used by Ehrig and König in their
work on rewriting via borrowed contexts [25]. Here we prove that it holds
in any adhesive category.

Lemma 5.2.9. Given the diagram below with the marked morphisms mono,

A
��

m
��

f // C
��
n
��

p // E
��
l
��

B g
// D q

// F

suppose that the left square is a pushout and the exterior is a pullback.
Then the right square is a pullback.

Proof. Suppose we have an object X and morphisms α : X → D and β :
X → E such that qα = lβ. We will show that there exists k : X → C such
that nk = α and pk = β. Notice that it suffices to show the existence of
such a morphism, uniqueness follows since n is mono.

Construct the following cube by taking pullbacks.

X3m′

vvmmmmmm f ′
""EE

α3

��

X1

α1

��

g′
""DD

X2

α2

��

n′

uulllll

X

α
��

Am
lll

uulll
f

##G
GG

B
g ""EE
E C

nuukkkkkkk

D

Now qgα1 = qαg′ = lβg′, and we use the fact that (1 )+(2 ) is a pullback
to derive the existence of a unique morphism h : X1 → A such that mh = α1

and pfh = βg′.
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At this point, it shall be helpful to derive a couple of equations which
will be useful later. First note that mα3 = α1m

′ = mhm′, and using the
fact that m is mono, α3 = hm′ (*). Also, lpα2 = qnα2 = qαn′ = lβn′. Since
l is mono, we have that pα2 = βn′ (**).

We shall use the fact that the top face of the cube is a pushout to derive
the existence of the required morphism. Indeed, we have α2f

′ = fα3 =
fhm′ where we used (*) to derive the last equality. Thus we get a unique
k : X → C such that kg′ = fh and kn′ = α2.

It remains to show that k satisfies the necessary properties, that is,
nk = α and pk = β.

Indeed, we have nkg′ = nfh = gmh = gα1 = αg′ and nkn′ = nα2 = αn′.
Using the fact that the top face of the cube is a pushout, and in particular,
the uniqueness of the mediating morphism, we have nk = α.

Similarly, pkg′ = pfh = βg′ and pkn′ = pα2 = βn′, where we used (**)
to derive the last equality. This implies that pk = β and we are finished.

5.2.3 Rewriting theory

As explained in §5.2.2, adhesive categories with coproducts are high-level
replacement categories. In particular, this implies that the rewriting the-
ory worked out at the level of hlr-categories applies to adhesive categories.
Here we shall recall and prove the local Church-Rosser [57,21] theorems and
the concurrency theorem [23] in the setting of adhesive categories. While
these theorems can be seen as a consequence of adhesive categories be-
ing hlr-categories, it is useful to prove them directly in this setting, both
as an exercise in the theory of adhesive categories as well as in order to
demonstrate their applicability to the problems associated with dpo graph
transformation.

Local Church-Rosser. Before presenting this theorem we need to recall
the notions of parallel-independent derivation and sequential-independent
derivation. The reader may wish to consult [15] for a more complete pre-
sentation.

A parallel-independent derivation is a pair of derivations

C ⊲ p1,f1D1 and C ⊲ p2,f2D2

as illustrated in diagram (5.2) which satisfy an additional requirement,
namely the existence of morphisms r : L1 → E2 and s : L2 → E1 which
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render the diagram commutative, in the sense that v2r = f1 and v1s = f2.

R1

h1

��

K1

g1
��

r1oo l1 // L1
r

''f1

@@

  @
@@

@

L2
s

ww f2

~~

~~~~
~~

K2

g2
��

l2oo r2 // R2

h2

��
D1 E1w1

oo
v1

// C E2v2
oo

w2

// D2

(5.2)

Similarly, a sequential-independent derivation, illustrated in diagram (5.3),
is a derivation

C ⊲ p1,f1D1 ⊲ p2,f ′2
D

where there additionally exist arrows r′ : R1 → E3 and s′ : L2 → E1 such
that w1s

′ = f ′2 and v3r
′ = h1.

L1

f1
��

K1

g1
��

l1oo r1 // R1
r′

''h1

CC

!!C
CC

C

L2
s′

ww f ′2

||

}}|||
|

K2

g′2
��

l2oo r2 // R2

h′2
��

C E1v1
oo

w1

// D1 E3v3
oo

w3

// D

(5.3)

The statement of the theorem below differs from those previously pub-
lished in the literature in that we do not need coproducts to establish the
equivalence of the first 3 items.

Theorem 5.2.10 (Local Church-Rosser). The following are equivalent

1. C ⊲ p1,f1D1 and C ⊲ p2,f2D2 are parallel-independent derivations

2. C ⊲ p1,f1D1 and D1 ⊲ p2,f ′2
D are sequential-independent deriva-

tions

3. C ⊲ p2,f2D2 and D2 ⊲ p1,f ′1
D are sequential-independent deriva-

tions.

If moreover C is extensive then we may add the so-called parallelism theorem

4. C ⊲ p1+p2,[f1,f2]D is a derivation.

Proof. (1)⇒(2): Suppose that C ⊲ p1,f1D1 and C ⊲ p2,f2D2 are parallel-
independent derivations. Form the pullback (i) below.

E1

v1
��

G
e1oo

e2��
C E2v2

oo

(i)

L1

r ��

K1

g1

��

l1oo

E2

v2 ��

K2g2oo

l2��
C E1v1

oo L2s
oo

(ii)

L1

r ��

K1

(†) k1��

l1oo

E2

v2 ��

G
(⋆)

e2oo

e1��

K2

(‡)

k2oo

l2��
C E1v1

oo L2s
oo

(iii)

K1

k1��

r1 // R1

t��
K2

r2 ��

k2 // G e3 //

e4��

E3

w3��
R2 u

// E4 w4

// D

(iv)
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The two regions in diagram (ii) are pushouts [see diagram (5.3)]. Combin-
ing the two diagrams gives (iii), with k1 and k2 obtained by the universal
property of (i) and satisfying e2k1 = g1 and e1k2 = g2. Regions (†), (‡), and
(⋆) are pushouts by Lemma 5.1.19, and one now goes on to construct (iv)
by taking successive pushouts.

The sequential-independent derivation C ⊲ p1,f1D1 ⊲ p2,f ′2
D may

now be constructed with the pushout squares below.

L1

r
��

K1

k1��

l1oo r1 // R1

t��
E2

v2
��

Ge2oo

e1��

e3 // E3

v3��
C E1v1

oo
w1

// D1

L2

s
��

K2
l2oo

k2��

r2 // R2

u
��

E1

w1 ��

Ge1oo

e3��

e4 // E4

w4
��

D1 E3 w3

//
v1
oo D

(2)⇒(1): Suppose that C ⊲ p1,f1D1 and D1 ⊲ p2,f ′2
D are sequential-

independent derivations. Form the pullback (i) below.

F
e1 ��

e3 // E3

v3��
E1 w1

// D1

(i)

K1

g1

��

r1 // R1

r′��
K2

l2 ��

g′2
// E3

v3��
L2

s′
// E1 w1

// D1

(ii)

K1

(†)k1��

r1 // R1

r′��
K2

(‡)

k2 //

l2 ��

F
(⋆)

e3 //

e1��

E3

v3��
L2

s′
// E1 w1

// D1

(iii)

K1

k1��

l1 // L1

t��
K2

r2 ��

k2 // F e2 //

e4��

E2

w3��
R2 u

// E4 w4

// D2

(iv)

The two regions in diagram (ii) are pushouts [see diagram (5.3)]. Combin-
ing the two diagrams gives diagram (iii), with k1 and k2 obtained by the
universal property of (i) and satisfying e3k2 = g′2 and e1k1 = g1. Regions
(†), (‡), and (⋆) are pushouts by Lemma 5.1.19, and one now goes on to
construct diagram (iv) by taking successive pushouts.

The parallel independent derivations C ⊲ p1,f1D1 and C ⊲ p2,f2D2

may now be constructed with the pushout squares below.

L1

r
��

K1

k1��

l1oo r1 // R1

t��
E2

v2
��

Fe2oo

e1��

e3 // E3

��
C E1v1

oo
w1

// D1

L2

s′ ��

K2
l2oo

k2��

r2 // R2

u
��

E1

w1 ��

Fe1oo

e2��

e4 // E4

w4��
D1 E3 w3

//
v1
oo D2

The proof of (1)⇔(3) is similar; the proof of (1)⇔(4) is a straightforward
exercise in the theory of extensive categories.
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In fact, the proof that (1)⇒(2) remains valid more generally in the con-
text of left-linear productions, but the proof of the converse requires linear-
ity.

Concurrency theorem. The original concurrency theorems were proved
for graph grammars [18] and later generalised to high-level replacement cat-
egories (see §5.2.2) in [23] which satisfy additional axiom sets, there called
hlr2 and hlr2*. Roughly, the concurrency theorem states that given two
derivations in a sequence, together with information about how they are
related, one may construct a single derivation which internalises the two
original derivations and performs them “concurrently”. Moreover, one may
reverse this process and deconstruct a concurrent derivation into two related
sequential derivations. Here we state and prove the concurrency theorem for
adhesive grammars without the need for extra axioms.

We shall first need to recall the notions of dependency relation, depen-
dent derivation and concurrent production.

Definition 5.2.11 (Dependency Relation). Suppose that p1 and p2 are
linear productions. A dependency relation for 〈p1, p2〉 is an objectX together
with arrows s : X → R1 and t : X → L2 for which r1, s, t, and l2 can be
incorporated into a diagram

X
s
}}zzz

z t
!!C

CC
C

K1

g′1 ��

r1 // R1 h′1
  B

BB
B

L2f ′2
~~}}}

}
K2

l2oo

g′2��
E′

1 w′
1

// D′ E′
2v′2

oo

(5.4)

in which all three regions are pushouts.

Definition 5.2.12 (Dependent Derivation). Consider a derivation

C ⊲ p1,f1D1 ⊲ p2,f2D

as illustrated in diagram (i) below, and a dependency relation X for 〈p1, p2〉.

L1
f1 ��

K1
g1 ��

l1oo r1 // R1 h1

!!D
DDD

L2f2
}}{{{

{
K2
g2��

l2oo r2 // R2

h2��
C E1v1

oo
w1

// D1 E3v3
oo

w3

// D

(i)

X
s
||yyy

y t
""D

DD
D

K1

g′1 ��

r1 // R1 h′1
!!B

BB
B

L2f ′2
}}||

||
K2

l2oo

g′2��
E′

1
e1 ��

w′
1

// D′

d��

E′
2
e2��

v′2

oo

E1 w1

// D1 E2v2
oo

(ii)



5.2. Adhesive grammars 157

The derivation is said to be X-dependent if h1s = f2t and there exist mor-
phisms e1 : E′

1 → E1 and e2 : E′
2 → E2 satisfying e1g

′
1 = g1 and e2g

′
2 = g2,

and if moreover the unique map d : D′ → D1 satisfying dh′1 = h1 and
df ′2 = f2 also satisfies dw′

1 = w1e1 and dv′2 = v2e2 [see diagram (ii)].

Definition 5.2.13 (Concurrent Production). Given a dependency re-
lation X for 〈p1, p2〉, the X-concurrent production p1;X p2 is the span

C ′ P ′
v′1u

′

oo
w′

2v
′

// D′

obtained by taking the bottom row of the following extension of Diagram (5.4)

X
s
}}zzz

z t
!!C

CCC

L1

f ′1 ��

K1

†

l1oo

g′1��

r1 // R1 h′1
  B

BB
B

L2f ′2
~~}}

}}
K2

‡

l2oo

g′2 ��

r2 // R2

h2��
C ′ E′

1v′1

oo
w′

1

// D′ E′
2v′2

oo
w′

2

// D′

P ′

♯

v′

;;

u′

cc

in which † and ‡ are pushouts and ♯ is a pullback.

Theorem 5.2.14 (Concurrency Theorem).

1. Given an X-dependent derivation C ⊲ p1,f1D1 ⊲ p2,f2D there ex-
ists an X-concurrent derivation C ⊲ p1;Xp2D

2. Given an X-concurrent derivation C ⊲ p1;Xp2D, there exists an X-
dependent derivation C ⊲ p1,f1D1 ⊲ p2,f2D.

Proof. 1. Suppose that we have an X dependent-derivation, as in the solid
part of the diagram

X

(iii)

s
}}zz

zz
z t

!!C
CC

CC

L1

(i)f ′1 ��
f1

##

K1

(ii)g′1��

l1oo r1 // R1

h′1
  B

BB
BB

L2

f ′2
~~||

||
|

K2

(iv)

l2oo

g′2��

r2 // R2

(v) h′2��
h2

||

C ′

(vi)c
��

E′
1

(vii)e1
��

v′1
oo w′

1
// D′

1

d1��

E′
2

(viii) (ix)e2
��

v′2
oo w′

2
// D′

d
��

C E1v1
oo

w1

// D1 E2v2
oo

w2

// D

in which (iii), (i)+(vi), (ii)+(vii), (iv)+(viii), (v)+(ix ), (ii), and (iv) are
pushouts, so that also (vii) and (viii) are pushouts. Fill in the dotted parts
of the diagram to obtain further pushouts (i), (v), (vi), and (ix ).
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By Lemma 5.1.15 both w′
1 and v′2 are monomorphisms, and now by

Lemma 5.1.16 both (vii) and (viii) are pullbacks. Consider the cube in
which bottom and front left faces are the pullbacks (vii) and (viii), and the
remaining faces are constructed so as to be pullbacks. Since the bottom face
is also a pushout, so is the top face. Similarly, since the front left face is a
pushout, so is the back right face.

P ′
v′

vvmmmmmmm p
!!CC

C

u′

��

E′
2

v′2

��

e′2

!!D
D P

u

��

v
vvmmmmmmm

E2

v2
��

E′
1

w′
1

nnn

vvnnn
e1
  A

A

D′
1

d1
!!DD

E1

w1vvmmmmmmm

D1

2. Suppose that we have an X-concurrent derivation C ⊲ p1;Xp2,fD, as
illustrated by the solid part of the first diagram below.

X
t
""D

DD
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||yyy
y

L1

f ′1

��

K1
l1oo

g′1

��
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!!B
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L2f ′2
}}||

|
K2
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r2 // R2
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��

D′
1

C ′

c ��

E′
1
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w′
1

66nnnnnnnnnv′1oo

e1��

P ′u′oo

(iii)(ii) p
��

v′ // E′
2

(iv)

v′2
ggPPPPPPPPP w′
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e2��

D′

d��
C E1v1oo Puoo

q

hh

r

66v // E2 w2 // D

X
s
||yyy

y t
""D

DD
D
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f ′1
��

K1

g′1
��

l1oo r1 // R1

h′1

��5
55

55
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L2

f ′2

��		
		

		
	

K2
l2oo

g′2
��

r2 // R2

h′2
��

C ′

c ��

E′
1

(i) e1��

v′1
oo w′

1
// D′

1
(v) (vi)d1��

E′
2

(iv)e2��

v′2
oo w′

2
// D′

d��
C E1v1

oo
w1

// D1 E2v2
oo

w2

// D

We construct pushouts (ii) and (iii) and obtain v1 and w2 using the universal
properties. It now follows that (i) and (iv) are also pushouts. Now construct
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the pushout (v); since (ii)+(v) and (iii) are pushouts, there is a unique
map v2 : E2 → D1 so that (vi) is a pushout and (iii)+(vi) equals (ii)+(v).
The diagram second diagram above now provides the required X-dependent
derivation C ⊲ p1,cf ′1

D1 ⊲ p2,d1f ′2
D.

5.3 Quasiadhesive categories

The notion of adhesivity is too strong for some relevant examples, and there-
fore, it is useful to study weaker notions. Notably, such examples often arise
in the theory of algebraic specifications.

Instead of requiring all pushouts along monomorphisms to be well be-
haved, quasiadhesive categories have well-behaved pushouts along regular
monomorphisms, that is, only such pushouts are required to be VK-squares.
Recall that a regular monomorphism is one that is an equaliser of two mor-
phisms. Recently, Ehrig et al. [24] have considered categories where pushouts
along a particular class of monomorphisms are van Kampen, which they have
dubbed adhesive hlr-categories. Quasiadhesive categories fall under this gen-
eral umbrella and cover many of the examples of adhesive hlr-categories.

After motivating the need for a weaker version of adhesivity in 5.3.1, we
shall introduce the definition of quasiadhesive categories in 5.3.2. Finally,
in 5.3.3 we shall consider some of their properties.

5.3.1 Structures and algebraic specifications

To motivate this development, we introduce the category of structures over a
fixed set of predicates P [23]; that is a set with an associated arity function
ar, which associates an arity n ≥ 0 to each member of P.

Definition 5.3.1. A structure R is a pair 〈R0, R1〉 where R0 is a set of
atoms, and R1 is an arbitrary set of formulas

R1 ⊆ {P (x1, . . . , xn) | P ∈P, ar(P ) = n, x1, . . . , xn ∈ R0 }.

A structure morphism f : R → R′ is a function f0 : R0 → R′
0 such that

if P (x1, . . . , xn) ∈ R1 then P (f0x1, . . . , f0xn) ∈ R′
1.

Structures and structure morphisms form a category StrP .

Structures can be considered as a kind of generalisation of (directed)
graphs; one may consider graphs to be sets equipped with binary predicates
for edges. The analogy is not perfect, however: if we take P to be the
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singleton binary predicate {E} then structures are graphs with at most one
edge between two vertices.

It is easy to show that StrP has arbitrary pullbacks and pushouts.
Indeed, in order to obtain a pushout diagram given structure morphisms
m : R→ S and f : R→ T ,

R f
  @

@@m
��~~

~

S

g ��@
@@

T

n~~~~
~

U

let U0, n0 and g0 be the morphisms induced by taking the pushout in Set.
The set of formulas U1 is taken to be the least collection which makes n and
g into structure morphisms, explicitly:

U1 = {P (g0x1, . . . , g0xn) | P (x1, . . . , xn) ∈ S0 }

∪ {P (n0x1, . . . , n0xn) | P (x1, . . . , xn) ∈ T0 }.

Similarly, in order to obtain a pullback in Str given structure morphisms
g : S → U and n : T → U , we first obtain R0, m0 and f0 by taking the
pullback in Set. We obtain the set of formulas R1 by forming the greatest
collection of formulas which makes m and f into structure morphisms. Thus,

R1 = {P (x1, . . . , xn) | P (m0x1, . . . ,m0xn) ∈ S1 and P (f0x1, . . . , f1xn) ∈ T1 }

Definition 5.3.2. A structure morphism m : R→ S is strict injective [23] if
it is injective and, additionally, if P (m0x1, . . . ,m0xn) ∈ S1 then P (x1, . . . , xn)
is in R1.

Lemma 5.3.3. The class of regular monomorphisms m : R → S of StrP

coincides with the class of strict injective morphisms.

Proof. It is easy to check that taking an equaliser of two morphisms results
in a strict injective morphism. Conversely, suppose we have a strict injective
morphism m : R → S. Let 2 denote the structure with a two element set
{⊤,⊥} and all formulas. Let ⊤ : S → 2 be the structure morphism constant
at ⊤ and let [m] : S → 2 denote the structure morphism which takes x ∈ S0

to ⊤ if x is the range of m, and ⊥ otherwise.

R
m // S

[m] //

⊤
// 2

It is easy to check that m is an equaliser of [m] and ⊤.
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Notice that a simple corollary of Lemma 5.3.3 is that StrP is not a topos,
since in toposes every mono is regular. In fact, the category StrP is not,
in general, adhesive. For a simple counterexample, let P be the singleton
containing a unary predicate P , let 1 denote the structure with a singleton
set of atoms and no formulas, 1′ to be the structure with a singleton set of
atoms and a single formula P (x).

Consider the cube below,

1
wwoooooo

��>
>

��

1

��

��?
? 1′

��

xxppppp

1′

��

1ooo
wwoo ��>

>

1′
��??

1′

xxppppp

1′

where all the morphisms are the unique morphisms between singleton sets.
It is easily checked that the bottom face is a pushout, the back faces are
pullbacks and the top face is a pushout. However, the front left face is not
a pullback and, therefore, the bottom face is not a VK-square.

Indeed, it is immediately clear that the bottom face is not a VK-square
because it is not a pullback (Lemma 5.1.16). On the other hand, if we
restrict to pushouts along regular monomorphisms, we have:

Lemma 5.3.4. In StrP , the following hold:

(i) pushouts along regular monomorphisms are pullbacks;

(ii) regular monomorphisms are stable under pushout.

In fact, as we shall prove in Lemma 5.3.6, in StrP , pushouts along
regular monomorphisms are VK-squares.

5.3.2 Quasiadhesive categories

The above example motivates the following definition.

Definition 5.3.5. A category C is said to be quasiadhesive if

(i) C has pushouts along regular monomorphisms;

(ii) C has pullbacks;
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(iii) pushouts along regular monomorphisms are VK-squares.

Lemma 5.3.6. For any P, StrP is quasiadhesive.

Proof. We have showed that StrP satisfies axioms (i) and (iii) of Defini-
tion 5.3.5. Regular monos are stable under pushout, as shown in Lemma 5.3.4.

To show that pushouts along regular morphisms are VK-squares, we first
note that any pushout in StrP is stable under pullback.

It remains to show the following: given a cube

C ′
m′

vvmmmmmmm f ′

!!C
C

c

��

A′

a

��

g′
!!C

C B′

b

��

n′
vvmmmmmmm

D′

d
��

Cm
lll

vvlll
f
""EE

E

A
g ""EE
E B

nvvlllllll

D

where the bottom and top faces are pushouts and the back faces are pull-
backs, then the front faces are pullbacks. We shall show this for the front
left face, the proof for the front right face is similar. In the following we
write x for a sequence x1, . . . , xn; thus for example fx denotes fx1, . . . , fxn.

Suppose that, for some x ∈ A′, we have P (g′x) ∈ D′
1 and P (ax) ∈ A1

and P (x) /∈ A′. Then, since the top face is a pushout, there exists x′ ∈ B′

such that P (x′) ∈ B′
1 and n′x′ = g′x. Now, P (bx′) ∈ B1. Since the bottom

square is a pullback, there exists x′′ ∈ C such that P (x′′) ∈ C1, mx′′ = ax
and fx′′ = bx′. The fact that the back right face is a pullback implies that
there exists x′′′ ∈ C ′

0, with P (x′′′) ∈ C ′
1, cx′′′ = x′′ and f ′x′′′ = x′. Using the

fact that the front left face is a pullback in Set, we have m′x′′′ = x. Then,
since m′ is a homomorphism and P (x′′′) ∈ C ′

1, we have that P (x) ∈ A′
1, a

contradiction.

5.3.3 Properties of quasiadhesive categories

Most of the properties of adhesive categories have a “quasi” version; with
the proofs essentially the same. Here we state a few of the more interesting
ones.

Proposition 5.3.7. If C is a quasiadhesive category then the following
hold:
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(i) pushouts along regular monos are pullbacks;

(ii) pushout complements of regular monos are unique up to isomorphism;

One also has the closure properties shown for adhesive categories. In
particular:

Proposition 5.3.8.

(i) If C and D are quasiadhesive categories then so is C×D;

(ii) If C is quasiadhesive then so is C/C for any object C of C, if addi-
tionally C has equalisers then C/C is also quasiadhesive;

(iii) If C is quasiadhesive then so is any functor category [X,C].

Proof. We rely on the facts that pushouts and pullbacks are constructed
pointwise in all of the above cases, the class or regular monomorphisms in
C×D is the product of the regular monomorphisms of C and D, the regular
monomorphisms of C/C coincide with those of C. To show that the regular
monomorphisms of C/C coincide with those of C we need the additional
assumption that C has equalisers. The regular monos of [X,C] are exactly
those natural transformations of which every component is regular mono.
This follows from the fact that limits in functor categories are calculated
pointwise.

Similarly, one may develop a double-pushout rewriting theory inside a
quasiadhesive category. The only adjustment is made to the definition of
linear production (Definition 5.2.1); we would require the components of
the span to be regular monomorphisms. One may then define a quasiadhe-
sive grammar in the obvious way (see Definition 5.2.4), restate and obtain
Theorems 5.2.10 and 5.2.14 for quasiadhesive grammars. We leave it to the
reader to fill in the details.
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Chapter 6

Cospans as contexts

In this chapter we shall construct GRPOs in a general framework of ab-
stract, uninterpreted contexts over an arbitrary adhesive base category C:
the cospan bicategory Cospan

∼=(C) with isomorphic 2-cells. Such bicate-
gories have the same objects as C, but the arrows are cospans I

ι
−→ C

o
←− J

of arrows in C, which can be viewed as an object C enriched with an “input”
interface ι and and “output” interface o. Intuitively, ι is the partial view of
C attainable from its holes, while o is the restricted view of C afforded to the
environment. Composition of cospans is performed by pushing out along the
shared interfaces, which can be understood intuitively as glueing together
an agent and its context along their common interface. Due to the nature
of pushouts, composition is only associative up to a unique isomorphism.

The main result of this chapter is Theorem 6.2.5 which includes a con-
struction of GRPOs in a class of cospan bicategories, which in turn allows
the derivation of an lts for any reactive systems over such a bicategory.
Specifically, we require a linearity condition on the input interfaces, namely,
that ι is mono. Additionally, our cospans are over adhesive categories [59],
which are categories in which pushouts along monomorphisms exist and are
suitably well-behaved.

As we prove in the paper, adhesive categories have enough structure for
the construction of GRPOs in our cospan bicategories.

In order to prove the relevance and usefulness of the construction, we
shall treat two examples. Firstly, we apply it to derive lts for double-pushout
(dpo) graph-rewriting systems. Graph rewriting is a well-established field of
theoretical computer science [19], concerned with the extension of rewriting
techniques from terms to graph structures. dpo graph rewriting can be
generalised nicely to rewriting in arbitrary adhesive categories [59].

Since any arbitrary dpo graph-rewriting system can be seen as a reactive

165
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systems on the bicategory Cospan
∼=(Graph), the bicategory of cospans over

the (adhesive) category of graphs, we can derive an lts for any such graph
rewriting system. This equips any arbitrary graph rewriting system with
a contextual semantics and a corresponding coinduction principle, so as to
allow for the transfer of concepts and techniques from the field of process
algebra to graph-rewriting. In other words, this yields a behavioural equiv-
alence based uniquely on the interactions of (concurrent) dynamic systems
with their environment, while the presence of a well-behaved lts allows the
use of coinduction to prove contextual equivalence.

When restricting cospans to purely linear (mono) maps, the concrete lts
we derive agrees exactly with Ehrig and König’s recently proposed approach,
the so-called rewriting with borrowed contexts [25]. Consequently, Ehrig
and König’s congruence theorem can be understood as a corollary of the
congruence theorem (Theorem 2.3.6) for GRPOs. Without the restriction,
the application of reactive systems to graph rewriting extends the borrowed-
context approach by considering graph contexts where the output interface
need not be injective. In this application, therefore, the paper contributes
in two ways. Firstly, it is an extension of the results of Ehrig and König;
secondly, it provides a missing link between their work and the work of Leifer
and Milner [66].

Our second application is the construction of GRPOs for a version of Mil-
ner’s bigraphs [73]. Bigraphs have been recently proposed as a formalism
to model mobility of communication channels, or links (as in the π calcu-
lus), together with spatial mobility of agents, or places (as in distributed
calculi). We introduce the adhesive category of place-link graphs. The
cospan bicategories over place-link graphs resemble Milner’s bigraphs, with
some differences imposed by the respective linearity conditions. The general
construction of GRPOs provides reactive systems over our bigraphs with a
labelled transition semantics.

We shall start in section 6.1 by extending the framework of reactive
systems to bicategories. This does not introduce technical problems since
GRPOs, being a type of bicolimit, are a natural bicategorical notion. In
section 6.2 we shall present the main contribution of this chapter: the con-
struction of GRPOs in arbitrary input-linear cospan bicategories over ad-
hesive categories. Finally, in section 6.3 we shall present two immediate
applications of this construction in the areas of dpo graph transformation
and Milner’s bigraphs.
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6.1 Cospan bicategories

A bicategory [7] can be described, roughly, as a 2-category where asso-
ciativity and identity laws of horizontal composition hold up to isomor-
phisms. We shall denote all associativity isomorphisms by a, as for ex-
ample, a : h(gf) ⇒ (hg)f . The isomorphisms are required to respect the
well-known coherence axioms.

We shall first recall the notion of cospan bicategory in §6.1.1 and proceed
in §6.1.2 to extend the notion of reactive system so that it allows underlying
bicategories of contexts.

6.1.1 Bicategories and cospans

We shall assume that C is an adhesive category with chosen pushouts. That
is, for arrows m : C → A and f : C → B, there exists a unique “chosen”
object A +C B and arrows i : A → A +C B and i : B → A +C B such
that the resulting square is a pushout. By the universality of pushouts,
given any other object D and arrows g : A → D and n : B → D which
render the resulting square a pushout, there exists a unique isomorphism
α : A+CB → D such that αiA→A+B = g and αiB→A+B = n. We shall adopt
the convention of always labelling the morphisms into the chosen pushout
by i in diagrams, and decorating them with the domain and codomain in
the subscript when referring to them in algebra.

The bicategory of cospans Cospan(C) has the same objects as C, but
arrows from I1 to I2 are cospans.

I1
f // C I2

goo

We will denote such cospans Cgf : I1 → I2 or Cg:I2f :I1
, and omit f (respec-

tively g) when I1 (respectively I2) is an initial object. We shall refer to I1
and I2 as the input and the output interfaces of Cgf . Intuitively, we can
think of a cospan as a generalised context, where C are the internals, (the
image via g of) I2 represents the public view of C, and (the image via f of)
I1 the view of C afforded to the ‘holes’ in it.

A 2-cell h : Cgf ⇒ C ′g′

f ′ : I1 → I2 is an arrow h : C → C ′ in C satisfying
hf = f ′ and hg = g′. The 2-cells that are iso (i.e. invertible) provide a
canonical notion of “structural congruence.” We shall denote the bicategory
of cospans which has the 2-cells limited to isomorphisms by Cospan

∼=(C).

Given cospans Cgf : I1 → I2 and Dg′

f ′ : I2 → I3, their composition

Dg′

f ′ ◦C
g
f : I1 → I3 is the cospan (C +I2 D)

iD→C+D.g
′

iC→C+D .f
: I1 → I3, as illustrated
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by the pushout diagram below.

C +I2 D

I1
f // C

i 99

I2
goo f ′ // D

iee

I3
g′oo

Note that in the resulting composition, I2 is “forgotten.” Composition is
associative up to a unique isomorphism. It is easy to check that the associa-
tivity isomorphisms satisfy the coherence axioms, and thus yield a bicategory

In the construction of section 6.2 we shall need certain linearity restric-
tions. In particular, we shall work with input-linear cospans, as defined
below.

Definition 6.1.1 (Linearity). A cospan Cgm is said to be input-linear when
m is a mono. A cospan Cnm is said to be linear when both m and n are mono.

When working over an adhesive category, a simple corollary of the first
part of Lemma 5.1.15 is that the composition of two input-linear cospans
yields an input-linear cospan. Similarly, composition preserves linearity.

Definition 6.1.2 (Linear Cospans). Assuming that C is adhesive, let
ILC(C) be the bicategory consisting of input-linear cospans and isomor-
phic 2-cells. Similarly, let LC(C) be the bicategory of linear cospans and
isomorphic 2-cells.

6.1.2 Reactive systems over bicategories

Recall that the intuition behind the 2-dimensional structure is that, while
arrows of the underlying category are viewed as contexts, the (isomorphic) 2-
cells are thought of as “proofs of structural congruence” between contexts.
In the particular case of the bicategory Cospan

∼=(Graph), the 2-cells are
precisely graph isomorphisms which respect the input and output interfaces.

It is easy to extend the notion of reactive system so that it has an
underlying bicategory.

Definition 6.1.3 (Reactive System). A reactive system C consists of

1. a bicategory B;

2. a collection D of arrows of B called the reactive contexts; it is required
to be closed under isomorphic 2-cells and composition-reflecting (see
below);

3. a distinguished object 0 ∈ B;
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4. a set of reaction rules R, it consists of pairs of arrows 〈l, r〉 with
domain 0. The members l, r of any given pair 〈l, r〉 ∈ R have the same
codomain.

Recall that the reactive contexts are those inside which evaluation may
occur. Requiring D to be composition-reflecting means that dd′ ∈ D implies
d and d′ ∈ D, while the closure property means that given d ∈ D and an
isomorphism ρ : d⇒ d′ in B implies d′ ∈ D.

The reaction relation ⊲ is defined by taking a ⊲ dr if there is
〈l, r〉 ∈ R, d ∈ D and α : dl ⇒ a. This represents that, up to structural
congruence α, a is the left-hand side l of a reduction rule in a reaction
context d.

The notion of bicolimit, as presented in Definition 3.1.7 of Chapter 3 is
a bicategorical notion. Since GRPOs are a particular type of bicolimit, this
means that we are free to speak about GRPOs and GIPOs in bicategories.
In particular, we can still use the elementary presentation of Definition 2.2.9,
taking care to add the coherent isomorphisms where necessary. Moreover,
the proofs of the crucial properties of GRPOs and GIPOs in G-categories
as presented in section 3.2 are easily extended to the more general setting
of bicategories with isomorphic 2-cells, although we shall omit the details
here.

Correspondingly, we obtain the concrete and abstract variants of labelled
transition systems (Definitions 2.2.14 and 2.2.16) constructed using GIPOs,
as defined in Chapter 2 Moreover, the congruence theorems for bisimilarity
as well as trace and failures preorders follow

6.2 Constructing GRPOs for input-linear cospans

Let C be an adhesive category. In this section we shall prove that ILC(C)
has GRPOs. In fact, we shall present a general construction of GRPOs in
input-linear cospan bicategories. The result uses only pure category theory,
yet as a consequence of the technology developed in Chapter 2, it has many
applications, some of which we shall discuss in section 6.3. Indeed, any
reactive system over ILC(C) has redex-GRPOs and therefore can be given
a canonical labelled transition system semantics. We shall conclude this
section with several examples of GRPOs in the bicategory ILC(Graph) –
the bicategory of input-linear cospans over the category of directed graphs.
The examples are ad-hoc and have no computational meaning, they are
included so as to give an intuition to how GRPOs are constructed and to
what they look like.
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The main steps involved in the construction of a GRPO are outlined in
Algorithm 6.2.2. The proof of correctness of the algorithm is quite tech-
nical and we shall present it in much detail, perhaps more detail than is
customary for mathematical publications. This has been done in order to
make the intended audience as broad as possible. At this point one should
emphasise that the effort is justified; we are proving one theorem of pure
category theory, instead of proving many small theorems about particular
instances, say in the bicategory ILC(Set), ILC(Graph) or the category of
bigraphs. Much of the detail is checking that various equations, required in
the definition of GRPOs, hold. Many of these equations are shown to hold
using routine “diagram chasing”.

In order to increase its readability, the proof is divided into two sec-
tions. We shall start in §6.2.1 by proving Lemma 6.2.3 which states that
the construction outlined in Algorithm 6.2.2 indeed results in a candidate.
Secondly, in §6.2.2, we shall prove Lemma 6.2.4 which confirm that this can-
didate satisfies a universal property. In §6.2.3 we shall demonstrate a simple
characterisation of GIPOs which is useful when actually deriving the labels
of an lts.

6.2.1 Construction

We shall, in Algorithm 6.2.2, outline a procedure for the construction of the
desired minimal candidate of the arbitrary square illustrated in diagram (i).
It is an algorithm in the sense that it gives a procedure of how, given di-
agram (i), to construct the minimal candidate. We shall not consider the
computability or the efficiency of the individual steps in the construction.

The proof that applying the construction indeed results in a GRPO is
divided into two lemmas. First, in Lemma 6.2.3 we shall prove that the
components constructed in Algorithm 6.2.2 form a candidate for the redex
square (i). Secondly, in Lemma 6.2.4, we shall prove that this candidate is
indeed the minimal one; that is, we shall show that it satisfies the appropriate
universal property, as specified in Definition 2.2.9.

An arbitrary square in ILC(C), as illustrated in diagram (i) below,
amounts to a commutative diagram (ii) in C, with α an isomorphism. We
shall adopt a loose convention of sometimes using ///o/o to denote the iso-



6.2. Constructing GRPOs for input-linear cospans 171

morphisms of C which correspond to the 2-cells of ILC(C).

I4

I2
α +3

C ??~~~
I3

D__@@@

I1
A

__@@@
B

??~~~

(i)

C
i��

I4
oCoo oD // D

i ��
I2

;;
ιC

;;vvvvv

oA ##H
HHHH A+I2 C

α ///o/o/o B +I3 D I3

oB{{vvv
vv

v

dd
ιD

ddHHHHH

A
OO i
OO

I1 //
ιB

//oo
ιA

oo

(ii)

B
OOi
OO

C

ωC ��?
??

? I4
oCoo oD // D

ωD��~~
~~

I2

oA ��?
??

?

ιC ??����
X I3

ιD__????

oB�����
�

A

ωA
??����
I1

(iii)

ιA
oo

ιB
// B

ωB
__@@@@

Recall that given an object X, a subobject [µ : Y → X] is an equivalence
class of monomorphisms into X, where the equivalence relation is generated
from the canonical preorder on monomorphisms into X: µ ≤ µ′ if there
exists k : Y → Y ′ such that µ′k = µ. We shall abuse notation by confusing
the subobject (equivalence classes of monos) with its representative µ (one
mono).

Definition 6.2.1 (Frame of reference). Given a diagram (i) in ILC(C),
by a frame of reference we shall mean an an arbitrary object X equipped
with isomorphisms ωl : A +I2 C → X and ωr : B +I3 D → X such that
ω−1
r ωl = α. Let ωA = ωliA→A+C : A → X, ωC = ωliC→A+C : C → X,
ωB = ωriB→B+D : B → X and ωD = ωriD→B+D : D → X.

Clearly, a frame of reference always exists. For instance, one could let
X equal B +I3 D, let ωr be identity and ωl be α. Notice that:

ωAιA = ωl(iA→A+C)ιA = ωrα(iA→A+C)ιA = ωr(iB→B+D)ιB = ωBιB and

ωCoC = ωl(iC→A+C)oC = ωrα(iC→A+C)oC = ωr(iD→B+D)oD = ωDoD,

which amounts to saying that diagram (iii) is commutative. Notice that
both of the squares in diagram (iii) are actually pushouts.

Since ωA and ωB are readily seen to be mono, being pushouts of monos in
an adhesive category (see Lemma 5.1.15), we are able to obtain the subobject
union – an object Y = A ∪B and monomorphisms µ : Y → X, ǫ1 : A→ Y
and ǫ2 : B → Y satisfying µǫ1 = ωA and µǫ2 = ωB. Notice that since µ is
mono and µǫ1ιA = ωAιA = ωBιB = µǫ2ιB we have that ǫ1ιA = ǫ2ιB . We
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obtain the commutative diagram (iv).

X

A
ǫ1 //

ωA
11

Y

µ

OO

B

ωB
mm

ǫ2oo

I1

ιA

__@@@@@@ ιB

??~~~~~~

(iv)

I5oE

wwnnnnnn   ιG  AAoF

��

E

σ1

��

  ρ1  BB
G

π2

��

π1vvmmmmmm

C
ωC

��

Fσ2 mm
vvmmmm

!! ρ2!!BB

Y   
µ   BB

D
ωDvvmmmmmm

X

(v)

γ
@@@@

�#
@@@@

I4

I2

C
22

E //

β
+3

I5

δ~~~~~~

;C~~~~G

OO

I3Foo

D
ll

I1

A

__???????? B

??��������

(vi)

Algorithm 6.2.2 (GRPO Construction in ILC(C)). The construction
of the components of the minimal candidate is outlined below. They are
illustrated in diagrams (v) and (vi). We obtain:

1. G as the pullback of ωC : C → X and ωD : D → X;

2. E as the pullback of µ : Y → X and ωC : C → X;

3. F as the pullback of µ : Y → X and ωD : D → X;

4. I5 as the pullback of ρ2 : F → D and π2 :G → D; Notice that due to
the properties of pullbacks, we obtain a morphism oE : I5 → E such
that all the faces of (v) are pullbacks.

5. The input and output interfaces of E, F and G, as well as isomor-
phisms β : A+I2 E → B+I3 F , γ : C → E+I5 G and δ : F +I5 G→ D
which form the 2-cells of diagram (vi) follow in a canonical way. We
shall show this in detail in the proof of Lemma 6.2.3.

Notice that it is critical that we fix a particular isomorphism α : A+I2

C → B +I3 D. Indeed, starting with two different isomorphism α1, α2 :
A +I2 C → B +I3 D, the construction of Algorithm 6.2.2 may give dif-
ferent results. This is to be expected since, as we argued in §2.2.1, the
2-dimensional structure is necessary if we are to have a satisfactory notion
of minimal candidate. To illustrate this point, we shall consider a very sim-
ple example in the bicategory ILC(Set). Indeed, consider the following two
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diagrams in ILC(Set)

0

1
1 +3

2
@@�����

1

2
^^=====

0
1

^^===== 1

@@�����

0

1
γ +3

2
@@�����

1

2
^^=====

0
1

^^===== 1

@@�����

where the arrow 0
1
−→ 1 is the cospan 0

id
−→ 1

id
←− 1 while the arrow 1

2
−→ 0

denotes the cospan 1
0
−→ 2

!
←− 0 where 1

0
−→ 2 “picks out” element 0 ∈ 2.

There are clearly two possible bijections 2 → 2, the identity and the map
γ : 2→ 2 which swaps the two elements. Notice that both the isomorphisms
fit in as 2-cells in the diagrams; any isomorphism respects empty input and
output interfaces. The GRPOs of the two diagrams are very different. First
we illustrate the two resulting cubes which result from the steps outlined in
Algorithm 6.2.2 and which correspond to diagram (v).

1
xxqqqqq �� 0��<

<

��

1

��

�� 0��<
< 2

��

xxqqqqq

2

��

1qq
xxqq

�� 0��<
<

1 ��
0
��<

< 2
xxqqqqq

2

2
xxqqqqq ��

��<
<

γ

��

2

γ

��

��
��<

< 2

γ

��

xxqqqqq

2
γ

��

2qq
xxqq

��
��<

<

2 ��
��<

< 2
xxqqqqq

2

The two resulting candidates are illustrated below

1
<<<<<<

�"
<<<<

0

1

1
+3

2
11

1 // 1

1������

<D
����2

OO

11oo

2
mm

0

1

^^>>>>>>>> 1

@@��������

1
<<<<<<

�"
<<<<

0

1

γ
+3

2
11

2 // 2

1������

<D
����2

OO

12′oo

2
mm

0

1

^^>>>>>>>> 1

@@��������

where 1
1
−→ 1 is just the identity cospan 1

id
−→ 1

id
←− 1, 1

2
−→ 2 is the

cospan 1
0
−→ 2

id
←− 2 and 1

2′
−→ 2 is the cospan 1

0
−→ 2

γ
←− 2.

Intuitively, in the first case, the two lower arrows (A and B) correspond
to the same element via the contexts and the identity isomorphism. Thus
the context contains redundant information which can be factored out re-
sulting in a candidate which is just the identity context. Conversely, they
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are different in the second case, meaning that the context has to be kept in
the minimal candidate. The reader should compare this example to the sit-
uation in the G-category of bunch contexts, as illustrated in Example 4.2.8.

Lemma 6.2.3. The construction as outlined in Algorithm 6.2.2 provides a
candidate for square (i).

Proof. In order to prove the lemma, we are required to:

1. demonstrate the existence of appropriate input and output interfaces
for each of E, F and G;

2. show that there exist isomorphisms β : A +I2 E → B +I3 F , γ : C →
E +I5 G and δ : F +I5 G→ D;

3. show that these isomorphisms paste together in way which results in
a 2-cell equal to α : A+I2 C → B +I3 D.

Recall that the components constructed in Algorithm 6.2.2 can be organ-
ised conveniently in the cube of pullbacks illustrated in diagram (v). The
exterior rectangles of diagrams (vii) and (viii) are pushouts (as illustrated
in diagram (iii)) and as such they are commutative.

I2
99

ιC
&&// ιE //

oA ��

E
(†)σ1 ��

// ρ1 // C
ωC��

A %%
ωA

88//
ǫ1

// Y //
µ

//

(vii)

X

I3
99

ιD
%%// ιF //

oB ��

F
(‡)σ2 ��

// ρ2 // D
ωD��

B %%
ωB

88//
ǫ2

// Y //
µ

//

(viii)

X

Using the universal property of pullbacks, we obtain ιE : I2 → E satisfying
σ1ιE = ǫ1oA and ρ1ιE = ιC . Similarly, we obtain ιF : I3 → F which satisfies
the analogous equations: σ2ιF = ǫ2oB and ρ2ιF = ιD. We can now use
the fact that we are working in an adhesive category: by Lemma 5.1.20
the left hand squares of diagrams (vii) and (viii) are pushouts, which in
turn implies that regions (†) and (‡) are pushouts, using ordinary pushout
pasting (Lemma 1.3.2). But regions (†) and (‡) are, respectively, the front
left face and the bottom face of diagram (v). Thus, since all the side faces of
diagram (v) are pullbacks and the bottom face is a pushout, we can conclude
by adhesiveness (Definition 5.1.7) that the top face is a pushout. Similarly,
the fact that the front left face is a pushout implies that the back right face
is a pushout.
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Using the fact that G was defined as the vertex of a pullback diagram, we
obtain a unique morphism oG : I4 → G such that π1oG = oC and π2oG = oD.
Diagram (ix ) illustrates the components of the candidate the existence of
which we have derived above.

I4oC

}} oG��

oD

!!
C G

π1oo π2 // D

I2 //
ιE

//
FF

ιC 44

E
OOρ1
OO

I5

(ix)

oE

oo
oF

//
OO ιG
OO

F
OO ρ2
OO

I3oo
ιF
oo

XX

ιDjj

Having constructed the basic building blocks of the candidate, we shall
now return our attention to the bicategory ILC(C) and construct the ap-
propriate isomorphic 2-cells β, γ and δ, as illustrated in diagram (vi).

Let E +I5 G denote the chosen pushout of oE and ιG and let γ : C →
E +I5 G be the unique induced isomorphism, illustrated in diagram (x ).
Similarly, we obtain a unique isomorphism δ : F +I5 G → D as shown in
diagram (xi). Referring back to diagrams (vii) and (viii), we have A+I2E

∼=
Y ∼= B +I3 F . Let β : A +I2 E → B +I3 F denote the unique compatible
isomorphism, illustrated in diagram (xii).

I5
oE ��

//ιG // G
π1�� i

��
E ��

i ..

//
ρ1
// C

γ
%e

%%%e
E +I5 G

(x)

I5
oF ��

// ιG // G
i�� π2

��

F !!

ρ2
11

//
i
// F +I5 G

δ
%e

%%%e
D

(xi)

E
i��

σ1

""

F
i ��

σ2

{{
I2

66

ιE
66llllllllll

oA ((RRRRRRRRRR A+I2 E β1
/o ///o Y

(xii)

β = β−1
2 β1

B +I3 Fβ2
o/oo o/ I3

hh

ιF
hhRRRRRRRRRR

oBvvllllllllll

A
OO i
OO

11 ǫ1

;;

Bmmǫ2

cc
OOi
OO

We first need to check that β, γ and δ are 2-cells in ILC(C), that is, that
they preserve input and output interfaces.

First, using the fact that diagram (iv) is commutative, we have that
ǫ1ιA = ǫ2ιB . We can use this equation to derive β1(iA→A+E)ιA = ǫ1ιA =
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ǫ2ιB = β2(iB→B+F )ιB , which gives

β(iA→A+E)ιA = (iB→B+F )ιB . (6.1)

Also, β1(iE→A+E)oE = σ1oE = σ2oF = β2(iF→B+F )oF , where we have used
the fact that the back left face of diagram (v) is commutative. This gives

β(iE→A+E)oE = (iF→B+F )oF . (6.2)

Equations (6.1) and (6.2) show, respectively, that β respects input and out-
put interfaces and thus we can conclude that β is a 2-cell of ILC(C).

Checking γ, we have

γιC = γρ1ιE = (iE→E+G)ιE (6.3)

where we have used the fact that ρ1ιE = ιC (see diagram (vii)). Also,

γoC = γπ1oG = (iG→E+G)oG (6.4)

where we have used the definition of oG (diagram (ix )). Equations (6.3)
and (6.4) imply that γ is a 2-cell of ILC(C). The fact that δ respects
input and output interfaces and is, therefore, a 2-cell, follows by a similar
argument.

It remains to show that the two cells of diagram (iii) paste together to
give α, or precisely that:

(B +I3 δ)a(β +I5 G)a(A +I2 γ) = α. (6.5)

Recall that we use a to generically denote associativity isomorphisms. Re-
arranging this last equation, we shall show, equivalently, that:

a(β +I5 G)a = (B +I3 δ
−1)α(A +I2 γ

−1). (6.6)

We shall first need to derive the following equation:

a(β−1
2 +I5 G)(iY→Y+G) = (B +I3 δ

−1)ω−1
r µ. (6.7)

Since the left square of diagram (viii) is a pushout, it suffices to check that
the two sides of (6.7) are equal when precomposing with σ2 and ǫ2. Indeed,
precomposing the left hand side with σ2 yields

a(β−1
2 +I5 G)(iY→Y+G)σ2 =a(iB+F→(B+F )+G)β−1

2 σ2

=a(iB+F→(B+F )+G)(iF→B+F )

=(iF+G→B+(F+G))(iF→F+G)
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using the definitions of β2 (diagram (xii)) and the associativity isomorphism.
Precomposing the right hand side with σ2 and using the fact that µσ2 =
ωDρ2 (bottom face of diagram (v)) and the definitions of ωr, ωD and δ yields

(B +I3 δ
−1)ω−1

r µσ2 = (B +I3 δ
−1)ω−1

r ωDρ2

= (B +I3 δ
−1)(iD→B+D)ρ2

= (iF+G→B+(F+G))δ
−1ρ2

= (iF+G→B+(F+G))(iF→F+G).

Precomposing with ǫ2 and using the definitions of β2, associativity isomor-
phisms, ωr and ωB, and the commutativity of diagram (iv) respectively,
allows us to derive

a(β−1
2 +I5 G)(iY→Y+G)ǫ2 = a(iB+F→(B+F )+G)β−1

2 ǫ2

= a(iB+F→(B+F )+G)(iB→(B+F ))

= iB→B+(F+G)

= (B +I3 δ
−1)(iB→B+D)

= (B +I3 δ
−1)ω−1

r ωB

= (B +I3 δ
−1)ω−1

r µǫ2.

This concludes the verification of equation (6.7). Coming back to equa-
tion (6.6), we use the definitions of a and β1 to obtain

a(β +I5 G)a(iA→A+(E+G))

=a(β−1
2 +I5 G)(β1 +I5 G)a(iA→A+(E+G))

=a(β−1
2 +I5 G)(β1 +I5 G)(iA+E→(A+E)+G)(iA→A+E)

=a(β−1
2 +I5 G)(iY→Y+G)β1(iA→A+E)

=a(β−1
2 +I5 G)(iY→Y+G)ǫ1. (∗)

Now using

(B +I3 δ
−1)α(A+I2 γ

−1)(iA→A+(E+G)) = (B +I3 δ
−1)α(iA→A+C)

= (B +I3 δ
−1)ω−1

r ωl(iA→A+C)

= (B +I3 δ
−1)ω−1

r ωA

= (B +I3 δ
−1)ω−1

r µǫ1 (∗∗).
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Using equation (6.7) with equations (*) and (**), we get that

a(β +I5 G)a(iA→A+(E+G)) =(∗)a(β−1
2 +I5 G)(iY→Y+G)ǫ1

=(6.7)(B +I3 δ
−1)ω−1

r µǫ1

=(∗∗)(B + I3δ
−1)α(A+I2 γ

−1)(iA→A+(E+G)).

which amounts to saying that the two sides of equation (6.6) are equal when
precomposed with iA→A+(E+G):

a(β +I5 G)a(iA→A+(E+G)) = (B +I3 δ
−1)α(A+I2 γ

−1)(iA→A+(E+G)). (6.8)

In order to complete the proof it remains only to verify that the two sides of
equation (6.6) are equal when precomposed with iE+G→A+(E+G). To obtain
this equality we shall show that they are equal when precomposed with
(iE+G→A+(E+G))(iE→E+G) and (iE+G→A+(E+G))(iG→E+G). Indeed, using
the definitions of β and β1 we have

a(β +I5 G)a(iE+G→A+(E+G))(iE→E+G) =a(iB+F→(B+F )+G)β(iE→A+E)

=a(iB+F→(B+F )+G)β−1
2 β1(iE→A+E)

=a(iB+F→(B+F )+G)β−1
2 σ1

=a(β−1
2 +I5 G)(iY→Y+G)σ1

which, using equation (6.7), is equal to

(B +I3 δ
−1)ω−1

r µσ1 = (B +I3 δ
−1)ω−1

r ωCρ1

= (B +I3 δ
−1)α(iC→A+C)ρ1

= (B +I3 δ
−1)α(iC→A+C)γ−1(iE→E+G)

= (B +I3 δ
−1)α(A +I2 γ

−1)(iE+G→A+(E+G))(iE→E+G)

where we have used the fact that µσ1 = ωCρ1 (front left face of diagram (v)),
the definitions of ωr and ωC and the definition of γ.

Finally, using the definitions of δ, ωD, ωC and γ we can derive the
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following:

a(β +I5 G)a(iE+G→A+(E+G))(iG→E+G)

=(iF+G→B+(F+G))(iG→F+G)

=(iF+G→B+(F+G))δ
−1π2

=(B +I3 δ
−1)(iD→B+D)π2

=(B +I3 δ
−1)ω−1

r ωDπ2

=(B +I3 δ
−1)ω−1

r ωCπ1

=(B +I3 δ
−1)α(iC→A+C)π1

=(B +I3 δ
−1)α(iC→A+C)γ−1(iG→E+G)

=(B +I3 δ
−1)α(A +I2 γ

−1)(iE+G→A+(E+G))(iG→E+G).

The last two paragraphs allow us to conclude that

a(β+I5G)a(iE+G→A+(E+G)) = (B+δ−1)α(A+γ−1)(iE+G→A+(E+G)), (6.9)

and we can conclude that that equation (6.6) holds using the fact that
equations (6.8) and (6.9) both hold.

6.2.2 Universality

In this section, we shall show that the candidate constructed using Algo-
rithm 6.2.2 is indeed the minimal candidate.

Lemma 6.2.4. The candidate constructed using Algorithm 6.2.2 satisfies
the universal property of a GRPO. More precisely, given any other candidate
for diagram (i), as illustrated in diagram (xiii), there exists a mediating
morphism:

γ′
@@@@

�#
@@@@

I4

I2

C
11

E′ //

β′
+3

I6

δ′~~~~

;C
~~~~G′

OO

I3F ′oo

D
mm

I1

A

__?????? B

??������

(xiii)

G′

π′
1

{{ww
ww

ww
ww π′

2

##H
HH

HH
HH

H

λ
��

C G

(xiv)

π1oo π2 // D

a cospan I5 // ιH // H I6
oHoo (an arrow H : I5 → I6 of ILC(C)) and iso-

morphisms ϕ : E′ → E +I5 H, ψ : F +I5 H → F ′ and τ : H +I6 G
′ → G in
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C which form 2-cells of ILC(C) and which satisfy the required equations:

(E +I5 τ)a(ϕ+I6 G
′)γ′ = γ, δ′(ψ +I6 G

′)a(F +I5 τ
−1) = δ

and (B +I3 ψ)a(β +I5 H)a(A+I2 ϕ) = β′.

Moreover, the mediating morphism 〈H,ϕ,ψ, τ 〉 is required to be essentially
unique (see Definition 2.2.9). This means that for any other mediating
morphism 〈H ′, ϕ′, ψ′, τ ′〉 which satisfies analogous equations, there exists a
unique isomorphism ξ : H → H ′ which makes the two mediating morphisms
compatible:

(E +I5 ξ)ϕ = ϕ′, ψ(F +I5 ξ
−1) = ψ′ and τ ′(ξ +I6 G

′) = τ.

Proof. Consider another candidate, as illustrated in diagram (xiii). Then

(B +I3 δ
′)a(β′ +I6 G

′)a(A+I2 γ
′) = α. (6.10)

Letting π′1 = γ′−1(iG′→E′+G′) : G′ → C and π2
′ = δ′(iG′→F ′+G′) : G′ →

D, a simple diagram chase involving equation (6.10) yields αiC→A+Cπ
′
1 =

iD→B+Dπ
′
2, which, using the definition of ωC and ωD can be written as

ωCπ
′
1 = ωDπ

′
2. Using the fact that the front right face of diagram (v) is a

pullback, we obtain an arrow λ : G′ → G such that π1λ = π′1 : G′ → C and
π2λ = π′2 : G′ → C, as illustrated in diagram (xiv). Note that since γ′ is a
2-cell, it preserves interfaces and in particular γ′oC = (iG′→E′+G′)oG′ which
in turn implies that π′1oG′ = oC . Similarly, using the fact that δ′ is a 2-cell,
we have π′2o

′
G = oD. Since also π1oG = oC and π2oG = oD and the existence

of oG was inferred using the universal property of pullbacks, we use the fact
the fact that such arrows are unique to obtain

λoG′ = oG. (6.11)

Consider diagram (xv) below, where T , together with isomorphisms ω′
l :

A+I2E
′ → T and ω′

r : B+I3F
′ → T is a frame of reference (Definition 6.2.1)

for β′ : A +I2 E
′ → B +I3 F

′ and ω′
A, ω′

E′ , ω′
B and ω′

F ′ are defined in the
standard way.

We have an isomorphism ωr(B+I3 δ
′)a(ω′

r
−1 +I6G

′) : T +I6G
′ → X, Let

η : T → X and θ : G′ → X denote the corresponding morphisms derived by
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precomposing with iT→T+G′ and iG′→T+G′.

E′
ω′

E′

  @
@@

@@
F ′

ω′
F ′

��~~
~~

~

I2
>>

ιE′
>>}}}}}

oA   A
AA

AA
T I3

``
ι′
F

``AAAAA

oB~~}}
}}

}

A
>>
ω′

A

>>~~~~~

(xv)

B
``

ω′
B

``@@@@@

I6
oT

����
��

�   ιG′

  A
AA

AA

T   

η   @
@@

@@
G′

θ~~||
||

|

X

(xvi)

Now notice that using equation (6.10) and the definitions of ω′
l, ω

′
r and ωA

we have

ηω′
A = ωr(B +I3 δ

′)a(ω′−1
r +I6 G

′)(iT→T+G′)ω′
l(iA→A+E′)

= ωr(B +Ie δ
′)a(β′ +I6 G

′)(iA+E′→(A+E′)+G′)(iA→A+E′)

= ωr(B +I3 δ
′)a(β′ +I6 G

′)a(A+I2 γ
′)(iA→A+C)

= ωrα(iA→A+C)

= ωA.

One can derive ηω′
B = ωB in a similar way. Recall from diagram (iv) that

Y was defined as the subobject union of ωA and ωB. Thus, by definition of
union, there exists a monomorphism µ′ : Y → T such that µ′ǫ1 = ω′

A and
µ′ǫ2 = ω′

B . It also follows that ηµ′ = µ.

In diagram (xvii) below, we shall let ρ′1 denote γ′−1(iE′→E′+G′), while
in diagram (xviii) we shall use ρ′2 to denote δ′(iF ′→F ′+G′). Consider di-
agram (xvii) again, and note that regions (†) and (†) + (‡) are pushouts.
Then if follows from ordinary pushout pasting (Lemma 1.3.2) that (‡) is also
a pushout and, using the second part of Lemma 5.1.16, a pullback.

Using the fact that the front left face of diagram (v) is commutative,
i.e. µσ1 = ωCρ1 : E → X we can use the universal property of pullbacks to
obtain a unique morphism ν1 : E → E′ such that ρ′1ν1 = ρ1 and ω′

E′ν1 =
µ′σ1. A similar chain of reasoning involving diagram (xviii) allows us to
derive the existence of ν2 : F → F ′ which satisfies ρ′2ν2 = ρ2 and ω′

F ′ν2 =
µ′σ2.

But then (⋆) + (‡) is the front left face in the cube (v) the corresponding
region in diagram (xviii) is its bottom face. Since all the faces of diagram (v)
are pullbacks, we can apply ordinary pullback pasting to infer that the left-
most squares in the diagrams (xvii) and (xviii) are pullbacks, and therefore,
that ν1 and ν2 are both mono, since they are pullbacks of mono µ′ along,
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respectively, ω′
E′ and ω′

F ′ .

I6
(†)oE′ ��

// ιG′ // G′

π′
1��

E
(⋆)σ1 ��

ν1 // E′

ω′
E′�� (‡)

// ρ′1
// C
ωC��

Y %%

µ

99//
µ′
// T //

η
// X

(xvii)

I6
oF ′ ��

// ιG′ // G′

π′
2��

F
σ2 ��

ν2 // F ′

ω′
F ′��

// ρ′2
// D
ωD��

Y %%

µ

99//
µ′
// T //

η
// X

(xviii)

In diagram (xix ), H and morphisms κ1, κ2 and χ are chosen so that the two
rear faces are pullbacks. One could do this, e.g., by first taking the pullback
of π2 and ρ′2 and obtaining κ1 from the pullback property of the front left
face.

Hκ1

uukkkkkkkk κ2
$$HH

H��
χ

��

E′
��

ρ′1

��

ω′
E′

$$HH
H F ′

��

ρ′2

��

ω′
F ′uukkkkkkkk

T��
η

��

G
π1 jjjj

uujjjj
π2

$$I
II

C
ωC

$$I
II D

ωDuujjjjjjjj

X

(xix)

One may consider H as the mediating morphism from I5 to I6. Indeed, in
diagrams (xx ), (xxi) and we use adhesiveness in order to deduce that the
top faces are pushouts. Notice that the front left face of diagram (xx ) is a
pullback precisely because ρ′1ν1 = ρ1 and ν1 is a mono. The front right face
of diagram (xxi) is a pullback for similar reasons.

I5oE

vvmmmmmmm   ιH  AA��

��

E��

��

!! ν1!!BB
H��

χ

��

κ1

vvmmmmmm

E′
��
ρ′1

��

I5
oE mmm
vvmmm

  
ιG
  AA

E !!
ρ1

!!C
C G

π1vvmmmmmmm

C

(xx)

I5vvιH
vvmmmmmm oF

  @@��

��

H��

χ

��

κ2!!CC
F��

��

vvν2
vvnnnnnn

F ′
��
ρ′2

��

I5vv
ιG mmm
vvmmm

oF

  @@

G
π2

!!D
D Fvv

ρ2vvmmmmmm

D

(xxi)
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Using the fact that β′ is a 2-cell and therefore preserves the output
interface, it is easy to verify that ω′

E′oE′ = ω′
F ′oF ′ . Because the top face

of diagram (xix ) is a pullback, we obtain a unique morphism oH : I6 → H
such that κ1oH = oE′ and κ2oH = oF ′ .

We shall now show that diagram (xxii), below, is a pushout.

I6
oH

��

// ιG′ // G′

λ��
H //

χ
// G

(xxii)

I6
(∗)oH

��

// ιG′ // G′

w
��

H
κ1

����
��

��
� κ2 %%LL

LL
//

v
// U u2

%%LLLL

u1����
��

��
�

F ′

��
�

ω′
F ′

����
�

//
ρ′2 // D

ωD
����

��
��

�

E′

ω′
E′

%%LLLL
//

ρ′1 // C
ωC

&&LLLL

T //
η

// X

(xxiii)

Hκ1

uujjjjjjjj $$ v
$$H

HH��
κ2

��

E′
��

ω′
E′

��

$$ ρ′1
$$HH

H U��

u2

��

u1

uujjjjjjjjj

C��
ωC

��

F ′
jjjjω′

F ′

uujjjj
$$ ρ

′
2

$$HH
H

T $$
η $$I
II D

ωDuujjjjjjjj

X

(xxiv)

First notice that it is commutative, indeed, using respectively: the com-
mutativity of the rear left face of diagram (xix ), the definition of oH , the
commutativity of region (†) in diagram (xvii) and the definition of λ we
obtain

π1χoH = ρ′1κ1oH = ρ′1oE′ = π′1ιG′ = π1λιG′

and similarly, using respectively: the commutativity of the rear right face of
diagram (xix ), the definition of oH , the commutativity of the upper rectangle
of diagram (xviii) and the definition of λ we infer that

π2χoH = ρ′2κ2oH = ρ′2oF ′ = π′2ι
′
G = π2λιG′ .

Using the universal property of the front right pullback of diagram (v) (which
is also the bottom face of diagram (xix )) yields χoH = λιG′ .

In order to show that diagram (xxii) is a pushout we shall construct
diagram (xxiii). We start by finding an object U and morphisms v : H → U
and w : G′ → U such that region (∗) is a pushout diagram. Now since
κ1oH = oE′ and region (†) of diagram (xvii) is a pushout, there exists
a unique morphism u1 : U → C such that u1w = π′1 and u1v = ρ′1κ1.
Similarly, using the fact that the corresponding region of diagram (xv) is a
pushout, there exists a unique morphism u2 : U → D such that u2w = π′2
and u2v = ρ′2κ2. Using the standard decomposition property of pushouts,
the two newly constructed regions (the upper faces of the rotated cube within
diagram (xxiii)) are pushouts. The two lower regions of diagram (xxiii) are
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the pushouts which appeared as the two front faces of diagram (xix ) and
which we had originally obtained in diagrams (xvii) and (xviii). The left
face of the rotated cube is the top face of (xvi) which is a pullback. Spinning
the cube around into diagram (xxiv) we use the fact that the bottom and
top faces are pushouts, and the back faces pullbacks to deduce that the front
right face is a pullback.

Since also the bottom face of diagram (xix ) is a pullback, we obtain a
unique isomorphism ζ : G → U such that u1ζ = π1 and u2ζ = π2. As we
have assumed that (∗) is a pushout, it remains only to show that ζλ = w
and ζχ = v in order to prove that diagram (xxii) is a pushout.

We shall show that the required equalities hold using the fact that the
front left face of diagram (xxiv) is a pullback. Indeed u1ζλ = π1λ = π′1 =
u1w and u2ζλ = π2λ = π′2 = u2w which implies that ζλ = w. Also u1ζχ =
π1χ = ρ′1κ1 = u1v and u2ζχ = π2χ = ρ′2κ2 = u2v which implies that ζχ = v.
This completes the task of verifying that (∗) is a pushout diagram.

I6
oH
��

oE′

~~}}
}}

}

E′ Hκ1oo

I2
>>

ιE′
>>}}}}}

//
ιE

// E

(xxv)

OO ν1
OO

I5oE

oo
OO ιH
OO

I6
oH
��

oF ′

~~}}
}}

}

F ′ Hκ2oo

I3
>>

ιF ′
>>}}}}}

//
ιF

// F

(xxvi)

OO ν2
OO

I5oF

oo
OO ιH
OO

I4
oG′
��

oG

~~}}
}}

}

G G′λoo

I5
>>
ιG

>>~~~~~
//
ιH

// H

(xxvii)

OO χ
OO

I6oH

oo
OO ιG′
OO

Summarising our efforts so far, we illustrate the top faces of diagrams (xx )
and (xxi) again in diagrams (xxv) and (xxvi). Also, the pushout (∗) of di-
agram (xxiii) is illustrated again in diagram (xxvii). We claim that these
diagrams commute. Recall that κ1oH = oE′ by the definition of oH . Thus
in diagram (xxv) it suffices to check that ν1ιE = ιE′ . Indeed, using the fact
that γ′ is a 2-cell we have

ρ′1ιE′ = γ′
−1

(iE′→E′+G′)ιE′ = ιC ,

But ιC = ρ1ιE as illustrated in diagram (vii). Using the fact that the front
left face of diagram (xx ) is a pullback, we obtain the equation ν1ιE = ιE′ .

Proceeding in a similar way for diagram (xxvi), we use the definition of
oH to conclude that κ2oH = oF ′ . Similarly, we use the fact that the front
right face of diagram (xxi) is a pullback, we derive ν2ιF = ιF ′ .

To show that diagram (xxvii) commutes, first notice that equation (6.11)
gives λoG′ = oG. The fact that χιH = ιG follows from the fact that the back
right face of diagram (xvii) commutes.
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Let ϕ : E′ → E +I5 H, ψ : F +I5 H → F ′ and τ : H +I6 G
′ → G be

the unique induced isomorphisms, as illustrated in diagrams (xxviii), (xxivx )
and (xxx ) below.

I5
oE ��

//ιH// H
κ1��

��
E

..

//
ν1
// E′

ϕ
%e

%%%e
E +I5 H

(xxviii)

I5
oF ��

// ιH // H

�� κ2

��

F

ν2
11

// // F +I5 H

ψ
%e

%%%e
F ′

(xxix)

I6
oH ��

// ιG′ // G′

�� λ

��

H

χ 11

// // H +I6 G
′

τ
%e

%%%e
G

(xxx)

We need to verify that ϕ, ψ and τ are 2-cells in ILC(C), that is, we need
to check that they preserve input and output interfaces. Indeed, ϕoE′ =
ϕκ1oH = iH→E+H and ϕιE′ = ϕν1ιE = iE→E+H using diagrams (xxv)
and (xxviii). Similarly, ψ(iH→F+H)oH = κ2oH = oF ′ and ψ(iF→F+H)ιF =
ν2ιF = ιF ′ , using diagrams (xxvi) and (xxix ). Finally, τ(iG′→H+G′)oG′ =
λoG′ = oG and τ(iH→H+G′)ιH = χιH = ιG, using diagrams (xxvii) and (xxx ).

We shall now verify that ϕ, ψ and τ satisfy the three required equations:

(E +I5 τ)a(ϕ +I6 G
′)γ′ = γ (6.12)

δ′(ψ +I6 G
′)a(F +I5 τ

−1) = δ (6.13)

(B +I3 ψ)a(β +I5 H)a(A+I2 ϕ) = β′. (6.14)

First we shall show that γ′−1(ϕ−1 +I6 G
′) = γ−1(E +I5 τ)a, which in turn

rearranges into equation (6.12). It suffices to check that the two sides are
equal when precomposed with iG′→(E+H)+G′ and iE+H→(E+H)+G′ . Checking
the first of these, we use the definitions of λ, γ, τ and the associativity
isomorphisms in order to derive

γ′−1(ϕ−1 +I6 G
′)(iG′→(E+H)+G′) = γ′−1(iG′→E′+G′)

= π′1

= π1λ

= γ−1(iG→E+G)λ

= γ−1(iG→E+G)τ(iG′→H′+G′)

= γ−1(E +I5 τ)(iH+G′→E+(H+G′))(iG′→H+G′)

= γ−1(E +I5 τ)a(iG′→(E+H)+G′).
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To check that γ′−1(ϕ−1)(iE+H→(E+H)+G′) = γ−1(E+I5τ)a(iE+H→(E+H)+G′)
holds we shall precompose in turn with iE→E+H and iH→E+H . Indeed, us-
ing the definitions of ϕ, ρ′1 and the commutativity of the front left face of
diagram (xx ) we derive

γ′−1(ϕ−1 +I6 G
′)(iE+H→(E+H)+G′)(iE→E+H)

= γ′−1(iE′→E′+G′)ϕ−1(iE→E+H)

= γ′−1(iE′→E′+G′)ν1

= ρ′1ν1

= ρ1

= γ−1(iE→E+G)

= γ−1(E +I5 τ)a(iE+H→(E+H)+G′)(iE→E+H).

Also, using the definitions of γ′, ϕ, the fact that the front right face of
diagram (xx ) is commutative and the definition of τ we obtain

γ′−1(ϕ−1 +I6 G
′)(iE+H→(E+H)+G′)(iH→E+H)

= γ′−1(iE′→E′+G′)ϕ−1(iH→E+H)

= ρ′1κ1

= π1χ

= γ−1(iG→E+G)χ

= γ−1(E +I5 τ)a(iE+H→(E+H)+G′)(iH→E+H).

This completes the verification of equation (6.12). By virtue of symmetry,
equation (6.13) holds also.

In order to show that equation (6.14) holds, we shall show, equivalently,

(A+I2 ϕ
−1)a = β′−1(B +I3 ψ)a(β +I5 H). (6.15)

First notice that the using equations (6.10), (6.13) and (6.5) allows us to
conclude that the diagram below

(B+(F+H))+G′ a //
a

**UUUUUUU

(B+ψ)+G′

��

(B+F )+(H+G′)

(B+F )+τ

��

attiiiiiii

B+((F+H)+G′)

B+(ψ+G′)

��

a //

(6.13)

B+(F+(H+G′))

B+(F+τ)

��

(B+F ′)+G′

β′−1+G′ ��
a

**UUUUUUU
(B+F )+G

β−1+G��
a

ttiiiiiiii

(A+E′)+G′

a **UUUUUUU
B+(F ′+G′)

(6.10)

B+δ′ // B+D

α−1
��

B+(F+G)

(6.5)

B+δoo (A+E)+G

attiiiiiiii

A+(E′+G′)
A+γ′−1

// A+C A+(E+G)
A+γ−1

oo
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is commutative.
Composing the right hand side of equation (6.15) with the composite

arrow
(A+ γ′−1)a(iA+E′→(A+E′)+G′) : A+ E′ → A+C

allows us to derive

(A+ γ′
−1

)a(iA+E′→(A+E′)+G′)β′−1(B + ψ)a(β +H)

=(A+ γ′
−1

)a(β′−1 +G′)((B + ψ) +G′)(iB+(F+H)→(B+(F+H))+G′ )a(β +H)

=(A+ γ−1)a(β−1 +G)((B + F ) + τ)a(iB+(F+H)→(B+(F+H))+G′ )a(β +H)

=(A+ γ−1)(A+ (E + τ))a(i(A+E)+H→((A+E)+H)+G′ )

=(A+ γ′−1)(A+ (ϕ−1 +G))a(i(A+E)+H→((A+E)+H)+G′ )

=(A+ γ′−1)(iA+E′→(A+E′)+G′)(A+ ϕ−1)a,

where we use, respectively, the commutativity of the diagram and the fact
that equation (6.12) holds. But iA+E′→(A+E′)+G′ is mono, since it is the
pushout of mono ιG′ in an adhesive category (Lemma 5.1.15). Canceling on
the left results in equation (6.15), and therefore, equation (6.14).

Essential uniqueness of H : I5 → I6 can be shown by using the third
part of Lemma 5.1.18, applied to diagram (xix ). In other words, we shall
use the fact that we are working in an adhesive category and, therefore,
the pair 〈ιG′ , λ〉 has a unique pushout complement. Indeed, suppose that
there exists H ′ : I5 → I6 and ϕ′ : E′ → E +I5 H

′, ψ′ : F +I5 H
′ → F ′ and

τ ′ : H ′ +I6 G
′ → G, so that equations (6.16), (6.17) and (6.18) hold.

(E +I5 τ
′)a(ϕ′ +I6 G

′)γ′ = γ (6.16)

δ′(ψ′ +I6 G
′)a(F +I5 τ

′−1
) = δ (6.17)

(B +I3 ψ
′)a(β +I5 H)a(A+I2 ϕ

′) = β′ (6.18)

Consider the pushout shown in diagram (xxxi), where we let χ′ = τ ′(iH′→H′+G′).

I6
oH′

��

//ιG′ // G′

τ ′i��
H ′ //

χ′
// G

(xxxi)

We shall use the fact that diagram (xxii) is also a pushout in order to derive
the existence of an isomorphism ξ : H → H ′. In order to apply this argument
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we shall first need to verify that λ = τ ′iG′→H′+G′ . Using a straightforward
diagram chase on the diagram represented by equation (6.16) we obtain

γ′−1(iG′→E′+G′) = γ−1(iG→E+G)τ ′(iG′→H′+G′),

which, using the definitions of γ and π′1, can be rewritten more concisely as

π′1 = π1τ
′(iG′→H′+G′)

and since from the definition of λ we have that π′1 = π1λ, we may conclude
that

π1λ = π1τ
′(iG′→H+G′). (6.19)

A similar diagram chase on equation (6.17) results in

δ′(iG′→F ′+G) = δ(iG→F+G)τ(iG′→H′+G′),

which, using the definitions of δ and π′2 amounts to saying that

π′2 = π2τ(iG′→H′+G′)

and again, since by the definition of λ we have that π′2 = π2λ, we have that

π2λ = π2τ(iG′→H′+G′). (6.20)

Using the universal property of the pullback which forms the bottom face
of diagram (xix ), equations (6.19) and (6.20) imply that we indeed have
λ = τ ′(iG′→H′+G′), as required.

Using the conclusion of Lemma 5.1.18, we obtain an isomorphism ξ :
H → H ′ which is the unique morphism which satisfies ξoH = oH′ and
χ′ξ = χ. To check that ξ defines a 2-cell, it suffices to show that ξιH =
ιH′ . Indeed, using the definition of ξ and the commutativity of the rear
left face of diagram (xxi) we have that χ′ξιH = χιH = ιG. But since τ ′

is a 2-cell, it preserves its input interface. Thus we have equation ιG =
τ ′(iH′→H′+G′)ιH′ , the right hand side of which is just χ′ιH′ . Since χ′ is
mono, being a composition of a mono iH′→H′+G′ (which is mono because
we are working in an adhesive category and it is the pushout of a mono ιH
along oH′) with an isomorphism τ ′, we have ξιH = ιH′ as required.

We shall now verify that ξ satisfies the required equations (6.21), (6.22)
and (6.23). These equations ensure that ξ makes the two mediating mor-
phisms 〈H, ϕ, ψ, τ〉 and 〈H ′, ϕ′, ψ′, τ ′〉 compatible.

(E +I5 ξ)ϕ = ϕ′ (6.21)
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ψ(F +I5 ξ
−1) = ψ′ (6.22)

τ ′(ξ +I6 G
′) = τ (6.23)

We shall start by showing that equation (6.23) holds. First notice that

τ ′(ξ +I6 G
′)(iH→H+G′) = τ ′(iH′→H′+G′)ξ

= χ′ξ = χ = τ(iH→H+G′),

where the last equality follows from the definition of τ (diagram (xxx )).
Similarly

τ ′(ξ +I6 G
′)(iG′→H+G′) = τ ′(iG′→H′+G′)

= λ = τ(iG→H+G′)

where the last equality again follows from the definition of τ . Equation (6.23)
follows using the universal property of pushouts.

We shall now proceed with showing that equation (6.22) holds. We start
by rearranging equation (6.17) in order to obtain

δ′(ψ′ +I6 G
′) = δ(F +I5 τ

′)a : (F +I5 H
′) +I6 G

′ → F ′ +I6 G
′.

Precomposing the two sides of the above equation with iF+H′→(F+H′)+G′

yields
δ′(iF ′→F ′+G′)ψ = δ(F +I5 τ

′)a(iF+H′→(F+H′)+G′).

Starting with the right hand side of the equation above, we use equa-
tion (6.23) in order to infer the following:

δ(F +I5 τ
′)a(iF+H′→(F+H′)+G′)

=δ(F +I5 τ)(F +I5 (ξ−1 +I6 G
′))a(iF+H′→(F+H′)+G′)

=δ(F +I5 τ)a(iF+H→(F+H)+G′)(F +I5 ξ
−1).

Continuing, we use equation (6.13) in order to obtain

δ(F +I5 τ)a(iF+H→(F+H)+G′)(F +I5 ξ
−1)

=δ′(ψ +I6 G
′)(iF+H→(F+H)+G′)(F +I5 ξ

−1)

=δ′(iF ′→F ′+G′)ψ(F +I5 ξ
−1).

Summarising, we have shown that

δ′(iF ′→F ′+G′)ψ′ = δ′(iF ′→F ′+G′)ψ(F +I5 ξ
−1).
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Notice that, using the fact that we are in an adhesive category, i : F ′ →
F ′ +I6 G

′ is mono (see diagram (ix)). Equation (6.22) follows.
Similarly, using the fact that i : E′ → E′+I6G

′ is mono, equations (6.16),
(6.23) and (6.12) allows us to derive equation (6.21).

Finally, it is easy to check that ξ is the unique 2-cell which serves as a
mediator between 〈H,ϕ,ψ, τ 〉 and 〈H ′, ϕ′, ψ′, τ ′〉. Indeed, suppose that there
is another 2-cell ξ′ : H → H ′ which satisfies equations analogous to (6.21),
(6.22) and (6.23). Then in particular we have that

τ ′(ξ′ +I6 G
′) = τ. (6.24)

We shall show that ξ′ fits in as a mediating morphism between the pushout
complements illustrated in diagrams (xxii) and (xxxi) - these are guaranteed
to be unique by the conclusion of Lemma 5.1.18. Because ξ′ is a 2-cell, we
get for free that ξ′oH = oH′ . It remains to check that χ′ξ′ = χ. Indeed,

χ′ξ′ = τ ′(iH′→H′+G′)ξ′ = τ ′(ξ′ +I6 G
′)(iH→H+G′)

= τ(iH→H+G′) = χ

where we have used, respectively, the definition of χ′, equation (6.24) and
the definition of τ .

Summarising the technical content of the last two subsections, we are
ready to state the main technical contribution of this chapter.

Theorem 6.2.5. ILC(C) has GRPOs.

Proof. We have showed how one constructs a candidate in Lemma 6.2.3.
Such a candidate, as we have demonstrated in the proof of Lemma 6.2.4,
satisfies the required universal property.

Notice that we can give a simplified presentation of the construction of
the minimal candidate if we assume that all the cospans are linear.

Algorithm 6.2.6 (GRPO Construction in LC(C)). When all the mor-
phisms in diagram (ii) are mono the construction of Algorithm 6.2.2 is
considerably simpler. This is because constructing a pullback of monos into
X amounts to computing the intersection of subobjects of X. Indeed, we
let:

1. G = C ∩D;

2. E = Y ∩ C;
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3. F = Y ∩D;

4. I5 = F ∩G = F ∩ E = E ∩G.

We shall finish this subsection with several simple examples. The exam-
ples have no computational meaning and are merely an exercise in applying
Algorithm 6.2.2. We shall consider ILC(Graph) as our category of contexts.
In the accompanying Figure 6.1, we label the nodes of the graphs in order
to clarify the action of various graph morphisms, which we leave unlabelled.
We also do not draw the 2-cells as the labelling on the nodes makes these
clear. We shall make reference to the directed graphs below.

X1 =

d

b //

==zzz
c

OO

a

<<xxx
OO X2 =

b c

a

OO @@���� X3 =

c d

a

bbEEE OO

��
b

Example 6.2.7. Graph X1 can be decomposed as illustrated by the exterior
of of the upper left diagram of Figure 6.1. Here, all the graph morphisms are
injective. The reader may wish to go through the steps of Algorithm 6.2.2
to construct the GRPO is this particular case, it is illustrated in the interior
of the diagram.

Example 6.2.8. Graph X2 can be broken up as illustrated by the exterior
of the upper right diagram of Figure 6.1. Notice that oA is not injective.
The constructed GRPO is illustrated.

Example 6.2.9. A GRPO for a partition of X3 is illustrated in the lower di-
agram of Figure 6.1. Notice that here both oA and oB are not injective. One
can compare this “blowing up” of the output interface with the phenomenon
of “forking” as described by Leifer [64, Figure 1.4].
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a

b // c

a
OO c

a
>>~~

a b c a c

d

b

AA��
c

OO

a

??��

d

b

AA��
// c

OO

a
OO

d

d

b

AA��
c

OO

a

a b c

b c

a

@@��
b // c

a
OO

ιA ιB

oA oB

ιC ιD

oC oD

oG

ιG

oE

ιE ιF

oF

∅

a

c

a
>>~~

a1 a2 a

b c

a1

OO
a2

OO b

a
OO

b

b

a1

OO
a2

a1 a2

c

a1 a2

OO
a

ιA
ιB

oA oB

ιC ιD

oC oD

oG

ιG

oE

ιE ιF

oF

∅

a
��
b

d

a
OO

a1 a2 a1 a2

c d

a1

OO

a2

OO

c

a1

OO
a2
��
b

∅

c

a1,1

OO

a1,2 a2,1 a2,2

a1,1 a1,2 a2,1 a2,2

d

a1 a2

OO
a1 a2

��
b

ιA ιB

oA oB

ιC ιD

oC oDoG

ιG

oE

ιE ιF

oF

Figure 6.1: GRPOs in ILC(Graph).
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6.2.3 Characterisation

As is the case in the G-categories of bunch contexts, there is a relatively
simple characterisation of GIPOs. In the context of reactive systems, the
characterisation of GIPOs provides a simple way to test whether a given
redex square is minimal.

Lemma 6.2.10. A diagram (i) is a GIPO if and only if there exists an X
and isomorphisms ωl : A +I2 C → X and ωr : B +I3 D → X such that
ω−1
r ωl = α and so that in the resulting diagram (ii) we have:

I4

I2
α +3

C
??������

I3

D
__??????

I1

A

__?????? B

??������

(i)

I4

(4)

oC

����
��

��
� oD

��?
??

??
??

C

(2)

ωC

??
?

��?
??

D

(3)

ωD
��

�

����
�

I2
??

ιC
??�������

oA ��?
??

??
??

X

(1)

I3
__

ιD
__???????

oB����
��

��
�

A
??
ωA���

??���

B
__

ωB???

__???

A ∩B
__

__??????? ??

??�������

(ii)

−−− region (1) is both a pullback and a pushout;

−−− regions (2) and (3) are pushouts;

−−− region (4) is a pullback.

The proof that the characterisation is correct is quite simple, in partic-
ular it follows easily from the proof of Theorem 6.3.10.

6.3 Applications

In this section we shall introduce two immediate applications of our con-
struction of GRPOs in input linear cospan bicategories.

First, after a brief review of the theory of double-pushout graph rewrit-
ing, we shall show that we may use the construction to derive congruences
for graphs enriched with an output interface. Graph contexts here are input-
linear cospans of graphs. The labelled transition system derived using our
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technology admits labels which are the smallest contexts which allow a
double-pushout rewrite. The results in this section are closely related to
rewriting via borrowed contexts due to Ehrig and König [25]. In partic-
ular, in Theorem 6.3.10 we show that the labelled transition systems are
essentially the same, the difference being that the nodes and labels of our
transition system are quotiented by isomorphism.

Our results both shed light on and extend rewriting via borrowed con-
texts. Firstly, because borrowed contexts correspond to GIPOs, they satisfy
a universal property. Secondly, we show that borrowed contexts fall within
the framework of reactive systems [66,93,92] and therefore the various con-
gruence properties and constructions carry over. In particular, Ehrig and
König’s congruence theorem can be seen as an application of the congruence
theorem for reactive systems (Theorem 2.3.6). Finally, due to the general-
ity of Theorem 6.2.5, we relax some of the technical conditions imposed by
Ehrig and König and introduce the notion of extended borrowed contexts
(Definition 6.3.12).

Our second application concerns Milner’s theory of bigraphs [73]. We
show how bigraphs can be represented by a cospan bicategory over an ad-
hesive category. As a consequence, we derive labelled transition systems for
reactive systems over an input-linear variant of bigraphs. Our input-linear
bigraphs are different to Milner’s variant in the sense that our formalism
allows bigraphs which are not allowed in Milner’s, and vice-versa. It ap-
pears that a closer correspondence to Milner’s theory would be achieved by
considering an output-linear variant. It is, therefore, an interesting line of
future work whether one could derive a general construction of GRPOs for
an interesting and general class of output-linear cospan bicategories.

Another consequence of representing bigraphs by cospans is that because
of the close correspondence between double-pushout rewriting systems and
reactive systems over cospan bicategories demonstrated by Lemma 6.3.5,
one can view bigraphical reactive systems as certain double-pushout rewrit-
ing systems. In particular, this could mean that some of the theory and
technology developed for the latter can perhaps be applied successfully to
the former.

6.3.1 Double-pushout rewriting and borrowed contexts

Double-pushout (dpo) graph rewriting is a well known field with an im-
pressive body of literature [19]. Introduced in [27], it has recently been
generalised in [23, 59, 24]. We shall describe a variant of dpo-graph rewrit-
ing, working at the level of an arbitrary adhesive category C. The reader
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may of course, safely substitute the adhesive category Graph of graphs
and graph homomorphisms for C. We start by relating dpo rewriting and
reactive systems.

Definition 6.3.1 (Rewrite Rule). A rewrite rule p is a span

L K
loo r // R (6.25)

in C. We do not assume that either l or r are mono.

Here L and R represent respectively the left and right-hand side of the
rule, while K is information which remains unaffected by the rewrite. A
redex in an object C is identified by matching a rule’s left-hand side, which
is done via a morphism f : L→ C.

Definition 6.3.2 (Adhesive Grammar). An adhesive grammar G is a
pair 〈C,P〉 where C is an adhesive category and P is a set of arbitrary
rewrite rules.

Definition 6.3.3 (Rewrite Rule Application). Object C rewrites to D
with rule p, in symbols C ◮ p,fD, if there exist an object E and mor-
phisms so that the two squares in the following diagram are pushouts.

L
f ��

K
g��

loo r // R
h��

C Ev
oo

w
// D

(6.26)

We shall write C ◮D if there exist p ∈ P and f : L → C such that
C ◮ p,fD.

Proposition 6.3.4. An adhesive grammar can be seen as a reactive system
on Cospan

∼=(C). Let 0 denote the empty graph, and the set R contain for
each rewrite rule p (6.25) a pair

〈
0→ L

l
←− K, 0→ R

r
←− K

〉
.

We choose all arrows of Cospan
∼=(C) be reactive. Let ⊲ denote the

resulting reaction relation.

It is useful to point out that the process described in Proposition 6.3.4
can be reversed. Starting with a reactive system over a cospan category
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over C with chosen object the initial object 0 ∈ C, one can obtain a double-
pushout rewriting system by adding a rewrite rule

L K
loo r // R for every

〈
0 // L K

loo , 0 // R K
roo

〉
∈ R.

It turns out that these “encodings” are actually very well behaved. In this
section we shall present Lemma 6.3.5 which shows that the dpo rewrite
relation is exactly the reactive system reaction relation when it makes sense
to compare them. The main result of this section, Theorem 6.3.10 makes the
correspondence even stronger by relating the operational theories developed
for the two approaches. Indeed, we shall show that it is equivalent to consider
GIPOs in reactive systems over cospans on the one hand, and borrowed
contexts, due to Ehrig and König [25], on the other.

The following lemma is similar to a previously published result [33] and
can be considered folklore. As well as being simple to prove, it is a relatively
little-known result; it is therefore worthwhile to state and prove it here. It
is crucial for us because it serves as a foundation for relating the theory of
dpo rewriting and the theory of reactive systems.

We use the shorthand C ⊲D to mean that C and D are cospans with
empty input and output contexts.

Lemma 6.3.5. C ◮D iff C ⊲D.

Proof. If C ⊲D then C ∼= Eg ◦ L
l and D ∼= Eg ◦R

r, which is equivalent
to requiring that the two squares below are pushouts.

0
!��

C E
voo w // D

0
! // L
f
OO

K

g
OO

l
oo

r
// R
h
OO

0
!oo

This means C ◮D, since the middle part of the diagram is a dpo rewrite
as in (6.26). Note that the output interface of C and D is actually arbitrary,
as long as it factors through E.

The equivalence exhibited by Lemma 6.3.5 between the rewrite relation
in a dpo rewriting system and the reaction relation of a reactive system over
a cospan bicategory is a bridge which relates the two theories.

This may be compared with an easy lemma about term rewriting. In
a ground term rewriting system over a signature Σ, one usually defines the
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rewrite relation as follows: a term c rewrites to d, written c ◮ d, if one
can find l as a subterm of c, and replace it with r. On the other hand, one
may recast such a term rewriting system as a reactive system over the free
linear Lawvere theory CΣ [93]. In CΣ, the objects are natural numbers,
while arrows m → n are n-tuples of terms built up from Σ which contain
exactly one occurrence each of m ordered variables. Composition in this
category is substitution of terms, done in the obvious way. The reaction
rules R consist of pairs 〈l, r〉, where l, r : 0→ 1 are respectively the left and
the right hand sides of a rewrite rule. One then defines the rewrite relation
as follows: c ⊲ d if c = c′ ◦ l, d = c′ ◦ r and 〈l, r〉 ∈ R. In other words, the
reaction rules are closed under all linear contexts. It is easy to show that
c ◮ d if and only if c ⊲ d.

Indeed, Lemma 6.3.5 implies that reactive systems on Cospan
∼=(C) with

all cospans reactive include all dpo rewriting systems over C.

Lts semantics for dpo rewriting systems. In order to apply Theo-
rem 6.2.5, we restrict to graph rewriting systems corresponding to bicate-
gories of input-linear cospans.

The following notion, which we shall refer to as input-linear rewrite rule
application is sometimes referred to in graph rewriting literature as rewriting
with injective matching.

Definition 6.3.6 (Input-Linear Rewrite Application). Object C rewrites
to D input-linearly with rule p, in symbols C ◮ il

p,fD, if C ◮ p,fD and
in addition f , g and h of (6.26) are mono.

Definition 6.3.7. For G = 〈C,P〉 an adhesive grammar with an input-
linear rewrite relation ◮ il, we construct a reactive system C over the
bicategory of input-linear cospans ILC(C) using the translation of Proposi-
tion 6.3.4.

Lemma 6.3.5 clearly specialises to double-pushout rewriting systems and
reactive systems over input-linear cospan bicategories.

Proposition 6.3.8. Suppose that C is adhesive and consider an arbitrary
adhesive grammar G, and let C be the corresponding reactive system over
an input-linear cospan bicategory. Let ⊲ denote the reaction relation in
C. Then

C ◮ il
p,fD iff C ⊲D.
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We are now ready to examine the operational theory derived using GR-
POs. Let LTS(G) be CTS(C) of Definition 2.2.14.1 Using the congruence
theorem (Theorem 2.3.6) for bisimulation on labelled transition systems gen-
erated by GIPOs [93], we obtain the following.

Corollary 6.3.9. Bisimilarity on LTS(G) is a congruence.

A rewrite rule (6.25) is called linear when both l and r are mono. If
we restrict our view to dpo-rewriting systems with linear rewrite rules and
input-linear rewrites then we are in a position to compare the resulting lts
with rewriting via borrowed contexts.

Precisely, given an adhesive grammar G = 〈C,P〉, where P consists
of linear rewrite rules, let RBC(G) be the lts derived via rewriting with
borrowed contexts as in [25].

Theorem 6.3.10. LTS(G) = RBC(G).

Proof. (1.) From GIPOs to Borrowed Contexts. Suppose thatGoG
F

oF
ιF ◮HoH

in LTS(G). then F oF
ιF

must be a part of an GIPO diagram. Since every GIPO
can be constructed as a GRPO, we have a redex diagram

I4

I2

F ′ ==zzzzzz
F // I5
γ δ

β

G
OO

I3Coo

C′aaDDDDDD

0
G

bbEEEEEE L

<<yyyyyy

as the outside of the diagram, with 〈LoL , RoR〉 being a reaction rule, corre-
sponding via the translation of Lemma 6.3.5 to the rewrite rule

L I3
oLoo oR // R.

The candidate 〈I5, F,C,G, β, γ, δ〉 illustrated above is the GRPO obtained
via the construction of Algorithm 6.2.2.

1We consider the concrete version of the canonical lts in order to derive labels which
are easily comparable with rewriting via borrowed contexts. For practical applications,
the abstract lts ATS(C) would probably be more appropriate. Of course, the congruence
theorems apply to both choices of lts.
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We also have HoH ∼= CoC

iC
◦ RoR , which in other words means that the

diagram (i) below is a pushout

I3
oR //

��
iC ��

R
��
θ1��

C
θ2

// H

(i)

with oH : I5 → H equal to θ2 ◦ oC .

Recall that from the construction, we have that

G ∩ L // //
��
��

G
��
ǫ1��

L //
ǫ2

// Y

(ii)

I5
oF //

oC
��

F
σ1
��

C σ2

// Y

(iii)

I2
oG

��

//iF // F
σ1
��

G //
ǫ1
// Y

(iv)

I3
oL

��

//iC // C
σ2
��

L //
ǫ2
// Y

(v)

diagram (ii) is a pushout, diagram (iii) is a pullback, diagrams (iv) and (v)
are pushouts.

Notice that in diagrams (i) to (v) we have indicated which morphisms
are assumed to be mono in the construction of Algorithm 6.2.2. While Ehrig
and König assume that all morphisms are mono, it shall be useful for us here
to indicate only the necessary ones as we shall use the extra generality to
extend the notion of borrowed context in Definition 6.3.12.

We can construct the following diagram from the five diagrams above:

G ∩ L
��

ǫ′2 ��

//
ǫ′1 // L

��
ǫ2
��

I3
��
ιC
��

oLoo oR // R
��
θ1
��

G // ǫ1 // Y Cσ2oo θ2 // H

I2

oG

OO

//
ιF

// F

σ1

OO

I5

oC

OO

oF

oo

This is exactly the definition of F oF
ιF

constituting a borrowed context for

GoG , i.e. GoG
F

oF
ιF ◮HoH in RBC(G).

(2.) From Borrowed Contexts to GIPOs. In this section of the proof we
shall use the notation of Ehrig and König [25]. We shall also follow Ehrig
and König in assuming that all morphisms are mono. Given a borrowed
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context diagram (vi) below,

D

(1)
��

// L

(2)ǫ2
��

I

(3)ιC
��

loo r // R

θ1
��

G

(4)

ǫ1 // G+

(5)

Cσ2oo θ2 // H

J

oG

OO

ιF
// F

σ1

OO

K

oC

OO

oF

oo

(vi)

we shall show that one may construct a GIPO. First recall that a commuta-
tive diagram (vi) is a borrowed context diagram when squares (1 ), (2 ), (3 )
and (4 ) are pushouts, while square (5 ) is a pullback.

Indeed, consider the redex diagram (vii)

K

J α

F
<<yyyyyy

I

C
bbDDDDDD

0
G

bbEEEEEE L

<<zzzzzz

(vi)

KoF

uukkkkkkkk
!!CCoC

��

F

σ1

��

$$I
II K

oC

��

oFvvlllllll

F
σ1

��

Ckkk
uukkkk

σ2
  B

B

G+

##GG
C

σ2vvmmmmmm

G+

(vii)

and assume without loss of generality that L +I C = G+. Let α : F +J

G → G+ be the unique isomorphism such that αii = σ1 : F → G+ and
αi2 = ǫ1 : G → G+. Note that the isomorphism exists because square (4 )
in diagram (vi) is a pushout.

Since square (1 ) of diagram (vi) is a pushout of monos and we are in
an adhesive category, it is also a pullback. This implies that L ∪ G = G+,
because in adhesive categories one forms unions of subobjects by forming
the pushout of their intersection. The central cube diagram from the con-
struction of GRPOs is illustrated in (vii), in the construction we use only
the fact that square (5 ) of diagram (vi) is a pullback. Thus, the GRPO of
the redex square (vi) is 〈K,F,C, id, id, id, α〉, meaning that it is a GIPO.

We say that two graphs AoA:I and A′oA′ :I with the same output interface
are isomorphic when there exists an isomorphism ϕ : A → A′ such that
ϕoA = oA′ . Similarly, we say that two transitions from AoA:I to BoB:J , with
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labels CoC :J
ιC :I and C ′oC′ :J

ιC′ :I
, respectively, are isomorphic when there exists an

isomorphism ψ : C → C ′ with ψιC = ιC′ and ψoC = oC′ .

Let RBC∼=(G) be the lts with the nodes being the isomorphism classes
of the nodes of RBC(G) and whose transitions are the isomorphism classes
of transitions of RBC(G), and let LTS∼=(G) = ATS(C) of Definition 2.2.16.
We have the following corollary as a straightforward consequence of Theo-
rem 6.3.10.

Corollary 6.3.11. RBC∼=(G) = LTS∼=(G).

The results of this section can be seen from two different perspectives.
From the point of view of reactive systems, the borrowed context conditions
of Ehrig and König [25], once extended by allowing the appropriate mor-
phisms to be non-mono, can be seen as being an elegant and simple charac-
terisation of GIPOs in a input-linear cospan bicategory. On the other hand,
the results of this section show that borrowed contexts satisfy a universal
property, this means that the congruence theorem for bisimilarity of Ehrig
and König can actually be seen as a special case of Theorem 2.3.6. Simi-
larly, other results and technology developed for reactive systems transfers
to the setting of borrowed contexts, this includes the congruence theorems
for equivalences other than bisimilarity as well as the elegant technique for
deriving weak transition systems (in the sense of weak bisimilarity) devel-
oped by Jensen in his upcoming PhD thesis [45].

We end this section with an extension of borrowed contexts suggested
by the linearity conditions imposed in the construction of Algorithm 6.2.2.

Definition 6.3.12 (Extended Borrowed Contexts). Given an adhesive
grammar G = 〈C,P〉 with an arbitrary set of rules P, we shall construct a
labelled transition system with:

−−− Nodes: Graphs with output interfaces, J
oG−→ G where oG is arbitrary;

−−− Transitions: Cospans of graphs J
ιF−→ F

oF←− K where ιF is mono and
oF is arbitrary.

We derive a transition [GoG ]
[F

oF
ιF

]
◮ [HoH ] if there exists a commutative
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diagram as illustrated below, where

D

(1)
��

��

// // L

(2)
��
ǫ2
��

I

(3)
��
ιC
��

loo r // R
��
θ1
��

G

(4)

// ǫ1 // G+

(5)

Cσ2oo θ2 // H

J

oG

OO

//
ιF

// F

σ1

OO

K

oC

OO

oF

oo

(1 ), (2 ), (3 ) and (4 ) are pushouts, while square (5 ) is a pullback. The
indicated morphisms are assumed to be mono, the others are arbitrary.

As a corollary of the translation between borrowed contexts and GIPOs
of Theorem 6.3.10 and the congruence Theorem 2.3.6, we have the following.

Corollary 6.3.13. Bisimulation on the labelled transition system resulting
from Definition 6.3.12 is a congruence with respect to arbitrary input-linear
graph contexts, that is cospans

J
ιF−→ F

oF←− K

where ιF is mono and oF is arbitrary.

6.3.2 Bigraphs as cospans

Bigraphs were introduced by Milner to model dynamic systems with inde-
pendent locality and connectivity structures (cf. [73] for a comprehensive
exposition), and have been used by Jensen and Milner [47] to model and
derive an lts for the asynchronous π-calculus.

In this section, we recast the notion of bigraph in our approach, and
obtain structures very similar to Milner’s. Although we briefly discuss the
differences between our product and Milner’s bigraphs, we remark that a
perfect match is not our objective. Rather, we aim at demonstrating that
algebraic constructs relevant to the semantics of mobility and communi-
cation fall naturally within the realm of cospan bicategories over adhesive
categories. To that end, we introduce the adhesive category of place-link
graphs, which can be considered “bigraphs without interfaces.” Interfaces
will then be added when we consider the bicategory of cospans over the cat-
egory of place-link graphs. We do not develop the notions of width, inactive
sites, nor parametric reaction rules, which do not seem to have an effect on
the actual construction of GRPOs for bigraphs. The construction shall be
given by Algorithm 6.2.2.
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Figure 6.2: Typical place-link graph.

We define a place-graph to be a directed graph with nodes labelled over
an alphabet Σ. Additionally, there is an arity function ar : Σ→ N (the nat-
ural numbers), and place-graph morphisms are directed graph morphisms
which preserve node labelling. The intuition is that the elements of Σ are
(names of) controls, each equipped with an ordered set of ports. The con-
nectivity of each control is determined by the number of its ports. For a
place-graph G with node-set V and labelling function l : V → Σ, we denote
the ith port of v by vi, where 0 ≤ i < ar(l(v)). One can construct the total
set of ports of G by taking the disjoint union:

P =
∑

v∈V

{ vi | 0 ≤ i < ar(l(v)) }.

Definition 6.3.14 (Place-Link Graphs). A place-link (pl) graph is a
place-graph G over a set of controls Σ together with a set S and a link
map l : P → S, where P is the set of ports of G. A place-link morphism
〈f0, f1, f2〉 : G → G′ is a place-graph morphism 〈f0, f1〉 together with a
function f2 : S → S′ such that l′fp = f2l, where fp : P → P ′ is the
morphism sending vi to f0(v)i. Let PLGraphΣ be the category of pl-graphs
and pl-graph morphisms over a set of controls Σ.

The intuition is that S is the set of equivalence classes of ports in G.
When two ports are in the same equivalence class (that is they map to the
same element of S), we say that they are connected. Figure 6.2 illustrates
a typical place-link graph with two kind of controls – A and B, respectively
with three and two ports – where directed arcs represent the place structure,
and the undirected ones are the elements of S.

It is easy to construct for each Σ a category XΣ so that PLGraphΣ
∼=

SetXΣ , in other words, PLGraphΣ is a presheaf category and, as such,
adhesive.

Definition 6.3.15 (PL-Graphs with Interfaces). We shall refer to the
bicategory Cospan

∼=(PLGraphΣ) as the bicategory of pl-graphs with inter-
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faces. Restricting to input-linear cospans, we obtain the bicategory which
we shall denote ILC(PLGraphΣ).

Corollary 6.3.16. ILC(PLGraphΣ) has GRPOs, calculated using Algo-
rithm 6.2.2.

There are two aspects of our bicategory of pl-graphs with interfaces
which generalise the theory of bigraphs. Firstly, the theory of bigraphs one
traditionally considers only “discrete” interfaces, i.e., discrete place-graphs
(which can be seen as strings over the alphabet Σ) together with name sets
(cf. Definition 6.3.17). Secondly, place graphs are usually forests of trees,
and their input (resp. output) interfaces reach only leaves (resp. roots). For-
tunately, we can apply the necessary restrictions and still be able to perform
the construction of Algorithm 6.2.2.

Definition 6.3.17 (Discrete PL-Graph). A discrete pl-graph 〈m,X〉,
where m is a finite ordinal labelled over Σ and X is a finite set of names,
is a pl-graph with m as its set of nodes and no edges. Its link map is the
injection P → P +X, for P the set of ports of m.

Let TPLGraphΣ be the full subcategory of PLGraphΣ consisting of
pl-graphs with forests of trees as place-graphs.

Definition 6.3.18 (Bicategory of Bigraphs). The bicategory of bigraphs
BigraphΣ over a set of controls Σ has:

−−− Objects: Discrete pl-graphs 〈m,X〉;

−−− Arrows: Input-linear cospans

〈m,X〉 // // G 〈n, Y 〉oo

where G ∈ TPLGraphΣ; additionally, the left interface must reach
only the leaves of G while the right interface must reach only the roots
of G;

−−− 2-cells: isomorphisms between cospans.

Theorem 6.3.19. BigraphΣ has GRPOs.

Proof. It suffices to verify that Algorithm 6.2.2 preserves the conditions on
cospans, and that I5 is a discrete bigraph.
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Interestingly, a main difference between bigraphs as defined here and
Milner’s [73] is the effect of input-linearity on aliasing of names. Milner’s
formalism allows a bigraph which equates names from its input interface,
which is disallowed by our input-linearity condition. Conversely, our for-
malism allows a bigraph which equates names within its output interface,
an operation not allowed in Milner’s. Observe that since (G)RPOs-derived
contexts only exercise output interfaces, expressive power may be lost in
some applications by not being able to equate ports in the input interface.
Although this appears to be often compensated for by equating ports in out-
put interfaces, we are currently investigating a generalised notion of relative
pushout which acts at the same time on both interfaces.

In particular, in the link-graphs illustrated below,

x y

〈0, {x, y}〉 → 〈0,∅〉

x y

〈0,∅〉 → 〈0, {x, y}〉

the left one is not input-linear, and therefore, not allowed by our formalism.
On the other hand, the right one, which is input-linear but not output-linear,
is allowed in our formalism but not in Milner’s.

It appears that an output-linear version of Definition 6.3.18 would cap-
ture the existing bigraphs almost exactly. We leave a general construction
of GIPOs for output-linear cospan bicategories as future work.
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[91] V. Sassone and P. Sobociński. Deriving bisimulation congruences:
A 2-categorical approach. Electronic Notes in Theoretical Computer
Science, 68(2), 2002.

[92] V. Sassone and P. Sobociński. Deriving bisimulation congruences: 2-
categories vs. precategories. In Foundations of Software Science and
Computation Structures FoSSaCS ’03, volume 2620 of LNCS (Lecture
Notes in Computer Science). Springer, 2003.
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