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Abstract. Adhesive categories have recently been proposed as a cate-
gorical foundation for facets of the theory of graph transformation, and
have also been used to study techniques from process algebra for reason-
ing about concurrency. Here we continue our study of adhesive categories
by showing that toposes are adhesive. The proof relies on exploiting the
relationship between adhesive categories, Brown and Janelidze’s work
on generalised van Kampen theorems as well as Grothendieck’s theory
of descent.

Introduction

Adhesive categories [11,12] and their generalisations, quasiadhesive categories [11]
and adhesive hlr categories [6], have recently begun to be used as a natural and
relatively simple general foundation for aspects of the theory of graph transfor-
mation, following on from previous work in this direction [5]. By covering several
“graph-like” categories, they serve as a useful framework in which to prove struc-
tural properties. They have also served as a bridge allowing the introduction of
techniques from process algebra to the field of graph transformation [7, 13].

From a categorical point of view, the work follows in the footsteps of dis-
tributive and extensive categories [4] in the sense that they study a particular
relationship between certain finite limits and finite colimits. Indeed, whereas
distributive categories are concerned with the distributivity of products over co-
products and extensive categories with the relationship between coproducts and
pullbacks, the various flavours of adhesive categories consider the relationship
between certain pushouts and pullbacks.

Adhesive categories are defined to be the categories with pullbacks where
pushouts along monomorphisms are van Kampen [11] and as a consequence such
pushouts can be considered as being well-behaved with respect to pullbacks. As
we shall explain, related work includes Grothendieck’s theory of descent (see [9]
for an overview) and generalised approaches to the van Kampen theorem [1].

As shown in [11], adhesive categories are closed under several categorical
constructions, thus if C and D are adhesive then so is their product C × D,
choosing any object C ∈ C, the slice category C/C and coslice category C/C
are adhesive and, for any category X, the functor category [X,C] is adhesive. It is
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also known that the category of sets and functions Set is adhesive, in particular
this means that any presheaf topos [X,Set] is adhesive. These constructions
are useful because adhesive categories satisfy many of the so-called hlr-axioms,
and as a consequence, several important theorems about the rewriting theory of
double-pushout transformations can be proved at the level of adhesive categories.
Indeed, it is perhaps surprising that so many of the axioms, which were not
known previously to be related, hold automatically in any adhesive category.
One of the original contributions of this paper is a proof that adhesive categories
satisfy the special pullback-pushout property, one of the aforementioned axioms.

The central part of the paper is devoted to studying the relationship be-
tween toposes and adhesive categories. Topos theory has many different facets
and applications within mathematics and computer science. One of the interest-
ing properties of toposes is that they have finite limits and colimits, and these
behave somewhat as they do in Set. Indeed, while toposes enjoy much more
structure than adhesive categories, adhesive categories themselves have certain
finite colimits (pushouts along monomorphisms) and limits (pullbacks) which
are well-behaved with respect to each other. The question of whether toposes
are adhesive is thus a very natural one.

As we have shown in [11, 12], there are adhesive categories which are not
toposes. Here we prove that the converse is not true – indeed, the main contri-
bution of the paper is Theorem 26, the conclusion of which states that toposes
are adhesive. From a computer science perspective, this means that the theory
developed for adhesive categories can be applied to any topos, not just a presheaf.
This is a significant development, since topos theory is a well-established math-
ematical discipline with many important results and wide-reaching applications.

One interesting example of a category which is a topos and not a presheaf is
the Schanuel topos. It has been used (see [8], for example) to model languages
with name binding, such as the Pi-calculus. Our theorem thus allows us to apply
the rewriting theory developed for adhesive categories to such a setting. While
we do not study this example in detail within the present paper, we plan to
study such systems as part of future work. The Schanuel topos actually arises
as a full subcategory of a presheaf category with objects the (atomic) sheaves.
It is a general fact that any such category of sheaves is a topos.

The proof of our theorem relies on exploiting the connections between adhe-
sive categories (or more generally, van Kampen squares), Brown and Janelidze’s
generalised van Kampen theorems and Grothedieck’s theory of descent. Indeed,
in order to prove that toposes are adhesive, we must show that pushouts along
monomorphisms are van Kampen. To do so, we split such a pushout into two:
one pushout with all morphisms mono, and one with two monomorphisms and
two epimorphisms. The former is also a pullback in any topos, and a theorem of
Brown and Janelidze’s (here recalled as Theorem 23) guarantees that it satisfies
the van Kampen theorem – which implies that the original pushout is a van
Kampen square. Here we also prove that pushouts of the latter kind are van
Kampen in a topos, it is the most difficult and technical result of the paper.
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��

f // B
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��
A g

// D

Fig. 1. Pushout diagram.

This completes the proof because, as we show in Lemma 2, van Kampen squares
compose in categories with pullbacks and pushouts.

Structure of the paper. In Section 1 we recall two equivalent ways of defining van
Kampen squares and show that van Kampen squares compose in categories with
pushouts and pullbacks. We recall the definition of adhesive categories and prove
that adhesive categories enjoy the special pullback-pushout property. Section 2
recalls the fragments of descent theory and topos theory necessary for our main
result. In Section 3, we recall the theorem of Brown and Janelidze, which forms
one of the ingredients of the proof of our main Theorem 26. Theorem 25 is
the other main ingredient, and its proof relies on the background introduced
in Section 2. We conclude in Section 4 with several directions for future work.
The paper is relatively self-contained, although we omit the proofs of well-known
results and instead provide references to standard sources.

1 Van Kampen squares and adhesive categories

Adhesive and quasiadhesive categories are defined using certain pushout dia-
grams which are called van Kampen squares. We refer the reader to [11, 12] for
an introduction to, the enumeration of the basic properties of, and the appli-
cations of adhesive and quasiadhesive categories. Here we shall concentrate on
the definitions of van Kampen squares and derive the properties which will be
needed for the proof of our main result. We shall also prove that adhesive cat-
egories satisfy the so-called special pullback-pushout property, which is one of
the many hlr axioms, the majority of which have already been shown in [11,12]
to hold in any adhesive category.

We shall need both the axiomatic and the “equivalence of categories” versions
of the definitions of van Kampen squares [12]. In particular, using the former,
we shall show that van Kampen squares compose in categories with pushouts
and pullbacks, and that adhesive categories satisfy the special pullback-pushout
property. The fact that van Kampen squares compose, together with the latter,
equivalent, way of defining van Kampen squares will be used in the proof of our
main Theorem 26. The latter definition of van Kampen squares also makes it
possible to establish a relationship between van Kampen squares and Brown and
Janelidze’s generalised van Kampen theorems, as we shall explain in §3.
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Definition 1. A van Kampen square is a pushout di-
agram as in Fig 1 which satisfies the following condi-
tion:

– for any commutative cube, as illustrated, of which
Fig 1 forms the bottom face and the back faces are
pullbacks: the front faces are pullbacks iff the top
face is a pushout.

C ′
m′

ttiiiiiiiii f ′

%%KKK
c

��
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a

��

g′
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B′

b
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n′ttiiiiiiiii

D′

d
��

Cm
iiii

ttiiii
f

%%KKK
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A
g %%KKK
K B

nttiiiiiiiii

D

The following lemma shows that, in categories with pushouts and pullbacks,
van Kampen squares paste together to give van Kampen squares.

Lemma 2. Consider the illustrated commutative diagram
in a category with pushouts and pullbacks. If (1) and (2)
are van Kampen then so is (1)+(2).

·

(1)

//

��

·

(2)

��

// ·

��
· // · // ·

Proof. Straightforward; in order to show that the combined pushout is stable
under pullback it suffices to break up a cube into two cubes, using the existence
of pullbacks. Conversely, a cube with its top face a pushout, can be split into
two using the existence of pullbacks and pushouts. ut

We shall now recall an equivalent definition of van Kampen squares which
will be useful for the purposes of this paper. The reader is referred to [12] for
the proof that the definitions are equivalent. The alternative definition is stated
by saying that a certain functor, induced by the diagram in Fig 1, is required to
be an equivalence of categories. We begin by defining the codomain category of
the functor.

Definition 3. Let C/A ×C/C C/B denote the category
with objects commutative diagrams of pullbacks, as illus-
trated, and arrows the obvious morphisms between such di-
agrams.

A′

a
��

C ′m′
oo f ′

//

c
��

B′

b��
A Cm

oo
f

// B

For a morphism u : U → V we shall write u∗ : C/V → C/U for the functor
given by pulling back along u. Referring to Fig 1, the functors n∗ and g∗ induce
a functor

Pb : C/D → C/A×C/C C/B.

Using the functor Pb, we can define the property of square (1) being van
Kampen as follows:

Definition 4. The pushout diagram of Fig 1 is said to be van Kampen whenever
one of the following equivalent conditions holds:

(i) Pb is an equivalence of categories;
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(ii) the pushout is stable under pullback, and the functor Pb is essentially
surjective on objects.3

Definition 5 (Adhesive categories). A category with pullbacks and pushouts
along monomorphisms is said to be adhesive if any pushout square as in Fig 1,
in which m is a monomorphism, is van Kampen.

Examples of adhesive categories include Set (see [11]) and the category of
graphs Graph. The fact that the latter is adhesive follows from the fact that Set
is adhesive and the fact that the functor category [X,C] is adhesive whenever C
is. Thus, in particular, any presheaf topos is adhesive. In §3 we shall show that
any topos is adhesive, thus providing several new examples of adhesive categories
– for instance, the Schanuel topos [8].

Adhesive categories have found an application as a foundation for parts of
the theory of graph transformation. Indeed, it has been shown in [11, 12] that
adhesive and quasiadhesive categories satisfy many of the previously proposed
HLR-axioms [5]. Here we shall extend this thesis by showing that another of
the aforementioned axioms holds in adhesive categories, the so called special
pullback-pushout property. Actually, we are able to prove a more general prop-
erty by requiring less assumptions about the arrows in the diagram below.

Lemma 6 (Special pullback-pushout property). Sup-
pose that the illustrated commutative diagram in an adhe-
sive category has m,n and l mono. Suppose that (1) is a
pushout and (1)+(2) is a pullback, then (2) is a pullback.

A
(1)m

��

f // C
(2)n

��

p // E
l��

B g
// D q

// F

Proof. Suppose we have an object X and morphisms α : X → D and β : X → E
such that qα = lβ. We shall show that there exists k : X → C such that nk = α
and pk = β. Notice that it suffices to show the existence of such a morphism,
uniqueness follows since n is mono.
Construct the illustrated cube by taking pullbacks.
Now qgα1 = qαg′ = lβg′, and we use the fact that
(1 )+(2 ) is a pullback to derive the existence of a
unique morphism h : X1 → A such that mh = α1

and pfh = βg′.
Also note that mα3 = α1m

′ = mhm′, and using the
fact that m is mono, α3 = hm′ (†). Also, lpα2 =
qnα2 = qαn′ = lβn′. Since l is mono, we have that
pα2 = βn′ (‡).

X3m′

uulllllll f ′

##GG
α3

��

X1

α1

��

g′
##FF

X2

α2

��

n′

uukkkk
kk

X

α
��

Am
kkkk

uukkk
f

$$III

B
g ##GGG

C
nuujjjjjjjj

D

We shall use the fact that the top face of the cube is a pushout to derive the
existence of the required morphism. Indeed, we have α2f

′ = fα3 = fhm′ where
we used (†) to derive the last equality. Thus we get a unique k : X → C such
that kg′ = fh and kn′ = α2.
3 A functor F : C → D is said to be essentially surjective on objects when, for every

object D ∈ D, there exists an object C ∈ C such that FC ∼= D.
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It remains to show that k satisfies the necessary properties, that is, nk = α
and pk = β. Indeed, we have nkg′ = nfh = gmh = gα1 = αg′ and nkn′ =
nα2 = αn′. Using the fact that the top face of the cube is a pushout, and in
particular, the uniqueness of the mediating morphism, we have nk = α.

Similarly, pkg′ = pfh = βg′ and pkn′ = pα2 = βn′, where we used (‡) to
derive the last equality. This implies that pk = β and we are finished. ut

2 Toposes and descent

In order to prove that toposes are adhesive, we shall first recall the necessary
background in this section: basic aspects of descent theory as well as the defini-
tion and several well-known properties of toposes.

We start in §2.1 by recalling a little of Grothendieck’s theory of descent. We
refer the reader to [9], for example, for a more detailed account. Historically, the
theory arose from algebraic geometry and has had an impact on many disciplines
within mathematics and computer science, including algebraic topology, logic
and type theory. Descent theory, as we shall show, is also closely related to van
Kampen squares.

In §2.2 we recall some elementary facts about toposes. See [10] for an overview
of topos theory. Toposes have been widely used by mathematicians and computer
scientists interested in logic, topology, geometry or category theory.

We relate these two topics by recalling that epimorphisms in toposes are
effective for descent. This, in fact, is a consequence of a more general fact that
regular epimorphisms in locally-cartesian closed categories are effective descent
morphisms.

2.1 Descent

Recall that a morphism p : X → D is said to be a regular epimorphism if it is the
coequaliser of some morphisms w1, w2 : W → X. We recall below a well-known
lemma which relates regular epimorphisms and pushout diagrams.

Lemma 7. If p : X → D has a kernel pair p1, p2 : P → X (the
diagram is a pullback square) then p is a regular epimorphism
iff the pullback is also a pushout.

P
p1

��

p2 // X
p

��
X p

// D

Proof. (⇐) If the diagram is a pushout square then it follows immediately that
p is a coequaliser of p1 and p2;
(⇒) If p is regular epi then it is the coequaliser of w1, w2 : W → X. Since the
diagram above is a pullback, there exists a unique morphism w : W → P such
that p1w = w1 and p2w = w2. From this it follows that p is the coequaliser of
p1 and p2. Again using the fact that the square is a pullback, there exists an
arrow h : X → P such that p1h = idX and p2h = idX . It follows that for any
α : X → Y and β : X → Y if αp1 = βp2 then α = β. The universal property of
pushouts thus follows from the universal property of coequalisers. ut
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C/D
K //

a
p∗

��

EM

U
����

��
��

�

C/X
p∗

QQ

Fig. 2. The adjunction p∗ a p∗ and functor to the Eilenberg-Moore category EM, with
the obvious forgetful functor U .

The conclusion of the following lemma ensures that the evident induced mor-
phism to the vertex of any pushout diagram is a regular epimorphism.

Lemma 8. Given a pushout diagram as in Fig 1 in a category with coproducts,
[g, n] : A + B → D is a regular epimorphism.

Proof. It is the coequaliser of the pair i1m, i2f : C → A + B. ut

We shall now recall some basic facts about descent. Let C be a category with
pullbacks and p : X → D a morphism in C. The pullback functor p∗ : C/D →
C/X always has a left adjoint, given by composition with p. Recall that the
right adjoint p∗ : C/D → C/X is said to be monadic if the unique comparison
functor K from C/D to the Eilenberg-Moore category EM generated by the
monad arising from the adjunction is an equivalence of categories (see Fig 2).

The following definition states when a morphism is said to be effective for
descent. The intuitive idea is that, given an effective descent morphism p : X →
D, one can reason about the structure of a category C/D, which may be difficult,
by reasoning about certain algebras over C/X – thus in a sense “descending”
along p. Indeed, referring to the diagram of Fig 2, to say that p is effective for
descent is to say that the comparison functor K : C/D → EM, where EM is the
Eilenberg-Moore category (category of algebras) of the monad with endofunctor
p∗p∗ : C/X → C/X, is an equivalence of categories; ie p∗ is monadic.

Definition 9. If p∗ is monadic, we shall say either that p is effective for descent
or that it is an effective descent morphism.

In the particular case of the monad p∗ a p∗, the Eilenberg-Moore category
can be characterised as a category of certain pullback diagrams in C. This char-
acterisation will prove useful in the proof of our main result.

Lemma 10. The Eilenberg-Moore category EM of the monad induced by the
adjunction p∗ a p∗ is the category whose:

– objects are diagrams of pullbacks, as illustrated in the left diagram of Fig 3,
where p1, p2 : P → X is the kernel pair of p;

– arrows are pairs α, β which combine into a commutative diagram, as illus-
trated in the other diagram of Fig 3.
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X ′

x
��

P ′
p′2 //p′1oo

y
��

X ′

x
��

X Pp1
oo

p2
// X

X ′′

x′

��

P ′′

y′

��

p′′1oo p′′2 // X ′′

x′

��

X ′

α
==

x ""DD
DD

D P ′

β
<<

p′1

oo

y ""EEEEE p′2

// X ′

α
<<

x

""EE
EE

E

X Pp1
oo

p2
// X

Fig. 3. Objects and morphisms of EM.

The comparison functor K : C/D → EM (see Fig 2) takes an object d : D′ → D
of C/D to the rear faces of the cube of pullbacks formed from d and the pullback
diagram of Lemma 7.

Proof. See [9, §3.4]. Note that the category discussed there is the category of
descent data: its objects are pairs 〈x : X ′ → X, ξ : p∗1x → p∗2x〉 where ξ is an iso
in C/P . This category is clearly isomorphic to the category described above. ut

Remark 11. The category EM is not the same as C/X×C/P C/X of Definition 3.
Indeed, if p is a regular epimorphism and we start with the pushout diagram of
Lemma 7, then it makes sense to compare the two categories. While the objects
of both are pairs of pullback diagrams, an object of the latter category can
potentially involve two maps X ′ → X rather than one.

The next lemma relates the effective descent morphisms and regular epimor-
phisms. The two classes coincide in any locally cartesian closed category – a
category C in which every slice C/C is cartesian closed.

Lemma 12. In a locally cartesian closed category, a morphism is effective for
descent (cf Definition 9) iff it is a regular epimorphism.

Proof. See [9], for example. ut

We have the following useful fact as a consequence of Lemmas 12 and 8. It
states that, in a category with coproducts, the evident morphism induced by an
arbitrary pushout is effective for descent.

Corollary 13. Given a pushout diagram of Fig 1 in a locally cartesian closed
category with coproducts, the induced arrow [g, n] : A + B → D is an effective
descent morphism. ut

Now letting p = [g, n] and using Corollary 13,
Lemma 10, the comparison functor K : C/D →
EM which takes an object d : D′ → D to the
back faces of the cube of pullbacks, as illus-
trated, is an equivalence of categories. This fact,
and in particular the fact that K is essentially
surjective on objects, will form an important
part of the proof of Theorem 25, the hardest
step of the proof of our main Theorem 26.

P ′p′1

ttiiiiiii p′2
&&NNN

N

y

��

A′ + B′

a+b

��

g′
&&NNN

N A′ + B′

a+b

��

n′ttiiiiiii

D′

d
��

Pp1

iiiii
ttiii

p2
&&NNNN

A + B

[g,n] &&NNNN A + B

[g,n]ttiiiiiiii

D
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2.2 Toposes

Here we list the properties of toposes which we shall use to prove our main
theorem. We refer the reader to [10] for a more thorough account of topos theory.
We give a standard definition of toposes below; note that the actual statement
of the definition is not important for the purposes of this paper, instead we shall
list the precise properties of toposes we require in the remainder of this section.

Definition 14. A topos is a category C which:

(i) is cartesian closed and has equalisers (and consequently, all finite limits);
(ii) has a subobject classifier.

It follows from the axioms above that toposes have finite colimits [10, A2.2.9]
and are locally cartesian closed [10, A2.3.4]. In particular, the latter implies that:

Proposition 15. The pullback functors u∗ : C/V → C/U have right adjoints,
and so preserve all colimits. ut

The proof of Theorem 25, the hardest step in the proof of our main result,
relies on the fact that toposes are extensive [4]. Extensive categories can be
said to have well-behaved coproducts, in a similar sense to how pushouts along
monomorphisms can be said to be well-behaved in adhesive categories. Here we
give the (axiomatic) definition and a well-known characterisation.

Definition 16 (Extensive categories). A category C
is said to be extensive if it has finite coproducts, pull-
backs along coproduct injections, and satisfies the fol-
lowing property:

– given a commutative diagram, as illustrated, the top
row is a coproduct diagram iff the two squares are
pullbacks.

X

��

// Z

��

Y

��

oo

A
i1

// A + B B
i2

oo

The following result states two properties of coproducts in extensive cate-
gories which, if they hold in arbitrary categories, are enough to show extensivity.
Interestingly, it is unknown whether a similar characterisation can be given for
adhesive categories.

Proposition 17. A category with finite coproducts and pullbacks along coprod-
uct injections is extensive iff (1) it has coproducts which are stable under pullback
and (2) pulling back one coproduct injection along the other results in the initial
object.4

Proof. See [4, Proposition 2.14]. ut
4 Coproducts are said to be disjoint if they satisfy property (2) and coproduct injec-

tions are monomorphisms. When coproducts are stable under pullback, the fact that
injections are monomorphisms is derivable from (2) (cf [4, Lemma 2.13]).
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We shall now recall some other well-known properties of toposes, one of which
is that toposes are extensive:

Lemma 18. If C is a topos then:

(i) epimorphisms in C are regular and are stable under pullback;
(ii) monomorphisms in C are regular and are stable under pushout;
(iii) pushouts along monomorphisms in C are pullbacks;
(iv) C is extensive;
(v) all arrows f : A → B in C can be factorised into an epimorphism e : A → C

followed by a monomorphism m : C → B with me = f ; moreover, the
factorisation is unique up to isomorphism in the obvious way.

Proof. For the first parts of (i) and (ii) see [10, A1.4.9]. The fact that epimor-
phisms are stable under pullback follows from Proposition 15. For the second
part of (ii) and for (iii) see [10, A2.4.3]. For part (iv), we know from Propo-
sition 17 that it is enough to check for stability of coproducts under pullback
and disjointness. For disjointness see [10, A2.4.4], stability follows from Propo-
sition 15. For part (iv) see [10, A2.3.5]. ut

Using Lemma 12 and part (i) of Lemma 18, we obtain the following well-
known result:

Corollary 19. In a topos, the classes of epimorphisms and effective descent
morphisms coincide. ut

We shall require one technical lemma, which holds in toposes. It concerns
certain diagrams of pullbacks – indeed, it is well known that given a diagram
(as illustrated below) where the right square is a pullback then the left square
is a pullback if and only if the exterior of the diagram is a pullback. The lemma
below gives a sufficient condition for the right square being a pullback when the
exterior of the diagram and the left square are pullbacks.

Lemma 20. Consider in a topos a diagram, as illustrated,
with g an epimorphism. If the left square and the exterior
are pullbacks then so is the right square.

A
s

��

f // C
t��

p // E
u

��
B g

// // D q
// F

Proof. This follows immediately from [2, Lemma 4.6] and Corollary 19. Indeed,
as shown in [2], it suffices to require that g is an effective descent morphism. ut

We conclude this section by recalling the notion of an equivalence relation in
a cartesian category, a generalisation of the usual notion of equivalence relation,
and recalling that equivalence relations in toposes are effective.

Definition 21 (Equivalence relation). Suppose that C is a category with
finite products. By a relation, we mean a monomorphism 〈a, b〉 : R → A×A. A
relation is said to be an equivalence relation if all three of the following hold:
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– it is reflexive: there exists a morphism r : A → R such that
ar = br = idA;

– it is symmetric: there exists a morphism s : R → R such that
as = b and bs = a;

– it is transitive: referring to the illustrated pullback diagram,
there exists a morphism t : P → R such that at = ap and
bt = bq.

P
p

��

q // R
a

��
R

b
// A

Proposition 22. In a topos, equivalence relations are effective, that is, they are
the kernel pairs of their coequaliser.

Proof. See [10, A2.4.1]. ut

3 Toposes are adhesive

Having recalled the necessary background theory, in this section we shall prove
that toposes are adhesive (Theorem 26) which is the main technical contribution
of the paper. Recall from [12] that the converse does not hold – indeed there are
adhesive categories which are not toposes (for instance the category of pointed
sets Set∗).

The proof itself relies on the fact that, in a topos, a pushout along a monomor-
phism can be broken up into two pushouts – (1) one with all arrows monomor-
phisms and (2) one with two monomorphisms and two epimorphisms.

Using the fact that van Kampen squares compose (cf Lemma 2), it suffices
to show that, in toposes, pushouts of kinds (1) and (2) are van Kampen squares.
The fact that pushouts of kind (2) are van Kampen (Theorem 25) is the most
difficult and technical part of our proof. The fact that pushouts of kind (1) are
van Kampen squares follows immediately from a well-known theorem of Brown
and Janelidze [1]:

Theorem 23 (Brown and Janelidze). Suppose that C is an ex-
tensive category with finite limits. Given a pullback diagram, as il-
lustrated, with all morphisms mono, the induced (cf paragraph fol-
lowing Definition 3) functor Pb : C/D → C/A ×C/C C/B is an
equivalence of categories if and only if the map [g, n] : A + B → D
induced by g and n is an effective descent morphism.

C
m

��

f // B
n

��
A g

// D

Proof. See [1, Proposition 3.2]. ut

As an immediate application of the above theorem, we are able to show that
pushouts in toposes with all arrows monomorphisms are van Kampen.

Corollary 24. A pushout as in Fig 1 in a topos, with all arrows monomorphic,
is van Kampen.
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Proof. First note that by Lemma 18(iii), such a pushout is also a pullback, and
by Corollary 13 we know that the arrow [g, n] induced by the pushout is a (regu-
lar) epimorphism. Toposes have finite limits and are extensive (cf Lemma 18(iv)),
thus we can apply Theorem 23 to obtain that Pb is an equivalence of categories
– in other words, the pushout is van Kampen (cf Definition 4). ut

The second class of pushouts we shall consider are pushouts where two of the
morphisms are epimorphisms and two are monomorphisms. The following fact
is the most technical part of our main result:

Theorem 25. A pushout as in Fig 1 in a topos, with f (and so g) epimorphic
and m and n monomorphic, is van Kampen.

Proof. Using the second part of Definition 4 and the stability of pushouts under
pullback (cf Proposition 15), it will suffice to show that the functor Pb : C/D →
C/A ×C/C C/B induced by such a pushout is essentially surjective on objects.
In other words, given a diagram as in Definition 3 with both squares pullbacks,
we must find a map d : D′ → D whose pullbacks along g and n are, respectively,
a and b. By extensivity (cf Lemma 18(iv)), this amounts to finding d whose
pullback along p = [g, n] : A + B → D is a + b : A′ + B′ → A + B.

But, by Corollary 13, p is an effec-

A′ + B′

a+b
��

P ′
p′2 //p′1oo

y
��

A′ + B′

a+b
��

A + B Pp1
oo

p2
// A + B

tive descent map. Using the fact that
K : C/D → EM is essentially surjec-
tive on objects (cf paragraph follow-
ing Corollary 13), it suffices to show
that the pullback of a + b along p1

coincides with its pullback along p2,
where p1, p2 : P → A + B are the projections of the kernel pair of p – thus
showing that the diagram is an object of the Eilenberg-Moore category EM. By
extensivity, P is given by A2 + C + C + B, where g1, g2 : A2 → A is the kernel
pair of g : A → D. It follows that the projections themselves are:

p1 = [g1,m] + [f, idB ] : A2 + C + C + B → A + B

p2 = [g2 + f, m + idB ] : A2 + C + C + B → A + B.

Using extensivity once more, to show that the pullbacks of a+ b along p1 and p2

agree, it suffices to show that the pullbacks along each of the components of p1

and p2 agree. And since m∗a and f∗b agree, all that remains is to check that g∗1a
and g∗2a agree. To do so, we form the pullback in diagram (i) below and then
show that the squares of diagram (ii) are pullbacks.

A′
2

〈g′1,g′2〉 //

a2
��

A′ ×A′

a×a
��

A2 〈g1,g2〉
// A×A

(i)

A′
2

g′i //

a2
��

A′

a
��

A2 gi

// A

(ii)

A′
g′id

′
//

a
��

A′

a
��

A
gid

// A

(iii)
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Let d : A → A2 be the unique map satisfying g1d = g2d = idA, and similarly
let d′ : A′ → A′

2 be the unique map satisfying g′1d
′ = g′2d

′ = idA′ and a2d
′ = da.

Then the squares of diagram (iii) are clearly pullbacks.
Let f1, f2 : C2 → C be the kernel pair of f . Then there are pullback squares (iv),

and so pullback squares (v). Let m2 : C2 → A2 be the unique map satisfying
gim2 = mfi for i = 1 and 2. Similarly, let m′

2 : C ′
2 → A′

2 be the unique map
satisfying g′im

′
2 = m′f ′

i for i = 1 and 2 as well as a2m
′
2 = m2c2. Thus we get the

pullback squares (vi).

C ′
2

c2
��

f ′
i // C ′ f ′

//

c
��

B′

b
��

C2
fi

// C
f

// B

(iv)

C ′
2

c2
��

f ′
i // C ′ m′

//

c
��

A′

a
��

C2
fi

// C m
// A

(v)

C ′
2

c2
��

g′im
′
2// A′

a
��

C2 gim2
// A

(vi)

A′ + C ′
2

[d′,m′
2]//

a+c2 ��

A′
2

g′i //

a2
��

A′

a
��

A + C2
[d,m2]

// A2 gi

// A

(vii)

Using extensivity and the fact that diagrams (iii) and (vi) are pullbacks, the
exteriors and the left hand squares of diagram (vii) are pullbacks, so that the
right hand squares will be pullbacks, and the proof complete, provided that
[d, m2] : A + C2 → A2 is an epimorphism (cf Lemma 20).

To see that [d, m2] is an epimorphism, consider the map [∆, 〈g1m2, g2m2〉] : A+
C2 → A× A induced by the diagonal ∆ : A → A× A and 〈g1m2, g2m2〉 : C2 →
A × A, and factorise it as an epimorphism [h1, h2] : A + C2 → R followed by a
monomorphism 〈r1, r2〉 : R → A× A. We shall show that R is A2, with h1 = d
and h2 = m2, so that [d, m2] is an epimorphism, as required.

If we regard R as a relation on A, it is clearly reflexive, since by construction
it contains the diagonal; it is symmetric, since the relations A and C2 are so.
The pullback (A + C2)×A (A + C2) is given by A + C2 + C2 + C3, where C3 =
C×B C×B C, and the “composition” map C3 → C2 sending a triple (c1, c2, c3) of
generalized elements of C to (c1, c3), induces an evident map A+C2 +C2 +C3 →
A + C2, which in turn induces a map R ◦R → R showing that the relation R is
transitive and so an equivalence relation.

In a topos, an equivalence relation is the kernel

C2
f2 //

f1 ��

C

f
��

C
f

// B

pair of its coequaliser (cf Proposition 22), but the
coequaliser of r1, r2 : R → A is the coequaliser of the
maps r1[h1, h2], r2[h1, h2] : A + C2 → A, since [h1, h2]
is epi. This in turn is the coequaliser of the maps g1m2

and g2m2 and so, using the definition of the gi, it is
the coequaliser of mf1,mf2 : C2 → A.

Using the fact that f is epi, the diagram to the right is a pushout (cf
Lemma 7). Thus a map w : A → W satisfying wmf1 = wmf2 induces a unique
map v : B → W satisfying vf = wm; and so a unique map u : D → W sat-
isfying ug = w and un = v. Clearly g : A → D coequalises mf1,mf2; using
the universal property of coequalisers we obtain that u is an isomorphism. This
proves that the coequaliser of the projections of R is g : A → D, and so that R
is the kernel pair of g; but the kernel pair of g is A2, and this now proves that
[d, m2] : A + C2 → A2 is an epimorphism, as claimed. ut
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We are now able to combine these results in order to deduce our main con-
tribution:

Theorem 26. Toposes are adhesive.

Proof. Consider the pushout of Fig 1 in a topos C, with m a monomorphism. We
shall show that it is a van Kampen square. As a consequence of Proposition 15,
all pushouts are stable under pullback.

By parts (iii) and (ii) of Lemma 18, such a pushout

C

(†)m
��

r // E

(‡)l
��

j // B

n
��

A q
// F

k
// D

is also a pullback and the map n is also a monomor-
phism. Factorise g : A → D as a epimorphism q : A →
F followed by a monomorphism k : F → D, and form
the pullback squares as illustrated. It follows immedi-
ately that j is a monomorphism. Using Lemma 18(i),
r is an epimorphism.

The exterior of the diagram above is a pushout by assumption. We know by
Proposition 15 that pushouts are stable under pullback – the stability of this
pushout under pullback along k implies that square (†) is also a pushout, and
so square (‡) is also a pushout by the usual cancellation properties of pushouts.

If each of these squares is van Kampen then the conclusion of Lemma 2
implies that so is the exterior; thus it will suffice to consider separately square (†)
with r and q epimorphisms and m and l monomorphism, and square (‡) with l,
n, j and k all monomorphisms. The fact that the latter is van Kampen follows
from Corollary 24, while the fact that the former is van Kampen follows from
Theorem 25. ut

Remark 27. Recall from [11] that the converse of Theorem 26 does not hold.
Indeed, adhesive categories are closed under the coslice construction and thus in
general are not even extensive.

4 Conclusion

Throughout the paper we have concentrated on the class of adhesive categories
which has many examples of interest to computer scientists, in particular those
interested in the theory of graph transformation. We have shown that adhe-
sive categories satisfy the special pullback-pushout lemma, which was previously
taken as one of the hlr axioms.

Our main result is that toposes are adhesive; the proof relies on exploiting
the relationship between van Kampen squares, descent theory [9] and Brown
and Janelidze’s work [1] on generalised van Kampen theorems. More concretely,
we prove that pushouts along monomorphisms in toposes are van Kampen by
splitting them into two pushouts and proving that each is van Kampen – the fact
that one is van Kampen follows from Brown and Janelidze’s well-known theorem
and the proof of the other relies on the fact that epimorphisms in toposes are
effective for descent.

In future work, we plan to study the ramifications of the fact that toposes
are adhesive by using the rewriting theory developed for adhesive categories
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to study languages with name-passing which are modelled using the Schanuel
topos. We also plan to extend our main theorem to show that certain classes of
quasitoposes [14] are quasiadhesive. Such a result would not only prove to be of
theoretical interest, but would also allow us simple proofs of the quasiadhesivity
of many categories of interest to the graph transformation community. This is
because it is possible to show that they arise via so called Artin gluing [3].
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