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Abstract

String diagrams can be used as a compositional syntax for
different kinds of computational structures. This thesis
views string diagrams through a logical/universal alge-
braic perspective – diagrams represent formulas, allow-
ing the use of diagrammatic reasoning for proofs. The
category theoretic backdrop of this playground is given
by the concept of Cartesian bicategory – a categorical al-
gebra of relations – that we consider as a relational theory
through the lens of functorial semantics. Given a Carte-
sian bicategory, functorial semantics provides us with an
appropriate notion of model as a structure-preserving func-
tor to the category of sets and relations.

Functoriality implies that diagrammatic reasoning is sound.
The central question this approach raises and that we shall
settle is the question of completeness in the logical sense:
does every property that is shared by all models have a
diagrammatic proof?

The main result of the thesis is a positive answer to the
above question. To show this, we give a combinatorial
characterisation of Cartesian bicategories in terms of hy-
pergraphs equipped with interfaces, inspired by a semi-
nal result by Chandra and Merlin. This reduces the prob-
lem of logical completeness to a categorical lifting prob-
lem that we solve using a transfinite construction and a
compactness argument.
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Introduction

Category theory and logic share an intimate relationship. Many ex-
amples for this can be found in [37] or [29]. The most important one
for us is the one established by William Lawvere [31]. He uncovered
the close relationship between Cartesian categories – i.e. categories
with finite products – on the one hand and equational algebraic rea-
soning on the other. But there is a reason that categories and logic
have not announced their marriage yet – there is somebody else,
somebody that is often overlooked. That somebody is combinatorics.

In many cases, categories and logic come together with a combi-
natorial structure to form what we call the love triangle:

Combinatorics

Category theory Logic

There are numerous examples of this in Computer science, a famous
one is the Curry-Howard-Lambek correspondence:

Combinatorics

Category theory Logic

Simply typed Λ-calculus

Cartesian closed categories Intuitionistic logic
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Admittedly, it is a bit of a stretch to call Lambda calculus a combina-
torial structure – the structure is mostly syntactic. Nevertheless, we
will consider that vertex of the love triangle the combinatorial one in
anticipation of the structures that are to come.

Lawvere’s relationship between Cartesian categories and equa-
tional logic is no different, again there is someone else. Algebraic
reasoning is reasoning on terms, which can be combinatorically de-
scribed via their syntax trees. This gives Lawvere’s love triangle:

Combinatorics

Category theory Logic

Trees

Cartesian categories Equational logic

The goal of this thesis is to push the limits of algebra and enrich
all three corners of the love triangle:

• A logic that is more expressive than equational logic.

• A combinatorial structure more general than trees.

• A categorical structure richer than Cartesian categories.

The way to this enrichment is through string diagrams [39], dia-
grammatic representations of the morphisms in monoidal categories.
String diagrams have wide applications in Computer science from
quantum computing [1, 20, 35, 28] over concurrency theory [14, 15,
17, 16] and control theory [10, 3] to linguistics [38].

Since Cartesian categories are a special class of monoidal cate-
gories, Lawvere’s love triangle allows us to translate algebraic terms
into string diagrams. A term like f(g(x1, x2), x3), with binary opera-
tions f, g, is represented as the diagram

g
f
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But Cartesian categories have a special property that characterises
them among monoidal categories – they allow for copying and dis-
carding [26], which in diagrams are represented by and .
Using this we can render the term f(g(x3, x1), x1)) as

g

f

where x2 is discarded because the term ignores it. This allows to
describe algebraic properties diagrammatically, for example the dia-
grammatic equality

ff =

expresses commutativity of f .
But our hunger for more leads to a natural question: Can we

make sense of and in some way? This requires a shift
of perspective: If we insist to think of our diagrams as functions we
are out of luck, but thinking of them as relations we are suddenly in
business.

This leads us to consider the notion of Cartesian bicategory, origi-
nally introduced in [18]. Cartesian bicategories are to Cartesian cate-
gories as Rel, the category of sets and relations, is to Set, the category
of sets and functions.

Since relations are ordered via subsets, the definition of Cartesian
bicategories axiomatises inequalities between diagrams, such as

≤

for example. The most important axiom of Cartesian bicategories is
the Frobenius law

==

which is found in a surprising variety of applications [1, 20, 14, 10].
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This generalisation from functions to relations ripples through
the love triangle to give a more expressive logic. Not only can we
talk about implication now, we can even encode some logical con-
nectives.

R

S

is an encoding of the conjunction, R ∧ S, into diagrams and

R

intuitively represents all those x1 for which there exists x2 such that
R(x1, x2) holds, where R is some binary property. In other words,
our logic can express conjunction and existential quantification, a
fragment of first-order logic known as regular logic.

Category theory Logic
Cartesian bicategories Regular logic

But once again, there is somebody else. This somebody was iden-
tified by Chandra and Merlin in their seminal work [19], in which
they uncover the connection between regular logic and hypergraphs,
a generalisation of graphs where edges are allowed to join more than
just two vertices. In this relationship, each formula of regular logic
is translated into a hypergraph equipped with an interface and im-
plication of logical formulas corresponds to a graph homomorphism
in the opposite direction. This makes Chandra and Merlin’s insight one
edge of a love triangle which we will study in this thesis: The Frobe-
nius love triangle:

4



Combinatorics

Category theory Logic

Hypergraphs

Cartesian bicategories Regular logic

This means that there is a translation between string diagrams
and hypergraphs, which translates, for example

R

into the hypergraph

R

The dashed lines are the interface, the graph-analogue of strings
being connected to the outside world. This translation has already
been given in [13], where it was shown to be a one-to-one correspon-
dence. The first contribution of this thesis goes one step further. Not
only do string diagrams correspond to hypergraphs, hypergraph ho-
momorphisms correspond to exactly those inequalities that are prov-
able from the laws of Cartesian bicategories. To be more precise, we
define free Cartesian bicategories CBΣ, where Σ is a set of symbols
and the morphisms in CBΣ are terms freely generated from the sym-
bols. Then CBΣ has a purely combinatorial characterisation.

Theorem 1. CBΣ is isomorphic to the Cartesian bicategory of hypergraphs
with interfaces.

But we can take further inspiration from Lawvere’s love triangle.
In analogy to the notion of a Lawvere theory which identifies an al-
gebraic theory with a Cartesian category, we define the notion of a
Frobenius theory given by a Cartesian bicategory. Frobenius theories
behave like a relational generalisation of Lawvere theories. Every
Lawvere theory can be seen as a Frobenius theory by requiring its
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algebraic operations to be functions, but there are Frobenius theo-
ries that are not algebraic such as the theory of partial orders or the
theory of equivalence relations.

Additionally, we also have a functorial semantics [32] for Frobe-
nius theories. Just like a model of a Lawvere theory C is a structure-
preserving functor C → Set, a model of a Frobenius theory T is a
functor T → Rel. This puts syntax and semantics on equal footing
– in the case of algebraic theories both are Cartesian categories, in
the case of Frobenius theories both are Cartesian bicategories. An
immediate consequence of this notion of model is soundness, that is
any inequality that holds in T (i.e. anything provable from the ax-
ioms of the theory) will hold in any model. Having a model theory
therefore gives the important ability to demonstrate that something
is not a consequence of the axioms by giving a model of the theory
that does not satisfy the property in question.

This leads us to the central contribution of this thesis, which re-
gards the question of logical completeness. Is there always a model to
testify that something does not follow from the axioms? Or, to put
it positively, is every property that is shared by all models already
provable from the axioms?

Theorem. Yes.

To put it less bluntly, the main theorem of this thesis is the follow-
ing:

Theorem 2. If A,B are morphisms in a Frobenius theory T satisfying

M(A) ⊆M(B)

for all modelsM : T → Rel. Then A ≤ B in T .

We proved a special case of this in [8], the special case of T = CBΣ

as mentioned above. This had the important consequence that the
laws of Cartesian bicategories exactly characterise implication be-
tween regular logical formulas. Translating this into the language of
databases, which was the original context of Chandra and Merlin’s
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paper [19], gave us an axiomatisation of the inclusion of conjunctive
queries, queries given by regular logical formulas, through the laws
of Cartesian bicategories. Theorem 2 is a broad generalisation of that
result.

In essence, the present thesis will lead us on a sight-seeing tour
around the Frobenius love triangle

Combinatorics

Category theory Logic

Hypergraphs

Cartesian bicategories Regular logic

Starting from Chandra and Merlin’s translation of regular logic into
hypergraphs, we continue from hypergraphs to Cartesian bicategories
through their string diagrams. This gives a logical perspective on
Cartesian bicategories through Frobenius theories, which raises the
problem of logical completeness. To solve this, we push it around
the triangle into the realm of combinatorics, where it turns into a cat-
egorical question of lifting properties that we answer generally.

Outline of the thesis

• Chapter 1 introduces the main actor of this thesis – Cartesian
bicategories, with a slight twist from how they were originally
defined in [18]. What we simply call a Cartesian bicategory
here was more elaborately called a ”Cartesian bicategory of
relations” by Carboni and Walters. After discussing some of
their basic properties, we will introduce the important notion
of a map in a Cartesian bicategory. This generalises (graphs of)
functions in Rel to arbitrary Cartesian bicategories, with sim-
ilar properties. For example, maps always form a Cartesian
category. We will then investigate the other direction and con-
struct a Cartesian bicategory Span∼C from a Cartesian category

7



C, whose morphisms are given as spans X ← A → Y . The
ordering between spans is given by the existence of a commu-
tative diagram

A

X Y

B

between them. In order to compose spans, C needs to have pull-
backs, a condition we can further relax to mere weak pullbacks.
Dually, we define Cospan∼Cwhere morphisms are cospansX →
A← Y and the ordering is reversed – the morphism that makes
the diagram commute goes in the opposite direction.

• The problem that guides us in Chapter 2 is that of reconstruct-
ing a Cartesian bicategory from its maps, which we will accom-
plish through a construction similar to Span∼C. To that end, we
consider tame Cartesian bicategories – those Cartesian bicate-
gories that have sufficiently many maps that are well-behaved.
This notion generalises the notion of a functionally complete
Cartesian bicategory introduced in [18]. For the reconstruction
we prove that the ordering in a tame Cartesian bicategory is
uniquely determined by the surjective maps, a notion analo-
gous to surjective functions. We use this to give a generalisation
of Span∼C, denoted SpanSC, that takes a class S of morphisms
as parameter and the ordering generalises to the existence of a
commutative diagram

A

X A′ Y

B

π

where π ∈ S . In order for this to be a Cartesian bicategory, S
needs to be closed under several constructions such as prod-
ucts and composition, which are similar to closure properties
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of Grothendieck topologies. Tame Cartesian bicategories are
then the ones that satisfy B ∼= SpanSMap(B) with S the class
of surjective maps. This nicely extends earlier work we did on
the axiom of choice in Cartesian bicategories [9]. The axiom of
choice is equivalently stated as ”every total relation contains
a map”, which is readily formalised for the Cartesian bicate-
gory Rel and therefore is an interesting property to consider
for any Cartesian bicategory. For tame Cartesian bicategories,
satisfying choice implies that surjective maps are exactly split
epis, and it turns out that in that case SpanSMap(B) agrees with
Span∼Map(B), a fact that was also proved in [9]. In particular,
the axiom of choice (for Rel) implies that Rel ∼= Span∼ Set, a
description that will be immensely useful for us.

We close the chapter with the dual to SpanSC, denoted CospanWC,
whereW will be referred to as a system of witnesses for reasons
that become clear in Chapter 4 (Spoiler: They will witness in-
equalities in a Frobenius theory).

• Chapter 3 introduces the notion of a monoidal signature Σ and
gives the syntactic description of CBΣ, furthermore showing its
universal property as the free Cartesian bicategory on Σ. With
such a signature we associate a category CΣ that will be useful
for us in Chapter 4 to define hypergraphs as presheaves over it.

We then introduce the notion of Frobenius theory as a Cartesian
bicategory with natural numbers as objects (a kind of PROP).
We can see CBΣ as a purely syntactic Frobenius theory, one
that does not impose any axioms, because CBΣ is freely gen-
erated. This gives the notion of a presentation of a Frobenius
theory: Given a signature Σ and a set of inequalities E, we can
take CBΣ modulo the ordering generated from E and obtain
a Frobenius theory CBΣ/E . Remarkably, all Frobenius theories
arise in this way.

We finish the Chapter by discussing the problem of complete-
ness and showing a larger example of diagrammatic reasoning

9



in action.

• Chapter 4 will start by taking a closer look at CB∅, the free
Cartesian bicategory on empty signature, which is the free Carte-
sian bicategory on one object. We then prove that Cospan∼ FinSet,
where FinSet is (a skeleton of) the category of finite sets has the
same universal property, which implies that they are isomor-
phic. To that end we use a characterisation of FinSet as the free
Cocartesian category on one object.

To extend this to non-empty signature, we introduce the cat-
egory of Σ-hypergraphs as a presheaf category. Denoting the
category of finite hypergraphs as FHypΣ, we formalise hyper-
graphs with interfaces as a full subcategory DiscCospan∼ FHypΣ

of Cospan∼ FHypΣ, called the discrete cospans, which are cospans
n → G ← m, where n (respectively m) represents the hy-
pergraph with n (respectively m) vertices without any edges.
We then prove the first central result, Theorem 4.2.21 which
says that CBΣ

∼= DiscCospan∼ FHypΣ as Cartesian bicategories.
Given a morphism R : n → m, we denote a corresponding dis-
crete cospan as n → GR ← m and call GR a universal graph of
R.

We can use this combinatorial characterisation to give a similar
characterisation for CBΣ/E . This introduces an important idea:
We identify an inequality

≤ SR

with the equality

R

S

= R

and the universal graph of the left-hand side, GR∩S , will turn
out to be the result of gluing together GR and GS along their in-
terfaces. Therefore there is a canonical morphism GR → GR∩S

10



that we associate with the inequality R ≤ S. In such a way,
we can translate a set of axioms into a set E of morphisms in
FHypΣ. It turns out that under this translation, consequences of
the axioms exactly correspond to those morphisms that can be
generated from E through composition, coproducts and sev-
eral other categorical constructions. The same constructions
appeared in Chapter 2, as the closure properties of systems
of witnesses. In fact, this is where systems of witnesses get
their name from, because consequences of the axioms are pre-
cisely those corresponding to morphisms that are inW(E), the
system of witnesses generated from E. This gives the char-
acterisation of CBΣ/E

∼= DiscCospanW(E) FHypΣ, which is de-
fined similarly to DiscCospan∼ FHypΣ as the full subcategory of
CospanW(E) FHypΣ on discrete cospans.

• In Chapter 5, the translation of axioms of a Frobenius theory
into morphisms between hypergraphs opens the door to trans-
lating logical properties into categorical ones. The trick here is
that any hypergraph G induces a model

MG : CBΣ
∼= DiscCospan∼ FHypΣ → Span∼ Set ∼= Rel

through its Hom-functor Hom( , G).

The Lifting Lemma 5.1.4 establishes an important connection
between logical properties ofMG and categorical lifting prop-
erties ofG – it is essentially an incarnation of the Yoneda Lemma
for Cartesian bicategories. Together with the realisation that
all models arise in this way asMG for some hypergraph, this
allows us to come to a categorical understanding of complete-
ness: A model of CBΣ/E corresponds to a hypergraph that sat-
isfies a lifting property known asE-injectivity. A property shared
by all models then corresponds to a morphism that satisfies a
lifting property with respect to all E-injective objects – such a
morphism is called a cofibration. Since we established in Chap-
ter 4 that all provable consequences of the axioms correspond

11



to morphisms in W(E), the class of witnesses generated from
E, this gives the categorical incarnation of the completeness
theorem: Prove that cofibrations are witnesses. At this point,
there is no need to restrict our attention to hypergraphs only –
this is an interesting categorical question in its own right that
deserves general attention. What we do then is establish a suf-
ficient condition for when a cofibration is already a witness,
placing some mild assumptions on codomains and domains of
morphisms in E and on the category in question.

The proof of the completeness theorem then defines, starting
from an object X an E-injective object X ′. The trick is to define
this X ′ as a transfinite composition of witnesses. Then, given
a cofibration f : X → Y , the lifting property makes f factor
through X ′ and a compactness argument then shows that a fi-
nite composition suffices. Since the class of witnesses is closed
under finite compositions, this makes f itself a witness, which
finishes the proof of the categorical incarnation of the complete-
ness theorem.

Relationship of the present thesis to the literature

• Chapter 1: The notion of Cartesian bicategory and results re-
garding them have first appeared in [18], the major difference
being the string diagrammatic language we use here to present
them. The notion of Span∼C has appeared before in [25].

• Chapter 3: Frobenius theories and their functorial semantics
have been introduced in [7].

Contributions by the author

• Chapter 2: The notion of a Cartesian bicategory with enough
maps and the considerations of the axiom of choice in Cartesian
bicategories have been published first in [9]. The remainder has
not been published before.
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• Chapter 4: The characterisation of CBΣ via discrete cospans of
hypergraphs has been published in [8]. The characterisation of
CBΣ/E has not been published before.

• Chapter 5: The completeness result for CBΣ has been published
in [8]. The general completeness theorem is published here for
the first time.
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Chapter 1

Cartesian Bicategories

Introduction

Cartesian bicategories were first introduced in [18] as a categorical
algebra of relations and as an alternative to Freyd and Scedrov’s al-
legories [24]. RFC Walters had a certain distaste for the approach
through allegories; he referred to the modular law of allegories as a
formica mentale, a “complication which prevents thought” [40].

In addition to copying X and discarding X on every ob-
jectX , as are available in Cartesian categories, Cartesian bicategories
introduce X and X , each of which are adjoint to their mir-
rored version. Together they satisfy the important Frobenius law

X

X

X

X

X ==

which is ubiquitous in Computer science and has resulted in applica-
tions of Cartesian bicategories to the compositional study of various
systems, for example in [11].

Outline of the Chapter In Section 1.1 we will state the definition
of a Cartesian bicategory and investigate their fundamental proper-
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ties. The fundamental notion of a map is introduced and further in-
vestigated in Section 1.2. There we investigate properties that maps
enjoy, introduce the alternative formulation originally used in [18] of
maps as right adjoints and prove that maps in a Cartesian bicategory
B form a Cartesian category Map(B). In Section 1.3 we introduce
the Span∼C construction – which was considered in [25], but unfor-
tunately has been largely ignored – that gives an important class of
examples of Cartesian bicategories.

1.1 Cartesian bicategories

We will use string diagrams as an intuitive graphical notation for what
is formally represented as morphisms in a symmetric monoidal cat-
egory B with monoidal product ⊗ and monoidal unit I , details for
this can be found in [39]. Here we would like to give an intuitive
way to read string diagrams, one that doesn’t require the machinery
of category theory.

Intuitively, a box X R Y denotes a process R that receives an
input of type X and produces output of type Y . We will also write
this as R : X → Y . It is possible to talk about several inputs and sev-

eral outputs by stacking wires, for example
A

R
C

B D
receives inputs

of type A and B respectively and produces output of type C and D

respectively. In other words, a compound type is formed by stacking
wires and we will write such a compound type formed from types A
and B as A⊗B.

A special process is given by X , which is the process that doesn’t
do anything – the identity on type X . We now have several ways
to build larger and more interesting processes: For R : X → Y and
S : Y → Z, we can form the sequential composition X R Y ZS ,
which in symbols we will denote asR;S : X → Z. This is the process
that first applies R and then applies S on the result. For R : X → Y

and S : Z → W , their parallel composition is
X R Y

Z S W
, in symbols

denoted as R ⊗ S : X ⊗ Z → Y ⊗ W . This is the process that ex-
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ecutes R and S in parallel. It is now possible to iterate these ways
of constructing diagrams to form processes of arbitrary complexity.
If we want to change the order of inputs or outputs, we can use the

symmetries
X

Y

Y

X
. As a special case, there is also a type I that corre-

sponds to having no wires and an empty diagram, denoted that
represents the process of doing nothing to no input and obtaining no
output.

The formal theory of symmetric monoidal categories ensures that
we do not need to worry about how our diagrams are constructed.
If two diagrams have the same connectivity, they represent the same
process. This allows us to use diagrammatic reasoning, that is a for-
mal manipulation of diagrams, that now behave like a two-dimensional
analogue of the terms used in algebra.

If it is clear from the context how wires are labelled, we will de-
clutter our diagrams and omit labels.

Definition 1.1.1. A Cartesian bicategory is a symmetric monoidal
category (B,⊗, I) enriched over the category of posets. This means
that every Hom-set HomB(X,Y ) is equipped with a partial order and
that both composition and ⊗ are monotonous operations. Every ob-
ject X ∈ B is equipped with morphisms

X : X → X ⊗X and X : X → I

such that

• X and X form a cocommutative comonoid, that is they
satisfy

X =
X

X = X

X X= X=

17



• X and X have right adjoints X and X respec-
tively, that is

X

≤X X ≤

X

X

X≤X X X ≤

• The Frobenius law holds, that is

X

X

X

X

X ==

• Each morphism R : X → Y is a lax comonoid homomorphism,
that is

R

Y

X

R

R

≤

Y

Y

X

Y

≤R XYX

• The choice of comonoid on every object is coherent with the
monoidal structure1 in the sense that

X

=
Y

X⊗Y

X

Y

=

X

X

Y

Y

X⊗Y

Remark 1.1.2. Definition 1.1.1 is a slight deviation from the terminol-
ogy used in [18]. There, the Frobenius law is not part of the definition
of a Cartesian bicategory. Instead, Cartesian bicategories that satisfy
it are called Cartesian bicategories of relations. Here, we will not con-
sider any Cartesian bicategories that do not satisfy Frobenius, so we
simplify the terminology.

Definition 1.1.3. A morphism of Cartesian bicategories is a monoidal
functor preserving the ordering and the chosen monoids and comonoids.

1In the original definition of [18] this property is replaced by requiring the unique-
ness of the comonoid/monoid. However, as suggested in [36], coherence seems to be
the property of primary interest.
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The archetypal example of a Cartesian bicategory is the category
of sets and relations Rel, with Cartesian product of sets, hereafter
denoted by ×, as monoidal product and 1 = {•} as unit I . To be
precise, Rel has sets as objects and relationsR ⊆ X×Y as arrowsX →
Y . Composition and monoidal product are defined as expected:

R;S = {(x, z) | ∃y s.t. (x, y) ∈ R and (y, z) ∈ S},

R⊗ S = {
(
(x1, x2) , (y1, y2)

)
| (x1, y1) ∈ R and (x2, y2) ∈ S}.

For each setX , the comonoid structure is given by the diagonal func-
tion X → X × X and the unique function X → 1, considered as
relations. That is

X = {
(
x, (x, x)

)
|x ∈ X}

and
X = {(x, •) |x ∈ X}

Their right adjoints are given by their opposite relations:

X = {
(
(x, x), x

)
|x ∈ X}

and
X = {(•, x) |x ∈ X}

The reader can verify that these are adjoint and that, moreover, the
Frobenius law holds. We will investigate the property of every rela-
tion being a lax comonoid homomorphism in more detail later. Fol-
lowing the analogy with Rel, we will often call arbitrary morphisms
of a Cartesian bicategory relations.

There are many examples of Cartesian bicategories that are some-
what similar to Rel, for instance LinRel, the category of linear relations
of vector spaces where the monoidal product is the direct sum of vec-
tor spaces, for further details see [12]. Nevertheless, there are exam-
ples of Cartesian bicategories that are significantly different, i.e. that
are not a form of Rel with additional structure. We will explore some
of those examples in Section 1.3.
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As an immediate consequence of the axioms of Cartesian bicate-
gories one discovers an interesting symmetry; each horizontal reflec-
tion of one of the axioms is also a property of Cartesian bicategories.

Lemma 1.1.4. X and X form a commutative monoid, that is

X =
X

X = X

X X= X=

Proof. This follows from X and X being a cocommutative
comonoid and the uniqueness of adjoints.

Lemma 1.1.5. Every morphism R : X → Y in a Cartesian bicategory is a
lax monoid homomorphism, that is

R

X

Y

R

R

≤

X

X

Y

X

≤R YX Y

Proof. Both properties follow from the adjunction of the comonoid
and the monoid. In detail, we have

R

R

R

≤R≤
R

R

≤

and furthermore

≤R R ≤ ≤

Lemma 1.1.6. The choice of monoid on each object is coherent with the
monoidal structure, that is

X

=
Y

X⊗Y

X

Y

=

X

X

Y

Y

X⊗Y
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Proof. This follows directly from the coherence of the comonoid and
uniqueness of adjoints.

One of the fundamental properties of Cartesian bicategories that
follows from the existence of the monoid and comonoid on every
object is that every local poset HomB(X,Y ) allows to take the inter-
section of relations and has a top element.

Lemma 1.1.7. Let B be a Cartesian bicategory and X,Y ∈ B. The poset
Hom(X,Y ) has a top element given by X Y and the meet of rela-
tions R,S : X → Y is given by

R

S

We will also write this meet as R ∩ S.

Proof. • For any relation R : X → Y we have

X YRX Y ≤ RX Y Y ≤

• Let R,S : X → Y . Then we have

R

S

R

≤ = R

and in the same way

R

S

≤ S

If furthermore T ≤ R and T ≤ S, then we have

R

S

≤
T

T

TT = ≤

and therefore
R

S

is the meet of R and S.
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The existence of meets allows us to characterise inequalities through
equalities. It is generally true in a poset with meets that x ≤ y if and
only if x ∧ y = x, where ∧ denotes the meet. This can for example be
found in [22].

Proposition 1.1.8. Let B be a Cartesian bicategory and R,S : X → Y
morphisms. We have R ≤ S if and only if

R

S

= R

Lemma 1.1.9. A morphism F : B → B′ of Cartesian bicategories is faith-
ful, in the sense of reflecting equality between morphisms, if and only if it
reflects the ordering.

Proof. A morphism that reflects the ordering is faithful because the
ordering is reflexive and antisymmetric. Conversely a faithful mor-
phism reflects the ordering by Proposition 1.1.8.

To appreciate the property that every morphism in a Cartesian
bicategory is a lax comonoid homomorphism, it is useful to spell out
its meaning in Rel: in the first inequality, the left and the right-hand
side are, respectively, the relations

{
(
x, (y, y)

)
| (x, y) ∈ R} and {

(
x, (y, z)

)
| (x, y) ∈ R and (x, z) ∈ R},

(1.1.1)
while in the second inequality, they are the relations

{(x, •) | ∃y ∈ Y s.t. (x, y) ∈ R} and {(x, •) |x ∈ X}. (1.1.2)

It is immediate to see that the two left-to-right inclusions hold for
any relationR ⊆ X×Y , while the right-to-left inclusions hold exactly
whenR is a function: a relation which is single valued and total. This
observation justifies the following definition.
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Definition 1.1.10. LetR be a morphism in a Cartesian bicategory. We
call R

single valued if R≤
R

R

total if R≤

injective if R≤
R

R

surjective if R≤

By translating the last two inequalities in Rel, similarly to what we
have shown in (1.1.1) and (1.1.2), the reader can immediately check
that these correspond to the usual properties of injectivity and sur-
jectivity for relations. Moreover, since the converses of these inequal-
ities hold in Cartesian bicategories, the four inequalities are actually
equalities.

We can characterise all the notions of Definition 1.1.10 equiva-
lently in terms of opposite morphisms Rop which are defined for any
morphism R as follows:

R R:=

Remark 1.1.11. It would be justified to denote the opposite mor-
phism as R and it also might seem to align better with the graph-
ical intuition. However, matters become subtle when considering

multiple wires. Rotating the box RX
Y

Z
would give R X

Y

Z
, where

Y ⊗ Z and Z ⊗ Y are different, though isomorphic, types. For our
purpose it is appropriate to have the opposite morphism go in the
opposite direction, without mediation of a reflection. But it is inter-
esting that the graphical calculus would be capable of more, even
though we do not use these capabilities here.
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Proposition 1.1.12. Let R be a morphism in a Cartesian bicategory.

RR ≤ iff R is single valued.

≤ R R iff R is total.

RR ≤ iff R is injective.

≤ R R iff R is surjective.

In particular, R is surjective iff Rop is total and R is injective iff Rop is
single valued.

Proof. We show the proofs for single valued and total. The proofs for
injectivity and surjectivity are analogous. The last statement follows
from the others and the fact that (Rop)

op
= R

• Let R be single valued. Then

R R R

R

= ≤
R

≤ =

Conversely, if RR ≤ , then by the Frobenius law
one gets

R

R

=

R

R

and from there

R

R ≤

R

R R ≤

R

R=

• Let R be total. Then

R R R

R

= ≥
R

≥ =

Conversely, if ≤ R R , then

R≤ ≤R R
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1.2 Maps

Definition 1.2.1. A map in a Cartesian bicategory is a relation f that
is a comonoid homomorphism, i.e. is single valued and total.

We will write f to denote a map f and f for its op-
posite, which we will also refer to as a comap. Note that we use
lower-case letters for maps and upper-case letters for arbitrary mor-
phisms.

Example 1.2.2. Let us consider some examples of maps.

• Maps in Rel are exactly (graphs of) functions.

• In LinRel, maps are exactly linear maps between vector spaces.

The original treatment of Cartesian bicategories in [18] introduces
maps as those morphisms that admit a right adjoint. We show below
that this amounts to the same notion.

Proposition 1.2.3. A morphism f is a map if and only if it has a
right adjoint – a morphism R such that

fR ≤

and
≤ f R

In that case, necessarily

R = f .

Proof. If f is a map, then f is a right adjoint by Proposi-
tion 1.1.12.

On the other hand, if f has a right adjointR, then it is a map
since

f

f

f≤≤
f

f

≤f R

R

R

f

f

f

and
f≤ ≤f R

Therefore, f is indeed a map and R = f by unique-
ness of adjoints.
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Since by definition of Cartesian bicategories has right ad-

joint and has right adjoint , we get that they are in
fact maps.

Proposition 1.2.4. Let B be a Cartesian bicategory and X ∈ B an object.
Then X and X are maps.

The identity is a map, and maps are easily shown to be closed
under composition, so they constitute a category.

Definition 1.2.5. Given a Cartesian bicategory B, we define its cate-
gory of maps, Map(B) to have the same objects as B and as morphism
the maps of B. Dually, we define its category of comaps, Comap(B)
to have the same objects as B and as morphisms the comaps of B.

Remark 1.2.6. Clearly Comap(B) ∼= Map(B)op, by taking a map to its
opposite.

By the following proposition, the ordering of B becomes trivial
when restricted to maps.

Proposition 1.2.7. Let f, g be maps such that f ≤ g. Then f = g.

Proof. Since f ≤ g , also f ≤ g . Therefore

g ≤ gf f ≤ gf g f≤

By analogy with Rel, we think of the comonoid on any object in a
Cartesian bicategory as giving a way to copy and discard. By Defini-
tion, maps respect these operations. Therefore, Map(B), which inher-
its the monoidal product from B, has what in [26] is called uniform
copying and deleting. This has the consequence that ⊗ induces a
categorical product on Map(B).

Lemma 1.2.8. For a Cartesian bicategory B, the monoidal product ⊗ in-
duces a product on Map(B). The monoidal unit I becomes a terminal object
in Map(B). In other words, (Map(B),⊗, I) is a Cartesian category.

Proof. Follows from Theorem 6.13 in [26].
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Since it is useful, we will also state the dual of this lemma.

Lemma 1.2.9. For a Cartesian bicategory B, the monoidal product ⊗ in-
duces a coproduct on Comap(B). The monoidal unit I becomes an initial
object in Comap(B), so (Comap(B),⊗, I) is Cocartesian category.

Interestingly, commutative diagrams of maps give rise to inequal-
ities in a straightforward manner.

Lemma 1.2.10. Let B be a Cartesian bicategory and

A

B C

D

f

α

g

h k

a commutative diagram of maps. Then f g h k≤ .

Proof.
f g h k= h kα α ≤

Lemma 1.2.10 motivates us to synthesise Cartesian bicategories
where all inequalities arise in this way. This will be the driving force
in Definition 1.3.3.

1.3 Spans

Definition 1.3.1 (Span). Let C be a finitely complete category. A span
from X to Y is a pair of arrows X ← A→ Y in C.

A morphism α : (X ← A → Y ) ⇒ (X ← B → Y ) is an arrow
α : A→ B in C s.t. the following diagram commutes:

A

X Y

B

α
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Two spans X ← A → Y and X ← B → Y are isomorphic if α is

an isomorphism. For X ∈ C, the identity span is X idX←−− X
idX−−→ X .

The composition of spans X ← A
f−→ Y and Y

g←− B → Z is X ←
A ×f,g B → Z, obtained by taking the pullback A ×f,g B of f and g.
This data defines the bicategory [6] Span C: the objects are those of C,
the arrows are spans and 2-cells are homomorphisms. Finally, Span C
has monoidal product given by the product in C, with unit the final
object 1 ∈ C.

To avoid the complications that come with bicategories, such as
composition being associative only up to isomorphism, it is common
to consider a category of spans, where isomorphic spans are equated:
let Span≤C be the monoidal category that has isomorphism classes of
spans as arrows. Note that, when going from bicategory to category,
after identifying isomorphic arrows it is usual to simply discard the
2-cells. Differently, we consider Span≤C to be locally preordered with
(X ← A→ Y ) ≤ (X ← B → Y ) if there exists a morphism α : (X ←
A → Y ) ⇒ (X ← B → Y ). It is an easy exercise to verify that this
(pre)ordering is well-defined and compatible with composition and
monoidal product. Note that, in general,≤ is a genuine preorder: i.e.
it is possible that (X → A ← Y ) ≤ (X → B ← Y ) ≤ (X → A ← Y )

without the spans being isomorphic.

Since Span≤C is preorder enriched, rather than poset enriched, it
is not a Cartesian Bicategory. However, one can transform a preorder
enriched category into a poset enriched one with a simple construc-
tion: for Span≤C, one first defines ∼ = ≤ ∩ ≥, namely (X ← A →
Y ) ∼ (X ← B → Y ) iff there exists α : (X ← A → Y ) ⇒ (X ←
B → Y ) and β : (X ← B → Y ) ⇒ (X ← A → Y ), and then one
takes equivalence classes of morphisms of Span≤C modulo ∼. It is
worth observing that pullbacks are no longer necessary to compose
∼-equivalence classes of spans: weak pullbacks are sufficient, since
non-isomorphic weak pullbacks of the same diagram all belong to
the same ∼-equivalence class.
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Definition 1.3.2. A diagram

P A

B C

in a category is called a weak pullback diagram – and P is called a weak
pullback – if for any commutative diagram

T

P A

B C

of solid arrows there exists a (not necessarily unique) dashed arrow.

Definition 1.3.3 (Span∼). Let C be a category with finite products and
weak pullbacks. The posetal category Span∼C has the same objects
as C and as morphisms ∼-equivalence classes of spans. The order is
defined as in Span≤C. Composition is given by weak pullbacks in C.
Identities, monoidal product and unit are as in Span C.

Proposition 1.3.4. Let C be a category with finite products and weak pull-
backs. Then Span∼C is a Cartesian bicategory.

Proof. It is straightforward to check that the identity span is the iden-
tity for composition via weak pullbacks. Associativity of composi-
tion is surprisingly almost the same as associativity of composition in
Span C. Associativity in the latter is proved using the universal prop-
erty of pullbacks, therefore showing that both ways of composing
amount to isomorphic spans. In the same way, for weak pullbacks
the two composites satisfy the same weak universal property, thus
the two composites agree up to mutual morphisms. In other words,
they are ∼-equivalent spans and therefore the same morphism in
Span∼C.

For X we take the span X ×X ← X → X and for X we
take 1← X → X .

With this information, one has only to check that the inequalities
in Definition 1.1.1 hold: each of them is witnessed by a commutative
diagrams in C. As an example, we illustrate X≤X X .
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The left hand side is the span X idX←−− X idX−−→ X . The right hand side

is the composition of X idX←−− X
!−→ 1 and 1

!←− X
idX−−→ X . Since the

product X π1←− X ×X π2−→ X is a pullback of X !−→ 1
!←− X , the com-

position turns out to be exactly the span X π1←− X ×X π2−→ X . Now
the diagonal ∆: X → X×X makes the following diagram in C com-
mute. Therefore ∆ witnesses the inequality X≤X X .

X

X X

X ×X

idX

∆

idX

π1 π2

Example 1.3.5.

• We will show in Corollary 2.2.10 that Span∼ Set ∼= Rel.

• Similarly, for Vect the category of vector spaces, the Cartesian
bicategory of linear relations is given as LinRel = Span∼Vect.

The dual of spans, called cospans, are similarly useful for us, so
we can make similar definitions in that case.

Definition 1.3.6. Let C be a category with finite coproducts and weak
pushouts. Then we define

Cospan∼C = Span∼Cop

Explicitly, Cospan∼C has the same objects as C and a morphism X →
Y is a cospan X → A ← Y . We have X → A ← Y ≤ X → B ←
Y if and only if there is a morphism in the opposite direction, i.e. a
morphism α : B → A such that

B

X m

A

α
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Chapter 2

Spans and the axiom of
choice

Introduction

Maps are a very important class of morphisms in a Cartesian bicat-
egory. As we have seen, for the category of relations, the maps are
just functions. This example is an important one, because functions
uniquely determine relations – it is possible to reconstruct Rel from its
maps. The problem of how to reconstruct Cartesian bicategories has
been studied in [18] and a sufficient condition for this, called func-
tional completeness, was established along with a recipe for how to
do the reconstruction. We want to continue and expand those results
here. We extend the class of functionally complete Cartesian bicate-
gories to the more general notion of a tame Cartesian bicategory and
prove more generally that every tame Cartesian bicategory can be
reconstructed from its category of maps via Theorem 2.1.18.

In more detail, it will turn out that the class of surjective maps
plays an important role in this reconstruction. We use this observa-
tion to synthesise the definition of a category equipped with a notion
of cover in such a way that maps in a Cartesian bicategory equipped
with surjective maps are an example. We can then construct a gener-
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alisation of Span∼C, written SpanSC, which allows to specify a class
of covers as additional parameter. A Cartesian bicategory B can then
be reconstructed as SpanSMap(B) where S is the class of surjective
maps.

We use this to give a new perspective on the study of Cartesian
bicategories that satisfy the axiom of choice, which we started in [9].
We show that Cartesian bicategories with choice are often tame – un-
der rather mild conditions – and that for a tame Cartesian bicategory
to satisfy the axiom of choice is equivalent to surjective maps split-
ting, which means that S above coincides with the class of split epis.
We then prove that in the special case of S consisting of split epis,
the general SpanSC reduces to Span∼C again. This allows to repro-
duce the classification of Cartesian bicategories with choice that was
Theorem 30 in [9].

Outline of the chapter In Section 2.1, we will start by consider-
ing those Cartesian bicategories that have enough maps, a property
that implies that every relation can be expressed as a span of maps.
It turns out that for Rel, weak pullbacks of its maps – functions –
play an important role which motivates us to introduce the notion
of a tame Cartesian bicategory. For such a tame Cartesian bicate-
gory, the ordering is uniquely determined by the surjective maps,
which satisfy a number of closure properties such as closure under
composition, products and weak pullbacks. We synthesise the situa-
tion, by introducing the notion of a category with covers, a category
with finite products and weak pullbacks equipped with a class of
morphisms with the same closure properties. Using this we define
SpanSC as a generalisation of Span∼C, where the latter is the special
case of SpanSC for S the class of split epis. This allows to recon-
struct a tame Cartesian bicategory B from its category of maps as
SpanSMap(B). Section 2.2 applies this to Cartesian bicategories that
satisfy the axiom of choice as also considered in [9]. Lastly, Section 2.3
develops the dual of the theory of categories with covers, called cat-
egories with witnesses, the name stemming from their property of
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witnessing inequalities in Chapter 4. Here we also introduce some
technicalities that will be useful later on.

2.1 Cartesian bicategories and maps

Definition 2.1.1. We say a Cartesian bicategory has enough maps if for
every morphism R : X → I there is a map f : Z → X such that

=R f

Remark 2.1.2. A similar notion to Definition 2.1.1 is considered in [18]
under the name of functional completeness. The important differ-
ence is that f is required to be injective. It is therefore true that any
functionally complete Cartesian bicategory has enough maps, but the
converse is false. In other words, having enough maps is a generali-
sation of functional completeness. All categories of the form Span∼C
have enough maps, but for example the category Cospan∼ FinSet of
cospans of finite sets is not functionally complete. This category will
play an important role in Section 4.1 as the free Cartesian bicategory
on one object.

Having enough maps has the important consequence that every
morphism can be written in terms of maps as follows:

Lemma 2.1.3. A Cartesian bicategory has enough maps if and only if for
every morphism R : X → Y , there are maps f : Z → X and g : Z → Y
such that

R = f g

We call this a comap-map factorisation of R.

Proof. • If a Cartesian bicategory has comap-map factorisations
it has enough maps, because that is what the condition spe-
cialises to in the case of Y = I .

• Conversely, if there are enough maps, there is a map h : Z →
X ⊗ Y such that

=

R

h
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Let = hf and = hg , the projection of

h onto X and Y respectively. Because Map(B) is a Cartesian
category by Lemma 1.2.8, h can be reconstructed as 〈f, g〉. In
the following we show the explicit computation, because it is
very instructive:

=h
g

f

h
∗
=

h

h

=

where the step marked ∗ uses coherence of the comonoid and
the fact that h is a map. Therefore we have

=R =

R

g

f

f g=

Lemma 2.1.4. Let B be a Cartesian bicategory and consider the following
diagram in Map(B).

A

B C

D

f g

h k

(2.1.1)

Then f g ≤ h k if and only if the diagram commutes.

Proof. If the diagram commutes, then by general properties of ad-
joints we have

f g ≤ f g k k = f f h k ≤ h k

Conversely, if f g ≤ h k , then

g k ≤ f g kf ≤ f k kh ≤ f h

and since both sides are maps, they are equal by Proposition 1.2.7.
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That means, the category of maps can “see” inequalities like the
one in Lemma 2.1.4 as commutative squares. We are interested in
those Cartesian bicategories where maps can furthermore identify
equalities. In Rel, equalities correspond to weak pullbacks of func-
tions, an observation going back to [5].

Proposition 2.1.5. Let
A

B C

D

f g

h k

be a commutative diagram in Set. Then we have f g = h k in
Rel if and only if the diagram is a weak pullback in Set.

Proof. As Lemma 2.1.4 shows, f g ≤ h k comes from the
commutativity of the diagram. Let’s unpack the reverse inequality in
Rel: If f g=h k , this means that whenever h(b) = k(c),
there is an a ∈ A such that b = f(a) and c = g(a). Now, f, g induce a
morphism π : A→ P where P is the pullback in Set of

P

B C

D
h k

By Proposition A.2.2, the diagram is a weak pullback if and only if π
is a split epi. The pullback P in Set is the subset ofB×C of those (b, c)
that satisfy h(b) = k(c). We have π(a) = (f(a), g(a)). Therefore, if A
is a weak pullback, π is a split epi and therefore surjective and hence

f g=h k . Conversely, f g=h k implies that
π is surjective, so by the axiom of choice, π is a split epi, hence A is a
weak pullback.

We will now restrict our attention to those Cartesian bicategories
that have an interplay between relations and maps that is similar to
that of Rel.

Definition 2.1.6. Call a Cartesian bicategory B tame if it satisfies the
following two conditions:
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• B has enough maps.

• We have f g=h k if and only if the diagram

A

B C

D

f g

h k

is a weak pullback diagram in Map(B).

Remark 2.1.7. We have already seen that functionally complete Carte-
sian bicategories have enough maps. It furthermore follows from
Corollary (3.4) in [18] that every functionally complete Cartesian bi-
category is an example of a tame one.

Now we want to characterise the ordering in a tame Cartesian
bicategory.

Proposition 2.1.8. For a tame Cartesian bicategory B, there is a morphism
of Cartesian bicategories F : Span∼Map(B) → B. This F is identity on
objects and full.

Proof. Let F (X
f←− A

g−→ B) = f g . Since B is tame, Map(B)
has well-behaved weak pullbacks and therefore F preserves compo-
sition. It is furthermore monoidal because products in Map(B) are
induced by the monoidal product in B and it preserves the ordering
by Lemma 1.2.10.

The only thing that prevents F : Span∼Map(B) → B from being
an isomorphism is that it is in general not faithful. The reason for
that is that the ordering in B might consist of more than just the in-
equalities that are mediated by morphisms as in Lemma 1.2.10. We
therefore need to characterise the inequalities in B that we are cur-
rently overlooking.

Lemma 2.1.9. In a tame Cartesian bicategoryB we have ≤f g
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if and only if there is a commutative diagram

A

X P

B

f
π

α
g

with π a surjective map.

Proof. Assume we have α and π such that π ; f = α ; g with π
surjective. Then

≤f gπ f= α g=

Conversely, if ≤f g , let

P

A B

X

α π

g f

be a weak pullback. This makes the required diagram commute and
π is surjective, because

≥π α π= g f= ≥f f

Corollary 2.1.10. In a tame Cartesian bicategory we have

f g h k≤

if and only if there is a commutative diagram of maps

A

B A′ C

D

f g
π

α
h k

with π surjective.
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Proof. This follows from Lemma 2.1.9 by bending around the wires.
More precisely,

f g h k≤

is equivalent to

≤
f

g

h

k

and applying Lemma 2.1.9 to the latter gives an equivalent diagram
of the form

A

B × C A′

D

π

α

By unpacking the universal property of the product, this is easily
seen to be equivalent to the diagram above.

Therefore, a tame Cartesian bicategory is uniquely determined by
its category of maps and the knowledge of which maps are surjective.
The class of surjective maps has a number of interesting properties:

Proposition 2.1.11. Let B be a tame Cartesian bicategory. Let S be the
class of surjective maps in B.

• S is closed under composition.

• S is closed under weak pullback.

• S is closed under binary products.

• If f ; π ∈ S for a map f , then π ∈ S.

In fact, these properties characterise categories of maps and the
classes of surjectives that can arise in a tame Cartesian bicategory. We
therefore synthesise this definition and then prove a correspondence.

Definition 2.1.12. Let C be a category with finite products and weak
pullbacks. A class of morphisms S in C is called a system of covers if

• S contains identities.

• S is closed under composition.
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• S is closed under weak pullback, more precisely if π ∈ S and

P

A B

X

π′

π

is a weak pullback diagram, then π′ ∈ S.

• S is closed under binary products.

• If f ; π ∈ S, then π ∈ S. We call this closure under post-splits.

A pair (C,S) where C has finite products and weak pullbacks and S
is a system of covers is called a category with covers. A morphism
of categories with covers is a functor that preserves finite products,
weak pullbacks and covers.

Example 2.1.13. • Set equipped with the class of split epis is a
category with covers.

• Let R be a ring and R−mod the category of R-modules. Recall
that anR-moduleP is called projective if Hom(P, ) : R−mod→
Ab preserves epis. The full subcategory C of R−mod on projec-
tive modules has finite products, given by direct sums of the
modules, but in general only weak pullbacks. If for example
we take R = Z/4, then the diagram

{0, 2}

0 Z/4

Z/4
·2

is a pullback diagram in R−mod, but {0, 2} is not a projective
module. However, weak pullbacks exist in C because any pro-
jective cover of the pullback in R−mod will do and every R-
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module has a projective cover. Hence

Z/4

0 Z/4

Z/4

·2

·2

is an example of a weak pullback in C. It is not a pullback be-
cause

Z/4

Z/4

0 Z/4

Z/4

·(−1)
·2

·2

·2

is a commutative diagram, but negation is not the identity.
If we endow both C andR−mod with split epis as their systems
of covers, then the inclusion functor C → R−mod is a mor-
phism of categories with covers that does not preserve pull-
backs.

Proposition 2.1.14. If B is a tame Cartesian bicategory then Map(B) is a
category with covers in a canonical way, equipped with the class of surjec-
tive maps.

Remark 2.1.15. The need to endow Map(B) with the additional struc-
ture of a category with covers arises from the fact that is not a
map, therefore Map(B) cannot internalise the notion of surjective that
B has.

Conversely, given a category with covers (C,S), we can define
a tame Cartesian bicategory from it, in a way that is inspired from
Corollary 2.1.10.

The posetal category SpanSC is defined in analogy to Span∼C,
only with a different ordering.
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Definition 2.1.16. Let (C,S) be a category with covers. Define an
ordering on spans via (X ← A → Y ) ≤ (X ← B → Y ) if there is a
commutative diagram

A

X A′ Y

B

π

α

with π a cover. We define ∼ as the equivalence relation s1 ∼ s2 if
s1 ≤ s2 ≤ s1. Now SpanSC has the same objects as C and as mor-
phisms ∼-equivalence classes of spans. These equivalence classes
are ordered via ≤. Composition is given by weak pullbacks in C.
Identities, monoidal product and unit are as in Span C.

Lemma 2.1.17. If (C,S) is a category with covers, then SpanSC is a Carte-
sian bicategory.

Proof. Since the ordering in SpanSC is coarser than that in Span∼C, it
suffices to prove that the former is indeed an ordering and compat-
ible with composition and monoidal product of spans. The axioms
of Cartesian bicategories then follow from the fact that Span∼C is a
Cartesian bicategory.

• Let us first check that the defined ordering is indeed reflexive
and transitive. It is reflexive because S contains identities, it is
transitive because S is closed under weak pullback.

• The ordering is compatible with the monoidal product of spans
because the product of covers is a cover. Let us check that it is
also compatible with composition. Given spans A,B : X → Y ,
C : Y → Z such that A ≤ B, we will prove A ; C ≤ B ; C. The
proof that given C ≤ D, also B ; C ≤ B ; D is similar.

So assume X ← A → Y ≤ X ← B → Y and Y ← C →
Z are given, we want to show that also A ; C ≤ B ; C. By
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assumption, we have a commutative diagram

A

X A′ Y

B

π

with π ∈ S. Now form the respective composites with Y ←
C → Z, so let

P

A C

X Y Z

and
Q

B C

X Y Z

with weak pullbacks P and Q. We need to construct a diagram

P

X P ′ Y

Q

π′

α

Let P ′ be a weak pullback

P ′ P

A′ A

π′

π

Then π′ ∈ S since covers are closed under weak pullback. This

42



fits into a larger commutative diagram

P ′ P C

A′ A

B Y

π′

π

so there exists an induced morphism α : P ′ → Q by the weak
universal property of Q. It is straightforward to check that the
diagram

P

X P ′ Y

Q

π′

α

commutes.

Theorem 2.1.18. Let B be a tame Cartesian bicategory. Let S be the class
of surjective maps. Then

SpanSMap(B) ∼= B

Proof. This follows from Proposition 2.1.8 and Corollary 2.1.10.

Remark 2.1.19. There is a close connection between categories with
covers as defined here and sites as defined in sheaf theory, i.e. cate-
gories equipped with a Grothendieck topology [34]. The important
difference is that a Grothendieck topology consists of families of mor-
phisms with common codomain, while a cover in our sense is just a
single morphism. However, the axioms that we require for covers
somewhat mirror the axioms for Grothendieck topologies.

It is tempting to say that Span∼C is SpanSC with S consisting only
of identity morphisms. However, identities do not form a system
of covers, because h ; π an identity, doesn’t necessarily imply π an
identity, but a split epi. In fact, split epis are the smallest system of
covers possible.
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Lemma 2.1.20. Split epis are a system of covers. They are furthermore the
smallest such system in the sense that it is contained in every other system
of covers.

Proof. Let π : A → B be a split epi, so there is f : B → A such that
f ; π = idB .

• Let S be any system of covers, then f ; π = idB ∈ S and there-
fore also π ∈ S.

• It therefore remains to prove that split epis themselves form
a system of covers. Almost all axioms are straightforward to
check so we will only verify the closure under weak pullbacks
here. Let g : X → B be any morphism and P a weak pullback
of π and g. We get a commutative diagram

B A B

P X

X

idB

f π

π

g g

h

g

idX

where h exists by the weak universal property of P , hence π is
a split epimorphism.

Lemma 2.1.21. Let C be a category with products and weak pullbacks and
let S be the class of split epis. Then

Span∼C ∼= SpanSC

Proof. Since the two categories have the same objects and only dif-
fer in the way the ordering is defined, it suffices to prove that the
orderings agree. If there is a commutative diagram

A

X Y

B

α
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we immediately get a diagram

A

X A Y

B

id

α

Conversely, given a diagram

A

X A′ Y

B

π

α

where π : A′ → A is a split epi, there is then a g : A → A′ such that
g ; π = idA. Let α′ = g ; α. This makes the diagram

A

X Y

B

α′

commute.

Example 2.1.22.

1. Any category with finite products and weak pullbacks can be
seen as a category with covers by equipping it with the class of
split epis, or by equipping it with all morphisms. The former is
initial, the latter is final.

2. A regular category becomes a category with covers equipped
with its class of regular epis.
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2.2 Choice

In this section we will show the essence of our paper [9], recast in a
different light, using the results from the previous section.

One of the many equivalent formulations of the axiom of choice
in set theory is

Every total relation contains a map.

In a total relation every element in the domain is related to at least
one element in the codomain. A map is obtained by choosing one
element in the codomain for each element in the domain. This can be
stated in the language of Cartesian bicategories.

Definition 2.2.1 (Choice). Let B be a Cartesian bicategory. We say
that B satisfies the axiom of choice (AC), or that B has choice, if the
following holds for any morphism R : X → Y :

R≤ (R is total) implies

∃map f : X → Y such that f ≤ R (AC)

Observe that the converse implication holds in any Cartesian bi-
category.

Lemma 2.2.2. If f ≤ R then R≤ .

Proof. If S is total and S ≤ R, then R is total:

R S ≥≥

Example 2.2.3. The usual axiom of choice implies that Rel satis-
fies (AC).

Choice has the interesting consequence that for every inequality
between spans there exists a map to fill the square.

Lemma 2.2.4. Let B be a Cartesian bicategory with choice and

A

B C

D

f g

h k
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a diagram of maps such that f g h k≤ . Then there is a map
ω : A→ D such that the following diagram commutes.

A

B C

D

f

ω

g

h k

Proof. Consider R : A→ D given by

f h

g k

=R

hence f h≤R and g k≤R .
R is total, since

f h

g k

f k

g

h

= ≥
f g

g

f

≥
g

g

== g

so by the axiom of choice, there is a map ω ≤ R. This satisfies

ω h ≤ f hh ≤ fR h≤

and
ω k ≤ g kk ≤ gR k≤

and since both side are maps we have equality by Proposition 1.2.7.

Remark 2.2.5. The converse of Lemma 2.2.4 holds in any Cartesian
bicategory by Lemma 1.2.10.

Lemma 2.2.6. Let B be a Cartesian bicategory with enough maps and
choice. Then B is tame.
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Proof. Consider the following commutative diagram in Map(B):

A

B C

D

f g

h k

(2.2.1)

We need to prove that f g=h k if and only if (2.2.1) is a
weak pullback.

• Assume
f g=h k

We want to show that (2.2.1) is a weak pullback. Given a com-
mutative diagram of solid arrows below,

T

A

B C

D

ω
b c

f g

h k

we need to construct the dotted arrow. By Lemma 2.1.4, we get

f g=h kb c ≤

and therefore by Lemma 2.2.4 we get ω : T → A as desired.

• Let now (2.2.1) be a weak pullback diagram. We want to prove
that

f g=h k

By Lemma 2.1.3, take

= β γh k

to be a factorisation with β : T → B and γ : T → C. By Lemma 2.1.4,
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the external square of the following diagram commutes.

T

A

B C

D

αβ γ

f g

h k

Since (2.2.1) is a weak pullback, there is α : T → A making the
above commute. With this we get

≤ f gh k = β γ = f α α g

Another common formulation of the axiom of choice in set the-
ory is the assertion that every surjective function π : X → Y splits,
namely, there exists a function ρ : Y → X such that ρ ; π = idY . For
general Cartesian bicategories, splitting surjectives is a weaker con-
dition than choice, however for tame Cartesian bicategories they will
turn out to agree.

Lemma 2.2.7. Surjective maps split in any Cartesian bicategory with choice.

Proof. Let π : X → Y be a surjective map. Therefore, πop : Y → X is
a total relation, so by (AC) there is a map g : Y → X such that

g ≤ π

Now we have
πg ≤ ππ ≤

and since both the left hand side and the right hand side of that in-
equality are maps, we have by Proposition 1.2.7 that g ; π = idY .

In a tame Cartesian bicategory, the converse of Lemma 2.2.7 is
true:
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Proposition 2.2.8. A tame Cartesian bicategory satisfies (AC) iff surjec-
tive maps split.

Proof. By Proposition 2.2.7, it suffices to prove that (AC) holds if sur-
jective maps split. So let R : X → Y be a total relation and take a
comap-map factorisation R = f g with maps f, g. Since R
is total,

= f g = f

so f is surjective. Since surjective maps split, there exists a map h
that is a pre-inverse of f , so h ; f = id. Then

h ≤ h f f = f

and therefore R=f gh g ≤ , so R contains a map.

We can use this to classify all tame Cartesian bicategories satisfy-
ing the axiom of choice.

Theorem 2.2.9. A tame Cartesian bicategory satisfies the axiom of choice
if and only if it is isomorphic to Span∼C for some category C with products
and weak pullbacks.

Proof. We have Span∼C ∼= SpanSC where S is the class of split epis. It
is therefore a tame Cartesian bicategory where surjectives split and
by Proposition 2.2.8, it satisfies (AC).

Conversely, if B is a tame Cartesian bicategory satisfying choice,
we get B ∼= SpanSMap(B) where S is the class of surjectives, which
by Proposition 2.2.8 agrees with the class of split epis and therefore

B ∼= SpanSMap(B) ∼= Span∼Map(B)

Assuming that we work in a Set theory where the axiom of choice
holds, Rel is a tame Cartesian bicategory that satisfies choice. We can
therefore apply the above classification and obtain the following:

Corollary 2.2.10.
Rel ∼= Span∼ Set
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2.3 Witnesses

The whole theory of categories with covers has a surprisingly useful
dual. We therefore spell out the details here and they will be used
extensively later on.

Definition 2.3.1. Let C be a category having coproducts and weak
pushouts. A class of witnesses on C is a class of morphismsW (each
of which called a witness) that is

• closed under composition and contains identities

• closed under (binary) coproducts, that is if w : X → Y and
w′ : X ′ → Y ′ are witnesses, so is w + w′ : X +X ′ → Y + Y ′.

• closed under weak pushouts, that is if w : X → Y is a witness
and

X Y

X ′ Y ′

w

w

is a weak pushout, then w is a witness as well.

• closed under pre-splits, that is ifw : X → Y and g : Y → Z have
the property that w ; g ∈ W , then w ∈ W . We call this closure
under pre-splits.

A category with witnesses is a tuple (C,W), where C is a category
with coproducts and weak pushouts and W is a class of witnesses
on C. For a set of morphisms E let W(E) be the smallest class of
witnesses containing E.

Clearly, (C,W) is a category with witnesses if and only if (Cop,Wop)

is a category with covers, whereWop is the same class asW just for-
mally reversed to see it as a class of morphisms in Cop. In analogy to
Definition 1.3.6, we can therefore dualise Definition 2.1.16

Definition 2.3.2. Let (C,W ) be a category with witnesses, then we
define

CospanWC = SpanW
op

Cop
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In Chapter 4 witnesses will be useful and we will particularly
need to work withW(E), which we will want to construct in stages.
It is therefore interesting to see which closure properties remain sta-
ble when we close with respect to another. For example, starting
from a class that is closed under coproducts and weak pushouts, we
can close under composition without losing this property.

Lemma 2.3.3. If X is a class of morphisms that contains identities and is
closed under coproducts and weak pushouts, so is the closure of X under
composition.

Proof. Let X ′ be the closure of X under composition. It is easy to
check that X ′ is closed under coproducts, we only show the more
interesting case of weak pushouts: The closure of X under composi-
tion is obtained by taking composites of sequences of morphisms in
X ′. We can argue by induction on the length of those sequences. For
trivial sequences, we need to show that weak pushouts along iden-
tities are in X but that follows from the assumptions on X . Let now
x ∈ X ′ and y ∈ X . For the sake of induction we may assume that
weak pushouts along x are in X ′ again and we have to show that
also weak pushouts along x ; y remain in X ′. Let

A B C

A′ C ′

f

x y

z

be a weak pushout. Taking a weak pushout of f along x yields a
diagram

A B C

A′ B′ C ′

f

x y

x

By the weak universal property of the weak pushout B′, there is a
morphism y such that z = x ; y. Therefore

A B C

A′ B′ C ′

f

x y

x y
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is a commutative diagram. It is easy to see that C ′ being a weak
pushout of the outer rectangle implies that the right square is a weak
pushout, too. By assumption on x we have x ∈ X ′ and since X is
closed under weak pushouts we have y ∈ X , therefore z = x ; y ∈ X ′
as desired.

This means that starting from a class closed under coproducts and
weak pushouts, we can generate a system of witnesses in a straight-
forward manner:

Lemma 2.3.4. If X contains identities and is closed under coproducts and
weak pushouts, let X ′ be the closure of X under composition. Then

W(X ) = {w | ∃g : w ; g ∈ X ′}

Proof. Let W = {w | ∃g : w ; g ∈ X ′}.

• To showW(X ) ⊆W it suffices to see that W is a system of wit-
nesses, since by definition W(X ) is the smallest one that con-
tains X . By Lemma 2.3.3, X ′ contains identities, and is closed
under coproducts, weak pushouts and composition. It suffices
to see that all these properties carry over to W and that W has
the splitting property.

– Let w1, w2 ∈ W . We want to prove that w1 ; w2 ∈ W . Let
gi be such that wi ; gi ∈ X ′. Let x = w2 ; g2 and consider a
weak pushout

A B

C P

g1

x

g1

x

and since x ∈ X ′, we have x ∈ X ′. This gives us

w1 ; w2 ; g2 ; g1 = w1 ; x ; g1 = w1 ; g1 ; x ∈ X ′

and therefore w1 ; w2 ∈W .

– Since X ′ is closed under coproducts, so is W .
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– Let w ∈W and
A B

C P

f

w

f

w

be a weak pushout. We need to show w ∈ W . Let g be
a morphism such that w ; g ∈ X ′. We can add this to
the above diagram and take another weak pushout Q to
obtain

A B D

C P Q

f

w g

w g

This makes Q also a weak pushout of the outer diagram
and therefore we have w ; g ∈ X ′, hence w ∈W .

– Lastly, the splitting property is easy to check, because if
w ; h ∈ W , then there is g such that w ; h ; g = w ; (h ;
g) ∈ X ′, so by definition, w ∈W .

This exhibits W as a system of witnesses and clearly X ⊆ W ,
henceW(X ) ⊆W .

• Conversely, we want to show W ⊆ W(X ). Clearly, X ⊆ W(X )
and since W(X ) is closed under composition, we get X ′ ⊆
W(X ). ButW(X ) is furthermore closed under splits and there-
fore W ⊆ W(X ).
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Chapter 3

Frobenius Theories

Introduction

In his PhD thesis [31], William Lawvere introduced his beautiful cat-
egorical perspective on algebraic theories and how to see the seman-
tics of such a theory as a suitable functor, aptly called functorial se-
mantics. Lawvere’s idea was roughly as follows: Given an algebraic
theory, such as the theory of groups, we can construct a category
called its syntactic category C as follows: The objects of C are natural
numbers, a morphism n → 1 is a term in the algebraic theory with
n variables and more generally a morphism n → m is a collection of
m such terms. In other words, addition of natural numbers induces
a categorical product. The composition in C works via substitution.
Importantly, we see two morphisms n → m as equal if the corre-
sponding terms are equal modulo the laws of the algebraic theory.
For example, for group theory the syntactic category is constructed
from multiplication, a morphism 2 → 1, the unit of multiplication,
a morphism 0 → 1, and inversion, a morphism 1 → 1. The asso-
ciative law implies then that the two morphisms 3 → 1 that can be
constructed from multiplication are equal in the syntactic category.

Lawvere’s interesting insight now was this: A model of the alge-
braic theory, for example a group for the theory of groups, is nothing
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but a finite product-preserving functor M : C → Set. Such a func-
tor picks out a set S = M(1), which will be the underlying set of
of the algebraic structure. For M to be product-preserving forces
M(n) = Sn. Furthermore, every term t : n → 1 will be interpreted
by a functionM(t) : Sn → S, the function that given an assignment
of elements in S to all the variables will evaluate the term. For the
group theory example, the term x1 ·x2 will be interpreted by the mul-
tiplication function. Since in the syntactic category of group theory,
the terms (x1 ·x2) ·x3 and x1 ·(x2 ·x3) are considered equal, this forces
M to interpret multiplication by an associative function.

This perspective on algebraic theories is important because it puts
syntax and semantics on equal footing. The syntax of the theory is
encoded into a category with the same structure as the semantic cat-
egory Set has. But as important as this perspective is, for computer
science applications it comes with the serious drawback that all in-
terpretations need to be functional. For that reason, the authors of [7]
introduced Frobenius theories as a relational analogue to Lawvere
theories.

Where Lawvere theories use categories with finite-products, Frobe-
nius theories use Cartesian bicategories. This allows us to use Rel, the
archetypal Cartesian bicategory, in place of Set as the semantic cat-
egory. Whereas morphisms in a Lawvere theory were seen as alge-
braic terms, which can be represented via syntax trees, the syntactical
analogue for Frobenius theories is string diagrams.

Outline of the Chapter In Section 3.1 we will introduce the notion
of a monoidal signature, which can be thought of as a set of basic
boxes to be used in string diagrams. Given such a signature Σ, we
will construct a Cartesian bicategory CBΣ whose morphisms are the
string diagrams that can be built from the basic boxes and that only
satisfy those inequalities that are consequences of the laws of Carte-
sian bicategories. As a Frobenius theory this is to be thought of as
mere syntax with no additional properties, like an algebraic theory
that imposes no equations.
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In Section 3.2 we will then introduce Frobenius theories T as Carte-
sian bicategories that have natural numbers as their objects. A model
of such a Frobenius theory (in Rel) is then just a morphism T →
Rel. Furthermore, there is a convenient notion of morphism between
models that works as expected. It is possible to define a Frobenius
theory by giving generators and relations, so one can specify a sig-
nature Σ and a set of inequalities E and construct a Frobenius theory
CBΣ/E from it. We call (Σ, E) a presentation of a Frobenius theory.
Importantly, every Frobenius theory allows such a presentation.

In Section 3.3 we will introduce the problem of completeness, that
will be solved in Chapter 5 with Theorem 5.4.28. Every Frobenius
theory allows for the use of diagrammatic reasoning, that is given
two string diagrams R,S : n → m in CBΣ/E with R ≤ S there is
a diagrammatic proof for it that uses the laws of Cartesian bicat-
egories and the axioms of the theory. Since models are by defini-
tion morphisms of Cartesian bicategories, they respect the ordering
so whenever R ≤ S, we also have M(R) ⊆ M(S) for all models
M : CBΣ/E → Rel. The interesting question of completeness is the
converse of this: Given any property that is valid in all possible mod-
els, can we find a diagrammatic proof for it? The answer is positive,
as we will see in Chapter 5.

3.1 Signatures

The idea of a signature is to define the non-logical symbols that a
theory uses. For example + in a formal theory of natural numbers
would be such a symbol. Classically, for so-called relational signa-
tures, one fixes a set of symbols and specifies an arity for each one. A
symbolR having arity n ∈ N means that it needs to be interpreted by
an n-ary relation. Addition would be a 3-ary symbol, because it will
be interpreted as {(x, y, x+ y) | x, y ∈ N}.

Since we want to draw string diagrams, a mere arity is not enough,
because we need to decide how many wires to draw on the left and
on the right. This gives rise to the notion of a monoidal signature –
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a signature making this additional, more fine-grained choice. In this
setting, addition would be represented by a symbol with arity 2 and

coarity 1, usually drawn as .

Definition 3.1.1 (Monoidal signature). A monoidal signature1 Σ is a
set of symbols partitioned into classes Σn,m, one for every n,m ∈ N.
For every σ ∈ Σn,m, we call n the arity and m the coarity.

A monoidal signature is a concise description of a formal lan-
guage. The symbols in Σ give the different relationships between
entities the language allows to talk about. As this is an abstract no-
tion, let us have a look at different examples.

Example 3.1.2.

• Group theory typically uses a signature with the following sym-
bols: Mult ∈ Σ2,1, 1 ∈ Σ0,1, inverse ∈ Σ1,1.

• Zermelo-Fraenkel style set theories typically use a signature
with only one symbol ∈, standing for set membership and liv-
ing in Σ1,1.

• To formalise family relationships, one would use a signature
with a single symbol P ∈ Σ1,1, where P (x, y) is interpreted as
x being a parent of y.

Thinking of a signature as a kind of interface, it naturally gives
rise to the question what an implementation of that interface might
be.

Definition 3.1.3. Let Σ be a monoidal signature. An interpretation of
Σ in a Cartesian bicategory B, denoted F : Σ→ B consists of a choice
of object F (1) = X ∈ B and for every σ ∈ Σn,m a choice of morphism
F (σ) : X⊗n → X⊗m. Given a morphism G : B → B′ we can compose
them in the obvious way to form an interpretation F ; G : Σ→ B′.

What paves the way to a functorial semantics for relational theo-
ries is that Cartesian bicategories can internalise monoidal signatures

1also known under the name monoidal graphs
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and their interpretations. More precisely, starting from a monoidal
signature, we can construct a Cartesian bicategory that has as mor-
phisms all the string diagrams that can be constructed from the sym-
bols in the signature. This category will turn out to satisfy a universal
property with respect to interpretations.

Definition 3.1.4. Let Σ be a monoidal signature. The Cartesian bicat-
egory CBΣ, called the syntactic Cartesian bicategory for Σ, has as ob-
jects the natural numbers and morphisms are constructed as follows:
For every σ ∈ Σn,m, there is a basic morphism σ : n → m in CBΣ. A
general morphism in CBΣ is then a string diagram constructed from
those basic morphisms and the connectives of Cartesian bicategories.
More precisely, morphisms in CBΣ are terms generated from the fol-
lowing grammar

c ::= | | | | | | | c⊗c | c ; c | σ
n m

where n is a shorthand for n stacked wires. The laws of Cartesian
bicategories induce a preorder on these terms. Quotienting this pre-
order to obtain a partial order turns CBΣ into a Cartesian bicategory.
Of course, we will write morphisms of CBΣ as string diagrams rather
than as terms of this grammar.

Remark 3.1.5. Even if Σ and Σ′ are different, it is possible to have
CBΣ

∼= CBΣ′ . For example, let Σ = Σ1,0 = {R} and Σ′ = Σ′0,1 =
{S}, then CBΣ

∼= CBΣ′ where the isomorphism identifies R with

S .

Proposition 3.1.6. Given a monoidal signature Σ, CBΣ is the free Carte-
sian bicategory on Σ in the following sense: There is an obvious interpreta-
tion Σ→ CBΣ that satisfies the following universal property: For any other
Cartesian bicategory B with interpretation F : Σ → B there is a unique
morphism of Cartesian bicategories G : CBΣ → B such that

Σ CBΣ

B
F

G
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The above universal property is just a concise categorical way of
expressing that CBΣ has as morphisms all string diagrams that can
be constructed from the symbols in Σ and the primitives of Cartesian
bicategories modulo the Cartesian bicategory laws.

In logical terms, an interpretation Σ → Rel is known as a Σ-
structure, a set that comes equipped with interpretations of the sym-
bols as relations on it. Σ-structures on their own are only mildly in-
teresting, it is more interesting to single out structures that satisfy ad-
ditional properties, for example singling out abelian groups among
all structures that can interpret the same signature. But we now have
a way of doing exactly that. If we take CBΣ as a starting point and re-
fine the ordering on its morphisms, functors will have to respect the
new inclusions that we added. In other words, this is a convenient
way to specify axioms for a logical theory and is the starting point of
our study of Frobenius theories.

Remark 3.1.7. There is a strong connection between CBΣ and regular
logic, that is the fragment of first-order logic consisting of existential
quantification and finite conjunctions. That connection can be made
precise as follows: Consider the following category L, where objects
are finite sets and a morphism X → Y in L is an equivalence class
of regular logical formulae using the relation symbols in Σ with free
variables inX+Y , modulo logical equivalence. Composition of mor-
phisms φ : X → Y and ψ : Y → Z is defined to be ∃y1 . . . ∃yn : φ ∧ ψ,
where Y = {y1, . . . , yn}. L has a canonical local ordering via implica-
tion of formulas. One can see that L is a Cartesian bicategory and in
fact we proved in [8] that L is equivalent to CBΣ. Under this equiv-
alence, the regular formula ∃x2, y1 : R(x1, x2, y1) ∧ S(y1, z1) – with
free variables x1, z1 – corresponds to the string diagram

R S

3.2 Frobenius theories

Frobenius theories were first introduced in [7] as a relational gener-
alisation for Lawvere’s approach to algebraic theories.
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Definition 3.2.1. A Frobenius theory is a Cartesian bicategory T with
objects the natural numbers and monoidal product given by +.

Definition 3.2.2. A presentation of a Frobenius theory consists of a
choice of monoidal signature Σ together with a set of inequalities
E, where each inequality in E has the form A ≤ B for morphisms
A,B : n → m in CBΣ. Let ≤ be the smallest preorder generated by
the laws of Cartesian bicategories and E. Let CBΣ/E be the Cartesian
bicategory with objects the natural numbers, where morphisms are
equivalence classes of morphisms of CBΣ, with R,S : n → m being
equivalent if R ≤ S ≤ R. On these equivalence classes ≤ induces a
partial order which turns CBΣ/E into a Cartesian bicategory. We call
(Σ, E) a presentation of CBΣ/E .

Proposition 3.2.3. There is an evident morphism CBΣ → CBΣ/E , which
gives CBΣ/E a universal property: A morphism M : CBΣ → B factors
uniquely through CBΣ/E as

CBΣ CBΣ/E

B
M

M′

if and only if for any inequality A ≤ B in E we haveM(A) ≤ M(B). In
this case we sayM satisfies E.

Proof. Clearly, ifM factors, it satisfiesM(A) ≤M(B) because those
inequalities hold in CBΣ/E . Conversely, note that the morphisms
in CBΣ/E are equivalence classes of morphisms modulo the equiv-
alence relation obtained from the axioms. IfM : CBΣ → B satisfies
E, this means that it is well-defined on those equivalence classes and
the induced morphismM′ : CBΣ/E → B is a morphism of Cartesian
bicategories.

Remark 3.2.4. Another possibility of defining what a Frobenius the-
ory is would be to identify it with a presentation (Σ, E). In that case,
the associated Cartesian bicategory would be called the syntactic cat-
egory of the Frobenius theory, which parallels the use of that term for,
say, symmetric monoidal theories, or even geometric theories.

Definition 3.2.5. A morphism between Frobenius theories is a mor-
phism between Cartesian bicategories.
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In line with [7], we see morphisms of Cartesian bicategories as
giving models of one theory in another.

Definition 3.2.6. Let T be a Frobenius theory and B a Cartesian bi-
category. A model of T in B is a morphism of Cartesian bicate-
gories M : T → B. A morphism M → N between models is an
oplax monoidal natural transformation, that is a monoidal family of
morphisms ηX : M(X) → N (X) in C such that for any morphism
R : X → Y in B, the typical naturality square

M(X) M(Y )

N (X) N (Y )

ηX

M(R)

ηY

N (R)

commutes oplaxly in thatM(R) ; ηY ≤ ηX ; N (R).
In the following we will let B default to Rel, so we will speak of

models of T in Rel simply as models of T .

The definition of morphisms of models as oplax natural transfor-
mations is a bit surprising at first, but it turns out to yield the right
notion. As a first indicator of this, morphisms of models are always
maps.

Proposition 3.2.7. Let M,N be models of B in C and η : M → N be
a morphism between models. Then every component ηX is a map, i.e. a
comonoid homomorphism.

Proof. The definition of Cartesian bicategory makes ηX a lax comonoid
homomorphism. The missing inclusions come from oplax naturality
of η with R = X and R = X .

Remark 3.2.8. The choice of what to call lax and what to call oplax
is not made consistently in the literature. But since Proposition 3.2.7
shows that the condition on morphisms between models gives the
opposite inclusion of the lax comonoid homomorphism, it makes
sense to call it oplax.

Remark 3.2.9. Since every component ηX of a morphism η between
models is a map, it has a right-adjoint ηop

X . These right-adjoints form
a lax monoidal natural transformation themselves, instead of an oplax

62



one. Conversely, it is straightforward to check that, dual to Proposi-
tion 3.2.7, a lax monoidal natural transformation is a family of comaps.
The left-adjoints of those comaps then form a morphism of models.
In other words, if we define a comorphism between models to be a
lax monoidal natural transformation, then a morphism M → N is
equivalent to a comorphism N → M. Lax or oplax natural trans-
formation therefore define essentially the same notion of morphism
with only a difference in direction. Somewhat arbitrarily we pick the
direction of the map as the direction of the morphism (and therefore
stick with oplax natural transformations).

Models of CBΣ in Rel are particularly important and therefore get
their own name.

Definition 3.2.10. A Σ-structure is a model CBΣ → Rel.

Remark 3.2.11. A Σ-structure S : CBΣ → Rel is, via the universal
property of CBΣ, the same thing as an interpretation of Σ in Rel. In
other words, a Σ-structure consists of an underlying set S(1) and, for
every σ ∈ Σn,m a relation S(σ) : S(n) = S(1)n → S(1)m = S(m).
A morphism f : S → T between Σ-structures comes with functions
fn : S(n) → T (n), which, because f is monoidal, are uniquely deter-
mined by f1. That f is an oplax natural transformation implies that
if

(x, y) ∈ S(σ) ⊆ S(n)× S(m)

then
(fn(x), fm(y)) ∈ T (σ)

In fact, this is an equivalent characterisation, so that morphisms be-
tween Σ-structures are equivalently functions between the underly-
ing sets that preserve all relations.

Remark 3.2.12. By the universal property of CBΣ/E , a model of CBΣ/E

is the same as a Σ-structure that satisfiesE, which is what one would
expect a model of the Frobenius theory (Σ, E) to be. This shows the
fundamental importance of Σ-structures: Every model of (Σ, E) has
an underlying Σ-structure and every Σ-structure gives rise to at most
one model of CBΣ/E . In other words, being a model of CBΣ/E , i.e.
factoring through CBΣ/E , is a property on Σ-structures. It will be
indispensably useful for us to think of models of CBΣ/E in terms of
their underlying Σ-structures satisfying the axioms specified by E.
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Remark 3.2.13. Since the ordering in Cartesian bicategories is anti-
symmetric, we can encode equalities into inequalities, so considering
only inequalities is not a restriction.

Example 3.2.14. Let us consider examples of Frobenius theories and
their models (in Rel).

1. Let Σ = ∅ and E = { ≤ }, where the left-hand side is
the empty diagram representing id0 : 0 → 0 in CBΣ. Let S be
any Σ-structure, since Σ = ∅, S can be identified with the set
S(1). Now, S(0) = {•} is a one element set, regardless of S
(think of it as the set of 0-tuples in S(1)). There are only two
relations S(0) → S(0), namely the identity and the empty re-
lation. S

( )
is the identity regardless of S, but S ( ) is

empty if and only if S(1) is. Therefore models that satisfy E are
precisely non-empty sets. Morphisms between those are just
functions.

2. Let Σ = ∅ and E = { ≤ }. The interpretation of
the left-hand side is the total relation, so this inequality says
that equality is total. There are therefore only two models of
this theory, the one-element model or the empty one.

3. Let Σ = {R : 1 → 1} and E =

 R

R

≤

,

where R R= . Models of this theory are sets

equipped with an antisymmetric relation R. Morphisms be-
tween those are functions that preserve the relation.

4. Let Σ = {R : 1→ 1} and

E =
{

R R ≤ R

}
.

Models of this theory are are sets equipped with a transitive
relation R, morphisms preserve this relation.

5. Let Σ = {R : 1→ 1} and

E =

{
≤ R , R≤R , R R ≤ R

}
.
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Models of this theory are sets equipped with an equivalence
relation, morphisms need to preserve it.

6. Let Σ = {R : 1→ 1} and

E =

{
≤ R ,

R

R

≤ , R R ≤ R

}
.

Then models of this theory are exactly posets, that is sets equipped
with a reflexive, antisymmetric and transitive relation. Mor-
phisms are exactly morphisms of posets.

7. Let Σ = {R : 1→ 1} and

E =

 R≤
R

R

, R≤

 .

A Σ-structure is a set together with a binary relation R. The
axioms E force R to be a comonoid homomorphism, in other
words a function. Therefore, models of this Frobenius theory
are sets equipped with an endofunction. This example shows
why it is not necessary to distinguish functions from relations
in the signature.

Remark 3.2.15. Since maps are comonoid homomorphisms, one can
force any symbol to act as a map by postulating the two axioms seen
in Example 3.2.14 (7). Since morphisms of Cartesian bicategories
preserve maps, this forces the interpretation of those symbols to be
maps. This shows that Frobenius theories generalise Lawvere’s alge-
braic theories.

Lemma 3.2.16. Every Frobenius theory has a presentation.

Proof. Given a Frobenius theory T , define a signature Σ with Σn,m =
HomT (n,m), that is for every morphism in T the signature contains
a separate symbol. We get a morphism of Cartesian bicategories
π : CBΣ → T that interprets each symbol in Σ as the morphism it
represents. Let now E be the set of all inequalities A ≤ B where
π(A) ≤ π(B) holds in T . It is easy to check that CBΣ/E

∼= T .
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3.3 The problem of Completeness

An important question regarding Frobenius theories and their mod-
els is the question of completeness. Frobenius theories allow for di-
agrammatic reasoning, that is CBΣ/E has a string diagrammatic cal-
culus that we can use to prove implications. So, given string diagram
R,S : n → m in CBΣ, we can use the laws of Cartesian bicategories
and the axioms in E to prove R ≤ S in CBΣ/E . This will then imply
that all models of the Frobenius theory respect that proof and satisfy
M(R) ⊆M(S) for allM : CBΣ/E → Rel. This immediately raises the
question if we can derive all properties that are shared by all models
diagrammatically, which is the question of completeness. Formally,
ifM(R) ⊆ M(S) for all modelsM : CBΣ/E → Rel, is it necessarily
true that R ≤ S in CBΣ/E , that is can we necessarily find a string
diagrammatic proof of that fact?

The answer to this question turns out to be positive, which we
will prove in Theorem 5.4.28. This means that for all properties that
string diagrams are able to express, that is all properties that involve
existential quantification and conjunction, diagrammatic reasoning
is exactly enough to prove all consequences of a theory.

We will now give an example of this diagrammatic reasoning in
action for a Frobenius theory that is not too trivial.

Example 3.3.1. We will prove, diagrammatically, that monoids that
enjoy a certain cancellation property can be ordered, similar to how
the ordering on natural numbers is defined. For that, we first con-
sider the Frobenius theory of commutative monoids, which is a the-

ory over the signature Σ with ∈ Σ2,1 and ∈ Σ0,1, which

we interpret as addition and 0 respectively. For convenience, we will

draw the opposite of as and the opposite of as

. The theory of commutative monoids has the following axioms:
Note that we write some axioms as equalities, which is shorthand for
the two axioms corresponding to both inclusions.

• 0 is a map, that is it respects copying and discarding:
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– First of all, 0 exists, which corresponds to the following
inequality (0 is total):

≤

– Secondly, 0 is unique, which corresponds to the following
inequality (0 is single-valued):

≤

Note that the converse inequalities are already in the laws of
Cartesian bicategories, because every morphism is a lax comonoid
homomorphism. So, both are even equalities.

• Addition is a map, that is:

– For any pair of elements, their sum exists (+ is total):

≤

– This sum is unique, that is (+ is single-valued):

≤

Again, these axioms are really equalities because the reverse
inequalities come from the laws of Cartesian bicategories.

• Addition is associative, that is

=

• Addition is commutative, that is

=
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• 0 is the unit for addition, that is

==

We now add two more axioms to this theory, which are satisfied e.g.
by the natural numbers and which are characteristic of positive can-
cellative monoids:

• If x+ y = 0, then already x = y = 0

≤

• If x+ y = y, then x = 0

≤

Using these axioms is is possible to reason about cancellative monoids
in string diagrams. For example, it is possible to prove that they can
be ordered in the same way that natural numbers are ordered via
x ≤ y if and only if ∃z : x+ z = y, in diagrams

It is straightforward to check that this ordering is reflexive and tran-
sitive. We will now prove graphically that it is also antisymmetric,
that is that x ≤ y and y ≤ x imply x = y. The starting point of anti-
symmetry is to assume that we have x, y such that there exists n,m
satisfying x+n = y and y+m = x. The set of those (x, y) is encoded
as the following string diagram:
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For antisymmetry we want to prove such pairs to be equal, so

≤

This can be seen via the following derivation. For ease of reading we
will in each step mark the part of the diagram that is transformed.

= =

= = =

≤ = = = =

Multisorted signatures

So far, the string diagrams we have been considering in CBΣ only
have a single type of string, they therefore cannot distinguish be-
tween different types of inputs and outputs. Logically, these types
are called sorts and support for the coexistence of different sorts is
given by multisorted signatures. Typically, they tend to be avoided,
because they add another layer of complication and although things
don’t actually become that much harder, they become harder to talk
about precisely. But we feel that Cartesian bicategories give a nice
layer of abstraction that hide the difficulties that usually come with
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multisorted signatures. We will briefly describe the analogues of the
previous definitions for the multisorted case here. The remainder of
the thesis can be read with the multi-sorted case in mind with minor
adjustments. In particular, the completeness Theorem 5.4.28 is still
true, even for multisorted Frobenius theories.

Definition 3.3.2 (Monoidal signature). Let S be a set of sorts and let
S∗ denote the free monoid over S. A monoidal signature Σ over S is
a set of symbols partitioned into classes Σs,t, one for every s, t ∈ S∗.
For every σ ∈ Σs,t, we call s the arity and t the coarity.

Definition 3.3.3. Let Σ be a monoidal signature over S and B a strict
Cartesian bicategory. An interpretation F : Σ→ B consists of

• a map f : S → Ob(B), which by the universal property of the
free monoid extends to a unique monoid morphism f : S∗ →
Ob(B),

• for every σ ∈ Σs,t a morphism F (σ) : f(s)→ f(t) in B.

Definition 3.3.4. Let Σ be a monoidal signature over set of sorts S.
The Cartesian bicategory CBΣ, called the syntactic Cartesian bicate-
gory for Σ, has as objects the free monoid over S, S∗, morphisms are
constructed as follows: For every σ ∈ Σs,t, there is a basic morphism
σ : s → t in CBΣ. A general morphism in CBΣ is then a string dia-
gram constructed from those basic morphisms and the connectives
of Cartesian bicategories, modulo the laws of Cartesian bicategories.

Definition 3.3.5. Let Σ be a monoidal signature over set of sorts S.
The Cartesian bicategory CBΣ is the free Cartesian bicategory on Σ
and has the following universal property: There is an interpretation
Σ → CBΣ and for any other Cartesian bicategory B with interpreta-
tion F : Σ→ B there is a unique morphism of Cartesian bicategories
G : CBΣ → B such that

Σ CBΣ

B
F

G

Definition 3.3.6 (Multisorted Frobenius theory). A Frobenius theory
over set of sorts S is a Cartesian bicategory T with objects the free
monoid over S.
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From here on, it is not necessary to make any adjustments to what
was presented in Section 3.2. For example, presentations for Frobe-
nius theories work for multisorted theories in the same way they
did for single-sorted ones. Since the Completeness Theorem 5.4.28
is proved in categorical form, the proof is agnostic to whether the
hypergraphs are coloured or not.
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Chapter 4

Combinatorial
Characterisations

Introduction

As we have seen in Remark 3.1.7, CBΣ is tightly connected to regular
logic, that is the fragment of first order logic consisting of existential
quantification and conjunction. In database theory, where logical for-
mulas are interpreted as queries to relational databases, regular logic
corresponds to so called conjunctive queries. In their celebrated pa-
per [19], Chandra and Merlin showed how to efficiently handle con-
junctive queries to a database in a way that is provably very close
to optimal. And even though what their paper shows is important,
for our purposes the how is even more important. They gave a trans-
lation from conjunctive queries to certain combinatorial structures,
hypergraphs with interfaces, such that implication between queries
(also known as inclusion) corresponds to a morphism between the
corresponding structures. With the correspondence between CBΣ

and regular logic in mind, we took this as a starting point, to prove
a similar correspondence between string diagrams and hypergraphs
with interfaces in [8]. As an example, consider the following string
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diagram

σ

which represents a morphism 1 → 2 in CBΣ. If we see this as a
graph where the σ box represents a labelled edge the result can be
visualised as follows:

σ

This graph alone does not capture all the information of the string di-
agram, because the copying on the right is lost. To capture this on the
graphs, we endow them with an interface, which can be visualised
like so

σ

This fairly straightforward translation has a surprising property: Ev-
ery inequality in CBΣ corresponds to a morphism between the corre-
sponding graphs that respects the interface. We will prove this asser-
tion in Theorem 4.2.21, but let us consider an example here. If every
inequality has a graphical correspondent, that must in particular be
true of the axioms of Cartesian bicategories. Consider, for example,

σ ≤
σ

σ

one part of the axiom that σ is a lax comonoid homomorphism. Trans-
lating the right-hand side into a graph with interface yields

σ

σ

And we can see that there is a straightforward morphism from the
rendering of the right-hand side to that of the left-hand side as fol-
lows:

σ

σ

σ
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It is important to note that the morphism goes from the right-hand
side to the left-hand side, opposite to the direction of the inequal-
ity. We have seen this ordering with a morphism in the opposite
direction before in Definition 1.3.6, the definition of Cospan∼C. In
fact, it will turn out that hypergraphs with interfaces can be mod-
elled as a full subcategory of Cospan∼ FHypΣ, where FHypΣ denotes
the category of finite hypergraphs with edges labelled in Σ. To be
more precise, it is the full subcategory on cospans n → G ← m,
where n and m are discrete, that is they consist only of vertices with
no edges. We call these cospans discrete and denote that full sub-
category as DiscCospan∼ FHypΣ. The insight of Chandra and Mer-
lin then translates into Theorem 4.2.21 which proves that CBΣ and
DiscCospan∼ FHypΣ are isomorphic Cartesian bicategories. This cor-
respondence between the string diagrams in CBΣ and discrete cospans
of hypergraphs first appeared in [13]. In [8] we proved it to further-
more respect the ordering, making it an isomorphism. To be self-
contained, we will construct this isomorphism here from first princi-
ples, but it will turn out to be the same one.

Outline of the Chapter In Section 4.1, we will first construct an
isomorphism in the special case of Σ = ∅, where hypergraphs are
essentially just sets. Since every set is discrete, DiscCospan∼ FHypΣ

agrees with Cospan∼ FinSet, the category of cospans of finite sets.
Since Proposition 3.1.6 gives a universal property of CBΣ, it suffices
to prove that Cospan∼ FinSet satisfies the same universal property.
This can be seen as coming from a nice universal property of FinSet

as the free Cocartesian category generated from a single object.
In Section 4.2, we will introduce the category of Σ-hypergraphs

which can be seen as the presheaf category over CΣ, which will be in-
troduced in Definition 4.2.1. Intuitively, CΣ consists of loose vertices
and edges, which are then glued together to form hypergraphs. We
can then use a construction that is closely related to the Coyoneda-
Lemma, which takes a hypergraph apart into its components. In
categorical language, we take the presheaf apart into a coproduct
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of the representable presheaves that form it. For hypergraphs this
means that we associate a hypergraph G with another hypergraph
D(G), which we call a disconnected hypergraph, that is a coprod-
uct of the hyperedges and vertices of G, forgetting about how they
were connected. We can then use the results of the previous section
to glue D(G) back together to obtain G, a construction that only in-
volves vertices and not edges. Taking this together with a technical
lemma (Lemma 4.2.20) that relates morphisms between disconnected
hypergraphs to inequalities in CBΣ, allows us to prove the main The-
orem 4.2.21.

In Section 4.3 we will then expand on this result by considering
a presentation (Σ, E) of the Frobenius theory CBΣ/E . We will show
that the inequalities in E can be translated into morphisms of hy-
pergraphs and from E, seen in this way, we can construct a class of
morphismsW(E) in FHypΣ that is a system of witnesses. It will turn
out that CBΣ/E

∼= DiscCospanW(E) FHypΣ. This is of great importance
for the completeness proof in Chapter 5 as it gives a categorical char-
acterisation of the properties that are provable in CBΣ/E as those that
correspond to a morphism inW(E), that is those morphisms that are
constructible from E via coproducts, composition, pushout and pre-
splits.

4.1 Empty signature

In the special case of Σ = ∅, we want to give a simple description
of CB∅. Let FinSet denote the skeleton of the category of finite sets:
FinSet has as objects the natural numbers and a morphism n → m

is a function {0, . . . , n − 1} → {0, . . . ,m − 1}. Addition of natural
numbers induces a monoidal product on FinSet with monoidal unit
0. This monoidal category is easily seen to be symmetric.

It is well-known that FinSet is the free category with finite co-
products generated by object 1. This translates into the following
universal property for FinSet:

Theorem 4.1.1. For any category C with finite coproducts and object X ∈
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C there is a unique coproduct-preserving functor F : FinSet → C with
F (1) = X .

Since for any Cartesian bicategory B, the monoidal product on
B induces coproducts in Comap(B), we can apply Theorem 4.1.1 to
obtain a functor FinSet → Comap(B) for any object X ∈ B. We can
use this to show that Cospan∼ FinSet is the free Cartesian bicategory
on one object, which is the same universal property as CB∅ has. They
are therefore isomorphic.

This gives a new perspective on the relationship between mor-
phisms of CB∅ and cospans of finite sets that was already presented
in [13].

In [8] we improved on that bijection and proved that it in fact
gives an isomorphism of Cartesian bicategories. We will obtain the
same isomorphism here via the universal property.

Theorem 4.1.2. For every strict Cartesian bicategory B and object X ∈ B,
there is a unique morphism of Cartesian bicategoriesF : Cospan∼ FinSet→
B such that F (1) = X , that is Cospan∼ FinSet is the free Cartesian bicate-
gory on one object.

Proof. Let X ∈ B. Consider Comap(B) as a Cocartesian category.
Then by Theorem 4.1.1, there is a unique coproduct-preserving func-
tor F : FinSet→ Comap(B), with F (1) = X .

This extends to a unique morphism F : Cospan∼ FinSet → B, as
we will show now.

• To show existence of such an F , let

F(n
f−→ k

g←− m) = F (f) ; F (g)op

We want to prove that this F is indeed a morphism of Carte-
sian bicategories. Since F preserves coproducts, F is monoidal
and it is easy to see that it preserves identities. It furthermore
preserves the ordering by Lemma 1.2.10. The only remaining
point is to show that F preserves composition.

Composition in Cospan∼ FinSet is defined via any weak pushout,
but FinSet even allows for pushouts. In the presence of pushouts,
every weak pushout allows for mutual morphisms from and to
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the pushout, which Cospan∼ FinSet sees as equivalent. It there-
fore suffices to prove that if

p

n m

k

h j

f g

is a pushout in FinSet, then F (h) ; F (j)op = F (f)op ; F (g). We
can consider the fibers over every element of p separately and
since we can take coproducts, we may assume p = 1. In that
case, F (h) ; F (j)op is known as a spider, it is a composition of
n−1 multiplications followed bym−1 comultiplications. That
F (h) ; F (j)op = F (f)op ; F (g) is then an instance of the Spider
Theorem, found as Theorem 6.11 in [21].

This shows that F is a morphism of Cartesian bicategories.

• To see that F is necessarily unique, let G : Cospan∼ FinSet → B
be another morphism with G(1) = X . Let

G : FinSet→ Comap(B)

be defined on objects as G(n) = G(n) and on morphisms as

G(f) = G(n
f−→ m

id←− m)

Since G preserves composition, it is easy to see that G is uniquely
determined by G as

G(n
f−→ k

g←− m) = G(f) ; G(g)op

But G preserves coproducts, because G is monoidal. Therefore,
G satisfies the conditions of Theorem 4.1.1 and we have G = F ,
hence G = F .

Therefore, there is a unique such morphism F : Cospan∼ FinSet →
B.

Corollary 4.1.3. CB∅ ∼= Cospan∼ FinSet

The isomorphism CB∅ ∼= Cospan∼ FinSet is more explicitly spelled
out in Figure 1. Since it respects the symmetric monoidal structure
and composition, this data defines it uniquely.
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CB∅ Cospan∼ FinSet
0→ 0← 0

1→ 1← 1

1→ 1← 2

2→ 1← 1

1→ 1← 0
0→ 1← 1

Figure 1: The isomorphism from Corollary 4.1.3

4.2 String diagrams and hypergraphs

In line with [19] and like we explored in [8], we will construct an
isomorphism between CBΣ and cospans of Σ-hypergraphs. In a hy-
pergraph, edges are generalised to hyperedges that are allowed to
join an arbitrary number of vertices. In a Σ-hypergraph, there is one
type of hyperedge for each σ ∈ Σ. We will visualise a vertex in a hy-
pergraph as and, for example, σ ∈ Σ2,3 and τ ∈ Σ1,1 would be vi-
sualised as σ and τ respectively. The vertex together with
these boxes can be combined into a category that we call CΣ, that can
be visualised as follows (only depicting non-identity morphisms):

τ

σ

This category CΣ captures the essence of the signature. Formally,
we give it one designated object ∗ (representing the vertex) and one
object for each σ ∈ Σ. The only non-identity morphisms have type
∗ → σ and for σ ∈ Σn,m there are n + m of them as in the example
above.

Definition 4.2.1. To every monoidal signature we can associate a lo-
cally finite category CΣ with set of objects {∗} ∪ Σ, and if σ ∈ Σn,m
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then there are n + m morphisms ∗ → σ in CΣ. The only other mor-
phisms in CΣ are identity morphisms. Note that there is no pair of
composable morphisms that doesn’t involve an identity, so associa-
tivity of composition is vacuously true.

Remark 4.2.2. The category CΣ contains less information then Σ, most
importantly the division between which wires to draw on the left and
which to draw on the right is lost. Intuitively that information is not
essential, because we can bend wires.

Remark 4.2.3. If Σ is a multisorted monoidal signature over S, CΣ is
defined to have objects S∪Σ and if σ ∈ Σs,t then there is a morphism
x→ σ for each occurrence of x in s and t. You can think of s ∈ S as a
coloured vertex.

The category of Σ-hypergraphs is now obtained by taking copies
of these basic building blocks that CΣ defines and gluing them to-
gether. Categorically this act of gluing corresponds to colimits and it
turns out that the result from freely adjoining colimits to a category C
is the presheaf category [Cop,Set], as discussed e.g. in [23]. The rep-
resentable presheaf corresponding to ∗ will be the vertex, the other
representable presheaves will be hyperedges.

Definition 4.2.4. Let Σ be a monoidal signature. The category of Σ-
labelled hypergraphs, denoted HypΣ is the presheaf category [Cop

Σ ,Set].
A hypergraph is called finite if it consists of finitely many vertices
and finitely many hyperedges. We denote the full subcategory on
finite hypergraphs as FHypΣ.

Remark 4.2.5. For a multisorted signature Σ, a presheaf over CΣ is a
vertex-coloured hypergraph – one colour for each sort.

Let us unpack Definition 4.2.4 a bit. A Σ-hypergraph G : Cop
Σ →

Set consists of G(∗) ∈ Set which we call the vertex set of G and G(σ)

for σ ∈ Σ which we call the set of σ-hyperedges. Since there are n+m

morphisms ∗ → σ in CΣ, we have n + m morphisms G(σ) → G(∗),
which give the n + m vertices connected to a hyperedge. Usually,
these maps are grouped together as a morphism G(σ) → G(∗)n+m

or as a span G(∗)n ← G(σ) → G(∗)m, as we did in [8]. Here the left
arrow maps a hyperedge to the source vertices and the right arrow
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maps it to the target vertices. Furthermore, a morphism f : G →
H between hypergraphs, i.e. a natural transformation between the
presheaves, comes with functions f∗ : G(∗) → H(∗) and fσ : G(σ) →
H(σ) such that

G(∗)n G(σ) G(∗)m

H(∗)n H(σ) H(∗)m
fn∗ fσ fm∗

is a commutative diagram of functions.
We will use the result about empty signatures to prove a relation-

ship between CBΣ and HypΣ.

Definition 4.2.6. The Cartesian bicategory of discrete cospans of fi-
nite Hypergraphs, denoted as DiscCospan∼ FHypΣ is the full subcat-
egory of Cospan∼ FHypΣ on objects the natural numbers, seen as hy-
pergraphs with no edges. For a cospan n ι−→ G

ω←− m, we call ι and ω
the interface.

Remark 4.2.7. In the special case of Σ = ∅, the category Hyp∅ simpli-
fies. Since C∅ is the trivial one-object category, we have Hyp∅ = Set
and therefore DiscCospan∼ FHyp∅ = Cospan∼ FinSet.

Definition 4.2.8. For a hypergraph G, we can see the set G(∗) as a
hypergraph with no edges and seen like this we will denote it as
V (G). This gives a functor V : HypΣ → HypΣ.

As usual for presheaf categories, there is a functor Y : CΣ → HypΣ,
that maps X ∈ CΣ to the functor Hom( , X) : Cop

Σ → Set, called the
Yoneda-embedding. In our case, the Yoneda-embedding is intuitive,
we have Y (∗) = = 1 the vertex and Y (σ) = σ...

... an isolated σ-
hyperedge. Note that each of these naturally comes with an interface:
It is natural to equip Y (∗) = 1 with the interface 1 → 1 ← 1 and for
σ ∈ Σn,m, it is natural to choose the n vertices we draw to the left as
the left interface and the other ones as the right, so n → Y (σ) ← m.
We call these canonical cospans.

Lemma 4.2.9. There is a morphism π : CBΣ → DiscCospan∼ FHypΣ that
extends the correspondence of Figure 1 by mapping σ ∈ Σn,m to n →
Y (σ)← m. This morphism is one-to-one on objects.
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Proof. Immediate by the universal property of CBΣ in Proposition 3.1.6.

Remark 4.2.10. To fix notation, given R : n → m in CBΣ, we will
denote a representative of the ∼-equivalence class of π(R) as n ιR−→
GR

ωR←−− m. We will call such a GR a universal graph of R. It is im-
portant to keep in mind that GR is not unique, not even in the usual
sense of the word in category theory as unique up to isomorphism.
Instead, GR is only unique up to mutual morphism. Nevertheless,
the properties of GR that are of interest to us here, do not depend on
the particular choice of representative.

If, for some hypergraph G, n → G ← m happens to be a repre-
sentative of π(R), we will also write π(R) = n → G ← m taking the
equivalence class as implicit.

We want to prove this morphism π to be an isomorphism of Carte-
sian bicategories. For that we need to prove that it is full and faithful,
so by Lemma 1.1.9 it suffices to prove fullness and order-reflection.

To this end we use Corollary 4.1.3, seeing Cospan∼ FinSet as a sub-
category of DiscCospan∼ FHypΣ of those cospans n → k ← m where
k consists of only vertices with no edges. But we can also see CB∅ as
a subcategory of CBΣ in a straightforward manner. Corollary 4.1.3
then tells us that for hypergraphs with no edges, π is already full and
faithful. Intuitively, this means that we only have to concern our-
selves with edges and we can let Corollary 4.1.3 handle the vertices.

More precisely, we will first show that every discrete cospan of
hypergraphs arises from one that is disconnected, i.e. one where dif-
ferent edges don’t have vertices in common. So, for an arbitrary hy-
pergraph G, we construct the disconnected hypergraph on its edges,
then glue the vertices back together to obtain G. Since this gluing
only involves vertices, it is the jurisdiction of Corollary 4.1.3, so we
can restrict our attention to disconnected cospans.

Definition 4.2.11. A disconnected cospan is one that can be written
as a sum composed of n → Y (σ) ← m for σ ∈ Σn,m and 1 → 1 ← 1.
In other words, a disconnected hypergraph is one that arises as a
coproduct of hypergraphs in the image of Y , that is a coproduct of
hyperedges and isolated vertices.
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Starting from a hypergraph G, we want to take it apart into the
basic components it is made of, to glue them back together later. We
will explain that construction with an example before looking at the
formal definition.

Example 4.2.12. Let Σ1,2 = {R} and Σ1,1 = {S}. Consider the fol-
lowing Σ-hypergraph G:

R
S

We have G(R) = 1, G(S) = 1 and G(∗) = 5. Drawing these compo-
nents individually gives

R

S

This is what we will call the disconnect D(G). It contains the vertex
set of G and – independently – a disconnected copy of every hyper-
edge in G. Each of these components is equipped with a canonical
interface, so taking all of them together gives 7 → D(G) ← 8 visu-
alised as

R

S

Definition 4.2.13. Let G be a Σ-hypergraph. The disconnect of G,
denoted D(G), is the coproduct1

∐
r∈CΣ,x∈G(r)

Y (r)

In words, D(G) has a disconnected edge for every edge of G and
additionally as many isolated vertices as G has vertices. Since every
Y (r) for r ∈ CΣ has a canonical interface, so does D(G) and we get a
canonical cospan n→ D(G)← m.

1The pairs (r, x) with r ∈ CΣ and x ∈ G(r) that this coproduct ranges over are
known as the elements of the functor G
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Lemma 4.2.14. The functor D: HypΣ → HypΣ preserves pushouts and
for discrete hypergraphs n, we have D(n) = n.

Proof. • To see that D is indeed a functor, note that any morphism
f : G → H induces a morphism fr : G(r) → H(r) for every
r ∈ CΣ. But these are the index sets in the definition of D, so
each fr defines a morphism∐

x∈G(r)

Y (r)→
∐

x∈H(r)

Y (r)

which then combine into a morphism D(G)→ D(H).

• That D preserves pushouts follows from the fact that in presheaf
categories colimits are computed pointwise.

• The last assertion that D(n) = n follows immediately from the
definition.

Remark 4.2.15. IfG is equipped with an interface as n→ G← m, we
will write the corresponding disconnected cospan as n→ D(G)← m
even though n and m do not depend on n,m. They are only depen-
dent on G. Despite that, this notation will turn out not to be so bad,
because n,m are in some sense universal – every other interface can
find itself in there. We will make this precise in Proposition 4.2.16.

As hinted at already,G can be reconstructed from D(G), by gluing
the vertices back together. More precisely, every discrete cospan of
hypergraphs n → G ← m can be obtained from n → D(G) ← m, by
composing with cospans of sets from both sides, as follows:

Proposition 4.2.16. Given a discrete cospan n→ G← m, take the canon-
ical cospan n → D(G) ← m. Since n,m are discrete, they give rise to
morphisms n → V (G) and m → V (G). Furthermore there are canonical
morphisms n→ V (G) and m→ V (G) that assign each vertex of D(G) to
the vertex in G it originated from. We can then reconstruct n → G ← m
as the composite

V (G) D(G) V (G)

n n m m
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Proof. Let C be the colimit of

C

V (G) D(G) V (G)

n m

This colimit can be obtained as two pushouts, one on the left and one
on the right. There is an induced morphism α : C → G and we want
to prove α to be an isomorphism. Since D(G) has the same edges
as G, α is a bijection on edges. So it suffices to look at vertices. But
taking the pushouts along n and m identifies each vertex in D(G)
with the underlying vertex in G from which it came. Therefore α is
an isomorphism.

Since every discrete cospan of hypergraphs arises from a discon-
nected one, it suffices to check fullness of π for disconnected cospans.
But that is fairly straightforward.

Proposition 4.2.17. For any disconnected cospan n → E ← m there is a
morphism R : n→ m in CBΣ such that π(R) = n→ E ← m.

Proof. Since monoidal product and unit in CBΣ translate to coprod-
uct and initial object under π, it suffices to check fullness on the basic
disconnected cospans. But, by definition of π, we have π( ) =
1→ 1← 1 and π( σ ) = n→ Y (σ)← m for σ ∈ Σn,m.

We can combine Proposition 4.2.16 and Proposition 4.2.17 to ob-
tain fullness of π.

Lemma 4.2.18. The functor π is full.

Proof. Let n → G ← m be a discrete cospan of hypergraphs. Then
take the decomposition according to Proposition 4.2.16 to obtain

V (G) D(G) V (G)

n n m m

Since the leftmost and rightmost cospans do not involve hyperedges,
they are in the image of π by Corollary 4.1.3 and by Proposition 4.2.17
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therefore also n → G ← m is in the image of π. Therefore, π is
full.

What we have left to prove therefore is that π also reflects the
ordering. That is we need to prove that given R,S : n → m in CBΣ,
whenever there is a commutative diagram

GS

n m

GR

α

ιS

ιR

ωS

ωR

then already R ≤ S ∈ CBΣ. To that end we will first prove that
CBΣ allows to decompose its morphism in a way that is analogous
to Proposition 4.2.16.

Lemma 4.2.19. Let R : n → m be a morphism in CBΣ. Then we can pick
a representative n→ GR ← m of π(R) and a decomposition

R = α R′ β

of R such that

• π(R′) = n → D(GR) ← m the canonical cospan on the disconnect
of GR.

• π( α ) = n → V (GR) ← n and likewise, π( β ) = m →
V (GR)← m.

Proof. We can prove this by induction on the structure of R. The ba-
sic building blocks are readily checked. Given such decompositions
on R1 and R2 it is straightforward to construct one on R = R1 ⊗ R2.
The remaining case is that of composition, which follows by Propo-
sition 4.2.14.

The relevance of Lemma 4.2.19 is that it allows us to reduce the
proof of order-reflection to disconnected cospans. Given a commu-
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tative diagram
GS

n m

GR

α

ιS

ιR

ωS

ωR

we get an induced diagram

n D(GS) m

n′ D(GR) m

f D(α) g

where f and g map the left and right interfaces of every component
of D(GS) as D(α) specifies.

We will first prove that diagrams like this give rise to inequalities
in CBΣ, then prove the general case.

Lemma 4.2.20. Let n → E ← m and n′ → E′ ← m′ be disconnected
cospans and

n E m

n′ E′ m′

f h g

a commutative diagram. Let R : n′ → m′ and S : n→ m be morphisms in
CBΣ such that

π(R) = n′ → E′ ← m′

and
π(S) = n→ E ← m

Let F : Cospan∼ FinSet → CBΣ be the morphism from Theorem 4.1.2, so
that f and g give rise to comaps in CBΣ, more precisely let

F(n
f−→ n′

id←− n′) = F(f)

and
F(m

g−→ m′
id←− m′) = F(g)
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Let now
R′ = F(f) R F(g)

Then R′ ≤ S.

Proof. Since both cospans are disconnected, f and g are uniquely de-
termined by h. Since E′ is a coproduct of Y (∗) and Y (σ), we can
consider the fiber for each summand separately. If E′ = Y (∗), then
also E has no edges, so the result follows from Corollary 4.1.3

We can therefore assume E′ = Y (σ) for some σ ∈ Σi,j , therefore
n′ = i and m′ = j. Since h preserves labels, E must be the sum of
a number, say k, of copies of σ. We need only consider the cases of
k = 0, 1, 2, all other cases reduce to these base cases.

• If k = 0, then S = and R′ = σ . We get

σ ≤ ≤

• If k = 1, then h is the identity, and we get R = R′ = S = σ ,
so there is nothing to show.

• If k = 2, then

S =
σ

σ

and
R′ = σ

We get

σ

σ

σ

≤ ≤
σ

σ

Theorem 4.2.21 (Graphical Theorem). π : CBΣ → DiscCospan∼ FHypΣ

is an isomorphism of Cartesian bicategories.

Proof. Thanks to Lemma 4.2.18, it remains to prove that π reflects the
ordering. Let R,S : n → m be morphisms in CBΣ such that π(R) ≤
π(S). Choose GR and GS as in Lemma 4.2.19. Let

R = α R′ β
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and
S = δ S′ γ

be the corresponding decompositions. Since π(R) ≤ π(S), we get a
diagram

GS

n m

GR

φ

ιR

ιS ωS

ωR

which extends to a diagram

V (GS) n′ D(GS) m′ V (GS)

n m

V (GR) n D(GR) m V (GR)

f D(φ) g

Let F : Cospan∼ FinSet → CBΣ be the morphism from Theorem 4.1.2

and let F(n
f−→ n′

id←− n′) = F(f) and F(m
g−→ m′

id←− m′) =
F(g) . If we take the above diagram apart and rearrange the pieces

we get the following:

1.
V (GS)

n n′

V (GR) n
f

which is a diagram of two cospans, so in Cospan∼ FinSet the
bottom cospan is less than the top one. Therefore, by applying
F , which preserves the ordering, we get

F(f)α ≤ δ

Note that F(f) seems to point in the wrong direction, which
is because F(f) is a comap rather than a map.
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2.

n′ D(GS) m′

n D(GR) m

f D(φ) g

to which we can apply Lemma 4.2.20 and obtain

F(f) R′ F(g) ≤ S′

3.
V (GS)

m′ m

m V (GR)
g

which again gives an inequality in Cospan∼ FinSet and by ap-
plying F we get

F(g) β ≤ γ

Putting together all the pieces of the puzzle, we finally get

R = α R′ β ≤

δ S′ γ = S

F(f)α F(f) R′ F(g) F(g) β

≤

Example 4.2.22. If R,S : n → m are morphisms in CBΣ, then The-
orem 4.2.21 allows us to decide if R ≤ S holds by checking for the
existence of a morphism α : GS → GR that makes the diagram

GS

n m

GR

α

ιS

ιR

ωS

ωR
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commute. To better let the reader appreciate the use of this, let us
consider an example. Let Σ = Σ1,1 = {σ}. Consider the morphism
R : 2→ 0 in CBΣ defined as

σ

σ

σ

σ

and S : 2→ 0 defined as

σ

These have corresponding universal graphs, given by GR which can
be illustrated as

σ

σ

σ

σ

and GS illustrated as
σ

To prove that R ≤ S, it suffices to find an interface-preserving homo-
morphism GS → GR. Such a morphism is visualised as follows:

σ

σ

σ

σ

σ

which shows that indeed R ≤ S.

4.3 A combinatorial characterisation for CBΣ/E

In CBΣ, every inequality is mediated by a morphism of hypergraphs
via Theorem 4.2.21. In a general Frobenius theory, this is often not
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true. We can postulate an axiom R ≤ S without there being a mor-
phism between GR and GS in either direction. That is a categorically
strange situation, because category theory is all about morphisms.
But there is a trick we can use here, which is that thanks to Proposi-
tion 1.1.8 we have R ≤ S if and only if R ∩ S = R. But it turns out
that there is always a morphism GR → GR∩S , which means we are in
business.

Proposition 4.3.1. If R,S : n → m are morphisms in CBΣ and GR∩S a
universal graph for R ∩ S, then GR∩S is a weak pushout

n+m GR

GS GR∩S

in FHypΣ.

Proof. In Proposition 1.1.8 we proved that R ∩ S =
R

S

.

Sending this through the isomorphism π : CBΣ → DiscCospan∼ FHypΣ

gives the composite

GR∩S

n GR + GS m

n n+ n m+m m

which is a weak colimit diagram. It is easy to check that this also
makes the above diagram a weak pushout.

We will therefore associate an inequality R ≤ S with the induced
morphism GR → GR∩S .

This allows us, starting from a Frobenius theory T , to define a
class of morphisms which corresponds to all the inequalities that
hold in T .

Definition 4.3.2. Given a Frobenius theory T , let X be the class con-
sisting of the following morphisms: Whenever R

n
≤

m
S

n m
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holds in T and
n+m GR

GS GR∩S
p

is a weak pushout in FHypΣ, then p ∈ X . Let W = W(X ) be the
witnesses (see Definition 2.3.1) generated from X . We refer toW as
the system of witnesses associated with the theory T .

When we are given a presentation of a Frobenius theory (Σ, E),
we have two choices of how to assign a class of witnesses to it. The
first is to ignore that we know a set of axioms E, use the class X
that corresponds to all inequalities that hold in CBΣ/E and generate
a class of witnesses from it asW(X ). The second and certainly more
economic one is to identify the axioms in E with a set of morphisms
of hypergraphs and consider the class W(E), the closure of E un-
der the properties of witnesses. Our goal is to prove that these two
constructions coincide. For that it will be useful to start with the less
economic one, becauseX already has some nice properties that make
W(X ) convenient to work with. It turns out that X satisfies all the
preconditions of Lemma 2.3.4:

Lemma 4.3.3. X contains identities and is furthermore closed under co-
products and weak pushouts.

Proof. This simply follows from the fact that inequalities in T are
compatible with monoidal product and composition.

Lemma 4.3.4 (Workhorse lemma). Let CBΣ/E be a Frobenius theory and
let W be the corresponding system of witnesses. Let R,S : n → m be
morphisms in CBΣ with corresponding universal graphs GR, GS and let

GR

n m

GS

w

ιR

ιS

ωR

ωS

be commutative with w ∈ W . Then R = S in CBΣ/E .
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Proof. LetL be the class of all the morphisms that satisfy the property
of the Lemma, that is all those morphisms w such that whenever

GR

n m

GS

w

ιR

ιS

ωR

ωS

then R = S in CBΣ/E . We want to prove that W ⊆ L. We can use
Lemma 2.3.4 to argue inductively.

If the property holds for a morphism w ; g, then it holds for w.
The property clearly holds for identities and is stable under compo-
sition. Therefore it remains to check the property for ω = d ∈ X .
Hence, d arises from a weak pushout

k + l GR

GT GS
d

such that R
k ≤l

T
k l . Here, the same GR appears with differ-

ent interfaces. For clarity, we will slightly abuse notation and denote
the corresponding string diagrams with the same letter, but labelling
the interface explicitly, so k → GR ← l will be denoted as R

k l and
n→ GR ← m as R

n m . Combining the two interfaces gives a string

diagram
n m

k l
R corresponding to k + n→ GR ← l +m such that

n m

k l

R = R
n m

and

n m

k l

R = R
k l

From what we already know for CBΣ, we have S ≤ R in CBΣ, so
also in CBΣ/E . It therefore suffices to show R ≤ S in CBΣ/E .

Since GS is a weak pushout, by Proposition 4.3.1 we have

S
k l

=
T

R

k l
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and since the interface n→ GS ← m factors through GR, we have

S
n m

=

T

R

k l

n m

From this we get

S
n m

=

T

R

k l

n m

R

R

k l

n m≥ ≥

n m

k l
R

n m

k l
Rk

n

l

m

=
n m

k l
R = R

n m

This allows us to give a combinatorial characterisation of CBΣ/E ,
similar to the one for CBΣ in Theorem 4.2.21.

Definition 4.3.5. LetW be a class of witnesses. Let DiscCospanW FHypΣ

be the full subcategory of CospanW FHypΣ (see Definition 2.3.2) on
the natural numbers seen as discrete hypergraphs (compare Defini-
tion 4.2.6).

Theorem 4.3.6. We have CBΣ/E
∼= DiscCospanW FHypΣ

Proof. For any inequality A ≤ B in E we have a commutative dia-
gram

GA

X GA∩B Z

GB

e

in FHypΣ where e ∈ W . This means that

CBΣ → DiscCospan∼ FHypΣ → DiscCospanW FHypΣ

satisfies E, so by Proposition 3.2.3, there is an induced morphism
CBΣ/E → DiscCospanW FHypΣ. This morphism is identity on objects
and full since every discrete cospan of hypergraphs comes from a
string diagram. It suffices to see that this morphism is faithful, for

95



which it suffices to show that it reflects the ordering. Assuming we
have a commutative diagram

GA

X GA′ Z

GB

w

in FHypΣ withw ∈ W . Then by Lemma 4.3.4 we have A A′=

and therefore by Theorem 4.2.21 we have

A A′= B≤

Starting from a presentation of a Frobenius theory (Σ, E), we could
also consider the class of witnesses directly generated from the mor-
phisms corresponding to E. In fact, this gives the same class of mor-
phisms.

Theorem 4.3.7. Let (Σ, E) be a Frobenius theory and let W be the cor-
responding system of witnesses. Identify E with the set of morphisms
GA → GA∩B for A ≤ B ∈ E. Then

W(E) =W

Proof. Since E ⊆ W and since W is a class of witnesses, we have
W(E) ⊆ W . We therefore show the converse now. For any inequality
A ≤ B in E we have a commutative diagram of hypergraphs

GA

n GA∩B m

GB

e

By the universal property of CBΣ/E in Proposition 3.2.3, this induces
a morphism of Cartesian bicategories

F : DiscCospanW FHypΣ
∼= CBΣ/E → DiscCospanW(E) FHypΣ
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SinceW = W(X ), it suffices to show X ⊆ W(E). Let now A ≤ B be
any inequality (not necessarily an axiom) that holds in CBΣ/E and

n+m GA

GB GA∩B
x

a weak pushout. Since F respects the ordering, we get F (A) ≤ F (B),
which by definition means that there is a commutative diagram

GA

n Z m

GB

w

in FHypΣ with w ∈ W(E). By the universal property of the weak
pushout, we get a morphism GA∩B → Z such that

n+m GA

GB GA∩B

Z

x w

and therefore x ∈ W(E).

Therefore CBΣ/E can be described using witnesses generated in
a simpler way:

Corollary 4.3.8. We have CBΣ/E
∼= DiscCospanW(E) FHypΣ.

This has the important consequence that inequalities that hold in
CBΣ/E correspond to morphisms inW(E). This will be fundamental
in 5, so it deserves special attention:

Corollary 4.3.9. For A,B : n → m morphisms in CBΣ, let α : GA →
GA∩B be the canonical morphism. Then α is a witness generated from E if
and only if A ≤ B in CBΣ/E .
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Chapter 5

Completeness

Introduction

This chapter is devoted to finally proving the completeness theorem,
as already hinted at in Section 3.3. To that end, we will make heavy
use of the results established in Chapter 4, where we saw that we
can understand free Cartesian bicategories in terms of hypergraphs.
This is already a first step in an entirely categorical perspective on the
problem of completeness. It will prove convenient to refer explicitly
to a presentation of a Frobenius theory. Since this chapter’s result
are constructive, for practical applications this presentation can and
should be chosen carefully.

In order to show completeness we need to prove that every prop-
erty that is shared by all models of CBΣ/E already has a proof in
CBΣ/E . As mentioned in the introduction, our aim is to transfer this
problem along the love triangle into the world of hypergraphs. We
can translate the set of axioms E into a set of morphisms of hyper-
graphs, by identifying R ≤ S with the morphism GR → GR∩S as
we did in Section 4.3. It will turn out that models of CBΣ/E cor-
respond to those hypergraphs that satisfy a lifting property, called
E-injectivity. Furthermore, we will see that the inequalities that hold
in all models correspond to morphisms that satisfy an analogous lift-
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ing property with respect to those E-injective objects. We call those
morphisms cofibrations.

On the other hand, Chapter 4 has taught us that inequalities in
CBΣ/E correspond to witnesses generated by E. This allows us to
formulate the question of completeness in entirely categorical terms:
Is every cofibration with respect to E-injective objects already a wit-
ness?

Seen this way, this question is of general categorical interest. We
therefore detach the study from the category of hypergraphs and
study it in full generality. The context for that general treatment is the
theory of locally finitely presentable categories, categories that come
with a well-behaved notion of finite object, called compact objects.
Since all string diagrams are finite, their corresponding hypergraphs
are finite too, which is why compact objects play an important role
for us.

The categorical counterpart of the completeness theorem comes
in the form of a mild sufficient condition on the set E which implies
that every cofibration between compact objects is already a witness.
In order to prove this, we will, starting from an objectX , construct an
injective objectX ′ with a morphismX → X ′ in a way that is inspired
by the orthogonal reflection defined in [2].

This construction will be iterative and each step will be done for
us by a functor FE . Intuitively, applying the functor to an object
X does the following: For any morphism f ∈ E, FE looks for all
matchings of the codomain of f in X , and glues the domain of f into
X . Logically speaking, for every axiom of our theory, FE matches
all possible left-hand sides of axioms and glues in the corresponding
right-hand sides.

However, it could be that in the process of gluing we introduce
new matchings that are not accounted for – which is why the con-
struction needs to be iterated. In the colimit, this iterative applica-
tion will turn out to yield an injective object. But we will also prove
that each step of the construction gives rise to a witness. We can then
use a compactness argument to show that for any given cofibration,
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finitely many applications (and a finite subset of E) suffice. But since
witnesses are closed under composition, this will conclude the proof.

Outline of the Chapter In Section 5.1 we will establish a corre-
spondence between Σ-hypergraphs and models of CBΣ, that is Σ-
structures. This correspondence is categorically interesting, because
for any hypergraph G, its Hom-functor Hom( , G) maps colimits of
hypergraphs to limits in Set, which means that it induces a morphism
of Cartesian bicategories

MG : CBΣ
∼= DiscCospan∼ FHypΣ → Span∼ Set ∼= Rel

The Lifting Lemma 5.1.4 will then establish an important connection
between logical properties of MG and categorical lifting properties
of G. Its proof is similar in spirit to the Yoneda Lemma. We will use
this to give the categorical translation of the completeness problem
that we tackle in the remainder of this chapter.

Section 5.2 gives a short overview over the theory of locally finitely
presentable categories based on [2], where the interested reader can
find further details.

Section 5.3 is a brief intermezzo that shows how to prove a spe-
cial case of the completeness theorem, the case for Frobenius theories
with no axioms, i.e. with E = ∅. It is not strictly necessary to do that
since it would follow from the general completeness theorem, but it
is an instructive example to see what the categorical formulation of
completeness boils down to in this special case.

Section 5.4 is the technical meat of the thesis. It develops the
categorical machinery necessary to prove the completeness theorem,
most importantly the functor FE , where FE (X) is one step towards
an ”injectivisation” ofX . More generally, denoting byFEn the n-fold
application of FE , we can construct a sequence

X FE (X) FE2 (X) FE3 (X) · · ·

the colimit of which we call FEω (X). This object will turn out to be
E-injective. But importantly, the morphisms X → FEn (X) further-
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more have the property of being witnesses with respect to E. From
this we can prove that any cofibration is a witness using a compact-
ness argument.

5.1 Hypergraphs and models

The isomorphism π : CBΣ → DiscCospan∼ FHypΣ that we have con-
structed in Chapter 4 gives a useful combinatorial perspective on
string diagrams, but it has additional important logical consequences.
This section is devoted to those.

The first comes from the observation that for any Σ-hypergraph
G, the functor Hom( , G) maps finite colimits in FHypΣ to limits in
Set. This means that it sends coproducts to products and pushouts
to pullbacks, so we get

MG : CBΣ
∼= DiscCospan∼ FHypΣ → Span∼ Set ∼= Rel

By contravariance of Hom( , G),MG is furthermore order-preserving
and therefore a morphism of Cartesian bicategories.

Definition 5.1.1. Let G be a Σ-hypergraph. Let MG : CBΣ → Rel
be the morphism of Cartesian bicategories induced by Hom( , G) as
described above. We callMG the Σ-structure associated with G. If
GR is a universal graph for R : n → m, we writeMGR = UR and call
it a universal model of R.

Intuitively, Σ-hypergraphs and Σ-structures are very similar. A
Σ-structure S comes with a relation S(σ) ⊆ S(1)n × S(1)m for every
σ ∈ Σn,m. We can think of this as a hypergraph that has at most
one σ-hyperedge between any tuple of vertices. Conversely, given a
hypergraph G, the Σ-structureMG is obtained in a relatively simple
manner. The set MG(σ) consists of all those tuples of vertices that
are joined by some σ-hyperedge in G. The following does therefore
not come as a surprise.

Proposition 5.1.2. For any modelM : CBΣ → Rel, there is a hypergraph
G such thatM∼=MG.
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Remark 5.1.3. Universal graphs and universal models are only unique
up to mutual morphisms, not up to isomorphism. There is therefore
no justification to speak of ”the” universal model/graph. Neverthe-
less, we use the notation GR for any universal graph of R and UR for
any universal model of R, because the particular choice of represen-
tative does not matter. For example, an inequality R ≤ S gives rise
to a morphism GS → GR independently of which representative is
chosen.

Universal graphs play an important role for us. As we have seen,
inequalities between string diagrams translate to morphisms between
their universal graphs. This translation can be further refined into a
property very similar to one appearing in [4].

Lemma 5.1.4 (Lifting Lemma). Let A,B : n → m in CBΣ be string
diagrams and let α : GA → GA∩B . Let G be a Σ-hypergraph. We have
MG(A) ⊆MG(B) if and only if for any morphism f : GA → G, there is a
morphism g : GA∩B → G such that

GA GA∩B

G

α

f
g

Proof. We prove both implications.

• Assume MG(A) ⊆ MG(B). By definition of MG we have a
commutative diagram

Hom(GA, G)

Hom(n,G) Hom(m,G)

Hom(GB , G)

ιA; ωA;

β

ιB ; ωB ;
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in Set. This means that the diagram

n+m GA

GB GA∩B

G

f

β(f)

commutes, hence the dashed morphism exists by the property
of the weak pushout GA∩B as required.

• If, conversely, for any morphism f : GA → G there is a g : GA∩B →
G as above, pick one such g(f) for each f and consider α(f) =

GB → GA∩B
g(f)−−−→ G. This makes the diagram

Hom(GA, G)

Hom(n,G) Hom(m,G)

Hom(GB , G)

α

commute, and therefore we haveMG(A) ≤MG(B).

5.1.1 Injectivity and cofibrations

The importance of the Lifting Lemma 5.1.4 can hardly be overstated.
It translates the logical property ofMG satisfying an inequality into
a categorical lifting property of G. This motivates us to take a closer
look at lifting properties and the logical properties they correspond
to.

Definition 5.1.5. Let b : X → Y and f : X → Z be a pair of mor-
phisms. A morphism g : Y → Z, that makes the diagram

X Y

Z

b

f
g
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commute, is called a lift of f along b.

In this language, the Lifting Lemma 5.1.4 makes a connection
between inequalities and lifts. Since a model of CBΣ/E is a model
of CBΣ that simultaneously satisfies several inequalities, the corre-
sponding categorical notion will be the notion of an injective object,
an object that satisfies several lifting properties.

Definition 5.1.6. Let E be a class of morphisms. An object I is called
E-injective if any morphism f : X → I has a lift along any morphism
in E. We denote the class of E-injective objects by E -Inj.

Example 5.1.7. In the category of left R-modules over a ring R the
class of injective modules is given byE -Inj forE the class of monomor-
phisms.

Remark 5.1.8. Another way to state Definition 5.1.6 is as follows:
An object I is E-injective if the contravariant Hom-functor Hom( , I)
maps morphisms in E to surjective functions.

For a presentation (Σ, E) of a Frobenius theory, where E is a set
of inequalities between morphisms in CBΣ, we can identify E with a
set of morphisms in FHypΣ, where the inequality A ≤ B is identified
with GA → GA∩B , as we did in Chapter 4. In the following, we will
see E as such a set of morphisms.

Proposition 5.1.9. If (Σ, E) is a presentation of a Frobenius theory, then
a hypergraph G is E-injective if and only ifMG is a model of (Σ, E).

But the Lifting Lemma 5.1.4 can be read in two ways. Instead
of fixing the inequality and looking for Σ-structures that satisfy it,
we can do the converse. Fixing a structure, the Lifting Lemma 5.1.4
characterises categorically which inequalities that structure satisfies,
or more generally, given a class of structures, we can categorically
characterise inequalities that they satisfy simultaneously. This will
then correspond to a categorical property that is “dual” to that of
injectives, starting from a class of objects rather than a class of mor-
phisms.
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Definition 5.1.10. Let J be a class of objects. A morphism c : X → Y
is called a J-cofibration if any morphism f : X → I with I ∈ J has a
lift with respect to c.

Remark 5.1.11. The name cofibration is in analogy to how the term
is used in the theory of model categories, see [27]. The notable dif-
ference is that we focus on injective objects rather than injective mor-
phisms and hence our cofibrations are defined with respect to a class
of objects.

Interestingly, one can build a factorisation system with transfinite
composites of witnesses as left class and injective morphisms as right
class, which is an application of the small object argument. Since in-
jective morphisms are of less interest here, we leave the investigation
of that factorisation system to possible future work.

Remark 5.1.12. A morphism c : X → Y is a J-cofibration if and only
if Hom(c, I) : Hom(Y, I) → Hom(X, I) is a surjective function for ev-
ery I ∈ J . In other words, a J-cofibration is a morphism that is
mapped to a surjective function by every Hom( , I) for I ∈ J .

The relevance of the notion of J-cofibration is as follows:

Proposition 5.1.13. Let (Σ, E) be a presentation of a Frobenius theory,
R,S : n → m morphisms in CBΣ and α : GR → GR∩S the canonical mor-
phism. Let J be the class of E-injective objects. The following are equiva-
lent:

• α is a J-cofibration

• every modelM : CBΣ/E → Rel satisfiesM(R) ⊆M(S)

Proof. Since any models of CBΣ is of the formMG for a Σ-hypergraph
G by Proposition 5.1.2 and sinceMG defines a model of CBΣ/E if and
only if G is E-injective by Proposition 5.1.9, the claim follows from
the Lifting Lemma 5.1.4.

5.1.2 Categorical outlook on Completeness

There is an interplay between classes of injectives and classes of cofi-
brations.
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Proposition 5.1.14. Cofibrations and injective objects form an (antitone)
Galois connection between classes of objects and classes of morphisms, that
is:

1. If E ⊆ E′, then E′ -Inj ⊆ E -Inj.

2. If I ⊆ I ′, then I ′ -Cofib ⊆ I -Cofib.

3. LetE be a class of morphisms and I a class of objects. Then I ⊆ E -Inj
if and only if E ⊆ I -Cofib.

In general, a Galois connection induces closure operators, one of
which comes in handy for our particular case.

Lemma 5.1.15. For any class of objects J , J -Cofib is a class of witnesses
as defined in Definition 2.3.1.

Proof. We have to show that cofibrations are closed under composi-
tion, coproducts and pushouts. By Remark 5.1.12, cofibrations are
those morphisms that are mapped to surjective functions in Set un-
der all Hom( , I) for I ∈ J . These functors are contravariant, so it
suffices to show that surjective functions in Set are closed under the
duals of those operations, so that surjective functions form a class of
covers in Set. That is easily seen to be the case.

Corollary 5.1.16. Let E be a set of morphisms,W(E) be the class of wit-
nesses generated by E, then

W(E) ⊆ (E -Inj) -Cofib

Taking all of this together gives us a dictionary between logi-
cal and categorical notions in Figure 2. With this dictionary, com-
pleteness becomes a kind of dual of Corollary 5.1.16 in the follow-
ing sense: Proposition 5.1.13 gives a neat categorical description of
completeness: We need to prove that every property that is shared
by all models is a logical consequence of the axioms, in other words
we need to prove that every J-cofibration, where J is the class of
E-injective objects, is “provable” from E. But we have seen in Corol-
lary 4.3.9 that this notion of provable is exactly a witness generated
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from E. We therefore have the following categorical incarnation of
the completeness theorem. The remainder of this chapter is dedi-
cated to developing the proof.

logical categorical
A,B : n→ m in CBΣ GA → GA∩B

Set E of axioms A ≤ B Set E of morphisms GA → GA∩B
R ≤ S in CBΣ/E GR → GR∩S ∈ W(E)

MG is a model of CBΣ/E G is E-injective
M(R) ≤M(S) GR → GR∩S
∀M : CBΣ/E → Rel is a cofibration with respect to E -Inj

Figure 2: Dictionary between logical and categorical properties

Sketch of Theorem (Completeness theorem). Let C be a “sufficiently
nice” category. Let E be a “sufficiently nice” set of morphisms in C. Let f
be a “sufficiently nice” morphism. The following are equivalent:

• f is a cofibration with respect to E-injective objects.

• f is a witness generated by E.

In the following we will have to see what sufficiently nice should
mean. Spoiler: The concept of a locally finitely presentable category
will be tremendously helpful.

5.2 Locally finitely presentable categories

Considering hypergraphs rather than models has convenient bene-
fits for us, as the former category has the rich structure of a locally
finitely presentable category. This structure turns out to be essential
for our proof of the completeness theorem, so we review it here. The
standard textbook introduction to the topic is [2]. Intuitively, a lo-
cally finitely presentable category has a set of objects that are “finite”
in a suitable sense, such that every other object is constructed from
the finite ones. Since the word finite is overloaded with meaning all
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throughout mathematics, in this context one typically speaks of com-
pact objects. Since category theory is all about relationships between
objects, essentially treating objects as black boxes, it is remarkable
that there is a categorical notion that captures the intuition of “finite-
ness” fairly well. For example, for the category of vector spaces, com-
pact objects are precisely finite dimensional vector spaces.

Definition 5.2.1. A directed set is a preordered set where each finite
subset has an upper bound.

Directed sets are used in topology and analysis to define a notion
of limit that is more general than the usual notion of sequential limit
induced by sequences. We can see directed sets as categories in the
usual way every preordered set can be seen as a category – the objects
of the category are elements of the set with exactly one arrow a → b

if and only if a ≤ b. But there is also a more straightforward way
of categorifying the notion of directedness, which is the concept of a
filtered category.

Definition 5.2.2. A filtered category is one where every finite subdi-
agram admits a cocone.

Just like colimits over finite diagrams can be constructed from ini-
tial objects, coproducts and coequalisers, this is also true for cocones.
This gives an equivalent characterisation of filtered categories.

Lemma 5.2.3. A category C is filtered if and only if it has the following
three properties:

• There is an object in C

• For any two objects X,Y ∈ C there is an object Z and morphisms
X → Z and Y → Z.

• For any parallel pair of arrows f, g : X → Y , there is h : Y → Z
such that

f ; h = g ; h

Example 5.2.4. The most important example of a filtered category for
us is the category of natural numbers with a morphism n→ m if and
only if n ≤ m. Diagrams over this category are sequences

X0 X1 X2 X3 · · ·
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It turns out that filtered diagrams, diagrams indexed over a fil-
tered category, and colimits of such diagrams define a useful notion
of finiteness.

Definition 5.2.5. A functor is called finitary if it preserves filtered col-
imits. An object C in a category is called compact if the Hom-functor
Hom(C, ) is finitary.

Example 5.2.6.

• In the category Set, the compact objects are exactly finite sets.

• In the category of vector spaces over a field, the compact objects
are exactly finite dimensional vector spaces.

• In the category of groups, the compact objects are precisely
finitely presented groups.

Since compact objects are supposed to capture a notion of finite-
ness, the following is something one should expect.

Lemma 5.2.7. Compact objects are closed under finite colimits.

Proof. Filtered colimits commute with finite limits. The closure of
compact objects under finite colimits follows by the Yoneda Lemma.

Finite sets in Set have an additional interesting property. Every
set can be constructed as the union over its finite subsets. Categori-
fying this property is what motivates the notion of a locally finitely
presentable category.

Definition 5.2.8. A locally finitely presentable category is a cocom-
plete category with a set of compact objects, where every object is the
colimit over the (filtered) category of compact objects mapping into
it.

Example 5.2.9.

• The category Set of sets and functions is locally finitely pre-
sentable. The compact objects are exactly the finite sets.
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• Every presheaf category [Cop,Set] is locally finitely presentable.
The compact objects are finite colimits of representables. In
particular, the category HypΣ of Σ-hypergraphs, introduced in
Chapter 4, is locally finitely presentable with the finite hyper-
graphs as compact objects.

We will need a stronger notion of finiteness, that is not standard in
the literature. In the category of sets, there is only a finite number of
morphisms between finite sets. An equivalent, more categorical, way
of saying this is that for a finite setX , the Hom-functor Hom(X, ) pre-
serves compactness – given a finite set Y , also the set of morphisms
Hom(X,Y ) is finite.

Definition 5.2.10. We call a functor humble if it preserves filtered col-
imits and sends compact objects to compact objects. Similarly, an
object X ∈ C is called humble if Hom(X, ) : C → Set is a humble
functor.

For such a humble objectX and any compact object Y , Hom(X,Y )

is therefore a compact object in Set, which is to say it is finite.

Remark 5.2.11. Since there are only finitely many functions between
finite sets, humble sets and compact sets agree. The same is true
for presheaf categories, humble presheaves and compact presheaves
agree. Therefore, for Σ-hypergraphs, humble hypergraphs are ex-
actly the finite ones.

5.3 Completeness for free theories

The special case of E = ∅ is instructive, so even though it will later
follow from the general completeness Theorem, we will investigate
it closer. For E = ∅, any object is E-injective because that becomes
a vacuous condition. That means that cofibrations have to have the
lifting property with respect to identities, which forces them to be
exactly split monos. But that is also the smallest class of witnesses.

Theorem 5.3.1. The class of cofibrations with respect to ∅-injective objects
coincides with the witnesses generated by ∅.
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Corollary 5.3.2 (Completeness for free theories). If R,S : n → m in
CBΣ satisfyM(R) ≤ M(S) for all modelsM : CBΣ → Rel, then R ≤ S
in CBΣ.

5.4 Proof of the completeness theorem

We shall now develop the tools to prove Theorem 5.4.27. The general
idea is the following: Given an objectX , we will develop a morphism
X → X ′ that is a suitable filtered colimit of witnesses such that X ′ is
E-injective. Then for f : X → Y a cofibration, we get a diagram

X X ′

Y

f
g

where g exists because f is a cofibration and X ′ is E-injective. Now,
if Y is compact, since X ′ is a filtered colimit of witnesses, there is a
witness e : X → X ′′ and

X X ′′

Y

f

e

g′

Therefore also f is a witness.

5.4.1 Expansions

We will now construct this “injectivisation”. The idea for the con-
struction is to construct from X a new object X ′ with a morphism
ζ : X → X ′ such that for any e : A → B ∈ E and f : A → X , there is
g : B → X ′ such that

X X ′

A B

ζ

f

e

g
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It will be convenient to construct such an object indirectly via a
universal property and then hope that it actually exists (Spoiler alert:
it does).

Definition 5.4.1. Let e : A→ B be a morphism. An expansion along e
is a morphism φ : X → Y together with a function β : Hom(A,X)→
Hom(B, Y ) such that for every g : A → X , the following diagram
commutes:

X Y

A B

φ

g

e

β(g)

More generally for a set E of morphisms, an expansion along E is
a morphism φ : X → Y together with a family of functions (βe)e∈E ,
where for e : A → B ∈ E, βe : Hom(A,X) → Hom(B, Y ) makes the
above diagram commute.

Proposition 5.4.2. For a set of morphisms E, denote the set of expan-
sions from X to Y by ExpE(X,Y ). This is functorial in both variables,
depending contravariantly on X and covariantly on Y , so it defines a func-
tor ExpE : Cop × C → Set, (X,Y )→ ExpE(X,Y ).

The point of ExpE is that ExpE(X, ) will be a representable func-
tor and a representation Hom(X ′, ) ∼= ExpE(X, ) of it will be the
first step in making X injective.

Proposition 5.4.3. ExpE(X,Y ) is the pullback

ExpE(X,Y )
∏

e : A→B∈E
Hom(A,X)→ Hom(B, Y )

Hom(X,Y )
∏

e : A→B∈E
Hom(A,X)→ Hom(A, Y )

q

p

where
p(φ)e(f) = f ; φ

and
q(β)e(f) = e ; βe(f)
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The idea is now to look for the initial expansion of X along E.
Formally that corresponds to considering ExpE(X, ) as a functor
in its second variable and hoping that it is a representable functor
(Spoiler alert: It is.).

Lemma 5.4.4. Let X be an object. There is a diagram ∆: D → C such that

ExpE(X, ) ∼= Cocone(∆, )

Proof. Let D be the category consisting of an object ∗ together with
one span ∗ ← Pe,f → Qe,f for every e : A → B ∈ E and every
f : A → X . Note that there are no non-trivial compositions in D.
Now set ∆(∗) = X and for e : A→ B ∈ E and f : A→ X ,

∆(Pe,f → ∗) = A
f−→ X,

∆(Pe,f → Qe,f ) = A
e−→ B

Now we need to prove that a cocone over ∆ is the same thing as an
expansion along E. Note that every α ∈ Cocone(∆, Y ) in particular
defines a morphism α∗ : X → Y just like for expansions. The dif-
ference between the view as expansions and the view as cocones is
how the remaining data is organised: For each e : A → B and each
f : A → B the cocone α gives rise to a morphism αQe,f : B → Y ,
while for expansions, the data is “curried” as βe(f). The condition
of being a cocone makes the same diagrams commute as an expan-
sion needs to satisfy and every expansion defines a unique cocone
because the components αPe,f can be reconstructed from the com-
mutative diagrams.

We are particularly interested in the case where this ∆ is a finite
diagram. For that, E needs to be finite and every codomain in E

needs to only allow finitely many morphisms into the object X being
expanded.

Proposition 5.4.5. In the case that E is finite and X is compact and the
morphisms in E have humble domains, the diagram ∆ from Lemma 5.4.4 is
finite.
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Corollary 5.4.6. In a cocomplete category C, ExpE(X, ) is representable
for each X resulting in a functor FE : C → C such that

Hom(FE (X) , Y ) ∼= ExpE(X,Y )

Proof. The details are spelled out in the Appendix in Lemma A.1.23.

Example 5.4.7. Consider some examples for the construction of FE
at work.

• Let Σ = ∅ and E = { ≤ }, where the left-hand side is
the empty diagram representing id0 : 0→ 0 in CBΣ. Now mod-
els of CBΣ/E (in Rel) are precisely the non-empty sets. G = ∅
is the empty hypergraph, the initial object in FHypΣ, so there is
a unique morphism G → G, so ∆ will consist of only a single
span, namely

G G

∅

The colimit of this diagram is the coproduct G + G and we
have G = 1, so FE (G) = G+ 1.

• Let Σ = ∅ and E = { ≤ }. There are two models
of this theory, namely the set with only one element and the
empty model. Now, G = 2 the set with two elements, hence
the diagram ∆ consists of one span

G G

2
(x,y)

for every (x, y) ∈ G(1)2. Now we have G = 1, so the colimit
over ∆ will glue together every pair of elements of G(1). If G
is non-empty, that will yield FE (G) = 1, if G is empty, ∆ will
be the diagram containing only G, so FE (G) will be the empty
set as well.

• Let Σ = {R : 1 → 1} and E =

 R

R

≤

.

Models of this theory are sets equipped with an antisymmet-
ric relation R. Let G be a Σ-hypergraph, so a directed graph.
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Now G R

R

has two vertices that are mutually related via R,

so a morphism α : G R

R

→ G picks out precisely two such

vertices. Therefore, ∆ contains a span

G G

2
(x,y)

for every such pair of vertices (x, y). Now, G = 1 as before,
so the colimit over ∆ will glue together every pair of elements
of G(1) that are mutually related via G(R), in other words we
quotient G in order to enforce antisymmetry of R.

• Let Σ = {R : 1 → 1} and E = { R R ≤ R } Mod-
els of this theory are sets equipped with a transitive relation
R. Let G be a Σ-hypergraph, so a directed graph. Then G

R R

consists of three vertices a, b, c with (a, b), (b, c) ∈ G
R R

(R). A
morphism G

R R
→ G corresponds to a configuration of three

vertices like that in G. Now the diagram ∆ contains one span

GR G

2ιR+ωR (x,z)

for every x, y, z with (x, y), (y, z) ∈ G(R). We have GR(1) =
{ιR, ωR} a two-element set and we have GR(R) = {(ιR, ωR)}.
Since ιR+ωR : 2→ GR induces an isomorphism on the underly-
ing sets, the colimit of ∆ has the same underlying set as G. The
effect of the colimit is to make sure that there is an edge x → z
for every pair of edges x → y, y → z. In other words FE (G)
is the first step of a transitive closure of G. This example also
shows that FE (G) is in general not E-injective. To obtain an
E-injective object, one needs to iterate this construction, which
we will investigate in the following.

• Let Σ = {R : 1→ 1} and

E =

 R≤
R

R

, R≤

 .
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A model of this theory is a set equipped with an endofunc-
tion. Let G be any Σ-hypergraph, so a directed graph. We have
G = 1, so ∆ contains for every x ∈ G(1), a span G

R

ιR←−
1

x−→ G, where G
R

= GR as before, but note how we glue
only along the left interface this time. The effect of this part
of the colimit is to freely adjoin an image under R for every
x ∈ G(1). The other class of spans in ∆ are those coming
from the first inequality inE, where we need to consider G R

R

,

consisting of three vertices a, b, c with (a, b), (a, c) ∈ G R

R

(R).

So the other class of spans in ∆ are G
R

ι+ω←−− 3
(x,y,z)−−−−→ G,

where (x, y), (x, z) ∈ G(R). Here G
R

= GR, with inter-
face ι : 1 → GR the usual left interface but the right interface,
ω : 2 → GR, collapses both points. The effect of this part of the
colimit is to glue y and z together whenever both (x, y) ∈ G(R)
and (x, z) ∈ G(R).

Proposition 5.4.8. Since FE (X) is the universal expansion of X along
E, in particular there is a morphism ζX : X → FE (X). This morphism is
natural in X , so we get a natural transformation ζ : idC → FE .

The important aspect about the colimit description of FE is that
the diagram ∆ has a peculiar shape that can be best described as a
star of spans. There is a central point (called ∗ in the proof of 5.4.4),
attached to which are a number of spans. Using abstract nonsense,
we can prove handy tools about those diagrams and their colimits.
But let us first fix some nomenclature.

Definition 5.4.9. A marked span is a graph of the shape ∗ A←− B−→, with
one of the two external points marked ∗ so as to break the symmetry.
We call the edge pointing to ∗ the inner edge, and the remaining edge
the outer one. A starspan is a graph that consists of a set of marked
spans, glued together along their ∗-points.

Colimits over starspan diagrams are interesting, because they can
be broken down into pushouts of simpler colimits.

Lemma 5.4.10 (Iteration). Let G be a starspan and S1, S2 a partition of
its marked spans into two classes. Let Gi be the starspan having Si as its
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set of spans. Given a diagram ∆: G → C, we can naturally restrict it to
diagrams ∆i : Gi → C. Let X = ∆(∗) then

colim ∆1 colim ∆

X colim ∆2

is a pushout diagram.

Proof. This follows from Corollary A.3.3 and the observation that

colimG1 colimG

∗ colimG2

is a pushout.

Lemma 5.4.10 has the consequence that for a finite starspan, we
can compute the colimit one pushout at a time. Since witnesses are
closed under pushouts and composition, that has the following im-
portant consequence:

Corollary 5.4.11. Let G be a finite starspan and C be a category, E a set
of morphisms. Let ∆: G → C such that every outer edge is a witness with
respect to E. Then the induced morphism f : ∆(∗)→ colim ∆ is a witness
as well.

Proof. This is done by induction on the number of spans in G. If
G has no spans, the statement becomes vacuous. Consider the case
where G can be written as a pushout

s G

∗ G′

where s is a single span. Let ∆: G → C be a diagram. Restricting ∆
to G′ and to s gives diagrams ∆′ and ∆s respectively. By induction
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hypothesis, the canonical morphism X → colim ∆′ is a witness. The
colimit of ∆s is the following pushout

X colim ∆s

A B

where by assumption on ∆, the morphism A → B is a witness. This
makes the induced morphism X → colim ∆s a witness as well. By
Lemma 5.4.10, the diagram

colim ∆′ colim ∆

X colim ∆s

is a pushout, so the induced morphism X → colim ∆ is a witness as
well.

Most importantly, this observation applies to FE and shows that
the morphism ζX : X → FE (X) is a witness generated from E.

Lemma 5.4.12. If E is finite and morphisms in E have humble domains
and X is compact, then ζX : X → FE (X) is a witness generated from E.

Proof. Follows from Corollary 5.4.11 and Lemma 5.4.4.

Proposition 5.4.13. The set ExpE(X,Y ) depends contravariantly on the
set of morphisms E in the sense that for any inclusion E ⊆ E′, there is a
canonical forgetful function ExpE′(X,Y )→ ExpE(X,Y ), forgetting part
of the data.

Corollary 5.4.14. FE depends covariantly onE in the sense that whenever
E ⊆ E′, there is a natural transformation FE → FE′ .

Proof. This is an application of Lemma A.1.23.

Lemma 5.4.15. Let D be a directed system of sets of morphisms. Then

Exp⋃
D(X,Y ) ∼= lim

D∈D
ExpD(X,Y )
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Proof. An element of limD∈D ExpD(X,Y ) is a family of expansions
xD, one for each D ∈ D such that whenever D ⊆ D′, forgetting the
additional data in xD′ yields xD. It is clear that an expansion along⋃
D gives rise to such a compatible family by restriction. So it suffices

to prove the converse, that every compatible family of expansions
gives rise to an expansion along the whole of

⋃
D.

Assume that we have a compatible family of expansions, where
xD is an expansion along D. Since the family is compatible, the
morphism part of the xD has to be always the same. Because let
D1, D2 ∈ D. Since D is directed, there is D1, D2 ⊆ D ∈ D. Now let
φD : X → Y be the morphism associated with xD and likewise forD1

and D2. Since forgetting along D1 ⊆ D and D2 ⊆ D leaves the mor-
phism unchanged, we get φD1

= φD = φD2
. The whole family there-

fore agrees on a morphism, call it from now on φ : X → Y . We choose
that as the morphism part of the expansion along

⋃
D. We now need

to define a family of morphisms βe : Hom(A,X) → Hom(B, Y ) for
each e : A → B ∈ E. We are given such families (βD)e for each
D ∈ D. Fix e ∈

⋃
D, then there is D ∈ D with e ∈ D. Unfortu-

nately, this D will in general not be unique. Nevertheless, we have a
canonical choice for βe because it turns out that if e ∈ D1 and e ∈ D2,
then (βD1

)e = (βD2
)e. Since D is directed, there is a D ∈ D such that

D1, D2 ⊆ D. Since the family is compatible, βD1 and βD2 are the re-
sult of forgetting from βD. But since e ∈ D1, D2, D, it is not affected
by forgetting and therefore

(βD1
)e = (βD)e = (βD2

)e

It is easy to see that (φ, β) makes the required diagrams commute
and is therefore an expansion. Forgetting the additional structure of
β along any inclusion D ⊆

⋃
D yields βD.

Corollary 5.4.16. For a directed system D of sets of morphisms and E =⋃
D, we have

FE ∼= colim
D∈D

FD

Proof.

Hom(FE (X) , Y ) ∼= ExpE(X,Y ) ∼= lim
D∈D

ExpD(X,Y )

∼= lim
D∈D

Hom(FD (X) , Y ) ∼= Hom(colim
D∈D

FD (X) , Y )
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This isomorphism is natural in X and Y , therefore the claim follows
by the Yoneda Lemma A.1.19.

Since every set is the union of all its finite subsets (which is a
directed system), we can use Corollary 5.4.16 to reduce the case of
infinite E to the case of finite E. It will also be useful to establish
sufficient conditions for when ExpE(X,Y ) preserves filtered colimits
in X and respectively in Y .

Lemma 5.4.17. 1. If E is finite and all morphisms in E have compact
domains, then ExpE( , Y ) preserves filtered colimits for all Y .

2. If E is finite, all morphisms in E have humble domains and compact
codomains and X is compact, then ExpE(X, ) preserves filtered col-
imits.

Proof. Both follow from the characterisation of Exp in Proposition 5.4.3
and the fact that filtered colimits commute with finite limits.

Corollary 5.4.18. Let E be a finite set of morphisms.

1. If each morphism in E has compact domain, then FE preserves fil-
tered colimits, that is it is a finitary functor.

2. If each morphism in E has humble domain and compact codomain,
FE is a humble functor. (see Definition 5.2.10)

Proof. This follows from Lemma 5.4.17 by the Yoneda Lemma A.1.19.

5.4.2 Iterated expansions

Definition 5.4.19. For a finite sequence E = (E1, E2, . . . , En) of mor-
phisms, let

FE = FE1 ; FE2 ; . . . ; FEn
Note that in the case n = 0, this reduces to F() = idC . For an infinite
sequence E = (E1, E2, . . . ), let En be the finite subsequence consisting
of the first n sets. There is a natural transformation FEn → FEn+1

induced from the natural transformation idC → FEn+1
. This arranges

the FEn into a diagram

idC = FE0 FE1 FE2 · · ·
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and we define FE = colim
n
FEn

Definition 5.4.20. As a notational shortcut, let En be the sequence of
length n that is constantly E, so En = (E,E, . . . , E). Let Eω be the
infinite sequence that is constantly E.

Lemma 5.4.21. For a (finite or infinite) sequence of sets E , there is a natural
transformation ζ : idC → FE . If E is a finite sequence of finite sets, each of
which consisting of morphisms with humble domains and if X is compact,
then also FEX is compact and ζX : X → FE (X) is a witness generated
from E.

Proof. We do an induction on the length n of the sequence E . If n = 0,
the statement is trivial, because ζ is the identity. If E has length n+ 1,
write E = E ′ ∗(E) where ∗means concatenation, E is the last element
in the sequence E and E ′ the remaining sequence of length n. Now
ζEX factors as

X FE′ (X) FE (FE′ (X)) = FE (X)
ζE
′

ζE

By induction hypothesis, FE′ (X) is compact and therefore, because
all morphisms inE have humble domain, so isFE (FE′ (X)) = FE (X).
Now ζX is a witness as a composite of witnesses.

Proposition 5.4.22. If all morphisms in E have compact domain then
FEωX is E-injective, regardless of X .

Example 5.4.23. For these examples let Σ = {R : 1 → 1} and G a
Σ-hypergraph.

• Consider the example of a transitive relation again, that is E =
{ R R ≤ R }. Now FEω (G) (∗) = G(∗) so the un-
derlying vertex set didn’t change. ButMFEω (G)(R) is the tran-
sitive closure ofMG(R).

• Consider

E =

{
≤ R , R≤R , R R ≤ R

}
the theory of equivalence relations. Again, FEω (G) has the
same underlying set as G but MFEω (G) is equipped with the
equivalence relation generated byMG(R).
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The functorFE depends on E in a similar way to howFE depends
on E.

Proposition 5.4.24. For sequences E and E ′ of the same length, whenever
E ⊆ E ′ in the sense of componentwise inclusion, there is a natural transfor-
mation FE → FE′ .

Proposition 5.4.25. Let D be a directed system of sets of morphisms, with
each D ∈ D finite and each morphism in D with compact domain. Let
E =

⋃
D, then

FEn ∼= colim
D∈Dn

FD

and therefore
FEω ∼= colim

n∈N
colim
D∈Dn

FD

Since every set is a directed colimit over its finite subsets, this has
the following important consequence:

Lemma 5.4.26. Let E be a set of morphisms with compact domain, and let
Pf (E) be the set of finite subsets of E. Then

FEω ∼= colim
n

colim
E∈(Pf (E))n

FE

This is the final piece of the puzzle. We are now able to prove the
main theorem of the thesis:

Theorem 5.4.27. Let C be a locally finitely presentable category. Let E
be a set of morphisms in C with humble domain and compact codomain
(see Definition 5.2.10). Then a morphism between compact objects that is a
cofibration with respect to E-injective objects, is a witness generated by E.

Proof. Let f : X → Y be an E-cofibration. Consider the canonical
morphism ζ : X → FEω (X) and the diagram

X FEω (X)

Y

f

ζ
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Since by Proposition 5.4.22 FEω (X) is E-injective and since f is a
cofibration, there is an induced morphism

X FEω (X)

Y

f

ζ

g

Since, by Lemma 5.4.26 FEω (X) can be written as a filtered colimit
and since Y is compact, there is an n ∈ N and a sequence E =
(E1, . . . , En) of finite subsets of E such that g : Y → FEω (X) factors
through FE (X). Hence we get a commutative diagram

X FE (X) FEω (X)

Y

f

ζ′

g

h

Since ζ ′ : X → FE (X) is a witness generated from E, this makes f a
witness as desired.

From this we can immediately deduce the logical incarnation of
the completeness theorem

Theorem 5.4.28 (Completeness). If A,B : n → m are morphisms in
CBΣ/E such that M(A) ⊆ M(B) for all models M. Then A ≤ B in
CBΣ/E .

Proof. By Prop 5.1.13, α : GA → GA∩B is a cofibration with respect to
E-injective objects. Since the set E of axioms satisfies all the niceness
properties and GA and GA∩B are compact, Theorem 5.4.27 applies
and therefore α is a witness generated from E. By Corollary 4.3.9,
that means A ≤ B in CBΣ/E .
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Appendix A

Category Theory

Introduction

It is very important to have a wide array of different mathematical
theories and techniques at one’s disposal to solve problems. Often
times it is possible to translate a problem in one theory into a prob-
lem in another and there is always the hope that someone solved
it in the different framework. A historical example of this kind is
the translation of topological problems about “holes” in spaces into
algebraic problems, known as algebraic topology. The extensive use
and usefulness of mappings between different mathematical theories
called for a rigorous treatment and for a formalisation of “mathemat-
ical theory”. Such a formalisation emerged in the form of categories,
introduced by Saunders Mac Lane and Samuel Eilenberg. A great
exposition of the topic can be found in [33].

The idea is very simple and beautiful. While the objects of study
differ vastly across theories, each theory comes with its own flavour
of structure-preserving morphism. For set theory those are simply
functions, for group theory those are group homomorphisms, for
topology those are homeomorphisms, for geometry those are isome-
tries, and so on. If we treat the actual structures as opaque, look-
ing at only the relevant functions between them, a mathematical the-
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ory looks like a web of objects connected by arrows. This then is
the general framework of working with several interconnected the-
ories. But it requires a paradigm shift. Different theories only look
alike for as long as you do not look inside the objects. The question
then becomes: How far do you get in such a way? How much of
a theory can be captured using its arrows alone? The answer turns
out to be even better than “everything”. Referring to arrows alone,
you can do exactly what matters. You cannot, for example, find out
the variable name in a polynomial ring. But that is great news, be-
cause you shouldn’t. That is an implementation detail at best and
should not (and does not) matter to the theory. Colloquially, proper-
ties like names that are not invariant under isomorphism, are consid-
ered “evil”.

This appendix is intended as a reference to categorical properties
used in the thesis. For an introduction to category theory see [33].

A.1 Categories

A.1.1 Definitions

Definition A.1.1. A category C consists of a collection of objects Ob(C)
and for each pair of objects X,Y ∈ Ob(C) a set Hom(X,Y ) of homo-
morphisms equipped with an associative composition Hom(X,Y )×
Hom(Y, Z) → Hom(X,Z), and identities idX ∈ Hom(X,X) that are
both-sided units for composition. We denote the composite of f : X →
Y and g : Y → Z as f ; g.

Remark A.1.2. There are two ways in which to denote composition
of morphisms in a category. Traditionally, the composition of two
functions is denoted as g ◦ f , which is also read as g after f . In this
notation, f is applied first, then g. The convention we use here is the
converse, where f ; g means f is to be applied first, followed by g.

Example A.1.3.

• One of the most important examples of a category is the cate-
gory Set whose objects are sets and whose morphisms are func-
tions.
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• Similarly, there is the category Rel of relations, where objects
are sets and a morphism R : X → Y is a relation R ⊆ X × Y .

• For any algebraic structure there is a category where morphisms
are the structure-preserving functions. So there is a category of
groups, a category of monoids, a category of rings, etc.

• For any ring R, there is a categoryR−mod whose objects are R-
modules and whose morphisms are module homomorphisms.

• Every category C has an opposite category Cop, which has the
same objects as C, but all arrows reversed.

Remark A.1.4. The word “collection” in Definition A.1.1 is deliber-
ately vague. It is necessary to be vague about it, because of what is
known in the literature as size issues. Due to Russell’s paradox, the
collection of all sets cannot be a set itself, otherwise it would con-
tain itself and that opens a whole can of worms. One way of solving
this problem is to enrich the underlying set-theory to allow for dif-
ferent kinds of collections. The simplest way is to distinguish sets
and classes, such that the collection of sets is itself a class, rather than
a set. Another approach is to use Grothendieck universes, which
makes “setness” a notion relative to a universe. Whenever one wants
to form a collection like that of all sets in a given universe, it becomes
an entity in a different, larger, universe.

Many introductions to category theory are written using one or
the other approach, so for example a category is often defined as
having a class of objects and classes of morphisms, but that is not
the only way. As far as I can tell, none of the possibilities is consid-
ered canonical. Since the differences in underlying set-theories don’t
matter to the applications in this thesis, I take an approach of the
“bring your own collection” kind and leave the choice of set-theory
to the reader.

Furthermore, note the restriction to sets for homomorphisms. For
each pair of objects, we ask for a set of morphisms. In the literature
one can also find the broader definition that allows for a collection
of such morphisms (with the same caveats as above). What is de-
fined here is then called a locally small category. Since all categories
appearing in this thesis are locally small and since it will be an im-
portant property for us, we make it part of the definition.
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Typically, morphisms in a category are visualised in diagrams
such as

T

P

X Y

f
h

g

k l

Such a diagram is called commutative if any of the possible paths
from one object in the diagram to another composes to the same mor-
phism. Typically in category theory, properties on objects are defined
through commutative diagrams. Such properties are called univer-
sal properties. It is easiest to understand this idea through examples,
which we will look at now, before going into generality. The easiest
examples of universal properties are those of being initial or final.

Definition A.1.5. An object 0 in a category is called initial if for any
object X , there is a unique morphism 0 → X . An object 1 in a cate-
gory is called terminal if for any objectX , there is a unique morphism
X → 1.

Example A.1.6.

• In the category Set, the empty set is the only initial object. Final
objects are precisely those with only one element.

• In the category of abelian groups, initial and final objects agree
and are given (up-to isomorphism) by the trivial group.

• In the category of rings, initial objects are isomorphic to the
ring Z of integers, final objects are isomorphic to the trivial ring
where 0 = 1.

Universal properties can also be more complicated and involve
several morphisms at once.

Definition A.1.7. Given objectsX,Y in a category C, an objectX×Y
is called a product of X and Y if it has the following properties:

• There are morphisms πX : X × Y → X and πY : X × Y → Y .
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• For any object T and morphisms f : T → X , g : T → Y , there is
a unique morphisms (f, g) : T → X × Y such that

T

X × Y

X Y

f (f,g) g

πX πY

commutes.

Example A.1.8.

• In the category of sets, the Cartesian product is an example of
a product in the sense of A.1.7.

• In the category of groups, the direct product satisfies A.1.7.

Every definition and theorem in category theory gives rise to a
dual, which is obtained by turning around all the arrows in the defi-
nition. As a convention, a name is often prefixed with “co-” to indi-
cate its dual.

Definition A.1.9. Given objectsX,Y in a category C, an objectX+Y
is called a coproduct of X and Y if it has the following properties:

• There are morphisms ιX : X → X + Y and ιY : Y → X + Y .

• For any object T and morphisms f : X → T , g : Y → T , there is
a unique morphisms f + g : X + Y → T such that

T

X + Y

X Y

f+g

ιX

f g

ιY

commutes.
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Category theory is all about focusing on structure-preserving maps.
In a rather paradoxical way, we have now introduced the mathemat-
ical structure of categories, but not said what the morphisms should
be. This needs to be fixed.

Definition A.1.10. Let C and D be categories. A functor F : C → D
maps every objectX of C to an object F (X) ofD and every morphism
f : X → Y in C to a morphism F (f) : F (X) → F (Y ) in D in such a
way that

1. identities are preserved, i.e. F (idX) = idF (X)

2. composition is preserved, i.e. F (f ; g) = F (f) ; F (g)

What is defined above is also called a covariant functor, because
it preserves the direction of arrows. There is a related notion of con-
travariant functor that reverses all arrows. A contravariant functor
C → D is nothing but a covariant functor Cop → D, so one notion of
functor suffices.

Interestingly, the structure of a category is so rich, that we do
not only have morphisms between categories (the functors) but even
morphisms between those morphisms. This is the notion of natu-
ral transformation, historically introduced to formalise the use of the
word “natural” in mathematical practice.

Definition A.1.11. Let F,G : C → D be functors. A natural transfor-
mation η : F → G is a family of morphisms ηX : F (X) → G(X) in D,
one for each object X in C. This family has to satisfy the naturality
condition, that is the diagram

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

has to commute for every morphism f : X → Y in C.

Remark A.1.12. Natural transformations are related to homotopies.
Let 2 = 0→ 1 be the category with two objects and one non-identity
morphism. A natural transformation η : F → G between functors
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F,G : C → D is the same thing as a functor E : 2 × C → D such that
E(0, ) = F and E(1, ) = G. It turns out that functoriality of E trans-
lates into the naturality condition of η and vice versa. Thus a natural
transformation is the categorical analogue of passing “continuously”
from one functor to another.

Definition A.1.13. For two categories C and D, their product is de-
fined as the category C × D where

• objects are pairs (X,Y ) with X an object in C and Y an object
in D

• a morphism (f, g) : (X,Y ) → (X ′, Y ′) is a pair of a morphism
f : X → X ′ in C and g : Y → Y ′ in D

• the identity is the pair (idX , idY )

• composition is component-wise

The definitions of category and functor line up in a beautiful way
to the following: For a locally small category C, for every pair of ob-
jects X,Y ∈ Ob(C), there is a set Hom(X,Y ). This set of morphisms
actually depends onX and Y in a functorial way, so that Hom defines
a functor, which is then, appropriately, called the Hom-functor. I like
to call the existence of this Hom-functor the most important triviality
in category theory.

Proposition A.1.14. For a (locally small) category C, the set Hom(X,Y )
depends functorially onX and Y , defining a functor Hom: Cop×C → Set.

Remark A.1.15. Proposition A.1.14 is the reason why all categories
in this thesis are assumed to be locally small. It is too beautiful and
important of a property to be overshadowed by technicalities.

Despite being such a simple observation, the importance of Propo-
sition A.1.14 can barely be overstated. It leads to the idea of repre-
senting a functor with an object, which in turn leads to a formalisa-
tion of universal properties and then the wonderful Yoneda Lemma.

Definition A.1.16 (Representations). A functor F : C → Set is also
called a copresheaf. A representation of such a functor is an object
X ∈ C together with a natural isomorphism θ : Hom(X, ) ∼= F .
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Dually, a functor G : Cop → Set is also called a presheaf. A repre-
sentation of such a functor is an object Y ∈ C together with a natural
isomorphism θ : Hom( , Y ) ∼= G.

In either case, a functor that has a representation is called a repre-
sentable functor.

Representable functors are one of the most fundamental concepts
of category theory and examples are ubiquitous throughout mathe-
matics.

Example A.1.17.

• Hom(X, ) and Hom( , X) are trivially representable

• An initial object is precisely one representing F : C → Set, the
functor that maps every object to the one-element set (and ev-
ery morphism to the identity)

• Dually, a terminal object is precisely one that represents the
functor F : Cop → Set that maps every object to the one-element
set.

• A coproduct of X and Y is an object that represents the functor
T 7→ Hom(X,T )×Hom(Y, T ).

• Dually, a product of X and Y is an object that represents the
functor T 7→ Hom(T,X)×Hom(T, Y ).

Definition A.1.18 (Universal property). An initial property is a func-
tor F : C → Set. Dually, a final property is a functor G : Cop → Set.

A universal property is either an initial property or a final prop-
erty. An object is said to have a universal property if it represents the
defining functor.

We have put emphasis on natural isomorphisms Hom(X, ) ∼= F

(or the contravariant analog). It is an insight due to Nobuo Yoneda
that a natural transformation θ : Hom(X, ) → F is uniquely deter-
mined by θ(idX) ∈ F (X). This is remarkable to say the least, because
the set of all such natural transformations looks very complicated,
but in fact it is just F (X), cleverly disguised.
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Lemma A.1.19 (Yoneda Lemma).

• Let F : C → Set be a functor and X ∈ C an object. There is an
isomorphism (of sets)

Nat(Hom(X, ), F ) ∼= F (X)

that is natural in X and F .

• Replacing C with Cop in the above gives the contravariant version,
which we spell out explicitly: For a functor F : Cop → Set andX ∈ C
an object, There is an isomorphism (of sets)

Nat(Hom( , X), F ) ∼= F (X)

that is natural in X and F .

Proof. Let η : Hom(X, ) → F be a natural transformation. Then we
can apply η to idX to obtain η(idX) ∈ F (X). It suffices therefore
to show that every choice of x ∈ F (X) extends to a natural trans-
formation η with η(idX) = x and that every η is uniquely deter-
mined by η(idX). This is a beautiful and instructive exercise left to
the reader.

Corollary A.1.20.

• A natural transformation θ : Hom( , X)→ Hom( , Y ) is equivalent
to a morphism X → Y , which is an isomorphism if and only if θ is.

• A natural transformation θ : Hom(X, )→ Hom(Y, ) is equivalent
to a morphism Y → X , which is an isomorphism if and only if θ is.

Corollary A.1.21. Representations are unique up to unique isomorphism.

Corollary A.1.22. If two objects satisfy the same universal property, there
is a unique isomorphism between them.

Importantly for us, parameterised representations, depending on
two variables, can be assembled into a functor in the following way:
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Lemma A.1.23. Given a functor H : Cop ×D → Set. If H(X, ) is repre-
sentable for each X ∈ C, there is a functor F : C → D such that

Hom(F (X), T ) ∼= H(X,T )

If two such functors H1, H2 are given with corresponding functors F1, F2

then a natural transformation H1 → H2 induces a natural transformation
F2 → F1.

Proof. Use the axiom of choice to pick an object F (X) with

Hom(F (X), T ) ∼= H(X,T )

for each X ∈ C. Functoriality of this F follows from the Yoneda
Lemma: Given a morphism f : X → Y , we get a morphism

Hom(F (Y ), T ) ∼= H(Y, T )→ H(X,T ) ∼= Hom(F (X), T )

natural in T , from which we get a morphism F (f) : F (X) → F (Y )
by Corollary A.1.20. That this assignment preserves composition and
identities also follows from Corollary A.1.20. The second part is also
a consequence of the Yoneda Lemma A.1.19. Given a natural trans-
formation H1 → H2, we get

Hom(F1(X), T ) ∼= H1(X,T )→ H2(X,T ) ∼= Hom(F2(X), T )

natural in X and T , so there is a natural transformation F2 → F1 as
required.

To finish this part, we want to briefly introduce the notion of a
monoidal category. The notion of category revolves around having a
sequential composition operation, a monoidal category adds on top
of that an operation of parallel composition. They allow for an in-
tuitive description through string diagrams which is fundamental to
this thesis and will be introduced at the beginning of Chapter 1.

Definition A.1.24. A symmetric monoidal category is a category C
together with a functor ⊗ : C × C → C and an object I . Furthermore,
C is equipped with natural isomorphisms

• α : A⊗ (B ⊗ C)→ (A⊗B)⊗ C

• λ : I ⊗A→ A
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• ρ : A⊗ I → A

• s : A⊗B → B ⊗A

such that the so-called coherence condition holds, that is any dia-
gram constructed through α, λ, ρ and s commutes.

A.1.2 Limits and colimits

A very important class of universal properties comes from the fol-
lowing, very general, idea: Given several objects in a category, is
there a way to aggregate them into one object? Suppose our objects
furthermore have some morphisms between them and we would like
the aggregation to respect that. How would we express that in cat-
egorical language? First, we need to formalise what we mean by
“several objects with morphisms between them”, but that turns out
to be simple.

Definition A.1.25. Let C be a category. A diagram is a functor ∆: D →
C where D is a small category.

Definition A.1.26. Given a diagram ∆: D → C, a cone over ∆ at
object C is a family of morphisms αd : C → ∆(d) such that for any
morphism f : d→ d′ in D we have

αd ; ∆(f) = αd′

We write Cone(C,∆) for the set of all cones over ∆ at C, so the set of
all such families α.

A cone is an attempt to aggregate the diagram into a single ob-
ject. However, in general there can be many different cones that have
nothing to do with one another.

Remark A.1.27. A cone over ∆ at C is the same thing as a natural
transformation constC → ∆, where constC : D → C is the functor
that is constant at C.

Corollary A.1.28. Cone( ,∆): Cop → Set is a functor.

Definition A.1.29. A limit of ∆ is an objectL representing Cone( ,∆),
so Hom( , L) ∼= Cone( ,∆).
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The dual is also very important.

Definition A.1.30. Given a diagram ∆: D → C, a cocone over ∆ at
object C is a family of morphisms αd : ∆(d) → C such that for any
morphism f : d→ d′ in D we have

∆(f) ; αd′ = αd

We write Cocone(∆, C) for the set of all cocones over ∆ at C, so the
set of all such families α.

Remark A.1.31. A cocone over ∆ at C is the same thing as a natural
transformation ∆→ constC , where constC : D → C is the functor that
is constant at C.

Corollary A.1.32. Cocone(∆, C) : C → Set is a functor.

Definition A.1.33. A colimit of ∆ is an objectC representing Cocone(∆, ),
i.e. Hom(C, ) ∼= Cocone(∆, ).

Example A.1.34.

• If 2 is the category with two objects and no non-identity mor-
phisms, a limit over a diagram ∆: 2→ C is a product.

• Dually, a colimit over a diagram ∆: 2→ C is a coproduct.

• If D = X → Y ← Z is the cospan then a limit over a diagram
∆: D → C is called a pullback.

• Dually, if D = X ← Y → Z is the span then a colimit over a
diagram ∆: D → C is called a pushout.

A.1.3 Adjunctions

Arguably one of the most fundamental concepts of category theory is
that of adjoint functors, introduced by Daniel Kan in [30]. There is no
way of doing the concept justice in an appendix, so this is intended
to serve as a very rough overview.
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Definition A.1.35. Given functors F : C → D and G : D → C, we call
F left-adjoint to G (conversely, we call G right-adjoint to F ) if

HomD(F (X), Y ) ∼= HomC(X,G(Y ))

naturally in X and Y .

The definition looks innocent enough but the concept is both re-
markably powerful and ubiquitous.

Example A.1.36. • For Vect the category of vector spaces over a
field k, the forgetful functor Vect → Set, that forgets the vector
space structure, has a left-adjoint Set→ Vect that sends a set X
to the free vector space kX .

• In Set, the functor Set → Set, X 7→ A × X is left adjoint to the
Hom-functor Hom(A, ).

• For any category C, the unique functor C → 1, where 1 is the
category with one object and one (identity) morphism, has a
left-adjoint if and only if C has an initial object.

Proposition A.1.37. Adjoints are unique up to natural isomorphism.

Proof. Follows from Lemma A.1.23.

Lemma A.1.38. Right-adjoint functors preserve limits. Dually, left-adjoint
functors preserve colimits.

Proof. We prove the first statement, the second is dual. LetG : D → C
be right-adjoint to F : C → D. Let ∆ be a diagram in D. Let L be a
limit of ∆ in D. Then we have

Hom( , G(L)) ∼= Hom(F ( ), L) ∼= Cone(F ( ),∆) ∼= Cone( , G ◦∆)

A.2 Weak limits and colimits

One can define a weak notion of limits and colimits where the unique-
ness requirement in the definition of the universal property is dropped.
While the notion makes sense for general limits and colimits, relevant
for us are weak pushouts and weak pullbacks.
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Definition A.2.1 (Weak pullback). A weak limit of ∆ is an object
L equipped with a natural epimorphism Cone( ,∆) → Hom( , L),
meaning that every cone over ∆ factors through L but not necessar-
ily in a unique way.

Proposition A.2.2. Let
P A

B C

be a pullback diagram and

W

P A

B C

π

b′

a′

a

b

a commutative diagram which induces the morphism π : W → D by the
universal property of P . Then W is a weak pullback if and only if π is a
split epi.

Proof. • If π is a split epi, that means that the pullback diagram
factors through W , which by the universal property of P im-
plies that every cone factors through W .

• If W is a weak pullback, there is a morphism g : P →W by the
weak universal property of W . But now g ; π : P → P satisfies
g ; π ; b = g ; b′ = b and likewise g ; π ; a = a, so by the
universal property of P we have g ; π = id.

A.3 Free categories and graphs

We will need a technical Lemma on how colimits behave under glu-
ing of diagrams. For that it is useful to have a notion of category
without composition, which is just a graph. Here, a graph consists
of a set of vertices and for each pair of vertices a set of edges. A
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category is then nothing but a graph with extra structure, namely
identities and composition.

Proposition A.3.1. The forgetful functor from (small) categories to graphs,
F : Cat→ Graph has a left-adjoint L, the free category functor.

Using the free category construction, we can talk about diagrams
in a category C of shape a graph G, by which we mean a functor
L(G) → C. This allows us to transfer the notions of cone, cocone,
limit and colimit in the obvious way.

Lemma A.3.2 (Gluing shapes). Let D : I → Graph be a diagram of
graphs, I an index category. LetD be the colimit of D. Let ∆,Γ: D → C be
two diagrams. Let fi : Di → D be the canonical morphism into the colimit.
Then

Nat(∆,Γ) ∼= lim
i

Nat(fi ; ∆, fi ; Γ)

Proof. The limit on the right-hand side is taken in Set. Explicitly, an
element of this set is given by a family of natural transformations ηi,
one for each i ∈ I , such that for a morphism κ : i → j in I , we have
D(κ) ; ηj = ηi.

A natural transformation η : ∆→ Γ gives rise to a family ηi = fi ;
η, which satisfies the above condition.

The more interesting direction is the converse, given such a fam-
ily ηi, can it be combined into a single natural transformation η? Note
that a natural transformation η : ∆→ Γ can be seen as a functor D →
Fun(2, C). Thus, a family ηi gives rise to functors Di → Fun(2, C),
which combine into a functor η′ : D → Fun(2, C) by the universal
property of the colimit. Letting a, b : Fun(2, C)→ C be the evaluation
at the first, respectively the second object, we get

fi ; η′ ; a = ηi ; a = fi ; ∆

hence, again by the universal property of the colimit, η′ ; a = ∆
and likewise η′ ; b = Γ, so that η′ defines a natural transformation
η : ∆→ Γ.

Corollary A.3.3 (Dependent colimit). Let D : I → Graph be a diagram
of graphs, D the colimit. Let ∆: D → C be a diagram and ∆i = fi ; ∆ for
fi : Di → D the natural morphism. Then

colim ∆ ∼= colim
i

colim ∆i

139



Proof.

Hom(colim ∆, Y ) ∼= Nat(∆, constY ) ∼= lim
i

Nat(∆i, constY )

∼= lim
i

Hom(colim ∆i, Y ) ∼= Hom(colim
i

colim ∆i, Y )
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