
UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Compositional Specification and Reachability Checking of Net Systems

by

Owen Stephens

Thesis for the degree of Doctor of Philosophy

April 2015

Declaration of Authorship

I, Owen Stephens, declare that the thesis entitled Compositional Specification and
Reachability Checking of Net Systems and the work presented in the thesis are both
my own, and have been generated by me as the result of my own original research. I
confirm that:

- this work was done wholly or mainly while in candidature for a research degree at
this University;

- where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

- where I have consulted the published work of others, this is always clearly at-
tributed;

- where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

- I have acknowledged all main sources of help;

- where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

- parts of this work have been published as:

Signed:...

Date:..

iii

abstract

Contents

Declaration of Authorship iii

Acknowledgements xii

1 Introduction and Related Work 1
1.1 Contributions and Thesis Structure . 4
1.2 Related Work . 5
1.3 Petri nets and Reachability Checking . 6
1.4 Partial order reductions . 7
1.5 Symmetry reduction . 9
1.6 Compositional approaches . 13
1.7 Algebras of nets . 14
1.8 Structural reductions . 16
1.9 Unfoldings . 17
1.10 Decision diagrams . 21
1.11 Linear programming & SAT solving . 23

2 Preliminaries 27
2.1 Notation . 27
2.2 Labelled Transition Systems . 27

2.2.1 Isomorphism of LTSs . 30
2.2.2 2-LTS Compositions . 30

2.3 Non-deterministic Finite Automata . 32
2.3.1 Isomorphism of NFAs . 33
2.3.2 2-NFAs . 33

2.4 Petri nets . 34
2.4.1 Labelled transition system semantics of Petri Nets 37

2.5 Reachability and Coverability in Petri Nets 38
2.5.1 Graphical Notation . 41
2.5.2 PNB Firing Semantics . 42
2.5.3 Synchronous composition of PNBs 43
2.5.4 Parallel composition of PNBs . 46
2.5.5 Connectedness, Purity and Simplicity 47
2.5.6 2-LTS Semantics of PNBs . 50

v

vi CONTENTS

2.5.7 Marked PNBs . 51
2.5.8 Isomorphism of PNBs . 52
2.5.9 Read Arcs . 52

3 Categorical Structure 57
3.1 Preliminaries . 57
3.2 The category of PNBs . 60
3.3 The category of 2-LTSs . 67
3.4 Mapping between PNB and 2-LTS . 71
3.5 Encoding Reachability . 74

3.5.1 The category of mPNBs . 74
3.5.2 The category of 2-NFAs . 75
3.5.3 Mapping between mPNB, 2-NFA, PNB and 2-LTS 76
3.5.4 Summary . 76

4 Benchmarks and a Domain Specific Language for Net Compositions 77
4.1 Component-wise Specification of Nets . 77

4.1.1 k-bit Buffer . 79
4.1.2 Token Ring . 80
4.1.3 A Language for Net Composition 81
4.1.4 Complete Trees . 83
4.1.5 Cliques . 86
4.1.6 Powersets . 88

4.2 Benchmark Systems . 89
4.2.1 Overtake Protocol . 90
4.2.2 Hartstone . 92
4.2.3 Iterated Choice . 93
4.2.4 Replicator . 94
4.2.5 DAC: Divide and Conquer . 95
4.2.6 Dining Philosophers . 95
4.2.7 Milner’s Cyclic Scheduler . 97
4.2.8 k-bit Counter . 98

4.3 Specification Domain Specific Language 99
4.3.1 Operational Semantics . 101
4.3.2 Static Type Checking . 102

4.3.2.1 Monomorphic Type System 103
4.3.3 Net Literal Specification . 106

4.4 Summary . 107

5 Compositional Statespace Generation 109
5.1 Reachability via Statespace Generation 109

5.1.1 Monolithic Statespace Generation 110

CONTENTS vii

5.1.2 Compositional Statespace Generation 112
5.2 Performance of the Compositional Algorithm 117
5.3 Proof of Correctness . 119
5.4 Conclusion . 122

6 Efficient Compositional Reachability Checking 125
6.1 Boundary protocol and ⌧ -transitions . 125

6.1.1 ⌧ -transitions in 2-NFA semantics 127
6.1.2 Reflexivity and Compositionality 134

6.2 Memoisation, Associativity and Fixed Points 141
6.2.1 Behavioural fixed-points . 143
6.2.2 Quadratic firing sequence! linear reachability check 146

6.3 Reassociated Examples . 148
6.4 Optimised Algorithm . 148
6.5 Poorly performing Examples . 150
6.6 Summary . 156

7 Implementation and Comparison 161
7.1 Implementation . 161

7.1.1 NFA Reduction . 162
7.1.2 Checking NFA Language Equivalence 163
7.1.3 Representing 2-NFA transitions . 165
7.1.4 Synchronising Composition with MTBDDs 166

7.2 Comparison with Related Tools . 169
7.2.1 Related Tools . 170
7.2.2 Testing Platform . 171
7.2.3 Testing Methodology . 171
7.2.4 Testing Results . 171
7.2.5 Discussion . 172

7.3 Summary . 178

8 Conclusion 179
8.1 Future Work . 180

References 185

List of Figures

1.1 Example mutual exclusion system modelled as a Petri net 2
1.2 System of components with no interaction 3
1.3 Example Petri net . 7
1.4 Statespace of the net in Fig. 1.3 . 8
1.5 Example Petri net . 8
1.6 Example Petri net . 10
1.7 LTS semantics of the net in Fig. 1.6 . 11
1.8 Quotient of LTS semantics in Fig. 1.7 . 12
1.9 An example Petri net . 18
1.10 Unfolding of the Petri net in Fig. 1.9 . 19
1.11 BDD representing (a ^ b) _ (a ^ c) . 21
1.12 Example net, N . 24

2.1 Example LTS . 28
2.2 Example 2-LTSs . 29
2.3 Compact vs Expanded label notation . 29
2.4 Example 2-LTS compositions . 31
2.5 An example NFA . 32
2.6 A NFA that is language equivalent to that of Fig. 2.5 33
2.7 Example Petri net . 35
2.8 LTS semantics of the Petri net in Fig. 2.7. 38
2.9 Marked Petri net representing a fork-join system 39
2.10 PNB representation of the Petri net in Fig. 2.7. 41
2.11 Components to be composed . 43
2.12 Example Synchronous Composition . 45
2.13 Example component nets and their synchronous composition 46
2.14 Example component nets and their parallel composition. 48
2.15 Connectedness is not preserved by composition 48
2.16 Purity is not preserved by composition . 49
2.17 Simplicity is not preserved by composition 49
2.18 (2, 1)-LTS semantics of the PNB in Fig. 2.14b. 51
2.19 PNB with remove/replace loops . 53
2.20 2-LTS semantics of the PNB with remove/replace loops shown in Fig. 2.19. 53
2.21 PNB with read arcs . 54

viii

LIST OF FIGURES ix

2.22 2-LTS semantics of the PNB with read arcs shown in Fig. 2.21. 55

3.1 Net P
idk

: (k, k) . 61
3.2 Net Psw(k, l) : (k + l, l + k) . 62
3.3 Prop. 3.26, graphically; (a) is isomorphic to (b). 65
3.4 2-LTS L

idk
: (k, k) . 68

3.5 2-LTS L
�

: (k, k) . 69
3.6 2-LTS Lsw(k, l) : (k + l, l + k) . 69
3.7 Commuting digram illustrating the relationships between categories . . . 76

4.1 Left-end Component Families . 78
4.2 Right-end Component Families . 78
4.3 ID

k

: (k, k) . 79
4.4 BUFFER(3) . 79
4.5 BUFFER(k) component net . 79
4.6 Schematic of BUFFER(3) . 80
4.7 TOKENRING(3) . 80
4.8 TOKENRING(k) components . 81
4.9 Schematic of TOKENRING(3) . 81
4.10 (k, l)-Tree Nets . 84
4.11 Isomorphic specification of 3 leaf nodes 84
4.12 T̂ (k, l) component nets . 85
4.13 T̂ (2, 2) . 86
4.14 Schematic of T̂ (2, 2) . 86
4.15 T_(k, l) component nets . 86
4.16 T_(2, 2) . 87
4.17 CLIQUE1 : (2, 2) . 87
4.18 CLIQUE(3) . 87
4.19 Schematic of CLIQUE(3) . 88
4.20 POWERSET(3) . 88
4.21 POWERSET(k) component nets . 89
4.22 Schematic of POWERSET(3) . 89
4.23 CAR : (4, 4) . 90
4.24 LOCK : (3, 3) . 91
4.25 Lock interface components . 91
4.26 Schematic of OVERTAKE(2) . 92
4.27 HARTSTONE(k) component nets . 92
4.28 Schematic of HARTSTONE(2) . 93
4.30 Schematic of ITER-CHOICE(2) . 94
4.31 ITER-CHOICE(2) . 94
4.33 Schematic of REPLICATORS(3) . 95
4.34 REPLICATORS(3) . 95

x LIST OF FIGURES

4.35 DAC(k) component nets . 96
4.36 Schematic of DAC(3) . 96
4.37 Dining Philosophers component nets . 96
4.38 Schematic of DPH(2) . 97
4.39 SCHEDULER : (2, 2) . 97
4.40 Schematic of CYCLIC(2) . 98
4.41 k-bit Counter component nets . 99
4.42 TESTER component net . 99
4.43 Schematic of COUNTER(3) . 99
4.44 Syntax of PNBml . 100
4.45 PNBml Values and Operational Environments 101
4.46 Operational Semantics of PNBml . 102
4.47 Monomorphic Types and Type Environments of PNBml 103
4.48 Syntax-directed Monomorphic Typing Rules for PNBml 104
4.49 Example typing proof . 104
4.50 Typing of Values and Operational Environments 105
4.51 BNF grammar for the input language . 107
4.52 PHILO using component specification format 108

5.1 Reachability problem for marked PNB BUFFER(3) 110
5.2 Reachability NFA for the marked PNB of Fig. 5.1 when considered as a

Petri net . 111
5.3 2-NFA that is homomorphic to that in Fig. 5.2 112
5.4 BUFFER : (1, 1) . 113
5.5 > : (0, 1) . 113
5.6 ? : (1, 0) . 113
5.7 PNB BUFFER(�) Expression tree . 114
5.8 Translations of component marked PNBs to their 2-NFA semantics 115
5.9 Expr. tree of Fig. 5.7, after converting marked PNBs to 2-NFAs 116
5.10 Expr. tree of Fig. 5.9, after performing a single 2-NFA composition 116
5.11 Expr. tree of Fig. 5.9, after performing two 2-NFA compositions 117
5.12 Expr. tree of Fig. 5.9, after performing three 2-NFA compositions 118
5.13 Expression tree of Fig. 5.9 after performing all compositions 119
5.14 Example markings used in benchmarking Algorithm 5.2. 124

6.1 Example PNB . 126
6.2 (1, 1)-NFA semantics, N , of the PNB in Fig. 6.1 128
6.3 M , weakly-equivalent to N shown in Fig. 6.2 129
6.4 (1, 1)-NFA of Fig. 6.2 after ⌧ -closure . 130
6.5 Expansion of a word using only additional ⌧ labels 132
6.6 2-NFA, N . 133
6.9 2-NFA, M 00 . 136

LIST OF FIGURES xi

6.10 2-NFA, N ; M 0 . 136
6.11 Reflexivity is not preserved by language equivalence 139
6.12 Minimised 2-NFA of Fig. 6.4 . 140
6.13 2-NFAs that the semantics of any N : (0, 0) are weak-langauge equiva-

lent to . 140
6.14 Example PNB and its 2-NFA semantics 142
6.15 M , (weak) language-equivalent to the 2-NFA in Fig. 6.14b 142
6.16 2-NFA O = M ; M . 143
6.17 Fixed-point of (PHILO ; FORK)k, reached at k = 2 144
6.18 Left vs Right associativity of ‘;’ in BUFFER(3) Expression tree 145
6.19 Intermediate 2-NFAs encountered when converting the expression of

Fig. 6.18a . 146
6.20 Intermediate 2-NFAs encountered when converting the expression of

Fig. 6.18b . 146
6.21 BUFFER(4) . 147
6.22 Time vs Problem size for Algorithm 6.1 . 150
6.23 T_(3, 3) . 151
6.24 Leaves subtree of T_(3, 3) . 152
6.25 2-NFA semantics of leaf components . 152
6.26 2-NFA composition of two leaf components 153
6.27 2-NFA composition of three leaf components 154
6.28 2-NFA semantics of a leaves subtree . 154
6.29 Deepest internal-node subtree structure 155
6.30 2-NFA semantics of internal components 155
6.31 2-NFA of tensor subtree shown from Fig. 6.29 155
6.32 2-NFA semantics of deepest internal-node subtree 156
6.33 Composition of deepest internal node subtrees 156
6.34 2-NFA semantics of deepest internal-node subtree composition 157
6.35 2-NFA semantics of three composed internal-node subtrees 159
6.36 2-NFA after composing with the root component 160

7.1 2-NFA semantics of BUFFER . 166
7.2 MTBDD representations of the transitions for states 0 and 1, in Fig. 7.1. . 166
7.3 MTBDD size affected by variable ordering 166
7.4 “Pre-processed” MTBDDs of Fig. 7.2 . 168
7.5 MTBDD constructed using the cartesian product of those in Fig. 7.4a and

Fig. 7.4b, with invalid sub-graphs highlighted 168
7.6 MTBDD of Fig. 7.5, with invalid sub-graphs removed 169
7.7 MTBDD of Fig. 7.6, with synchronisations removed 169

8.1 Two example PNBs and their composition 182
8.2 Unfoldings of the PNBs in Fig. 8.1 . 182

Acknowledgements

ACKNOWLEDGEMENTS!

xii

Chapter 1

Introduction and Related Work

We introduce a technique for compositional checking of reachability in Petri nets. We
show that by suitably exploiting a compositional specification of nets our technique can
be more efficient than existing approaches. In this thesis, the introduction of our new
technique is sub-divided into:

1. Investigation of compositional approaches to statespace generation and thus reach-
ability checking of Petri nets, exploiting compositional specifications in order to
avoid the statespace explosion and improve performance.

2. The application of programming language techniques to design a statically typed
specification language for concise, well-defined compositional specifications.

3. Implementation of a tool for checking Petri net reachability using the techniques,
with demonstrable performance increases vs existing state-of-the-art tools.

Model checking is the systematic process of determining whether a model of some
system conforms to its expected behaviour or specification. For example, a system
designer may wish to ensure that their system is not able to reach a problematic con-
figuration: a lift system should not be able to be in the configuration where the doors
are open and the lift is moving.

Due to their complex and often non-intuitive behaviour, concurrent systems are fre-
quently scrutinised using automated model checking. Indeed, the vast number of pos-
sible interleavings of component behaviour, even for simple systems, makes it difficult
to manually reason about the (lack of a certain) behaviour of the global system.

A prevelant modelling tool for concurrent or distributed systems is Petri nets. With an
intuitive graphical presentation, yet rigourous underlying mathematical definition, Petri
nets are powerful, yet accessible. As an example, the net illustrated in Fig. 1.1 models

1

2 Chapter 1 Introduction and Related Work

Ready1

Working1

Ready2

Working2

Figure 1.1: Example mutual exclusion system modelled as a Petri net

a mutual exclusion system, where two workers compete to obtain the token required
to let them work. Either the first worker (red transition) or second (blue transition) can
start first, but they cannot start at the same time. Once either worker has started, the
other cannot. Once the worker has finished, it replaces the token, with the green or
black transitions, allowing either worker to restart. An obvious property to check of this
model is that both workers cannot be started at the same time.

For small system models, it is often sufficient to give the system specification in a mono-
lithic manner: the global structure can be specified in one. However, for anything other
than the most basic of systems, this approach is infeasible — instead, a compositional,
or component-wise approach is often used. In a component-wise approach, a system
is designed as a collection of logical components, which are composed to form the
global system. By building systems in this way, designers need only reason about local
behaviour of components and the interactions between components — the system is
structured as a collection of maximally independent, decoupled entities.

The very reason to use automated model checking is to avoid having to explore large
statespaces or check properties by hand. However, model checking is not immune to
statespace explosion, and indeed, naively applying a compositional approach to sys-
tem specification does not help alleviate the problem. For loosely coupled components,
the numerous possible interleavings of their behaviour leads to large statespaces being
generated and explored. While existing model checking techniques may allow the spec-
ification of nets in terms of components, the techniques used for checking proeprties of
the system all consider the composed, global net—their approach is monolithic.

As an extreme example of the statespace explosion problem, consider a system formed
of k components, each of which is able to reach l local states and does not interact with
the other components; such a system has a reachable statespace with lk states. An
example of this system is illustrated in Fig. 1.2. Now consider checking reachability

Chapter 1 Introduction and Related Work 3

··
·

p1,0

p0,0

p
l,0

··
·

p1,1

p0,1

p
l,1

· · ·

··
·

p1,k

p0,k

p
l,k

Figure 1.2: System of components with no interaction

of the global configuration that places a single token in each of the blue highlighted
places; intuitively, to reach this global state, we must have fired all the transitions in
the net, in some order that respects the individual components’ dependency ordering.
Due to interleaving, there are a large number of possible ways to reach the target state:
if a reachability checker uses a breadth-first search strategy, or generates the entire
statespace, a large majority of these interleavings will be needlessly explored.

An alternative approach is to take a localised view: the global target state can be
considered as a local target state for each component — to reach the global target
state, each component must reach its local target state, whilst correctly interacting with
the other components. Indeed, from the knowledge of the interactions each component
must make to reach its local target marking, we can check the compatability of these
component interactions, and determine if the global marking is reachable. For the
example system we are considering, there are no interactions between components, so
we simply check that each component can reach its local target state. By this change of
view, we avoid exploring all possible interleavings, instead checking reachability of the
components in isolation. Furthermore, since the components and target markings are
repeated, we can check reachability in a single component and deduce that the global
system can reach its target marking: a single component is able to reach its target
marking without interacting with its neighbours, and all k components are the same.

However, in order to use a localised, component-based approach for Petri nets, we
must be able to specify the components of a global net system. To do so, we use an
algebra of Petri nets: we specify complex systems in terms of compositions of (small)
component nets. By using an algebra that allows partial specification of transitions

4 Chapter 1 Introduction and Related Work

by connecting to boundary ports, the full structure of composite nets can be built up
through composition. As components are composed, the transitions connected to their
boundary ports are fused to form fully-specified transitions. By giving a semantics that
represents component reachability, while recording the corresponding boundary inter-
actions, we can capture the reachability of the entire system, without first generating
the composite net. Furthermore, we can reduce the representation of a component’s
behaviour, while preserving the representation of the interactions necessary to reach
the target marking; when we compose the (reduced) component semantics, we repre-
sent global reachability, without generating the full statespace.

In other words, by taking advantage of information about the structure of the compo-
nents, and how they are connected, we can check reachability vastly more efficiently.

Traditional approaches to model checking such systems instead take a global view,
operating on the composite structure, and essentially ignoring any information about
how the system was formed.

In this thesis, we investigate and advocate compositional system specification and an
alternative approach to reachability checking that does use the structural compositional
information to its advantage, in order to vastly improve efficiency in many examples.

1.1 Contributions and Thesis Structure

Summarising, the contributions presented in this thesis are as follows:

1. Categorial structure of PNBs and their semantics: we show the well-known prop-
erty of compositionality in a new light, as an instance of functoriality of suitable
categories.

2. We introduce contextual PNBs, adding a read arcs, which naturally model be-
haviour that non-destructively reads the token state of a place.

3. Type-checked specification language: we show that by using a suitable program-
ming language, we can compositionally construct systems to be modelled using
PNBs, whilst ensuring that only correct compositions are expressible.

4. Compositional statespace generation for PNB-specified systems: we show that
the statespace of a PNB-specified system can be compositionally generated, and
furthermore, can be used to check reachability, without constructing the global
net.

5. We show that compositional specifications can be exploited, to attack the states-
pace explosion problem, and improve the efficiency of reachability checking of

Chapter 1 Introduction and Related Work 5

systems modelled using PNBs. We show that by considering weak language
equivalence of PNB semantics, we can reduce the representation size of PNB
semantics, whilst ensuring global behaviour is preserved. Furthermore, memoi-
sation allows us to avoid repeated computations.

6. Compositional specification of existing benchmarks, in more natural, component-
wise style, with formal, explicit specification of repeated structure.

These contributions are demonstrated in this thesis, which has the following structure:

In the following section, we explore related work from the literature. We introduce the
required preliminaries in Chapter 2. In Chapter 3, we elucide the categorical structure of
PNBs and the LTSs that form their semantics, exposing the notion of compositionality as
functoriality. Chapter 4 introduces the example systems that we will use to demonstrate
and evaluate our technique. We introduce a specification DSL that uses a static type
system to ensure that only valid componet-wise specifications can be constructed. In
Chapter 5 we introduce a compositional technique for generating the statespace of
systems specified using our DSL, and thus checking marking reachability. We prove the
technique correct and give some example timings of a tool implementing the technique.
Chapter 6 shows how to exploit the fact that language equivalence is a congruence to
vastly improve the performance of our reachability-checking technique, introducing the
notion of internal behaviour that we ignore in order to aggresively prune statespace. We
prove the more-efficient algorithm correct. In Chapter 7, we dicuss the implementation
of our technique, and compare and discuss its performance relative to current state-of-
the-art tools. Finally, Chapter 8, concludes and discusses future work.

1.2 Related Work

We survey and summarise the most-closely related techniques for avoiding statespace
explosion, in particular when checking reachability in Petri nets, directing the reader to
detailed surveys and discussions where they exist.

Before we do so, we briefly introduce each technique and give the structure of this
chapter: in §1.3, we briefly discuss Petri nets and the complexity of their reachability
checking. In §1.4, we discuss partial-order approaches, which attempt to generate only
part of the statespace, while ensuring that the to-be-checked properties are preserved.
In a similar vein, the symmetry reduction §1.5 technique attempts to generate a re-
duced statespace, by recognising symmetric states, which do not contribute new (up to
symmetry) states to explore, i.e. the statespace is quotiented by symmetry. We then
move onto discussing other compositional (i.e. divide and conquer) approaches in §1.6,
before taking a detour from statespace minimisation techniques to discuss algebras of

6 Chapter 1 Introduction and Related Work

nets related to that which we use in this thesis. We briefly discuss explicit structural
reductions of nets that aim to reduce input nets in §1.8. In §1.9, we explore the use
of unfoldings as a compact representation of a net’s behaviour, and similarly the use
of decision diagrams as a compact representation of a net’s structure §1.10. Finally,
we explore linear programming (LP) and SAT solving in §1.11, which encode Petri net
problems into alternate domains possessing efficient algorithms.

The techiques to avoid statespace explosion that we explore can be summarised as
taking one of the following approaches:

1. Generating partial statespaces (partial order reductions, symmetry reduction)

2. Handling a reduced input net (structural net reductions)

3. Using compact representations of the net (unfoldings, decision diagrams)

4. Translating to an alternative domain to exploit existing algorithms (SAT, LP)

1.3 Petri nets and Reachability Checking

Petri nets are a well-known mathematical model with a vivid graphical presentation,
used to model concurrent and distributed systems. A Petri net consists of a set of
places, and a set of transitions that connect sets of places to sets of places. Petri nets
were originally introduced by Petri in his PhD thesis [1], while Murata [2] gave a detailed
introduction to the definition, properties and applications of Petri nets.

The problem of reachability is concerned with determining if, from a given starting mark-
ing, a Petri net is able to reach a particular target marking. For general Petri nets (i.e.
those that can place any number of tokens on a single place), the problem was shown
to be decidable by Mayr [3], whose algorithm was simplified by Kosaraju [4] and later
further simplified by Lambert [5]. The reachability problem has a lower bound com-
plexity of EXPSPACE, as proved by Lipton, in the equivalent setting of Vector Addition
Systems [6]. The survey of Esparza and Nielsen [7] covers these results in detail.

In the restricted case of Petri nets with markings that assign at most 1 token to each
place—known as 1-bounded, or safe nets—the problem of checking reachability is
PSPACE-complete as demonstrated by Cheng et al. [8]. In this thesis, we only con-
sider safe nets.

Chapter 1 Introduction and Related Work 7

1.4 Partial order reductions

Partial-order reduction methods aim to prevent the statespace explosion caused by
representing all possible interleavings of truly-concurrent events. The method relies on
determining those transitions that have low mutal interferance; two transitions interfere
if firing one enables or disables the other, or if the resulting marking changes when the
order of firing of the two transitions is swapped. A reduced state space can be built and
explored if sets of transitions with low mutal interference are only fired in a one of the
possible orderings. Since the marking reached after firing the set of transitions is the
same, regardless of the chosen order (if it were not, there would be a pair of transitions
that interfere), the particular chosen order does not matter. The name partial-order
methods is used since those transitions that do not interfere can be considered as
unrelated by some dependency ordering. As an example, consider the example net
shown in Fig. 1.3, originally due to Wolf [9]. The transition t4 does not interfere with t2

or t3 and therefore we can only consider one of the three possible interleavings. The
corresponding statespace, illustrated in Fig. 1.4, contains 6 redundant transitions and
4 redundant states, highlighted with dashed lines.

t1 t5

t2 t3

t4

Figure 1.3: Example Petri net

To explore a reduced statespace using the partial order method, the essential idea is to
fire only a subset of the enabled transitions at any particular marking. Indeed, the trivial
case would be to take the set of all enabled transitions, but firing such a set ofters no
possibility of exploring a reduced statespace. However, it is not necessarily the case
that firing smaller sets of transitions leads to a smaller explored statespace [10]. For
a trivial example, consider the simple net in Fig. 1.5, both t1 and t2 are enabled (and
do not interfere). If we fire both simultaneously, the explored statespace will have two
states with one connecting transition; however, if we pick a smaller set of transitions
(i.e. firing t1 or t2 alone), the explored statespace will have 3 states and 2 transitions
since the transitions will have been interleaved.

8 Chapter 1 Introduction and Related Work

t1

t2

t2

t4

t3

t4

t2

t4

t3

t3

t5

Figure 1.4: Statespace of the net in Fig. 1.3

t1

t2

Figure 1.5: Example Petri net

Several related stubborn set-like approaches exist in the literature, with slight variations
on the set of transitions considered in each case. So called stubborn [11], persis-
tent [12] and ample [13] set methods each specify the (sub)set of the enabled transi-
tions for a state that should be explored. Here, we only present an intuitive overview
of the stubborn set method; details of the precise differences between the approaches
can be found in surveys by Valmari [10], Godefroid [14] and Clarke et al. [15]. Addi-
tionally, in recent research, Valmari and Hansen [16] investigated optimality of stubborn
sets and the effect of particular choices of dependency relations on transitions.

As a general definition (c.f. [10]), a set of transitions S is stubborn iff:

1. If firing some sequence of transitions not in S allows some t 2 S to be fired,
reaching a marking m, then we can also fire that same sequence after firing t, to
also reach m,

2. There is at least one t 2 S that is enabled after firing any length sequence of
transitions not in S.

Chapter 1 Introduction and Related Work 9

In other words, the firing of some transition in S commutes with the firing of transitions
not in S. Thus, the search algorithm is justified in chosing the ordering where (the
enabled transitions of) S are fired first: the marking reached in either order is the same.

However, to ensure that the possible statespace reduction enabled by the stubborn set
method is sound w.r.t. a particular net property, the definition of stubborn sets must
take into account the particular property being checked. For example, considering the
trivial example net shown in Fig. 1.5, if the property to check is reachability of the mark-
ing with a token in top-left and bottom-right places only, then the set of stubborn sets
cannot include {t1, t2} since firing this set does not preserve reachability of the target
marking. Whereas early papers related to stubborn sets focussed on preserving dead-
lock, Schmidt [17] detailed an encoding to efficiently check other Petri net properties,
including reachability, using the stubborn set method.

The stubborn set method was later improved by Godefroid and co-authors [18, 19], par-
ticularly by combining stubborn sets and sleep [12] sets for additional improvements.
The sleep set method attempts to avoid visiting states that have already been explored
by an alternative interleaving of transitions, by tracking the set of transitions fired to
reach a particular state. In later work, Alur et al. [20] demonstrated efficiency improve-
ments when combining efficient representation via decision diagrams (see §1.10) and
partial order reductions using ample sets. Recent work by Hansen and Wang [21]
has shown that combining stubborn sets with compositional approaches (see §1.6) to
determine transition dependencies can improve the reduction effect.

An alternative to standard reachability graph representations, due to Vernadat et al. [22]
is the notion of a covering step graph (CSG). A CSG groups independent events into
single transition step, which is fired atomically, and thus implicitly avoids the state ex-
plosion due to interleaving. CSGs can be combined with the persistent set method, as
shown by Ribet et al. [23].

In-depth surveys of stubborn set-like methods were presented by both Valmari [10] and
Godefroid [24, 14], examining the practical applicability and effectiveness of stubborn
set methods for various Petri net model checking problems.

1.5 Symmetry reduction

Another technique, known as symmetry reduction, exploits symmetries in the structure
of a net (and thus its reachability graph): the goal is, roughly, to build a reduced, quo-
tiented reachability graph that satisfies the same temporal properties as the original,
with only one representative of each equivalence class of states.

10 Chapter 1 Introduction and Related Work

As a simple example of the symmetry-reduction technique, consider the input net il-
lustrated in Fig. 1.6; the symmetry of this net is plain to see: the net is formed of two
identical components. The LTS semantics of this net (omitting self-loops and labels for
simplicity) is shown in Fig. 1.7. The statespace explosion problem is self-evident: the
semantics contains all interleavings of the concurrent transitions. However, taking the
symmetry of the input net into account, we may identify sets of LTS states, giving the
LTS semantics shown in Fig. 1.8. Intuitively, since the “components” of Fig. 1.6 do not
interact, we are free to “permute” them, removing the difference e.g. between the left
component firing all its transitions before any in the right and vice-versa. Indeed, tak-
ing [x] to be the partition of states equivalent (under the particular symmetry) to x, we
have that marking y is reachable in the net if there is a path from the state representing
the initial marking, i, to y in the LTS if there is a path from [i] to [y] in the quotiented
LTS. Since the quotiented LTS has fewer states and paths, it is more efficient to check
reachability using this LTS, compared to the full LTS.

p0

p1

p2

p3

q0

q1

q2

q3

Figure 1.6: Example Petri net

The first technique for exploiting symmetry in model checking was due to Starke, in the
context of checking reachability of Petri Nets [25]. Essentially, the reachability graph
construction algorithm only considers new states (i.e. markings) if an equivalent state
(w.r.t. the symmetry of the net) has not already been visited.

Further initial results on model checking using symmetry reduction were obtained by
Clarke et al. [26], showing that symmetry reduction preserves satisfaction of CTL* for-
mulas (preservation of formulas being the key property for the validity of symmetry re-
duction). Emerson and Sistla [27] presented theorectial results in the area of µ-calculus

Chapter 1 Introduction and Related Work 11

00

10 01

20 11 02

30 21 12 03

31 22 13

32 23

33

Figure 1.7: LTS semantics of the net in Fig. 1.6

model checking, while Ip and Dill [28] investigated the more practical problem of how to
identify symmetries to be exploited.

There are two key problems [29] that must be solved in order to use symmetries:

1. How to determine that two states, s and s0 belong to the same orbit (set of equiv-
alent states), known as the orbit problem,

2. How to determine the symmetry group, from the input model.

Indeed, for explitic-state representations, one can exploit a canonical representative for
each set of equivalent states. The transition relation is then explored up-to representa-
tives, ensuring that only one representative state of each equivalence set is explored.
Model checking using explicit-state systems is efficient if it is efficient to compute a
canonical representative, or similarly, if two states are equivelent. Unfortunately, under
arbitrary symmetries, checking state equivalence is as hard as the graph isomorphism
problem [29], a computationally difficult problem that has no P-time algorithm, yet has
not been shown to be NP-complete [30]. Several successful explicit-state model check-
ers exploit symmetry [31, 32, 33].

To determine the symmetry group, one approach is to explicitly specify the symmetries
in the input model, such as the scalarset data-type in the input language of Ip and

12 Chapter 1 Introduction and Related Work

00

01, 10

11 02, 20

12, 21 03, 30

22 13, 31

23, 32

33

Figure 1.8: Quotient of LTS semantics in Fig. 1.7

Dill’s [28], or components that may be permuted. Alternatively, an implicit approach
attempts to determine the symmetry groups by examining the input model, for exam-
ple, Schmidt [34] uses a partition refinement algorithm, to build the coarsest symmetry
relation on input Petri nets that preserves the flow relation of the net in order to calcu-
late the symmetries of a Petri net. The complexity of Schmidt’s method is investigated
by Junttila [35]. The performance of three alternative symmetry-reduction implementa-
tions is contrasted by Schmidt [36], who examines the tradeoff between reduction time
and effect on reachability checking performance.

Summarising, for systems with inherent symmetry (i.e. those with collections of similar
sub-systems), symmetry reduction can provide large reductions in the number of states
that must be explored. However, the advantage can only be realised if efficient methods
of detecting symmetry and checking equivalence of states under it are available.

Thorough survey articles covering symmetry-reduction have been compiled by both
Wahl and Donaldson [37] and Miller et al. [38].

Chapter 1 Introduction and Related Work 13

1.6 Compositional approaches

Compositional approaches to model checking decompose monolithic systems into smaller
components, which are checked, giving local results. These local results are combined
to form a global result for the original monolithic system. Such approaches are known
as divide and conquer — the idea being that the smaller components are easier to
check, and local results carry less information than the local component. Thus, by
decomposing (checking, and composing local results), the amount of information that
must be processed is (vastly) reduced.

Clarke et al. [39] describe a compositional approach to model checking systems with
temporal logic specifications. They observe that the main difficulty is the preservation of
local properties at a global level, and introduce a framework using interface processes
to model the environment, when checking individual components, to ensure that com-
ponents only exhibit globally-valid behaviours.

Compositional approaches using process algebra techniques date back at least to Mil-
ner’s seminal CCS [40]. Yeh and Young [41] outline a reachability analysis that allows
the simplification of “intermediate” components, that helps alleviate the state explosion
problem, by replacing components with semantically-equivalent, but smaller compo-
nents. Similarly, Valmari [42, 43] describes compositional state space generation, a
divide and conquer approach to global state space generation that employs minimisa-
tion of local state spaces to avoid state explosion. A CSP model is used, modelling
synchronous communication of labelled Petri nets; indeed, this method of decompo-
sition restricts the possible minimisations, since the global synchronisations must be
preserved. Furthermore, Valmari does not use any form of memoisation to prevent re-
peated work. Later, Valmari [44] presented a similar decomposition technique, using
shared “boundary” places, instead of shared transition labels. This allowed for more
natural LTSs: transitions were labelled with the effect on boundary places rather than
net transition names. A similar approach was taken by Kindler [45], who introduced Petri
net components, with distinguished input/output places that are fused to form larger
components. Kindler gave a fully-abstract semantics, whereby the semantics of com-
ponents under composition agrees with that of closed components. Very recent work
by Baldan et al. [46] has elucidated compositional encodings between (a)synchronous
process-calculi and a variant of Petri nets, with distinguished places/transitions used for
synchronisation. Indeed, such an encoding gives “technology transfer”: techniques for
model checking properties in process-calculi can inform those in Nets and vice-versa.

An important consideration for compositional model checking approaches was noted
by Graf and Steffan [47] and Cheung and Kramer [48]: local minimisation can be in-
efficient if it does not explicitly exclude behaviours that the will never be performed by

14 Chapter 1 Introduction and Related Work

the context of a component. Both use interface constraints similar to the interface pro-
cesses of Clarke et al. [39] to prevent spurious behaviours of components, with Cheung
and Kramer giving an algorithm for interface generation without requiring an LTS for the
context. Krimm and Mounier [49] employed these ideas for compositional statespace
generation for LOTOS programs, including large, complex examples.

In the area of Petri nets, Lee et al. [50], and Rakow [51] employ slicing to decompose a
Petri net into concurrent units, in order to check reachability on a per-slice basis, thus
avoiding some of the inherent state explosion due to interleavings. Whereas Lee et al.
and Rakow use a static slicing (i.e. without considering the markings of a net, just its
structure), Llorens et al. [52] propose a dynamic approach, which takes account of an
initial marking of the net. However, slices are not true decompositions (i.e. disjoint:
transitions (and places) of the original net should appear in only one slice), since they
necessarily overlap, with transitions being shared among (many) slices. Furthermore, if
the marking to be checked involves a large proportion of places in the net, little benefit
will be gained by using slicing.

Christensen [53] uses a compositional approach to generate the statespace of Petri
net components that synchronise via shared places or transitions. By generating a syn-
chronisation graph capturing component communications, in addition to local reacha-
bility graphs of components, the full statespace can be implicitly represented, without
generating all concurrent transition interleavings. A similar approach was described by
Notomi and Murata [54], however, whereas at each step of Christensen’s algorithm the
local reachability graphs are only unfolded as far as the next global synchronisation,
Notomi and Murata’s approach generates full local reachability graphs, before reducing
w.r.t. synchronisations and combining them. Thus Notomi and Murata’s approach may
explore local reachability graph states that are never explored in the global statespace,
due to non-synchronisation. Furthermore, while Notomi and Murata describe reduction
by merging states that are equivalent w.r.t. synchronisations, they do not give an algo-
rithm for determining the set of such states. A similar reduction strategy is employed by
Bucholz and Kemper [55], who abstract over autonomous regions (subnets delimited
by synchronisations), simplifying the representation of local reachability graphs.

1.7 Algebras of nets

Compositional algebraic systems have the property that behaviour of composite sys-
tems is determined only by the behaviour of their component systems. While Petri
nets are sometimes considered as being inherently non-compositional, early work by
Mazurkiewicz [56] defined a compositional algebra of nets, based on fusion of named
transitions. In the algebra of nets we use in this thesis, Petri Nets With Boundaries,

Chapter 1 Introduction and Related Work 15

(PNBs) [57, 58] it is also transitions that are fused, however, the composition opera-
tions are quite different in nature: PNB compositions are not commutative, and operate
on transitions connected to local boundary ports rather than by (global) name. Indeed,
Mazurkiewicz’s composition is a commutative parallel composition in the spirit of CSP
and CCS.

Similar operations were used for the development of the Petri Box calculus (PBC), a
process algebra of labelled Petri nets [59], with a compositional Petri net semantics.
The PBC features two kinds of composition: the first is a control-flow-style sequen-
tial composition that utilises certain places labelled as entry or exit places in order
to enforce a computation order, the second a synchronising composition, introducing
new transitions based on the global fusion of transitions with conjugate labels, whilst
preserving the original transitions. The composition operations of PNBs, instead, are
closely related to the geometry of nets, with no control-flow style composition and only
local synchronisation (that fuses transitions) through shared boundary ports. Best and
Koutny [60] later introduced the Box algebra, a generalisation of the PBC, giving a
(compositional) operational and denotational semantics and a general view of various
composition operations as specific instances of generic transition refinement/relabeling
operations. A tutorial-style overview of the Box algebra can be found in [61].

Reisig’s [62] simple composition of nets (SCN) is an elegantly simple way of composing
nets and is conceptually quite close to our work. His nets, similarly to PNBs, have
left and right interfaces that are made up of ports and ought not to be confused with
notions of input and output, rather reflecting the structural geometry of nets. Differently,
in SCN the interfaces typically expose places, whereas PNB interfaces expose only
transitions. Another difference is that in PNB, composition N1 ; N2 is only defined when
the right interface of N1 is equal to the left interface of N2. While [62] demonstrates that
the operation is very natural for composing real systems, the compositional semantic
aspects of the theory have not, so far, been developed.

Component-wise construction of nets was emphasised by Kindler [45], who worked
with a partial order semantics. The interfaces are a set of input and output places,
which are connected with a transition when composed. The semantics was shown to
be compositional with respect to this operation. Since the composition introduces ad-
ditional transitions, it is not always clear how to divide a net into components with input
and output places. A similar approach was taken by Baldan et al. [63], who introduced
Open nets: nets with certain identified input and output places. Composition of Open
nets is definied in terms of a pushout in the category of Open nets, realised as joining
a common subnet. Another related approach is that of Priese and Wimmel [64], who
use a combination of interface places and transitions to define Petri nets with interface,
with composition operators that join interface places and transitions. An algebra of nets
is defined, with combinators to form complex nets from basic components.

16 Chapter 1 Introduction and Related Work

In this thesis, we will give a compositional semantics to the algebra of Petri nets with
boundaries, by a translation into the algebra of non deterministic finite automata with
boundaries (§2.3.2). This algebra of automata is an instance of the algebra of Span(Graph) [65],
developed by Walters and collaborators: in fact, a translation from Petri nets to this al-
gebra was already present in [66]. In more recent work [57, 67, 58], the algebra of
Span(Graph) was lifted to the level of nets in a compositional way, and the resulting
behavioural equivalences and connections with process algebra were explored.

1.8 Structural reductions

An alternative approach to aid the minimisation of a Petri net’s reachability graph is to
directly minimise or quotient the Petri net, intrinsically reducing its reachability graph.
By removing redundant transitions or places, the net came become structurally smaller
and thus lead to a smaller statespace to explore. Indeed, such simple fusion/elimina-
tion rules were discussed by Murata [2], which were used to quotient Petri nets, whilst
preserving their behavioural properties.

Esparza and Schröter [68] introduced a technique for checking LTL properties of 1-safe
nets that combined global and local reduction techniques. Globally, dead places/tran-
sitions (places that are never marked and thus never enable their outgoing transitions)
and implicit places (places that are redundant w.r.t the enabling/disabling of a particular
outgoing transition) are identified and removed by the (linear programming) marking
equations they satisfy. Locally, generalisations of Berthelot’s [69] agglomeration rules
are used to remove certain intermediate places and their transitions, by bypassing such
places. Haddad et al. [70] also generalised Berthelot’s approach, but without the restric-
tion to 1-safe nets. Furthermore, by deriving structural conditions for reduction from the
behavioural properties (i.e. firing sequences) to be preserved, Haddad et al. were able
to use weaker structural conditions, enhancing the effect of the reduction.

More recently, Rakow [71] also presented an approach for checking LTL properties on
1-safe nets, but used a decomposition into a “kernel” net, containing only the places
mentioned in the LTL formula, and (reduced) environment subnets recording the re-
mainder of the net’s influence on the kernel.

Originally proposed by Olderog [72], the notion of bisimulation can be lifted from LTSs,
to the places of a Petri net. Olderog’s approach did not in fact lead to well-defined
bisimulations, as Autant et al. [73] observed, while showing how to generalise the def-
inition, and give a correct notion of place-bisimulation for Petri nets. Indeed, Autant et
al. used the induced equivalence relation to define the quotient of a net (i.e. a struc-
turally smaller, but bisimilar net), however, they gave no algorithm for calculating such
quotients in order to reduce a given net. In a later paper [74], Autant et al. did provide

Chapter 1 Introduction and Related Work 17

a simple algorithm to calculate such bisimulations, extending their approach to labelled
nets with ⌧ (internal) transitions. Schnoebelen and Sidorova [75] refined Autant et al.’s
approach, showing that by considering a set of markings as relevant (as opposed to all
markings), the effectivness of the reduction can be improved.

1.9 Unfoldings

The unfolding of a Petri net is a structure representing all of its possible behaviours,
originally introduced by Nielsen et al. [76] under the name of Occurrence Nets. Unfold-
ings were later described in more detail by Engelfriet [77], who used the name branch-
ing processes. Essentially, a branching process represents some partial “history” of a
Petri net from some initial marking, as another Petri net, but with the condition that at
each conflict of transitions that could be fired, each alternative is represented by a copy
of the (thus-far constructed) branching process. A branching process is thus an acyclic
net without “backward conflict”, where two transitions output to the same place; the lack
of backwards conflict implies that each set of places in the unfolding has a unique trace
of transitions that were fired to place a token in each place. An unfolding is therefore a
compact representation of all possible computations of its underlying net.

Intuitively, an unfolding is an tree-like structure: branching points in the net signify
choices of enabled-transition firing. The advantage of an unfolding (in fact, itself a
Petri net), over a state graph, is that concurrency is represented explicitly, rather than
implicitly. Simple structural properties of an unfolding determine whether or not a given
pair of transitions can fire concurrently in the original net, or are causally related (i.e.
the firing of one can lead to the other becoming enabled). While these properties can
be derived from the state graph, it is certainly a more arduous task to do so. Further-
more, the well-known “state-explosion” problem leads to interleaving semantics (e.g.
state graphs) of concurrent systems being large, even for small or simple systems.
By explicitly representing points of choice and synchronisation (and not representing
all possible interleavings of concurrent transition firings), unfoldings give much smaller
representations. Indeed, unfoldings are often referred to as partial-order semantics,
since arbitrary transitions may not be causally related (i.e. firing one eventually enables
the other), when the transitions are concurrent.

Example 1.1.
An example Petri net is shown in Fig. 1.9, and its unfolding is illustrated in Fig. 1.10.
Note that the unfolding is infinite — we only show a small, finite prefix of it. The graph-
ical notation we use is not-standard, but should be intuitive; we introduce this notation
later in the thesis, in §2.5.1. Consider the transitions t1 and t2; these transitions can
be fired concurrently, and in the induced partial (causal) order of the unfolding, there
is no relation between the transitions, which witnesses this fact. Intuitively, this fact is

18 Chapter 1 Introduction and Related Work

observed since there is no path from the post-set of t1 to the pre-set of t2. Note how-
ever, that t3 is causally-related to both of these transitions. Furthermore, since there
is a (forward) conflict (i.e. firing choice) between t6 and t7, the unfolding contains a
branching point at these transitions.

p0 p1

p2 p3

p4

p5 p6

t1 t2

t3

t4 t5

t6 t7

Figure 1.9: An example Petri net

Using unfoldings as a method of checking reachability in Petri nets was pioneered by
McMillan [78], using the semantics proposed by Nielsen et al. [76] and Engelfriet [77].

McMillan observed that by considering a suitable prefix of the unfolding, which repre-
sents all reachable markings of the original net, the full (often infinite) unfolding need
not be constructed. Such prefixes are known as finite (marking-) complete prefixes.
McMillan’s algorithm used such prefixes to check reachablity (precisely, coverability) of
a set of places, T , by supplementing the original net with a new transition, t, whose
pre-set was T . If, during the execution of the algorithm (that is, while the constructed
unfolding was not a complete prefix) t was found to be enabled, then T was indeed cov-
erable. If the complete prefix was constructed before t was encountered, the marking
was not coverable.

McMillan’s algorithm, while correct and simple, is inefficient in terms of the size of the
complete prefix generated, and has been subsequently improved by several authors.
Esparza et al. [79] improved the algorithm to construct smaller (complete) prefixes, by
showing that more transitions in the unfolding can correctly be considered as “cutoff”

Chapter 1 Introduction and Related Work 19

p0 p1

p2 p3

p4

p5 p6

t1 t2

t3

t4 t5

p0 p1

p2 p3

p4

p5 p6

t1 t2

t3

t4 t5

p0 p1

p2 p3

p4

p5 p6

t1 t2

t3

t4 t5

t6 t7

··
·

··
·

··
·

··
·

Figure 1.10: Unfolding of the Petri net in Fig. 1.9

points of the unfolding, which are not unfolded further. Heljanko [80] further refined the
work of Esparza et al. to generate even smaller prefixes in some examples (though the
author questioned the benefits of the size reduction vs. the creation effort involved).
Khomenko and Koutny [81] suggested an alternative to the algorithm of Esparza et al,
using a different method of computing possible extensions of a (incomplete) unfolding,
that is more efficient in the examples they present. Heljanko et al. [82] showed how the
approach of Esparza et al. may be parallelised for further increases in efficiency. More

20 Chapter 1 Introduction and Related Work

recent work by Bonet et al. [83] employed heuristic search algorithms in an attempt
to “direct” the unfolding procedure towards the target transition, rather than existing
approaches using simple search strategies. Khomenko et al. [84] generalised the def-
inition of complete prefix of an unfolding, that is applicable to nets with e.g. equivalent
markings, or extra data that is to be considered along with markings. Finally, Neumair
et al. [85] show that even unbounded Petri nets (those without finitely many reachable
states) may still have their statespaces by suitable extensions of unfoldings.

In addition to McMillan’s approach (and its improvements), several methods exist for
checking the reachability problem in nets that use (complete prefixes of) unfoldings.
Esparza and Schröter [86] surveyed 4 such algorithms. They recommendation an al-
gorithm to use based on whether the marking is expected to be reachable or not. If
reachability is not expected, they suggest the algorithm of Heljanko [87], which trans-
lates the reachability problem into a logic program and checks for the existance of a
stable model of the program. If the marking is expected to be reachable, they suggest
using (an improvement of) McMillan’s algorithm.

An important point to note regarding unfoldings, and indeed, finite complete prefixes, is
that they carry more information about the computations of nets, than merely marking
reachability. For instance, it is possible to check for deadlock, as shown in McMillan’s
seminal paper [78]. Furthermore, automata-theoretic approaches to LTL model check-
ing can be adapted [88, 89] to unfoldings.

For an overview of the extensive field surrounding unfoldings and the corresponding
model checking approaches, see [90] and [91]. Since unfoldings represent choice
between transitions as copying, it is possible to obtain unfoldings that are exponentially
larger than the net from which they are generated. For example, if a net consists of a
sequence of choices between transitions (an example of such a net is given later in this
thesis: §4.2.3), then each choice introduces a branching point in the unfolding, leading
to an exponential blow-up in unfolding size. Indeed, unfoldings cope poorly when state
explosion is caused by a sequence of choices, rather than inherent concurrency [92].
Recently introduced by Khomenko et al. [93, 92], merged processes are a condensed
representation of a Petri net’s behaviour, remedying the problem of sequenced choices,
whilst being amenable to (generalised) unfoldings-based model checking. Merged pro-
cesses can be thought of as reduced unfoldings, where certain conditions are identified,
and duplicate events are removed, quotienting the unfolding.

In the original presentation, a merged processes was obtained by reducing a pre-
computed unfolding; however, in recent work, algorithms have been developed that
directly compute merged processes [94].

Chapter 1 Introduction and Related Work 21

1.10 Decision diagrams

In this section we move on to lower-level optimisation techniques, concentrating on
efficient symbolic representation of nets and their semantics.

Symbolic state space representations aim to be more-efficient (in terms of memory-
requirements) than explicit representations, often leading to vast improvments in the
performance of corresponding model checkers. Rather than storing and exploring
states one-by-one, symbolic model checkers store and explore multiple states at once.
The most prominent initial work on symbolic model checking is due to McMillan, in his
PhD thesis, and later published together with Burch et al. [95]. Burch et al. gave a sym-
bolic method of model checking µ-calculus formalae, using (Ordered) Binary Decision
Diagrams (OBDDs); by checking µ-calculus formulae, they were able to generalise pre-
vious BDD-based model checking techniques targetting concrete instances: Coudert
et al. [96] model checked Mealy machines [97] (automata with state-dependent output),
while Browne et al. [98] described a technique for model checking circuits against CTL
specifications.

Ordered Binary Decision Diagrams (OBDDs, more commonly just BDDs) were popu-
larised by Bryant [99], who showed that BDDs canonically represented functions over
the Booleans, whilst allowing efficient manipulation, e.g. performing conjunction or
checking for tautology. A simple example is illustrated in Fig. 1.11, showing a represen-
tation1 of the formula (a^ b)_ (a^ c), which could represent the collection sets of states
�

{a, b} , {a, c}

where a particular proptery holds.

a

b

c

? >

Figure 1.11: BDD representing (a^ b)_ (a^ c): dashed edges represent false,
solid represent true.

Using suitable encodings of states and transitions, entire state graphs can be repre-
sented, and properties (for example, reachability) can be checked using a fixed-point

1A dashed line represents that the source variable was false, a solid line, true.

22 Chapter 1 Introduction and Related Work

operation on the underlying BDDs. Detailed introductions to BDDs, their use and algo-
rithms can be found by Andersen [100] and Drechsler and Sieling [101].

Symbolic BDD representations can be applied to Petri nets. Pastor et al. [102] gave en-
codings of the markings, transitions and firing rules of 1-safe Petri nets as BDDs. These
encodings were used to give the first symbolic method of calculating all reachable states
of the net, and furthermore, verification of liveness and safeness properties. Pastor
and other collaborators later improved the algorithm [103, 104], using more efficient
representations of petri net markings (using a suitable encoding method, structurally-
related places could be represented using fewer variables). Semenov and Yakelov [105]
took a different optimisation approach, combining the symbolic exploration method with
the unfolding technique to discover “clusters” of places that are never simultaneously
marked; such clusters have minimal BDD size, regardless of variable ordering and thus
assigning “close” variables to elements of clusters helps minimise the size of the result-
ing BDD.

Miner and Ciado [106] improved the efficiency of the statespace generation technique
of Pastor et al.. Using Multi Decision Diagrams (MDDs)—a generalisation of BDDs in-
troduced by Srinivasan et al. [107], which encode functions of the form Nn ! N rather
than Bn ! B as in BDDs—and suitably partitioning the input net’s places into localities
(similar to the clusters of Semenov and Yakelov, Miner and Ciardo were able to gener-
ate the statespace with fewer iterations and a corresponding reduction in time. In later
work, Ciardo et al. [108] further refined the use of event localities, to further improve the
algorithm’s performance. The benefit of using higher-level decision diagrams has been
exhibited, for example by Strehl and Thiele [109] and Tovchigrechko [110].

While BDDs can encode functions with (co-)domains other than the Booleans, using
a direct encoding can be both more intuitive and storage-efficient. While MDDs fully
generalise BDDs to functions on the naturals, a finer generalisation is to encode func-
tions with co-domains other than the Booleans. This natural generalisation of BDDs
was originally observed by Clarke et al. [111] and Bahar et al. [112]. Such generalised
BDDs, known as Multi Terminal BDDs (MTBDDs) have been used for a variety of pur-
poses, including: efficiently representing matrices [113], model checking of probabilistic
timed-automata [114] and for representing specifications of parallel programs [115].

A key problem related to the use of BDDs is that a particular ordering for the BDD’s vari-
ables must be chosen a priori. Unfortunately, choosing an optimal variable ordering for
a BDD is an NP-complete problem [116]. However, heuristics have been developed,
which attempt to minimise the size of a particular BDD. Static approaches attempt
to determine a fixed variable order, during construction of the BDD; for example, the
variable-interleaving technique of Fujii et al. [117], which aims to place semantically-
related (Fujii et al. consider the topology of the logic circuit) variables near each other
in the BDD. On the other hand, the dynamic approach of Felt et al. [118] recognises that

Chapter 1 Introduction and Related Work 23

statically-determined variable orders may not be optimal after operations have been ap-
plied to the BDD. Instead, they monitor the size of intermediate BDDs and rearrange
small “windows” of consecutive variables to reduce the resulting BDD’s size.

More recently, so-called exact algorithms have been further investigated, to improve
the non-optimal results of heuristic algorithms. Indeed, Ebendt et al. [119] improve
on the original algorithm of Friedman and Supowit [120] and improved algorithm of
Drechsler et al. [121], by using the A⇤ search algorithm to explore (subsets of) the set
of all variable orderings, and using local heuristics to choose the best next variable at
each step.

A recent, detailed overview of BDD optimisation techniques can be found in the book
by Ebendt et al. [122]. Finally, while it is common that (variants of) BDDs are used
symbolic model checking, as pointed out by Biere et al [123], it is not the case that
symbolic methods imply the use of BDDs, viable alternatives certainly do exist.

1.11 Linear programming & SAT solving

We briefly consider two related approaches, which solve Petri net model checking prob-
lems, by faithful translation into an alternate domain that possesses efficient algorithms.
By translating to, and using efficient solving in the target domain, the statespace explo-
sion can be avoided to a certain extent. The two approaches we cover are SAT and
Linear/Integer Programming.

The Boolean Satisfiability (SAT) problem is concerned with determining the existence of
a satisfying variable assignment V of a Boolean function, F . For example, the formula
F = x _ (y ^ z) is satisfied by V = {x 7! 1, y 7! 1, z 7! 0}, whereas the formula (x ^
y) ^ (¬x ^ z) is not satisfiable. Using suitable encodings of the markings and transition
relation of a net, it is possible to encode reachability problems as SAT problems. To
restrict the size of input formulae, SAT solving is often used in a bounded context, where
counter-examples are only considered up to some maximal size. Indeed, by unrolling
the transition relation of a net k times, Petri net model checking can be bounded by
searching for occurence sequences reaching the target marking with length k. For
example, in the net of Fig. 1.12, the marking {p2, p3} can be reached in bound 3.

A SAT-based approach for bounded checking of 1-safe Petri nets was introduced by
Ogata et al. [124] that included checking of reachability and liveness properties, and
illustrated the importance of compact encodings for efficient SAT solving. A related
approach was used by Heljanko [125], who gave an encoding into boolean circuits,
which generalise boolean formulae, highlighting the efficiency implications of using pro-
cess [126], step or interleaving semantics.

24 Chapter 1 Introduction and Related Work

Linear programming is the minimising of a linear equation, subject to linear constraints.
Indeed, with suitable encodings of the markings and flow relation of an acyclic net,
reachability problems can be approximated by determining the existence of a solution
to a system of linear equations. For example, consider the net, N , shown in Fig. 1.12.

p0

p2

p1

p3

p4

p5

t0

t1

t2 t3

Figure 1.12: Example net, N

The incidence matrix of N is a
�

�places(N)
�

�⇥
�

�trans(N)
�

� matrix, where I
i,j

denotes the
effect of firing transition t

j

on the token count2 of place p
i

:

IM =

2

6

6

6

6

6

6

6

6

6

6

4

�1 0 0 0

0 �1 0 0

1 1 �1 0

0 0 1 �1
0 0 0 1

0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

5

The intial/target markings are column vectors with
�

�places(N)
�

� rows:

M
I

=

2

6

6

6

6

6

6

6

6

6

6

4

1

1

0

0

0

0

3

7

7

7

7

7

7

7

7

7

7

5

M
T

=

2

6

6

6

6

6

6

6

6

6

6

4

0

0

0

1

1

1

3

7

7

7

7

7

7

7

7

7

7

5

And finally, the marking, or state equation [2] is:

M
T

= M
I

+ IM ·

2

6

6

6

6

6

4

x0

x1

x2

x3

3

7

7

7

7

7

5

(1.1)

21 signifies that a token is added, -1 that it is taken away and 0 denotes no effect.

Chapter 1 Introduction and Related Work 25

where the final column vector is referred to as the Parikh vector, with its x
i

reresenting
the number of occurences of transition i in a firing sequence starting in M

I

and reaches
M

T

. Marking equations are thus algebraic representations of the reachable markings
of a net.

For the example net of Fig. 1.12, equation 1.1 has a solution of x0 7! 1, x1 7! 1, x2 7!
2, x3 7! 1, corresponding to the firing sequence: ht0, t2, t3, t1, t2i.

Melzer and Römer [127] used linear programming to optimise the search strategy for
certain instances of a deadlock-checking unfolding algorithm due to McMillan [78]; in-
deed, since unfoldings are acyclic, the linear programming approach is sound. In later
work, Khomenko and Koutny [128, 129] improved Melzer and Römer’s approach and
extended it to check other properties such as reachability; furthermore, by encoding
causality/conflict properties derived from the unfolding in the system of linear con-
straints, the solver’s search space was reduced, exhibiting an impressive speed-up.

However, as Esparza [130] notes, since the linear programming solutions (over-)approximate
reachable markings, the target marking may not in fact be reachable. However, the
inverse implication does hold: if there are no solutions, the marking is certainly not
reachable. Detailed overviews of the applications of linear programming techniques for
analysing (P/T) nets can be found by Desel [131] and Silva et al [132].

Chapter 2

Preliminaries

In this chapter, we introduce the required knowledge for our work; the following con-
tent is not original to this thesis, except the section on read arcs for Petri Nets With
Boundaries (§2.5.9), which is an original contribution.

2.1 Notation

Here we introduce key notation used throughout this thesis.

k, l,m, n 2 N Natural numbers: {0, 1, 2, . . . }
B Boolean values: {0, 1}
L⇤ Free monoid, (all finite strings) on L
#»
l Finite string: hl0, l1, . . . , l

k�1i, of length k 2 N
✏ The unit element (empty string)

z = xy If x and y are strings, z is a string formed by concatenating x and y; we
refer to x as a prefix of z and y as a suffix of z

Lk Set of all strings of a fixed length:
�

l
�

� l 2 L⇤ ^ l = hl0, l1, . . . , l
k�1i

X] Y Disjoint union of sets: {inlx | x 2 X}[{inr y | y 2 Y }
2X Power set: {Y | Y ✓ X}
i Ordinal: {0, 1, . . . , i� 1}, i 2 N

2.2 Labelled Transition Systems

The notion of a labelled transition system (LTS) is a central conceptual tool used to
capture semantic models in this thesis. An LTS is a collection of states, and (labelled)
transitions relating pairs of states:

27

28 Chapter 2 Preliminaries

Definition 2.1 (LTS).
An LTS is a 3-tuple: (S,L,�!), where S is the set of states, L the set of labels and
�! ✓ S ⇥ L⇥ S is the labelled transition relation. As standard, we write

(x, l, y) 2 �! as x
l�! y.

Definition 2.2 (Finite LTS).
An LTS, (S,L,�!), is finite if both S and L are finite.

0

12

ab

cd

Figure 2.1: Example LTS

Example 2.1.
An example finite LTS is illustrated in Fig. 2.1, with S = {0, 1, 2}, L = {a, b, c, d}, and
�! =

�

(0, a, 1), (0, b, 2), (1, c, 1), (2, d, 2)

.

The set of finite runs of an LTS consists of all finite strings of transitions where the
states proceed from one transition to the next. The trace of a run is the sequence of
labels of the underlying transitions:

Definition 2.3.
For an LTS, (S,L,�!), a run is a string over �!:

⌧

x0
l0�! y0, x1

l1�! y1, . . . , xn�1
ln�1���! y

n�1

�

such that x
i

= y
i�1, for all 1 i < n. The trace of a run simply forgets the states, giving

a corresponding sequence of labels:

⌦

l0, l1, . . . , ln�1
↵

Example 2.2.
The set of traces of the LTS in Fig. 2.1 is the (infinite) set:

�

hi , hai , hbi , hb, b, . . . , bi , hc, c, . . . , ci , ha, b, b, . . . , bi , hb, d, d, . . . , di

In this thesis we frequently use LTSs that have pairs of fixed-length binary strings as
labels, which we refer to as 2-LTSs, or (k, l)-LTSs if k and l are the binary string lengths.

Chapter 2 Preliminaries 29

Definition 2.4.
An (k, l)-LTS is an LTS, (S,L,�!), where L ✓ Bk ⇥ Bl, where we write

x/y as syntactic sugar for (x, y) 2 L

Example 2.3.
Two example 2-LTSs are illustrated in Fig. 2.2.

0

1

0/1

1/0

(a) (1, 2)-LTS, X

2

3

1/0

0/1

(b) (2, 1)-LTS, Y

Figure 2.2: Example 2-LTSs

As a notational shorthand, we often write 2-LTS labels containing one or more ‘⇤’ char-
acters, to represent the set of transitions where each ‘⇤’ is expanded into a pair of
transitions, with a 1 and 0 at that position in the label. For example, the label ⇤1/⇤
corresponds to the set of labels

�

01/0, 01/1, 11/0, 11/1

for a (2, 1)-LTS. When draw-
ing LTSs, we often collapse multiple transitions between the same source/target states,
drawing a single transition with a set of labels, which should be understood as a set of
singly-labelled transitions. These labelling shorthand are illustrated in Fig. 2.3, where
we give two presentations of the same LTS.

0

1

2

�

0/1, 1/0

⇤/1

0

1

21/0

0/1

0/1

1/1

Figure 2.3: Compact vs Expanded label notation

When considering LTSs we often want to ignore the particular label and state names
and instead concentrate on the transition connections, allowing us to identify those
LTSs with the same underlying structure. We say that LTSs that can be identified in this
way are isomorphic.

30 Chapter 2 Preliminaries

2.2.1 Isomorphism of LTSs

First, we describe how to map one LTS’s transition structure onto another, known as a
homomorphism between LTSs:

Definition 2.5.
Consider two LTSs, (S1, L1,�!1) and (S2, L2,�!2). A mapping, f , between the LTSs is
formed of two components: f

S

: S1 ! S2 and f
L

: L1 ! L2. A mapping is said to be an
LTS homomorphism if for every x

l�!1 y we have f
S

(x)
fL(l)���!2 fS(y).

An LTS homomorphism, f , is an isomorphism iff both components are bijections. We
write X ⇠= Y when there exists an LTS isomorphism between X and Y .

Example 2.4.
The 2-LTSs illustrated in Fig. 2.2 are isomorphic with:

f
S

(0) = 2

f
S

(1) = 3

f
L

(0/1) = 1/0

f
L

(1/0) = 0/1

2.2.2 2-LTS Compositions

We define two composition operations on 2-LTSs, synchronous and tensor, both of
which are modifications of the cartesian product construction on LTSs. Later in the
thesis, we will use these compositions to give compositional semantics of Petri Nets
With Boundaries components.

First, we define the cartesian product construction on LTSs, which takes two LTSs and
generates a new LTS, with the set of states (transitions) being the cartesian product of
the underlying sets of states (transitions).

Definition 2.6 (Cartesian Product of LTSs).
Given two LTS, X1: (S1, L1,�!1), and X2: (S2, L2,�!2) their cartesian product is:
(S1 ⇥ S2, L1 ⇥ L2,�!), where

(x, y)
(�1,�2)����! (x0, y0) iff x

�1�!1 x
0 ^ y

�2�!2 y
0

Synchronous composition is defined for pairs of 2-LTSs that share a common “internal”
label size; it restricts transitions in the product to those that agree on the shared label:

Definition 2.7 (Synchronous Composition).
Given a (k, l)-LTS X and a (l, m)-LTS Y , their synchronous composition, written X ; Y ,
is the (k, m)-LTS (S,L,�!sync), where (S,L,�!) is the cartesian product of X and Y ,
and �!sync is defined:

(x, y)
l1/l4���!sync (x

0, y0) () (x, y)
(l1/l2, l3/l4)��������! (x0, y0) ^ l2 = l3

Chapter 2 Preliminaries 31

That is, we remove transitions whose labels do not agree on the l-sized internal bound-
ary; furthermore, we hide the shared label component in the resulting transition. We
sometimes write states of a synchronous composition as (x ; y) rather than (x, y).

Remark 2.8. For a (k, k)-LTS X, we write Xm for the (left-associated) m-fold syn-
chronous composition X ; X ; . . . ; X.

As we have seen, synchronous composition is only defined when the internal bound-
ary sizes match up. Tensor composition, however, is defined for any pair of 2-LTSs,
regardless of their boundary sizes:

Definition 2.9 (Tensor Composition).
Given a (k, l)-LTS X and a (m, n)-LTS Y their tensor composition, written X ⌦ Y , is a
(k +m, l + n)-LTS, defined as (S,L,�!tens), where (S,L,�!) is their cartesian product
and �!tens is defined:

(x, y)
l1l3/l2l4�����!tens (x

0, y0) () (x, y)
(l1/l2, l3/l4)��������! (x0, y0)

In other words, pairwise concatenation of the labels of the cartesian product. Again, we
sometimes write states of the tensor composition as (x ⌦ y) rather than (x, y).

Example 2.5.
An example of synchronous and tensor composition is given in Fig. 2.4, where we
compose the LTSs X and Y from Fig. 2.2.

(0 ; 2)

(1 ; 3)

0/0

1/1

(a) (1, 1)-LTS, X ; Y

(0 ⌦ 2)

(0 ⌦ 3)

(1 ⌦ 2)

(1 ⌦ 3)

01/10

11/00

00/11
10/01

(b) (2, 2)-LTS, X ⌦ Y

Figure 2.4: Example 2-LTS compositions

Given a finite LTS, we can consider only its runs that start and finish in specified states.
To do so, we identify a certain state as being initial and a collection of states as being
accepting and then only consider runs of the LTS that start with the initial state and fin-
ish with an accepting state. This, of course, is the familiar concept of a non-deterministic
finite automaton (NFA).

32 Chapter 2 Preliminaries

2.3 Non-deterministic Finite Automata

In this thesis, we will use NFAs to give the semantics of marked Petri Nets, those nets
with certain initial and target markings. The initial marking will be the initial state of the
NFA and the target marking will be the one accepting state of the NFA.

Definition 2.10 (NFA).
A non-deterministic finite automaton is 5-tuple: (Q,⌃,�!, i, A) where (Q,⌃,�!) is an
LTS, i 2 Q and A ✓ Q.

Graphically, initial states have a small, unlabelled arrow pointing into them, and accept-
ing states are drawn as double circles.

The language of an NFA is the traces of its runs that begin with the initial state, and end
with an accepting state. We refer to individual traces in the language as words:

Definition 2.11.
Given an NFA, N , its language, written L (N), is the set of all traces (i.e.

⌦

�0,�1, . . . ,�n�1
↵

,
written as #»�) corresponding to runs of the underlying LTS:

D

x0
�0�! y0, x1

�1�! y1, . . . , xn�1
�n�1���! y

n�1

E

such that x0 = i and y
n�1 2 A. By Defn. 2.3, we must have x

i

= y
i�1, for all 1 i < n.

Example 2.6.
An example NFA is illustrated in Fig. 2.5. Its language is the (infinite) set:

�

tmw
�

� w 2 {s}⇤

[
�

cmw
�

� w 2 {s}⇤

0

1

2

3

4

t

c

m

m

s

s

Figure 2.5: An example NFA

NFAs may have different structure, yet recognise the same language; we say that such
NFAs are language-equivalent :

Definition 2.12.
N and M are language-equivalent, written N ⇠L M , if L (N) = L (M).

Chapter 2 Preliminaries 33

Example 2.7.
We have that N ⇠L M , where N is illustrated in Fig. 2.5, and M in Fig. 2.6.

0 1 2
{t, c} m

s

Figure 2.6: A NFA that is language equivalent to that of Fig. 2.5

2.3.1 Isomorphism of NFAs

A homomorphism between two NFAs, N1 and N2, is a homomorphism on the underlying
LTSs that additionally preserves the initial and accepting states.

Definition 2.13.
Given two NFAs, N1: (Q1,⌃1,�!1, i1, A1) and N2: (Q2,⌃2,�!2, i2, A2), a homomor-
phism, f (comprised of components f

S

: Q1 ! Q2 and f
L

: ⌃1 ! ⌃2) on the underlying
LTSs (Q1,⌃1,�!1) and (Q2,⌃2,�!2), is a NFA homomorphism if the following additional
conditions are satisfied:

(i) f
S

(i1) = i2

(ii)
�

f
S

(x)
�

� x 2 A1

= A2

Clearly, if an NFA-homomorphism is an LTS-isomorphism, it is also a NFA-isomorphism.

2.3.2 2-NFAs

If the underlying LTS of an NFA N is a (k, l)-LTS we say that N is a (k, l)-NFA, or, if
the particular k, l are unimportant, a 2-NFA.

We define composition operations on 2-NFAs in a similar manner to how we defined
them on 2-LTSs: the underlying operation is performed on the 2-LTS, and the initial/ac-
cepting states are suitably modified.

Definition 2.14 (Synchronous composition of 2-NFAs).
Given a (k, l)-NFA, N : (Q1,⌃1,�!1, i1, A1) and a (l, m)-NFA, M : (Q2,⌃2,�!2, i2, A2)

their synchronous composition is a (k, m)-NFA:

(Q,⌃,�!, (i1, i2) , A1 ⇥A2)

where (Q,⌃,�!) is the synchronous composition of the underlying 2-LTSs (Defn. 2.7).

34 Chapter 2 Preliminaries

Definition 2.15 (Tensor composition of 2-NFAs).
Given a (k, l)-NFA, N : (Q1,⌃1,�!1, i1, A1) and a (m, n)-NFA, M : (Q2,⌃2,�!2, i2, A2)

their tensor composition is a (k +m, l + n)-NFA:

(Q,⌃,�!, (i1, i2) , A1 ⇥A2)

where (Q,⌃,�!) is the tensor composition of the underlying 2-LTSs (Defn. 2.9).

Now, we turn to Petri nets, the semantics of which we give using LTSs/NFAs.

2.4 Petri nets

Petri nets are a mathematical model with a vivid graphical presentation, used to model
concurrent and distributed systems. A Petri net consists of a set of places, and a set of
transitions that connect sets of places to sets of places.

Definition 2.16 (Petri net).
A Petri net is a 4-tuple: (P, T, ��,��), where:

- P is the set of places,

- T is the set of transitions,

- ��, �� : T ! 2P give, respectively, the pre- and post-sets of each transition.

For t 2 T , its preset, �t is the set of places that connect to t, and its postset, t�, is the
set of places to which t connects. The neighbourhood of t is �t�

def
= �t[t�. We write

places(N) and trans(N) respectively, for the place and transition sets of N .

In this thesis, we consider the class of Petri nets where each place can contain either
zero or one token. Other classes of Petri nets (e.g. P/T nets [133]) lift this restriction,
but we do not use this generalisation, instead focussing on 1-bounded, or safe nets:

Definition 2.17 (Marking).
A marking of a net N is a function m : places(N)! {0, 1}.

Graphically, a marking is illustrated by drawing black circles inside each place that is
assigned a token by the marking.

Example 2.8.
An example Petri net, N , is illustrated in Fig. 2.7, with 7 places, 5 transitions, and with

the marking function: m(p
i

)
def
=

8

>

<

>

:

1 if i 1

0 otherwise

In N , for example, �t4 = {p2, p4}, �t1 = {p1} and t�1 = {p2, p5}.

Chapter 2 Preliminaries 35

p0

t0 p1 t1 p2

t2 p3 t3 p4

p5

t4

p6

Figure 2.7: Example Petri net

The marking of a Petri net is transformed by firing transitions; we say one marking is
reachable from another if there is a sequence of transition firings that transforms one
marking to the other. Intuitively, when fired, a transition, t, consumes tokens from all
p 2 �t and produces a token at all q 2 t�, giving a new marking.

However, it is not the case that arbitrary subsets of net transitions can necessarily be
fired at the same time. Two transitions cannot fire simultaneously if they attempt to
produce a token at the same place (e.g. t1 and t3 in Fig. 2.7), or both consume the
token from a place, (e.g. t0 and t2 in Fig. 2.7). To specify the transitions that may fire
concurrently, we define the notion of contention between transitions.

Definition 2.18 (Transition contention).
For a Petri net N , we say that t, u 2 trans(N) are in contention (written t ./ u) when
either �t \ �u 6= ? or t� \ u� 6= ?.

Note that contention is a property of the net’s topology and does not depend on any
particular marking. We say a set of transitions is contention-free if it contains no pair of
distinct transitions in contention:

Definition 2.19 (Contention-free transition sets).
For a Petri net N , we say that S ✓ trans(N) is contention-free if 8t, u 2 S, we have:

t ./ u =) t = u

For example, in the net shown in Fig. 2.7, {t0, t3} is contention-free, but {t0, t2} is not.

A transition may only be fired if it is enabled : when each place of its pre-set is marked,
and no places in its post-set are marked:

Definition 2.20 (EN enabled transitions).
For a net N , t 2 trans(N) is enabled for a marking m, written enabled

m

(t), if for all
p 2 �t, m(p) = 1 and for all q 2 t�, m(q) = 0.

Remark 2.21. A trivial observation is that a particular transition will be enabled at some,
but not all, markings of the same net, whereas a given pair of transitions will either
always be in contention, or never. Put differently, contention is a static property of
the net, while a particular transition being enabled is a dynamic property of the net.

36 Chapter 2 Preliminaries

Determining if we are able to fire a particular set of transitions thus relies on a mixture
of static and dynamic information: we must have no transitions in contention in the
set, and the current marking should enable all of the transitions. In some net models,
such as P/T nets, the enabled condition of Defn. 2.20 is relaxed, allowing transitions to
fire even if a token is already present on the place. However, in this thesis we do not
consider such nets: their semantics are more complex, and their statespaces are often
infinite.

We may lift several of the previous definitions from individual transitions to sets of tran-
sitions, in a straightforward manner. In the following, S ✓ trans(N), for some net, N :

�S
def
=

[

t2S

�t

S� def
=

[

t2S
t�

enabled
m

(S)
def
=

^

t2S
enabled

m

(t)

Remark 2.22. Before continuing, we briefly mention that the class of all Petri nets can
be sub-divided based upon either structure, token numbers and transition firing rules.
Common net classes relating to structure are pure, simple or finite nets, to tokens and
structure are bounded or safe nets and to transition firing rules are elementary nets. In
turn, we have that a Petri net, N is:

- pure if, for any t 2 trans(N), �t\ t� = ?

- simple if, for any t, u 2 trans(N), �t = �u =) t = u,

- k-bounded if, every reachable marking, m, has that: 8p 2 places(N),m(p) k,

- safe if it is 1-bounded,

- finite if both places(N) and trans(N) are finite,

We may now define the step firing semantics of a Petri net, in which (sets of) transitions
are fired: a set of transitions may fire if it is both contention-free (a static property) and
enabled in the current marking of the net (a dynamic property):

Definition 2.23 (EN Firing Semantics).
Given a net N and a marking m, a set S ✓ trans(N) can fire iff S is contention-free and
enabled

m

(S) (by Defn. 2.20). Firing S creates a new marking m0, defined thus:

m’(p
i

)
def
=

8

>

>

>

>

<

>

>

>

>

:

0 if p
i

2 �S

1 if p
i

2 S�

m(p
i

) otherwise

Chapter 2 Preliminaries 37

that is, tokens are consumed from all places in the pre-set of S, produced at all places
in the post-set of S, and otherwise unchanged from m. If S can be fired to transform N

from m to m0, we write N
m

!
S

N
m

0 .

For the remainder of this thesis, we only consider finite, pure and simple (Remark 2.22)
Elementary Nets [134], which are defined in Defn. 2.24.

Definition 2.24 (Elementary Net).
An elementary net (EN) is a Petri net, (P, T, ��,��), that uses the firing rule in Defn. 2.23.

Since ENs do not allow transitions to be enabled when there are tokens in any of their
post-set places, safeness (Remark 2.22) is guaranteed. As a consequence, the state
space—set of reachable markings—of an EN N is finite since the markings of N put at
most one token in each place. Furthermore, markings can be identified with the sets of
places M ✓ places(N) they characterise.

In standard presentations, an EN N must have no unconnected places (i.e 8p 2 places(k),
9t 2 trans(N) s.t. p 2 �t�) or transitions (i.e 8t 2 trans(k), �t� 6= ?). However in this
thesis we lift this restriction, allowing transitions to not connect to places, as will be
discussed when introducing Petri Nets With Boundaries.

2.4.1 Labelled transition system semantics of Petri Nets

The firing semantics of a Petri net can be used to construct an LTS—known as its
reachability graph [2]—representing the relationships between all markings of the net.

The LTS semantics for a net N has states the markings of N , with transitions between
markings m and m0 being labelled by sets of (enabled, contention-free) transitions:

Definition 2.25 (LTS semantics of a Petri net).
The LTS semantics of a net N is defined to be the LTS (2places(N), 2trans(N),fired), where
(m,S,m0) 2 fired iff S is contention-free and enabled by m, and N

m

!
S

N
m

0 .

Example 2.9.
The LTS semantics of the Petri net of Fig. 2.7 is shown in Fig. 2.8. Recall that net
markings are identified with the set of net states to which they assign a token, and
that LTS states correspond to markings of the underlying net, therefore, we draw LTS
states containing sets of net states. The LTS transitions are labelled with sets of net
transitions, fired to transform between the two markings. Note that each state of the
LTS has a self-loop: the empty set of transitions can always be fired. For clarity, the
122 (out of 128 total) states that are not reachable from the illustrated marking {p0, p1}
have not been drawn.

38 Chapter 2 Preliminaries

For example, we have that {0, 1} {t1,t2}����! {2, 3, 5} and {1, 3} ?�! {1, 3}. Observe that the
net transition t4 doesn’t appear in the label of any LTS transition - it can never be fired
since no reachable marking places a token in both p2 and p4.

{p0, p1}

{p1, p3}

{p0, p2, p5}

{p2, p3, p5}

{p1, p4, p5}

{p1, p2, p5}

{t2}

{t1}

{t1, t2}
?

{t1}

?

{t3}

{t2}

?

{t0}

?

?

Figure 2.8: LTS semantics of the Petri net in Fig. 2.7.

Finally, as a consequence of the definition of Petri net LTS semantics, we observe
that trace membership of an LTS semantics implies a valid corresponding sequence of
firings in the underlying net:

Remark 2.26. Consider a net N and its LTS semantics X. Any trace, t = hl0, l1, . . . , lni,
of X is a valid sequence of firings of N , between the markings corresponding to the
states of any run with trace t.

2.5 Reachability and Coverability in Petri Nets

A natural question to ask about a Petri net is whether it is possible to reach a particular
target marking from some initial marking. That is, does there exist a firing sequence
that transforms the net from the initial marking to the target marking. This question is
known as the reachability problem [135], and is PSPACE-complete [8].

Due to the correspondence between Petri net firing sequences and traces of their LTS
semantics (Remark 2.26), reachability checking coincides with checking the existence
of a trace between the states corresponding to the initial and target markings. For
example, there is a trace between {p0, p1} and {p1, p4, p5} in Fig. 2.8.

Chapter 2 Preliminaries 39

We often want to consider a particular net and pair of its markings, and refer to such a
triple as a marked net:

Definition 2.27 (Marked Net).
A marked net, (N, i, t), is comprised of a Petri net N and the initial/target markings:
i, t ✓ places(N).

A related concept from the literature is a net system [136], which is simply a net along
with a chosen initial marking.

Graphically, we represent a marked net as a Petri net with tokens on each place in the
initial marking, and shading on each place in the target marking. For example, consider
the net illustrated in Fig. 2.9, representing a fork-join system containing 2 tasks; the
initial marking is {p0} (representing the initial, ready state of the system) and the target
marking is {p3, p4}, where both tasks have finished, but have not been joined.

p0 tfork

p1

p2

tfinish1

tfinish2

p3

p4

tjoin

Figure 2.9: Marked Petri net representing a fork-join system

Given a marked Petri net and the LTS semantics of the net, we can construct a NFA,
recognising the set of traces between the pair of states:

Definition 2.28 (NFA Semantics of a marked Petri Net).
Given a marked net, (N, i, t), the NFA semantics extends the LTS semantics: the initial
state is i and the set of accepting states is the singleton set {t}.

Example 2.10.
Consider the LTS shown in Fig. 2.8, representing the semantics of the net in Fig. 2.7.
Take the initial state to be the original marking shown in Fig. 2.7, i.e. {p0, p1}, and the
accepting states to be

�

{p2, p3, p5}

. Now, the language of the NFA, N , obtained from
the LTS and chosen initial/accepting states is simple:

L (N) =
n

⌦

{t1, t2}
↵

,
⌦

{t2} , {t1}
↵

,
⌦

{t1} , {t2}
↵

o

that is, we can either fire t2 and t1 in order, or concurrently, to reach the desired marking.

40 Chapter 2 Preliminaries

A simple observation following from Remark 2.26 is that a trace being a member of the
language of an NFA for a particular reachability problem implies that the reachability
problem is satisfiable:

Remark 2.29. If w 2 L (N), where N is the NFA representing the reachability problem
for a given marked net, then w is a witness of the final marking being reachable from
the initial marking in the net. Generally, if L (N) 6= ?, then the reachability problem is
satisfiable, whereas if L (N) = ?, then the reachability problem is not satisfiable.

Finally, we close this section by giving the definition of a slight modification of the reach-
ability problem, that of coverability. Coverability of a marking, m, checks if any marking
that contains m as a sub-marking is reachable:

Definition 2.30 (Sub-marking).
Given a Petri net, N , and two of its markings, m and m0, we say that m is a sub-marking
of m0, written m m0, iff 8p 2 m, q 2 m0.

Definition 2.31 (Coverability).
Given a marked Petri net, (N, i, t), we say that t is coverable if 9m. t m such that the
reachability problem (N, i,m) is satisfiable.

Petri nets with boundaries (PNBs) extend the definition of the EN nets introduced in
the previous section by adding left and right boundaries, to which transitions of the net
can also connect. PNBs are composed using two operations: a synchronous, synchro-
nising composition, and a non-interacting, parallel composition. Indeed, by allowing
transitions to connect to boundary ports, their behaviour can be partially specified;
synchronously composing PNBs completes the specification of transitions by supple-
menting the places that the transition connects to.

Definition 2.32 (Petri net with Boundaries).

A PNB is a 9-tuple: (P, T, ��,��, l, r, •�,�•, ./), where:

- (P, T, ��,��) is an EN,

- l, r 2 N are respectively, the left and the right boundaries,

- •� : T ! 2l and �• : T ! 2r connect a transition to the left and right boundaries,

- ./ is a contention relation (see Definition 2.33 below).

We will refer to PNBs simply as nets herein; when we need to be precise we will explic-
itly name the type of nets being considered. As the definitions of ��,�� were lifted to
sets of transitions, so are •�,�•: for a PNB, N , and U ✓ trans(N):

•U
def
=

[

t2U

•t

Chapter 2 Preliminaries 41

and similarly for U•. We frequently need to state the boundaries of a given PNB, writing
N : (k, l) to indicate that N has left and right boundaries k and l, respectively.

2.5.1 Graphical Notation

PNBs are represented using an alternative to the classic Petri net graphical notation.
The alternative notation is lighter weight than the classic notation, and is more intuitive
when reasoning about and presenting PNB compositions.

In the alternative graphical representation, each place is drawn as directed, having an
in and out port, drawn as a triangle pointing into and out of the place, respectively.
Transitions are undirected links that connect an arbitrary set of boundary and place
ports. The standard graphical presentation of Petri nets has directed arcs, where the
direction is either “place to transition” or “transition to place”, as determined by the pre-
and post-sets of each transition.

With our alternative notation, then, the pre-set of a transition is just the set of places to
which the transition is connected via the out port, symmetrically, its post-set is the set
of places to which the transition is connected via the in port.

In order to distinguish individual transitions and increase legibility, individual transitions
are drawn with a small perpendicular mark.

We demonstrate the graphical notation in Fig. 2.10, which represents the same Petri
net as that of Fig. 2.7.

Figure 2.10: PNB representation of the Petri net in Fig. 2.7.

To emphasise the “internal” structure of a PNB, we often draw transitions (or parts
thereof) that connect to boundary ports in a lighter colour; of course, formally there
is no distinction, and therefore lighter sections can always be ignored. Additionally,
where transitions cross, we sometimes use different patterns to make the structure of
the transitions clearer.

42 Chapter 2 Preliminaries

Though we are yet to define composition of PNBs, we can give a graphical intuition,
which we will make precise later in this chapter: synchronous composition corresponds
to fusing the inner boundary ports of two PNBs, suitably synchronising the transitions
connecting to those boundary ports. Parallel composition, on the other hand, corre-
sponds to stacking two PNBs upon one another without fusing transitions.

2.5.2 PNB Firing Semantics

As for explained in Remark 2.21, transitions in contention cannot be fired concurrently;
in Petri nets, two transitions are in contention precisely when they compete for a re-
source, i.e. they consume a token from, or produce a token at the same place.

For PNBs, there are two additional sources of contention between transitions; essen-
tially, if the two transitions connect to the same boundary port, or were created by
fusing multiple transitions that connected to the same boundary port, then they should
be in contention. For now, we outline the definition of a contention relation, but defer
discussion of its role in composition until §2.5.3:

Definition 2.33 (Contention Relation).
For a net, N , a symmetric relation, ./, on trans(N) is said to be a contention relation, if
for all (t, u) 2 trans(N)⇥ trans(N), t 6= u, when any of the following hold:

(i) �t \ �u 6= ?,

(ii) t� \ u� 6= ?,

(iii) •t \ •u 6= ?,

(iv) t• \ u• 6= ?.
then t ./ u.

Abusing notation, we write U ./ V for U, V ✓ trans(N), if t ./ u for some t 2 U , u 2 V .

We define contention-free (Defn. 2.19) and enabled (Defn. 2.20) sets of transitions in
the same was as for Petri nets. Firing is also defined in the same way, though we repeat
the definition here, for clarity:

Definition 2.34 (Firing Semantics for PNBs).
Given a PNB N and a marking m, a set U ✓ trans(N) can fire iff U is contention-free
and is enabled by marking m. Firing U creates a new marking n, defined as follows:

n(p
i

)
def
=

8

>

>

>

>

<

>

>

>

>

:

0 if p
i

2 �U

1 if p
i

2 U�

m(p
i

) otherwise

that is, tokens are consumed from all places in the pre-set of U , produced at all places
in the post-set of U , and otherwise unchanged from m. If U ✓ trans(N) is enabled and
contention-free at m, and transforms the marking to n when fired, we write N

m

!
U

N
n

.

Chapter 2 Preliminaries 43

To illustrate the use of boundary ports, we make precise the synchronous composition
of PNBs, which connects the boundary ports of suitable pairs of PNBs.

2.5.3 Synchronous composition of PNBs

In order to synchronously compose two PNBs, they must share a boundary with the
same number of ports. Intuitively, composition forms a new net which has the places
of both nets, and transitions that are formed of sets of transitions, one from each of the
underlying nets. We often call nets that are to be composed component nets, or simply
components.

To define composition, we require the notion of a synchronisation between two nets,
which is a particular choice of transitions from the two components:

Definition 2.35 (Synchronisations).
A synchronisation between two PNBs, N : (k, l) and M : (l, m) is a pair

(U, V) 2 2trans(N) ⇥ 2trans(M)

of contention-free sets of transitions, such that U• = •V .

Synchronisations inherit an ordering from the subset ordering, pointwise:

(U, V) ✓ (U 0, V 0)
def
= U ✓ U 0 ^ V ✓ V 0

We call the empty synchronisation, (?,?), trivial. A synchronisation (U, V) is minimal
when it is not trivial, and for all synchronisations (U 0, V 0) ✓ (U, V), then (U 0, V 0) is trivial
or equal to (U, V). Intuitively, minimal synchronisations are the smallest collections of
transitions from both nets that share a common set of boundary ports; put differently,
we only retain those transitions that must fire together, to synchronise the two nets.

t

u

v

x

w

Figure 2.11: Components to be composed

Example 2.11.
Consider the two nets in Fig. 2.11; we have the following:

44 Chapter 2 Preliminaries

-
�

{t} , ?
�

is not a synchronisation since {t}• = {0} 6= ? = •?,

-
�

{u} , {v, x}
�

and
�

{t, u} , {v, w}
�

are synchronisations, but are not minimal,

-
�

{u} , {x}
�

,
�

{t, u} , {w}
�

and
�

?, {v}
�

are all minimal synchronisations.

Indeed, since we wish to use minimal synchronisations as the transitions of composed
PNBs, we require the notion of contention between synchronisations:

Definition 2.36 (Contention between synchronisations).
Contention is lifted to synchronisations between N and M :

(U, V) ./ (U 0, V 0)
def
= U ./

N

U 0 _ V ./
M

V 0

where ./
X

is the contention relation of net X.

For nets N : (k, l) and M : (l, m), let minsync(N, M) be the set of minimal synchroni-
sations between them.

Remark 2.37. For any (U, V) 2 minsync(N, M), we have that |U | > 1, or |V | > 1 only if
there exists a transition in N or M that is connected to more than one common bound-
ary port. If this were not the case, (U, V) would not be a minimal synchronisation, since
we could remove a transition while preserving the synchronisation property. Properties
concerning composition of nets with transitions that are only connected to one boundary
port are explored in Chapter 3, where we elucidate the categorical structure of PNBs.
For each transition t 2 trans(N) with t• = ?, we have ({t} ,?) 2 minsync(N, M),
and similarly for trans(M). In other words, transitions in the components are free to
fire without affecting the other component as long as they do not connect to the com-
mon boundary. If they do, the transitions must synchronise with transitions in the other
component respecting their interaction on the shared boundary.

We can now give the definition of synchronous composition of nets with boundaries:

Definition 2.38 (Synchronous composition).
The composition of PNBs N : (k, l) and M : (l, m), is written N ; M : (k, m), and has
the following structure:

- places(N ; M) is places(N)] places(M),

- trans(N ; M) is minsync(N, M), the set of minimal synchronisations,

- �(U, V)
def
= �U] �V and (U, V)�

def
= U�] V �,

- •(U, V)
def
= •U and (U, V)•

def
= V •,

- Contention is lifted to minimal synchronisations, as described in Defn. 2.36, but is
subtle, as we discuss in Remark 2.39.

Chapter 2 Preliminaries 45

In order for the composition to be well-defined, lifting the contention relations from PNBs
N and M as per Defn. 2.36 must yield a well-defined contention relation for N ; M ,
which is confirmed in [58, Definition 3.4].

Remark 2.39. We require that contention is explicitly preserved by synchronous com-
position: if certain transitions are in contention in the component nets, transitions con-
taining them in the nets’ composition should also be in contention. Indeed, this is the
reason for requiring an explicit contention relation, rather than relying on the connec-
tivity of the transitions alone to determine contention. As we will demonstrate shortly
(Exm. 2.12), certain PNBs, when composed, form transitions in the composite that
should be in contention, but do not, structurally. The intuition being that since transi-
tions in a composition are formed of sets of transitions of the components, we should
not be able to fire transitions of the composition that are conflicting as transitions of the
components. Further examples, and the mathematical foundations of contention are
given in [137].

An example of synchronous composition is illustrated in Fig. 2.12. Note that there is no
synchronisation containing c, it has no transition in N with which to synchronise, and
that t appears in two synchronisations in N ; M : synchronising both with a and b.

t

u

v

N : (0, 4)

a

b

c

d

M : (4, 0)

�

{t} , {a}
�

�

{t, u} , {b}
�

�

{v} , {d}
�

N ; M : (0, 0)

Figure 2.12: Example Synchronous Composition

The two additional sources of contention relative to Petri nets, mentioned earlier in this
section can now be stated precisely:

1. Connecting to the same boundary port leads to contention: Defn. 2.33(iii) and (iv)

2. Contention is preserved in compositions, by Defn. 2.36

We now demonstrate synchronous composition of two simple nets, showing why explicit
contention relations are required, rather than infering contention from PNB structure:

Example 2.12.
Consider the two component nets L in Fig. 2.13a and R in Fig. 2.13b and their compo-
sition in Fig. 2.13c. We have that t ./

L

u and v ./
R

w.

46 Chapter 2 Preliminaries

p0

p1

t

u

(a) Component L.

p2

p3

v

w

x

y

(b) Component R.

inl p0

inl p1

inr p2

inr p3

({t} , {v})

({t} , {w})({u} , {v})

({u} , {w})

(?, {x})

(?, {y})

(c) L ; R.

Figure 2.13: Example component nets and their synchronous composition

Consider the pair of transitions ({t} , {v}) and ({u} , {w}) in the composition. If con-
tention was not remembered, these two transitions would not be in contention in the
composite net (they share no common place/boundary ports), and could therefore be
fired concurrently. However, the underlying sets of transitions in the components are in
contention (i.e. {t, u} and {v, w}), since the transitions connect to the same boundary
port and thus they cannot fire concurrently. Fortunately, in the examples we consider in
this thesis, complications due to contention rarely play a prominent role.

Graphically, synchronous composition can be intuitively understood as fusing the tran-
sitions that are connected to the shared boundary ports in the components, duplicating
transitions when there is a choice in the other component. For example, in Fig. 2.13a,
t is connected to the first shared boundary port; in Fig. 2.13b there are two transi-
tions connected to the first boundary port (v and w), thus in the composition, shown in
Fig. 2.13c, there are two transitions formed from t.

2.5.4 Parallel composition of PNBs

Whereas synchronous composition requires compatible component boundaries, intu-
itively to allow the right boundary of one component to be connected to the left boundary

Chapter 2 Preliminaries 47

of the other, parallel composition has no such restriction, simply stacking the compo-
nents on top of each other.

Definition 2.40 (Parallel composition).
The parallel, or tensor, composition of PNBs N : (k, l) and M : (m, n), is written
N ⌦M : (k +m, l + n), and has the following structure:

- places(N ⌦M)
def
= places(N)] places(M)

- trans(N ⌦M)
def
= trans(N)] trans(M)

- �(inl t)
def
= {inl p | p 2 �t} and �(inr t)

def
= {inr p | p 2 �t}

- (inl t)�
def
= {inl p | p 2 t�} and (inr t)�

def
= {inr p | p 2 t�}

- •(inl t)
def
= •t and •(inr t)

def
= {b+ k | b 2 •t}

- (inl t)•
def
= t• and (inr t)•

def
= {b+ l | b 2 t•}

- ./
def
=

�

(inl t, inlu)
�

� (t, u) 2 ./
N

[
�

(inr t, inru)
�

� (t, u) 2 ./
M

Unlike synchronous composition, transitions in a tensor composition are only in con-
tention if they are in contention in one of the components. An example tensor compo-
sition is illustrated in Fig. 2.14.

For convenience, and when there can be no confusion (e.g. when the places of the
components are disjoint), we label places of a composite PNB as p instead of inl p or
inr p and similarly for transitions.

2.5.5 Connectedness, Purity and Simplicity

We briefly explore several standard Petri net properties that PNBs do not satisfy; specif-
ically, connectedness, purity and simplicity (described in [138]). These properties, as-
suming they have been stated in the naive way for PNBs, are not preserved by syn-
chronous composition and thus they are in-fact ill-defined for arbitrary PNBs.

When introducing ENs, we mentioned that in the literature, an EN should have no iso-
lated places or transitions—the net is connected. However, we lift this restriction for
the ENs underlying PNBs: we may have places that are unconnected to transitions and
transitions unconnected to any places.

To see that connectedness is not preserved by composition, consider the component
nets in Fig. 2.15. Assuming the naive extension of the definition from Petri nets, both
L and R are connected (R vacuously so), yet their synchronous composition is not
connected: there is no transition in R for t to synchronise with, therefore t is not present
in any synchronisation, leaving p unconnected in L ; R.

48 Chapter 2 Preliminaries

p0
t u

(a) Component T .

p1

p2

w
v

(b) Component B.

inl p0

inr p1

inr p2

inl t inlu

inrw
inr v

(c) T ⌦ B.

Figure 2.14: Example component nets and their parallel composition.

p
t

(a) Component L (b) Component R

p

(c) Composition L ; R

Figure 2.15: Connectedness is not preserved by composition

Whereas the EN definition of connectedness only concerns places and transitions,
since PNB transitions can also connect to boundary ports, we might additionally require
that boundary ports are connected (i.e. each boundary port has at least one transition
connected to it). However, this is an unreasonable restriction: recall that each boundary
port allows the possibility of partially specifying those transitions that connect to it; it
is therefore entirely reasonable to allow no transition to be partially specified through a
particular boundary port.

Chapter 2 Preliminaries 49

Purity is the property of Petri nets that there are no self loops: a single transition cannot
be connected to both the out-port and the in-port of a single place. Consider the com-
ponents shown in Fig. 2.16; each is pure (again by the naive extension of the definition
to PNBs), yet their composition is impure, since there is a single transition connecting
the out-port of p to its in-port.

(a) Component L

p

(b) Component T

(c) Component B

(d) Component R

p

(e) Composition
L ; (T ⌦ B) ; R

Figure 2.16: Purity is not preserved by composition

Finally, simplicity is the property that the set of places that a transition connects to
uniquely identifies it. Again, assuming the naive extension to PNBs (i.e. also con-
sidering the boundary ports in the unique footprint), consider the components shown
in Fig. 2.17. Each component is simple, yet their composition is not: both transitions
connect the out-port of p1 to the in-port of p2, yet they are different transitions, one is
({t} ,?) and the other is ({u} , {v}).

t

u

(a) Component L

v

(b) Component R

t

({u} , {v})

(c) Composition L ; R

Figure 2.17: Simplicity is not preserved by composition

Thus, despite the fact that any PNB, N : (0, 0), is isomorphic to a Petri net, there can
be no guarantee that the Petri net will necessarily be pure, connected or simple.

We now proceed to defining an LTS-based semantics for PNBs, in a similar fashion to
that of Petri nets.

50 Chapter 2 Preliminaries

2.5.6 2-LTS Semantics of PNBs

Recall that the LTS semantics for Petri nets defined in §2.4.1 labels the LTS transition
between two states (markings) being the set of Petri net transitions that were fired to
transform between the markings.

For PNBs, we could use the same definition. However, as we will show later in this
thesis—with a category theoretic proof §3.5.3 and an LTS-based proof §5.3—it is suffi-
cient to forget the identities of the fired transitions, and instead only record their effect
of their interactions on the boundaries. Furthermore, since PNBs have two boundaries,
we use a 2-LTS semantics, with one label per boundary side.

As a first step towards defining the 2-LTS semantics of PNBs, we show how to map sets
of boundary ports into binary strings: indeed, we use pairs of binary strings to record
the interactions of fired PNB transitions on the boundaries:

d�e : 2k ! Bk

dOe
l

def
=

8

>

<

>

:

1 if l 2 O

0 otherwise,
for (0 l < k)

that is, the lth character of the string is 1 if the lth boundary port is in the set of boundary
ports, and 0 otherwise. Now, we can define the 2-LTS semantics of PNBs:

Definition 2.41 (2-LTS semantics of a PNB).
For a PNB N : (k, l), its 2-LTS semantics is written as JNK and is a (k, l)-LTS:

(2places(N),Bk ⇥ Bl,�!)

with m
↵/���! n iff there is a set of PNB transitions, U , such that

N
m

!
U

N
n

with d•Ue = ↵ and dU•e = �

Example 2.13.
The 2-LTS semantics for the simple PNB in Fig. 2.14b is given in Fig. 2.18.

Note that the 2-LTS semantics of any net N : (k, l) is always reflexive, that is, there

exists a transition: s
0k/0l���! s for every state, s, since the empty set of transitions is

enabled, vacuously and is contention-free at every marking.

Chapter 2 Preliminaries 51

?

{p2}

{p1}

{p1, p2}

�

00/1, 11/1

�

00/0, 11/0

�

00/0, 11/0
 �

00/0, 11/0

�

00/0, 11/0

Figure 2.18: (2, 1)-LTS semantics of the PNB in Fig. 2.14b.

2.5.7 Marked PNBs

For a given PNB and pair of initial and final markings, we can consider its 2-LTS se-
mantics as an (specially-labelled) NFA, as we did for Petri nets (Defn. 2.28), by taking
the states corresponding to the appropriate markings as initial/accepting states of the
NFA. To do so, we first make precise the definition of a PNB with initial/target markings:

Definition 2.42 (Marked PNB).
A marked PNB is a triple, (N,m, n) consisting of a PNB, N , together with a particular
initial (m) and target (n) marking.

We can now define the 2-NFA semantics of a marked PNB as follows:

Definition 2.43 (2-NFA semantics of a marked PNB).
Given a marked PNB, (N,m, n), the 2-NFA semantics extends the 2-LTS semantics:
the initial state is the state corresponding to m and the accepting states are the sin-
gleton set containing the state corresponding to n. We write �(N,m, n)� for the 2-NFA
semantics of a marked PNB, N .

Example 2.14.
Consider the marked PNB (B, {p1, p2} ,?), where B is taken from Fig. 2.14b. We con-
struct �B� by taking the 2-LTS shown in Fig. 2.18, and making the state corresponding
to the empty marking as accepting, and that corresponding to the state marking both
places as initial.

52 Chapter 2 Preliminaries

2.5.8 Isomorphism of PNBs

Suppose that N,M : (k, l) are PNBs. We say that a mapping f : N ! M , comprised
of two components: f

P

: places(N) ! places(M) and f
T

: trans(N) ! trans(M), is a
homomorphism if the following hold, for all t, u 2 trans(N):

1. �f
T

(t) =
�

f
P

(p)
�

� p 2 �t

,

2. f
T

(t)� =
�

f
P

(p)
�

� p 2 t�

,

3. •f
T

(t) = •t,

4. f
T

(t)• = t•,

5. f
T

(t) ./
N

f
T

(u) () t ./
M

u.

We say that a homomorphism f is an isomorphism iff both components are bijections,
writing N ⇠= M when an isomorphism exists between N and M .

Isomorphic nets clearly have isomorphic markings (and thus 2-LTS semantics):

Lemma 2.44.
If N and M are nets, and N ⇠= M , then JNK ⇠= JMK.

Proof. Immediate: the state component of the LTS-isomorphism is the place compo-
nent of the PNB-isomorphism; the PNB transition structure is preserved, the label com-
ponent of the LTS-isomorphism is the identity function.

2.5.9 Read Arcs

TODO: Ask Pawel for Tau-nets reference, here

In this thesis we introduce a slight modification of PNBs, adding a new arc type (con-
nection between transitions and places), called a read arc, as found in contextual
nets [139].

Read arcs allow for (concurrent) non-destructive reads of a token at a particular place.
In standard PNBs, it is possible for a transition to check for the presence of a token
at a particular place: the transition can remove the token from the place under con-
sideration, placing it at a temporary place, before another transition fires, placing the
token back in the original place. However, only one such remove/replace loop can be
concurrently fired for any single target place (each removal transition is in contention
with every other). We say that remove/replace loops are destructive reads of a token.
An example of a net using remove/replace loops is illustrated in Fig. 2.19; its intuitive

Chapter 2 Preliminaries 53

behaviour is that p1 is filled by u, emptied by v and the presence of its token can be
checked by t and w. Indeed, t and w both attempt to remove p1’s token, which cannot
happen concurrently, hence the presence of a token at p1 cannot be signalled on the left
and right at once. Indeed, using remove/replace loops (and the extra required places)
in this manner leads to (undesired) additional behaviour, as can be witnessed in the
2-LTS semantics shown in Fig. 2.20.

p1p0 p2

t w

u

v

Figure 2.19: PNB with remove/replace loops

010

000

001

011

100

110

101

111 00/00

00/0000/00

00/00

00/00

00/0000/00

00/00

00/10

00/01

00/10

10/00

00/10

10/00

00/01

00/10

01/00

00/00

00/00

01/00

00/00

01/00

00/00

01/00

Figure 2.20: 2-LTS semantics of the PNB with remove/replace loops shown
in Fig. 2.19. For compact representation, markings are identified with binary
strings: there is a 1 at position i iff place p

i

is marked.

54 Chapter 2 Preliminaries

Adding read arcs to the definition of PNBs requires making simple modifications to the
definitions of contending/enabled transitions:

Definition 2.45 (PNB with read arcs).
A PNB with read arcs is a 10-tuple: (P, T, ��,��, l, r, •�,�•, ?�, ./), where:

- (P, T, ��,��, l, r, •�,�•, ./), is a PNB,

- ?� : T ! 2P connects a transition to places via read arcs,

- ./ is a read-arc aware contention relation: a symmetric relation such that for
(t, u) 2 T ⇥ T , t 6= u, for which any of the conditions of Defn. 2.33 or the fol-
lowing condition holds:

?t \ �u� 6= ?

then t ./ u.

Remark 2.46. Observe that two transitions, t, u may have ?t \ ?u 6= ?, but t 6./ u.
Indeed, this is what allows concurrent non-destructive reads.

The graphical representation of a read arc is an undirected edge connecting to the side
of a place. The example shown in Fig. 2.19 can be encoded using read arcs as shown
in Fig. 2.21. Now, t and u are not in contention, and are both enabled by the current
marking. Thus, the set {t, u} can be fired (preserving the net’s marking).

p1
t

u
v

w

Figure 2.21: PNB with read arcs

We tweak the definition of enabled transitions from that of Defn. 2.20, to require that
each place being read has a token, and that a transition does not produce/consume a
token at the same place as it reads:

Definition 2.47 (Enabled Transitions for PNBs with Read Arcs).
For a PNB with read arcs, N , a transition t 2 trans(N) is enabled for a marking, m,
written enabled

m

(t), if:

1. 8p 2 �t, m(p) = 1

2. 8q 2 ?t, m(q) = 1

3. 8r 2 t�, m(r) = 0

4. �t� \ ?t = ?

Remark 2.48. To see why these modifications are necessary, observe that PNBs with-
out read arcs may contain self-conflicting transitions: a transition can share a place
between its pre and post sets. However, sets containing a self-conflicting transition are

Chapter 2 Preliminaries 55

contention-free by Defn. 2.19, but, they cannot be fired, since they are not enabled. In-
deed, to be enabled, a transition’s pre-set must be marked and the post set unmarked;
a self-conflicting PNB transition would require a place to be both marked and unmarked
and therefore is never enabled.

On the other hand, PNBs with read arcs may contain a transition, t, which attempts
to consume the token from a place and also read the token, i.e. there is some p 2 �t

such that p 2 ?t. Such a transition is similarly never enabled, by Defn. 2.47. Intuitively,
it does not make sense to non-destructively read a token and destructively remove a
token from the same place.

We are now able to construct LTS semantics of PNBs with read arcs, by amending the
firing semantics of Defn. 2.34 to use the modified definition of enabled transition sets
(Defn. 2.47). The 2-LTS semantics of the PNB with read arcs shown in Fig. 2.21 is
shown in Fig. 2.22; it is clear that the undesirable additional behaviour due to using
remove/replace loops is no longer present.

?

{p1}

01/00

00/00

00/10

⇤0/0⇤

Figure 2.22: 2-LTS semantics of the PNB with read arcs shown in Fig. 2.21.

Chapter 3

Categorical Structure

In this chapter we show that both PNBs and 2-LTSs have a natural categorical struc-
ture. We consider the categories of PNBs, PNB, and 2-LTSs, 2-LTS. Our aim is to
show that these categories are in fact PROPs, and that there is a semantic functor
��� : PNB! 2-LTS taking a PNB to its 2-LTS statespace, which preserves the PROP
structure. Furthermore, we show the property of compositionality—that the semantics
of a composite PNB is determined by the semantics of the components—is simply an
instance of functoriality.

3.1 Preliminaries

We briefly recall the requisite definitions of strict symmetric monoidal categories and
functors. For an in-depth introduction to symmetric monoidal categories, and their intu-
itive graphical presentation, see [140].

Definition 3.1 (Category).
A (locally small) category, C, is comprised of:

- A collection of objects, objC ,

- A collection of morphisms; for each pair of objects, X,Y we have a set of mor-
phisms between those objects, called their hom-set, written: HomC(X,Y),

- For every object, X, we have the identity morphism: id
X

2 HomC(X,X),

- For each f 2 HomC(X,Y) and g 2 HomC(Y, Z), there is a composite morphism:
f ; g 2 HomC(X,Z).

57

58 Chapter 3 Categorical Structure

Subject to the following:

f ; id
Y

= f = id
X

; f

f ; (g ; h) = (f ; g) ; h

for any X,Y, Z,W 2 objC , and f 2 HomC(X,Y), g 2 HomC(Y, Z) and h 2 HomC(Z,W).

Definition 3.2 (Isomorphisms).
A morphism f 2 HomC(X,Y) is an isomorphism if there exists f�1 2 HomC(Y,X)

subject to the conditions:

f ; f�1 = id
X

f�1 ; f = id
Y

Definition 3.3 (Product Category).
For categories C and D, we can lift their operations pointwise to form the product cate-
gory, C ⇥D, which has the following structure:

objC⇥D = objC ⇥ objD

HomC⇥D((X, Y) , (Z, W)) = HomC(X,Z)⇥HomD(Y,W)

id(X,Y) = (id
X

, id
Y

)

(f, g) ; (h, i) = (f ; h, g ; i)

Definition 3.4 (Functor).
A functor is a mapping between categories, F : C ! D, subject to the conditions:

F (id
X

) = idF(X)

F(f ; g) = F (f) ; F (g)

Definition 3.5 (Bifunctor).
A bifunctor is a functor whose domain category is a product category.

Definition 3.6 (Natural Transformation).
A natural transformation is a mapping between functors, ⌘ : F ! G, comprised of a
morphism, called a component, ⌘ (X) : F (X) ! G (X), for each X 2 objC . For any
f 2 HomC(X,Y) the following diagram commutes:

F (f) ; ⌘ (Y) = ⌘ (X) ; G (f)

Definition 3.7 (Natural Isomorphism).
A natural transformation, ⌘, is a natural isomorphism if every component is an isomor-
phism.

Chapter 3 Categorical Structure 59

Definition 3.8 (Monoidal Category).
A monoidal category is a 6-tuple, (C,⌦, I,↵,�, ⇢), where:

- C is a category,

- ⌦: C ⇥ C ! C is a bifunctor, called tensor,

- I 2 objC is the tensor unit,

- ↵
X,Y,Z

: X ⌦ (Y ⌦ Z)! (X ⌦ Y) ⌦ Z is the associativity natural isomorphism,

- �
X

: I ⌦ X ! X (⇢
X

: X ⌦ I ! X) are the left (right) identity natural isomor-
phisms.

Subject to the following pentagon and triangle conditions [141]:

↵
X,Y,(Z⌦W) ; ↵(X⌦Y), Z,W

⇠=
�

id
X

⌦ ↵
Y, Z,W

�

; ↵
X, (Y⌦Z),W ;

�

↵
X,Y,Z

⌦ id
W

�

(id
X

⌦ �
Y

) ⇠= ↵
X, I,Y

; (⇢
X

⌦ id
Y

)

The graphical presentation of [140] gives the intuition for these conditions.

Definition 3.9 (Strict Monoidal Category).
A strict monoidal category, (C,⌦, I,↵,�, ⇢), is a monoidal category where ↵,� and ⇢

are formed of identities.

Definition 3.10 (Symmetric Monoidal Category).
A symmetric monoidal category is a monoidal category with a braiding, �, which is a
natural isomorphism witnessing the commutativity of the tensor product:

�(X,Y) : X ⌦ Y ! Y ⌦ X

such that the symmetry is self-inverse and the hexagon [141] condition holds:

�(X,Y) ; �(Y,X) = id(X⌦Y)
⇣

�(X,Y) ⌦ id
Z

⌘

; ↵
Y,X,Z

;
⇣

id
Y

⌦ �(X,Z)

⌘

= ↵
X,Y,Z

; �(X,Y⌦Z) ; ↵Y, Z,X

Symmetric monoidal categories with objects the natural numbers and tensor being ad-
dition are known as PROPs [142]:

Definition 3.11 (PROP).
A PROP (Products and Permutations) is a strict monoidal category that has N as its
objects, and ⌦ being addition on objects.

Monoidal functors map between monoidal categories, whilst preserving the monoidal
structure:

60 Chapter 3 Categorical Structure

Definition 3.12 (Monoidal Functor).
A monoidal functor is a functor between monoidal categories, C and D, formed of three
components,

⇣

F , ✓1, ✓2
⌘

where:

- F : C ! D is a functor

- ✓1 : I ! F (I) is a morphism in D,

- ✓2(X,Y) : F (X)⌦ F (Y)! F (X ⌦ Y) is a natural transformation.

subject to the conditions:

↵F(X),F(Y),F(Z) ;
⇣

idF(X) ⌦ ✓2(Y,Z)

⌘

; ✓2(X,Y⌦Z) =
⇣

✓2(X,Y) ⌦ idF(Z)

⌘

; ✓2(X⌦Y,Z) ; F
�

↵
X,Y,Z

�

⇣

idF(X) ⌦ ✓1
⌘

; ✓2(X,I) ; F (⇢
X

) = ⇢F(X)
⇣

✓1 ⌦ idF(X)

⌘

; ✓2(I,X) ; F (�
X

) = �F(X)

for any X,Y, Z 2 objC . Again, the graphical presentation of [140] gives intuition for
these conditions.

A symmetric monoidal functor is then a monoidal functor that preserves the braided
structure:

Definition 3.13 (Symmetric Monoidal Functor).
A monoidal functor, F between symmetric monoidal categories C and D is symmetric if
the follow condition holds:

�(F(X),F(Y)) ; ✓
2
(Y,X) = ✓2(X,Y) ; F

⇣

�(X,Y)

⌘

for any X,Y 2 objC . See [140] for the graphical intuition.

3.2 The category of PNBs

As shown by Bruni et al [58, Proposition 5.1], PNBs form a category. Before we give
the structure of this category, we must describe isomorphism classes of PNBs:

Definition 3.14 (PNB Isomorphism Class).
For a PNB, N : (k, l), its PNB isomorphism class, written [N] : (k, l) is the set
{M | N ⇠= M}.

Now, PNB, the category of PNBs has the following structure:

- Objects are the natural numbers, N,

- Arrows from k to l are the PNB isomorphism classes: [N] : (k, l),

Chapter 3 Categorical Structure 61

- The identity morphism for k 2 N, is the net P
idk

: (k, k), illustrated in Fig. 3.1. P
idk

has no places, k boundaries on the left and right, and transitions connecting the
ith left boundary to the ith right boundary,

- The composition of morphisms N : k ! l and M : l ! m, is N ; M : k ! m,
obtained using PNB composition, defined in Defn. 2.38.

To show that such a structure is well-defined, Bruni et al [58, Proposition 5.1] proved:

1. PNB composition is compatible with isomorphism classes: N ; M 0 ⇠= N 0 ; M with
N ⇠= N 0 and M ⇠= M 0,

2. PNB composition is associative up-to isomorphism: N ; (M ; O) ⇠= (N ; M) ; O,

3. PNB composition has a unit up-to isomorphism: N ; P
id

⇠= N ⇠= P
id

; N .

..
.

..
.

Figure 3.1: Net P
idk

: (k, k)

Furthermore, there is a monoidal structure on PNB:

- The tensor product is addition on objects and ⌦-composition (Defn. 2.40) on mor-
phisms,

- The unit is 0,

- ↵,� and ⇢ are identities.

Bruni et al. [58][Proposition 5.2] assures us that tensor is well-defined for equivalence
classes of PNBs, and is a bifunctor. Indeed, addition is strictly associative with 0 being
its strict identity, thus it follows that PNB is strict monoidal:

Proposition 3.15.
PNB is a strict monoidal category.

We now show that there is a symmetric monoidal structure on PNB. For any k, l 2 N,
there is a PNB, Psw(k, l) : (k+ l, l+ k), illustrated in Fig. 3.2. Psw(k, l) has no places, and

62 Chapter 3 Categorical Structure

..
.

..
.

..
.

..
.

k

l

l

k

Figure 3.2: Net Psw(k, l) : (k + l, l + k)

k + l of each of transitions, left boundaries and right boundaries. The k + l transitions
are connected to boundary ports as follows: for 0 x < k, •t

x

= x and t•
x

= l + x and
for 0 y < l, •t

k+y

= k + y and t•
k+y

= y.

Psw(k, l) is an example of a PNB whose transitions are 1-1 with its boundary ports; we
refer to such PNBs as permutation PNBs:

Definition 3.16 (Permutation PNB).
A PNB, P

�

: (k, k), is a Permutation PNB iff � is a permutation on k, places(P
�

) = ?,
and the following hold, with t, u ranging over trans(P

�

):

- |•t| = 1,

- if t 6= u then •t\ •u = ?,

- 8b 2 k, 9v 2 trans(N) s.t. •v = b.

- |t•| = 1,

- if t 6= u then t• \u• = ?,

- 8b 2 l, 9v 2 trans(N) s.t. v• = b.

That is, each transition is connected to exactly one left (right) boundary port, distinct
transitions do not share left (right) boundary ports and for every left (right) boundary
port, there is a transition that connects to that boundary port. The boundary connec-
tions of the transitions are determined by �: given t 2 trans(P

�

), t• =
�

�(b)
�

�

•t = {b}

.

Permutation PNBs embed permutations on k; we refer to such permutations as k-
permutations. Indeed, we can compose permutations, both sequentially and in parallel:

Definition 3.17 (Synchronous composition of permutations).
Given two k-permutations, �1 and �2, their synchronous composition is a k-permutation,
written �1 ; �2, and simply composes the underlying bijections: (�1 ; �2)(x)

def
= �2(�1(x)).

Chapter 3 Categorical Structure 63

Definition 3.18 (Parallel composition of permutations).
Given a k-permutation, �1, and l-permutation, �2, their tensor composition is a (k + l)-
permutation, written �1 ⌦ �2, and defined:

(�1 ⌦ �2)(x)
def
=

8

>

<

>

:

�1(x) if 0 x < k

�2(x� k) + k if k x < k + l

that is, we directly apply �1 if x is in its domain, else we apply a shift to x, such that it is
in the domain of �2, before applying �2 and the inverse shift.

We later make use of two particular permutations, id(k) and sw(l, m) (identity and
“swap”, or braid permutations, respectively):

Example 3.1.
id(k) is a k-permutation, with: id(k)(x) def

= x.

Example 3.2.
sw(l, m) is a l +m-permutation, with:

sw(l, m)(x)
def
=

8

>

<

>

:

x+m if 0 x < l

x� l otherwise.

A simple lemma confirms that permutation PNBs are closed under synchronous and
tensor composition.

Lemma 3.19.
If P

�1 : (k, k), P
�2 : (k, k) and P

�3 : (l, l) are permutation PNBs, then:

1. P
�1 ; P

�2 : (k, k) is a permutation PNB, with |U | = 1 = |V | for every (U, V) 2
trans(N ; M), indeed, P

�1 ; P
�2 = P

�1;�2 ,

2. P
�1 ⌦ P

�3 : (k + l, k + l) is a permutation PNB; in particular, it is P
�1⌦�3 .

Proof. For part 1, we have that each b 2 l determines unique t 2 trans(N) and u 2
trans(M). Thus ({t} , {u}) is a minimal synchronisation, with •({t} , {u}) and ({t} , {u})•

being unique, in particular, since {t}• = •{u}, we have: {u}• =
�

�2(�1(b))
�

� {b} = •{t}

.
For part 2, observe that no boundary ports or transitions are created, and existing tran-
sitions’ connections are preserved with those in P

�3 being appropriately shifted.

We prove 3 technical lemmas relating to PNB compositions with a permutation PNB,
N ; P

�

: the first says that each transition of N synchronises with a uniquely defined
set of transitions in P

�

. The second says that the transitions of N ; P
�

(that is, mini-
mal synchronisations) consist of a single transition from N . Finally, the third says that
transitions of N ; P

�

are in bijection with those of N .

64 Chapter 3 Categorical Structure

Lemma 3.20.
For N : (k, l) and P

�

: (l, l), then each t 2 trans(N), determines a unique U ✓
trans(P

�

) such that t• = •U .

Proof. By induction on T = t•, for t 2 trans(N): in the base case of T = ?, ? suffices.
In the case of T = T 0 [{b}, we apply the I.H. to T 0, obtaining the unique U 0 ✓ trans(P

�

)

such that T 0 = •U 0. Then, by our assumptions on trans(P
�

), there is a unique u 2
trans(P

�

) such that •u = b; therefore, U 0 [{u} satisfies the requirements.

Lemma 3.21.
For N : (k, l) and P

�

: (l, l), each (U, V) 2 trans(N ; P
�

) has |U | = 1.

Proof. For a contradiction, assume that we have a (U, V) 2 trans(N ; P
�

) with |U | > 1.
Take any t 2 U , and using Lem. 3.20 identify the (possibly empty) unique set W ✓
trans(P

�

) such that t• = •W ; since W is unique in trans(P
�

), we must have that W ✓ V .

Then, since U and V are contention-free, we have that (U \ {t})• = U•\t• = •V \•W =
•(V \W), and clearly, (U \{t} , V \W) ✓ (U, V). In other words, (U, V) is not a minimal
synchronisation, contradicting (U, V) 2 trans(N ; P

�

).

Lemma 3.22.
For N : (k, l) and P

�

: (l, l), there is a bijection between trans(N) and trans(N ; P
�

).
In particular, each t 2 trans(N) determines a unique (U, V) 2 trans(N ; P

�

) such that
U = {t}.

Proof. We have that trans(N ; P
�

) is the set of all minimal synchronisations between
N and P

�

. By Lem. 3.21 every (U, V) 2 trans(N ; P
�

) has |U | = 1, such that, by
Lem. 3.20, V is uniquely determined by U . Suppose then that there is no (U, V) 2
trans(N ; P

�

) such that U = {t}; by Lem. 3.20 we have the unique set of transitions
U ✓ trans(P

�

) such that t• = •U . Clearly ({t} , U) is a minimal synchronisation and
thus must appear in trans(N ; P

�

), a contradiction.

Indeed, we can easily obtain the symmetric versions of the previous lemmas, for com-
position with a permutation PNB on the left; the proofs of which follow the same argu-
ments:

Lemma 3.23.
For P

�1 : (k, k) and M : (k, l), each t 2 trans(M), determines a unique U ✓ trans(P
�1)

such that U• = •t.

Lemma 3.24.
For P

�1 : (k, k) and M : (k, l), each (U, V) 2 trans(P
�1 ; M) has |V | = 1.

Chapter 3 Categorical Structure 65

Lemma 3.25.
For P

�1 : (k, k) and M : (k, l), there is a bijection between trans(M) and trans(P
�1 ;

M). In particular, each t 2 trans(M) determines a unique (U, V) 2 trans(P
�1 ; M) such

that V = {t}.

We may now prove a proposition relating tensor and the “swap” PNB; the intuition is
provided graphically in Fig. 3.3, where both compositions should be isomorphic.

N

..
.

..
.k l

..
.

..
.

..
.

..
.

n

lM

..
.

..
.m n

(a) Composition (N ⌦M) ; Psw(l, n)

M

..
.

..
.m n

..
.

..
.

..
.

..
.

k

m N

..
.

..
.k l

(b) Composition Psw(k,m) ; (M ⌦ N)

Figure 3.3: Prop. 3.26, graphically; (a) is isomorphic to (b).

Proposition 3.26.
For N : (k, l) and M : (m, n), the following holds:

(N ⌦M) ; Psw(l, n)
⇠= Psw(k,m) ; (M ⌦ N)

Proof. For any k, l 2 N, Psw(k, l) has no places, thus we can give an isomorphism on
places that simply maps between the “tagged” places of N and M , from the top (bottom)
left component, to the bottom (top) right component: ((p, i), 0) 7! ((p, 1 � i), 1), where
p 2 places(N) if i = 0 and p 2 places(M) if i = 1.

To show the transitions are also isomorphic, consider any (U, V) 2 trans((N ⌦ M) ;

Psw(l, n)); we can apply Lem. 3.21, obtaining that U =
�

(t, i)

for i 2 {0, 1}. Indeed, if
i = 0, then t 2 trans(N) else t 2 trans(M).

Assume without loss of generality that i = 0. Then, •(t, 0) = •t, and (t, 0)• = t•; indeed,
since (U, V) is a synchronisation, we have that

�

(t, 0)
 •

= •V , thus, by the definition of
the permutation underlying Psw(l, n), V • = {b+ n | b 2 t•}. This gives us •(U, V) = •t

and (U, V)• = {b+ n | b 2 t•}.

Furthermore, by the definition of⌦, and Lem. 3.25, we also have a (U 0, V 0) 2 trans(Psw(k,m) ;

(M ⌦ N))), with V 0 =
�

(t, 1)

. Now, •(t, 1) = {b+m | b 2 •t} and (t, 1)• = {b+ n | b 2 t•}

66 Chapter 3 Categorical Structure

Again, since (U 0, V 0) is a synchronisation, we have that U 0• = •�(t, 1)

. By the defini-
tion of Psw(k,m) we have that •U 0 =

n

b�m
�

�

�

b 2 •�(t, 1)

o

, which, by the definition of
•(t, 1), gives •U 0 = •t. Therefore, •(U 0, V 0) = •t and (U 0, V 0)• = {b+ n | b 2 t•}.

Indeed, we have shown that (U, V) 2 (N ⌦ M) ; Psw(l, n) determines (U 0, V 0) 2
Psw(k,m) ; (M ⌦ N) such that •(U, V) = •(U 0, V 0) and (U, V)• = (U 0, V 0)•, as required.
The opposite direction uses a similar argument.

The following isomorphisms assure us that we can equivalently braid k past l + m in
one step or two individual steps, and similarly for k + l past m:

Proposition 3.27.
We have the following isomorphisms:

(a) Psw(k, l+m)
⇠= (Psw(k, l) ⌦ P

idm) ; (Pidl
⌦ Psw(k,m))

(b) Psw(k+l,m)
⇠= (P

idk
⌦ Psw(l,m)) ; (Psw(k,m) ⌦ P

idl
)

Proof. By definition; observe that we may consider P
idk

as a trivial permutation PNB,
P
id(k). Then, it only remains to verify that the corresponding compositions on permuta-

tions are equal:

(a) sw(k, l +m) = (sw(k, l) ⌦ id(m)) ; (id(l) ⌦ sw(k, m))

(b) sw(k + l, m) = (id(k) ⌦ sw(l, m)) ; (sw(k, m) ⌦ id(l))

which is immediate by definition.

Proposition 3.28.
We have the following isomorphism: Psw(k, l) ; Psw(l, k)

⇠= P
idk+l

Proof. Immediate, relying on the fact that composing �1 and ��1
1 is equal to the identity

permutation.

We can now show that PNB is a strict symmetric monoidal category.

Proposition 3.29.
PNB is a symmetric monoidal category.

Proof. Prop. 3.26 confirms that the braiding is a natural isomorphism, Prop. 3.27 as-
sures us that the braiding satisfies the hexagon axioms of Defn. 3.10 (simplified since
our associators are identities) and Prop. 3.28 says that the braiding is symmetric.

Finally, it follows that PNB is a PROP:

Chapter 3 Categorical Structure 67

Proposition 3.30.
PNB is a PROP.

Proof. By [58, Proposition 5.1] and propositions 3.15 and 3.29.

3.3 The category of 2-LTSs

We can show that 2-LTSs form a category, in a similar fashion to PNBs. In the fol-
lowing, we define isomorphism classes of 2-LTSs, and then show that composition is
compatible with such classes and furthermore, is associative and has identities up-to
isomorphism.

Definition 3.31 (PNB Isomorphism Class).
For a 2-LTS, X : k ! l, its 2-LTS isomorphism class, written [X] : k ! l is the set
{Y | X ⇠= Y }.

In the following, L
idk

: (k, k), is a 2-LTS, illustrated in Fig. 3.4, with a single state, and
transitions the self-loops labelled by {x | x 2 Bn}

Proposition 3.32.
The following isomorphisms hold:

(i) Given 2-LTSs X,X 0 : k ! l, Y, Y 0 : l ! m, with X ⇠= X 0 and Y ⇠= Y 0, we have
that X ; Y ⇠= X 0 ; Y 0,

(ii) For 2-LTSs X : k ! l, Y : l! m, Z : m! n, we have (X ; Y) ; Z ⇠= X ; (Y ; Z),

(iii) For any 2-LTS X : k ! l, we have L
idk

; X ⇠= X ⇠= X ; L
idl

.

Proof. For (i) we have that (x ; y)
↵/���!

�

x0 ; y0
�

is a transition of X ; Y iff x
↵/���! x0 and

y
�/���! y0 are transitions in X and Y , respectively, for some � 2 Bl. By the definition

of 2-LTS isomorphism, we have corresponding transitions in X 0 and Y 0, which, by the
definition of 2-LTS composition gives the required transition in X 0 ; Y 0. For (ii) and (iii),
the isomorphisms are identity on labels and the obvious bijections between states.

Now, 2-LTS, the category of 2-LTSs has the following structure:

- Objects are the natural numbers, N,

- Arrows from k to l are the (k, l)-LTS isomorphism classes,

- The identity morphism for k 2 N, is L
idk

,

68 Chapter 3 Categorical Structure

- The composition of morphisms X : k ! l and Y : l ! m, is X ; Y : k !
l, obtained using the variant of the product construction on LTSs described in
Defn. 2.7.

{b | b 2 Bn}

Figure 3.4: 2-LTS L
idk

: (k, k)

Proposition 3.33.
2-LTS is a category.

Proof. Prop. 3.32(i) ensures that 2-LTS composition is well-defined on equivalence
classes of 2-LTSs, whilst (ii) and (iii) ensure that composition is associative and has
L
idk

as identity.

We have the following monoidal structure on 2-LTS:

- Tensor is addition on objects and the modification of the product construction
(Defn. 2.9) on morphisms,

- The identity object is 0,

- The associator and left/right unitors are identity natural isomorphisms.

We must assure ourselves that ⌦ is well-defined on equivalence classes of 2-LTSs, and
is a bifunctor:

Proposition 3.34.
The following isomorphisms hold:

(i) Given 2-LTSs X,X 0 : k ! l, Y, Y 0 : m ! n, with X ⇠= X 0 and Y ⇠= Y 0, we have
that X ⌦ Y ⇠= X 0 ⌦ Y 0,

(ii) For any objects k, l, we have that L
id(k+l)

⇠= L
idk
⌦ L

idl

(iii) For 2-LTSs X : k ! l, Y : l! m, Z : n! o, W : o! p, we have
(X ; Y) ⌦ (Z ; W) ⇠= (X ⌦ Z) ; (Y ⌦W)

Proof. For (i), the argument follows that of Prop. 3.32(i). For (ii) we use that B(k+l) =
n

xy
�

�

�

x 2 Bk, y 2 Bl

o

and the obvious isomorphism between x and (x, x). Finally, for

(iii), we have a transition
�

(x1 ; y1) ⌦ (x2 ; y2)
�

↵�/������!
⇣

�

x01 ; y
0
1

�

⌦
�

x02 ; y
0
2

�

⌘

in (X ;

Y ⌦ Z ; W) iff we have transitions (x1 ; y1)
↵/���!

�

x01 ; y
0
1

�

in X ; Y and (x2 ; y2)
�/���!

�

x02 ; y
0
2

�

in (Z ; W), iff there exists ✏ 2 Bl and ⇣ 2 Bo such that we have x1
↵/✏��! x01 in X,

Chapter 3 Categorical Structure 69

x2
✏/���! x02 in Y, y1

�/⇣��! y01 in Z, y2
⇣/���! y02 in W. Then, we have (x1 ⌦ y1)

↵�/✏⇣����!
�

x01 ⌦ y01
�

in X ⌦ Z, and (x2 ⌦ y2)
✏⇣/�����!

�

x02 ⌦ y02
�

in Y ⌦W , giving
�

(x1 ; y1) ⌦ (x2 ; y2)
�

↵�/������!
⇣

�

x01 ; y
0
1

�

⌦
�

x02 ; y
0
2

�

⌘

in (X ⌦ Z) ; (Y ⌦W), as required.

This is enough to prove that 2-LTS is (strict) monoidal:

Proposition 3.35.
2-LTS is a strict monoidal category.

Proof. The tensor product is addition on objects, which is strictly associative, and has 0
as identity. The required coherence conditions of Defn. 3.8 are then identities. Finally,
by Prop. 3.34, we have the required proof of bifunctoriality.

As we did for PNBs, we may also embed k-permutations into a 2-LTS:

Definition 3.36 (Permutation 2-LTS).
A 2-LTS, L

�

: (k, k), is a Permutation 2-LTS iff � is a k-permutation, it has a single
state, x, and transitions:

⇢

x
↵�! x

�

�

�

�

↵ 2
n

doe/d�(o)e
�

�

�

o 2 2k
o

�

L
�

is illustrated in Fig. 3.5.

n

doe/d�(o)e
�

�

�

o 2 2k
o

Figure 3.5: 2-LTS L
�

: (k, k)

A specific permutation 2-LTS is that which embeds the sw(k, l) permutation: for k, l 2
N, there is a 2-LTS, Lsw(k, l) : (k + l, l + k), illustrated in Fig. 3.6. Lsw(k, l) has a single

state, and has self-loops labelled with
n

↵�/�↵
�

�

�

↵ 2 Bk,� 2 Bl

o

.

n

↵�/�↵
�

�

�

↵ 2 Bk,� 2 Bl

o

Figure 3.6: 2-LTS Lsw(k, l) : (k + l, l + k)

Proposition 3.37.
For X : (k, l) and Y : (m, n), the following holds:

(X ⌦ Y) ; Lsw(l, n)
⇠= Lsw(k,m) ; (Y ⌦ X)

70 Chapter 3 Categorical Structure

Proof. Immediate from the definitions of 2-LTS composition and Lsw(�,�). Letting z be
the single state of Lsw(l, n) and w be that of Lsw(k,m), we have:

�

(x ⌦ y) ; z
�

↵�/������!
✓

⇣

x0 ⌦ y0
⌘

; z

◆

2 X ⌦ Y ; Lsw(l, n)

() (x ⌦ y)
↵�/������!

⇣

x0 ⌦ y0
⌘

2 X ⌦ Y

() x
↵/���! x0 2 X, and

y
�/���! y0 2 Y

() (y ⌦ x)
�↵/������!

⇣

y0 ⌦ x0
⌘

2 Y ⌦ X

()
�

(w ⌦ y) ; x
�

↵�/������!
✓

⇣

w ⌦ y0
⌘

; x0
◆

2 Lsw(k,m) ; Y ⌦ X

Proposition 3.38.
The following are isomorphisms:

(a) Lsw(k, l+m)
⇠= (Lsw(k, l) ⌦ L

idm) ; (Lidl
⌦ Lsw(k,m))

(b) Lsw(k+l,m)
⇠= (L

idk
⌦ Lsw(l,m)) ; (Lsw(k,m) ⌦ L

idl
)

Proof. We give a proof for (b), the proof of (a) is similar:

Observe that L
idk

, Lsw(l,m), Lsw(k,m) and L
idl

all have a single state, thus their compo-
sition also has a single state.

The transitions of Lsw(k+l,m) are labelled by:

n

↵�/�↵
�

�

�

↵ 2 Bk+l,� 2 Bm

o

=
n

���/���
�

�

�

� 2 Bk, � 2 Bl,� 2 Bm

o

On the RHS, we have that (L
idk
⌦ Lsw(l,m)) has transitions labelled with:

n

���/���
�

�

�

� 2 Bk, � 2 Bl,� 2 Bm

o

and (Lsw(k,m) ⌦ L
idl
) has transitions labelled with:

n

���/���
�

�

�

� 2 Bk, � 2 Bl,� 2 Bm

o

thus (L
idk
⌦ Lsw(l,m)) ; (Lsw(k,m) ⌦ L

idl
) has transitions labelled by

n

���/���
�

�

�

� 2 Bk, � 2 Bl,� 2 Bm

o

as required.

Chapter 3 Categorical Structure 71

Proposition 3.39.
We have the following isomorphism:

Lsw(k, l) ; Lsw(l, k)
⇠= L

idk+l

Proof. Lsw(k, l) has transitions labelled by

n

↵�/�↵
�

�

�

↵ 2 Bk,� 2 Bl

o

and Lsw(l, k) has transitions labelled by

n

�↵/↵�
�

�

�

� 2 Bl,↵ 2 Bk

o

by the definition of composition, Lsw(k, l) ; Lsw(l, k) has transitions labelled by

n

↵�/↵�
�

�

�

↵ 2 Bk,� 2 Bl

o

=
n

�/�
�

�

�

� 2 Bk+l

o

as required.

We can now prove that 2-LTS is a strict symmetric monoidal category, and indeed, a
PROP:

Proposition 3.40.
2-LTS is a strict symmetric monoidal category.

Proof. By Propositions 3.37, 3.38 and 3.39.

Proposition 3.41.
2-LTS is a PROP.

Proof. By propositions 3.33, 3.35 and 3.40.

3.4 Mapping between PNB and 2-LTS

Given N : (k, l), we can generate its 2-LTS statespace, �N� : (k, l), using the firing
semantics described in §2.5.2.

This mapping respects the identity PNB:

Proposition 3.42.
For any k 2 N, �P

idk
� ⇠= L

idk
.

72 Chapter 3 Categorical Structure

Proof. There are no places in P
idk

, giving only one possible state in �P
idk
�, corre-

sponding to the empty marking. Each transition of P
idk

is always enabled, allowing
arbitrary subsets of transitions to be fired, giving transitions in �P

idk
� labelled by each

element of
n

x
�

�

�

x 2 Bk

o

. Therefore, we have �P
idk
� = L

idk
, as required.

and further, respects the compositions of PNBs:

We abuse notation when referring to states of the 2-LTS corresponding to a PNB com-
posed of N and M . Such states are markings of the underlying PNB; that is, some
M ✓ 2places(N)]places(M), indeed, we can partition M into x, a marking of N and y, a
marking of M , justifying our notation (x, y).

Proposition 3.43.
For any pair of PNBs, N : (k, l) and M : (l, m), we have that

�N ; M� ⇠= �N� ; �M�
Proof. The states of �N ; M� are of the form 2places(N)]places(M), isomorphic to those
of �N� ; �M�, which are of the form 2places(N) ⇥ 2places(M). By [58, Theorem 3.8],

transitions, (x, y)
↵/���! (x0, y0), exist in �N ; M� iff, for � 2 Bl, there are transitions

x
↵/���! x0 in �N� and y

�/���! y0 in �M�, corresponding to transitions in �N� ; �M�.
It follows from propositions 3.42 and 3.43, that ��� : PNB! 2-LTS is a functor:

Proposition 3.44.
��� is a functor: identity on objects and firing semantics (Defn. 2.34) on morphisms.

Lemma 3.45.
For any pair of PNBs, N : (k, l) and M : (m, n), we have:

(x, y)
↵�/������! (x0, y0) 2 �N ⌦M� iff there are x

↵/���! x0 2 �N� and y
�/���! y0 2 �M�.

Proof. ()) Suppose we have (x, y)
↵�/������! (x0, y0) in �N ⌦M�. There is a contention-

free set of enabled transitions, U 2 trans(N ⌦ M). Indeed, we can partition U into
(contention-free, enabled) V ✓ trans(N) and W ✓ trans(M), with d•V e = ↵, dV •e = �,
d•W e = � and dW •e = �, which correspond to the required transitions in �N� and
�M�.
(() Suppose we have x

↵/���! x0 in �N� and y
�/���! y0 in �M�; then, there exist

contention-free, enabled V ✓ trans(N) and W ✓ trans(M), with d•V e = ↵, dV •e = �,
d•W e = �, and dW •e = �. By definition, V] W ✓ trans(N ⌦ M), giving the required
transition in �N ⌦M�.

Chapter 3 Categorical Structure 73

Proposition 3.46.
For any pair of PNBs, N : (k, l) and M : (l, m), we have that

�N� ⌦ �M� ⇠= �N ⌦M�
Proof. Similar to the proof of Prop. 3.43, employing Lem. 3.45 to show equality of la-
belled transitions.

Proposition 3.47.
��� is a strict monoidal functor.

Proof. We have the required natural transformation, by Prop. 3.46; the unit morphism
and the required coherence conditions are identities.

Proposition 3.48.
We have a 2-LTS isomorphism, Lsw(k, l)

⇠= �Psw(k, l)�.

Proof. The PNB Psw(k, l) (shown in Fig. 3.2) has no places, hence its 2-LTS statespace
has a single place corresponding to the empty marking. Since the same permutation
is embedded in the PNB and 2-LTS, by definition, the generated 2-LTS statespace will
have transitions labelled the same as those in Lsw(k, l), as required.

Proposition 3.49.
��� is a strict symmetric monoidal functor.

Proof. By Prop. 3.48, the required coherence condition is simply identity.

This statement is tantamount to saying that ��� is a homomorphism of PROPs.

Proposition 3.50.
��� is a homomorphism of PROPs.

Proof. Immediate.

Observe that Prop. 3.43 and Prop. 3.46 are precisely equivalent to the standard defini-
tion of compositionality, which states that the semantics of a composite PNB is deter-
mined by the semantics of the component PNBs. Put differently, there is no emergent
behaviour when composing the semantics of the components — the semantics embody
a precise account of all possible behaviours of the components. Indeed, we revisit com-
positionality, in its standard setting, in Prop. 5.4.

74 Chapter 3 Categorical Structure

3.5 Encoding Reachability

We can annotate PNBs with a pair of markings, encoding a particular initial and tar-
get marking, as described in §2.5.7. Intuitively, such an annotated PNB represents a
reachability problem: can the target marking be reached from the initial marking?

3.5.1 The category of mPNBs

mPNBs form a strict symmetric monoidal category, mPNB, by lifting the various con-
structions from PNBs to mPNBs. We do not offer proofs for the definitions in this sec-
tion, since they follow simply from the corresponding definitions on PNBs:

Definition 3.51.
Synchronous composition of mPNBs, (N,m, n) and (M,m0, n0) is defined as: (N,m, n) ;

(M,m0, n0)
def
= (N ; M,m] m0, n] n0)

The category of mPNBs has structure:

- Objects are the natural numbers, N,

- Arrows from k to l are the isomorphism classes of mPNBs: [(N,m, n) : (k, l)],

- The identity morphism for k 2 N, is (P
idk

,?,?)

- The composition of morphisms is per Defn. 3.51.

Proposition 3.52.
mPNB is a category.

Definition 3.53.
Tensor composition of mPNBs, (N,m, n) and (M,m0, n0) is defined as: (N,m, n) ⌦
(M,m0, n0)

def
= (N ⌦M,m] m0, n] n0)

mPNB has a monoidal structure:

- The tensor product is addition on objects and the operation described in Defn. 3.53
on morphisms,

- The unit is 0,

- The associator and left/right unitors are identity natural isomorphisms.

Proposition 3.54.
mPNB is a strict monoidal category.

Chapter 3 Categorical Structure 75

Furthermore, mPNB has a symmetric structure, given by the following morphism: (Psw(k, l),?,?) :

(k + l, l + k).

Proposition 3.55.
mPNB is a symmetric monoidal category.

3.5.2 The category of 2-NFAs

A 2-NFA is a 2-LTS, together with a pair of chosen states, an initial state, and a set of
accepting state, as defined in §2.3.2.

We then have that 2-NFA, the category of 2-NFAs has structure:

- Objects are the natural numbers, N,

- Arrows from k to l are the isomorphism classes of 2-NFAs: [(X, i,A) : (k, l)],

- The identity morphism for k 2 N, is (L
idk

, 0, 0), with 0 being the single state of
L
idk

,

- The composition of morphisms is per Defn. 2.14.

Proposition 3.56.
2-NFA is a category.

We have a monoidal structure on 2-NFA:

- The tensor product is addition on objects and the operation described in Defn. 2.15
on morphisms,

- The unit object is 0,

- The associator and left/right unitors are identity natural isomorphisms.

Proposition 3.57.
mPNB is a strict monoidal category.

Furthermore, mPNB has a symmetric structure, given by the following morphism: (Lsw(k, l), 0, 0) :

(k + l, l + k), where 0 is the single state of Lsw(k, l).

Proposition 3.58.
mPNB is a symmetric monoidal category.

76 Chapter 3 Categorical Structure

3.5.3 Mapping between mPNB, 2-NFA, PNB and 2-LTS

mPNBs can be given a 2-NFA semantics:

Definition 3.59 (2-NFA semantics of mPNBs).
For a mPNB, (N,m, n), its 2-NFA semantics,

m

�(N,m, n)�, is (X, i,A), where X is the
2-LTS semantics of N , i is the state corresponding to m, and A is the (singleton set
containing the) state corresponding to n.

Proposition 3.60.

m

��� : mPNB ! 2-NFA is a strict symmetric monoidal functor, identity on objects
and 2-NFA semantics on morphisms.

Furthermore, we have two forgetful (strict symmetric monoidal) functors, mapping mPNB
to PNB, and 2-NFA to 2-LTS. The forgetful functor on mPNB, UPNB : mPNB! PNB

is identity on objects, and forgets the markings on morphisms:

UPNB((N,m, n))
def
= N

Similarly, we can forget the initial and accepting states of a 2-NFA, to obtain a 2-LTS.
The forgetful functor U2-LTS : 2-NFA! 2-LTS is identity on objects, and on arrows:

U2-LTS((X, i,A))
def
= X

Indeed, it is equivalent to take the 2-NFA semantics of a mPNB, before forgetting the
initial and accepting states, or to forget the initial/target markings of the mPNBbefore
taking the 2-LTS semantics. This equivalence is embodied in the commuting diagram
of Fig. 3.7.

mPNB

PNB

2-NFA

2-LTS

m

���
UPNB

���
U2-LTS

Figure 3.7: Commuting digram illustrating the relationships between categories

3.5.4 Summary

In this chapter we have illustrated the categorical structure of PNBs and 2-LTSs and the
relationship between these categories. We highlighted that the functorial relationship
between the categories PNB and 2-LTS is equivalent to the property of compositionality
and lifted the constructions to marked PNBs and corresponding 2-NFAs leading to the
categories mPNB and 2-NFA and illustrated their inter-relations.

Chapter 4

Benchmarks and a Domain
Specific Language for Net
Compositions

In this section we introduce the example systems that we will use to demonstrate and
benchmark our reachability checking techniques. Several of these examples are taken
from Corbett’s benchmark suite [143], commonly used as reference benchmarks in the
Petri net literature. However, here we give alternative, parameterised specifications
in a component-wise manner; we propose that such specifications are more natural
and easier to construct and reason about, relative to the standard monolithic defini-
tions. Indeed, for this purpose, we motivate and introduce a Domain Specific Language
(DSL) for constructing such systems, proving that it ensures that invalid constructions
cannot be formed. This chapter is formed from two of the author’s papers; the core
was presented at Petri Nets 2014 [144], while some of the example systems are taken
from [145].

4.1 Component-wise Specification of Nets

Before introducing and specifying our example net systems, we describe a collection of
“wiring” nets that we frequently use in specifications. Such wiring nets do not contain
places, only transitions connecting the boundary ports in various ways. Consider the
“left-end” components shown in Fig. 4.1 (such named since they are to be composed
on the left of other components). Each illlustrated component is a representation of
a parametric family of nets over k 2 N \ {0}; for notational convenience we drop the
subscript when k = 1. The ETA

k

net, shown in Fig. 4.1a, has 2k right boundary ports,
with transitions connecting the ports 0 l < k to 2k � 1� l.

77

78 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

..
.

..
.

(a) ETAk : (0, 2k)

..
.

(b) >k : (0, k)

..
.

(c) """
k
: (0, k)

Figure 4.1: Left-end Component Families

The >
k

net, shown in Fig. 4.1b, has k right boundary ports, each with a single corre-
sponding transition; composing with such a net completes the partial specification of
any transitions connected to the shared boundary port, but without adding further con-
nections to places. Finally, the """

k

net, shown in Fig. 4.1c, has k right boundary ports,
but no transitions; composing with this net terminates any transitions, t, connected to
the shared boundary ports in the other component — there are no transitions in """ to
synchronise with and thus t cannot appear as part of a transition in the composite net.

Similarly, we have right-end component nets, as shown in Fig. 4.2 which are reflections
of their left-end counterparts.

..
.

..
.

(a) EPSILONk : (2k, 0)

..
.

(b) ?k : (k, 0)

..
.

(c) ###
k
: (k, 0)

Figure 4.2: Right-end Component Families

Finally, we often use identity net components: such components have k left and right
boundary ports, and k transitions, connecting each left boundary port to the corre-
sponding right boundary port, as illustrated in Fig. 4.3. Such nets preserve the tran-
sitions of any components they are composed with (in a formal sense: PNBs form a
category, with this family of nets as the identity morphisms — see §3.2).

We now introduce two basic net systems, the k-bit Buffer and Token Ring, before intro-
ducing a convenient programming language to specify such systems.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 79

..
.

..
.

Figure 4.3: ID
k

: (k, k)

4.1.1 k-bit Buffer

A k-buffer net (taken from [79]) models a system of k buffer cells that can each either
be “full” or “empty”. Such a system is naturally described in a compositional manner:
to form an k-buffer, simply compose k suitable 1-buffer components.

Figure 4.4: BUFFER(3)

For example, BUFFER(3) is illustrated in Fig. 4.4. Taking a component-wise view, and
using the single-buffer component illustrated in Fig. 4.5, the schematic for BUFFER(3)

is illustrated in Fig. 4.6: with suitable terminators, we simply synchronously compose 3
buffers together.

(a) BUFFER : (1, 1)

Figure 4.5: BUFFER(k) component net

80 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

Recall that to aid intuition, we often mark (parts of) partially-specified transitions using
a lighter shade, emphasising the fully specified structure of a component net.

> BUFFER BUFFER BUFFER ?

Figure 4.6: Schematic of BUFFER(3)

Arbitrarily-sized buffers are defined:

BUFFER(k)
def
= > ; BUFFERk ; ?

4.1.2 Token Ring

Consider a model of a simple token ring network, taken from [146]. Such a network
consists of k worker processes sharing a single token; a worker may only work if it
holds the token. As an example, TOKENRING(3) is illustrated in Fig. 4.7. All workers are
initially “able to work”; a token is “injected” into the system — upon receiving the token,
a worker may choose to do work, or pass the token onto the next worker.

Figure 4.7: TOKENRING(3)

Again, a token ring system is naturally described in a compositional manner: each
worker is a single component, as illustrated in Fig. 4.8b, that may interact (via transitions
connected to its left/right boundary ports) with the workers on its left and right, in order
to receive/send the token. The injector component, shown in Fig. 4.8a, simply holds a
token that can be injected, before acting as ID. The last worker is connected to the first,
completing the ring. The schematic of TOKENRING(3) is illustrated in Fig. 4.9.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 81

(a) INJECTOR : (1, 1)

(b) WORKER : (1, 1)

Figure 4.8: TOKENRING(k) components

ETA

INJECTOR WORKER WORKER WORKER

ID

EPSILON

Figure 4.9: Schematic of TOKENRING(3)

TOKENRING(k) is defined:

TOKENRING(k)
def
= ETA ;

✓

⇣

INJECTOR ; WORKERk

⌘

⌦ ID

◆

; EPSILON

4.1.3 A Language for Net Composition

In the previous examples we demonstrated the algebraic description of Petri net sys-
tems in terms of their component PNBs. We now motivate using a Domain Specific
Language (DSL), PNBml, that evaluates to the algebra of PNBs, but adds expressive
high-level functional programming language features.

Consider again the algebraic description of a token ring network; how might we gener-
ate the algebraic expression representing a similar network of, say, 10 worker compo-
nents? The simple approach given is to explicitly write the term

ETA ; ((INJECTOR ; WORKER ; WORKER . . . ; WORKER) ⌦ ID) ; EPSILON

where WORKER appears precisely 10 times. However, this is clearly not scalable: for
large numbers of components, or more complex components (that may themselves be

82 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

formed of component compositions) it becomes a nuisance to construct such low-level
expressions, and furthermore, ensure that they are correctly composed.

Consider the following expression that we might (accidentally) write when composing
worker nets, WORKER : (1, 1):

WORKER ; (WORKER ⌦ WORKER)

the resulting net is undefined, since the two nets being synchronously composed have
different size boundaries — composition on such nets is not definable in a unique way1.
Indeed, it is easy to observe that WORKER ⌦ WORKER : (2, 2). Yet, for the synchronous
composition to be well-defined, we must have that WORKER ⌦ WORKER has boundaries
(1, k) for any k, a contradiction, indicating an invalid expression. To ensure that we
disallow such invalid expressions, we use an appropriate notion of type, which can be
ascribed to expressions, to ensure that incompatible nets are never composed during
evaluation. We will return to the description of the type system later in this section.

When describing complex components, we would like any repeated sub-components
to be described only once, rather than each time they are used. Specifically, we would
like to bind a name to a sub-expression and be able to use that name to refer to the
subexpression. For example, we might consider an extended token ring network model
where each worker task, WORKER, is comprised of two sub-components: WORKER1

and WORKER2. Using name binding, we might describe a sequence of such tasks as:

bind w = (WORKER1 ; WORKER2) in w ; w ; . . . ; w

Another improvement that we can make is to introduce a compact form for expressions
that feature sequences of a repeated component, with parameterised length.

bind w = (WORKER1 ; WORKER2) in

n_sequence k w

where n_sequence k c represents ((c ; c) ; c) . . . ; c with c appearing k times, similarly
to the syntax sugar introduced in Remark 2.8.

Finally, consider the procedure that takes an arbitrary-length sequence of workers and
forms a ring by connecting the first to the last. Such a procedure can be written, using
a lambda notation common to functional programming languages, as:

�x : Neth1, 1i . ETA ; (x ⌦ ID) ; EPSILON

1In general there will be many ways to align the boundaries, giving different nets.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 83

that is, take a suitable sequence of workers (with left and right boundaries of size 1),
represent it by the variable x and perform the appropriate compositions to form the ring.

Other examples, such as those in the remainder of this section, are naturally paramet-
ric and can thus be compactly represented for any particular parameter choice. As
examples, we may represent the BUFFER(k) system as:

> ; n_sequence k BUFFER ; ?

and the TOKENRING(3) system shown in Fig. 4.7, with the expression:

bind makeRing = �x : Neth1, 1i . ETA ; (x ⌦ ID) ; EPSILON in

bind procs = n_sequence 3 WORKER in

makeRing (INJECTOR ; procs)

We defer formally introducing PNBml to §4.3. Instead, we now use it to give encodings
of several well-known example systems.

4.1.4 Complete Trees

Another class of systems with regular structure that can exploit a component-wise sep-
cification are (full, complete) (k, l)-trees, with width k and depth l. In such trees, each
non-leaf node has exactly k children (full) and every “level” of the tree other than the
last is fully saturated (complete), i.e. there are km nodes at depth m < l. Together,
these properties give the total number of nodes as:

1

k � 1

⇣

kl+1 � 1
⌘

for example, a (3, 2)-tree contains 13 nodes.

We identify 2 such classes of trees: conjunction trees, T̂ (k, l), illustrated in Fig. 4.10a,
and disjunction trees, T_(k, l), illustrated in Fig. 4.10b. A conjunction tree node is con-
nected by a single transition to all of its (direct) children, wheras a disjunction tree’s
nodes have distinct transitions to each child.

Such trees are naturally specified in a compositional manner. To see how, we first
discuss how to construct a transition connecting the k leaf nodes in T̂ (k, l). Let us
consider this transition for T̂ (3, 2); such a transition must connect to the first leaf place
and the remaining 2 leaf places. We can represent this by a component with a single
left and right boundary and a single transition connecting the left/right boundary ports
and the in-port of its single leaf place. The intutition being that the transition connects to
the in-port of the place and whatever else is connected to the right boundary port of the

84 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

··
·

k

··
·

k
· · ·

··
·

k
· · ·

l

(a) Conjunction tree, T̂ (k, l)

··
·

k

··
·

k
· · ·

··
·

k
· · ·

l

(b) Disjunction tree, T_(k, l)

Figure 4.10: (k, l)-Tree Nets

component: if we sequentially compose 3 such components (illustrated in Fig. 4.12c)
and a suitable “terminator” component (illustrated in Fig. 4.2b), as shown in Fig. 4.11a,
we will obtain a component isomorphic to one with a single left boundary and transition
connecting the 3 places’ in-ports (illustrated in Fig. 4.11b). In a similar manner, we can
give component-wise specifications for internal nodes, and thus the entire tree net.

; ; ;

(a) 3 leaf components and a terminator (b) 3 leaf component

Figure 4.11: Isomorphic specification of 3 leaf nodes

We can now give the components and specification for T̂ (k, l); the root, internal node
and leaf components are shown in Fig. 4.12. Using PNBml syntax, T̂ (k, S(l)) is:

T̂ (k, S(l))
def
= bind leaves = n_sequence k LEAF̂ ; ? in

bind addSubTree = �x : Neth1, 0i . n_sequence k
�

NODÊ ; (ID ⌦ x)
�

; ? in

bind createSubTrees = �x : N . foldN x leaves addSubTree in

ROOT ; (createSubTrees l)

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 85

(a) ROOT : (0, 1)

(b) NODÊ : (1, 2) (c) LEAF̂ : (1, 1)

Figure 4.12: T̂ (k, l) component nets

Intuitively, createSubTrees adds l “levels”, to the bottom level of k leaf nodes, where each
non-leaf level is k repetitions of the level before. Indeed, to get the correct depth, we
must define the net system in terms of S(l), not l.

A relevant design detail of our language to briefly discuss at this point is that of providing
folds over N (which, as noted by Coquand [147], can obscure a program’s meaning),
instead of pattern matching on N and recursive definitions; indeed, had we allowed
such features, the definition of T̂ (k, l) can be expressed more directly:

T̂ (k, l)
def
= bind mkSubTree = �x : N .

match x with

1) n_sequence k LEAF̂ ; ?

S(m)) n_sequence k
⇣

NODÊ ;
�

ID ⌦ (mkSubTreem)
�

⌘

; ?

in ROOT ; (mkSubTree l)

Notice that the definitions of leaves and addSubTree have been inlined, and since we
can pattern match on N, we can directly define T̂ (k, l), since the “base-case” pattern
match2 can be for 1, rather than 0. However, the choice to provide folds instead has the
benefit that termination is guaranteed, since the strucural recursion is “hidden” in the
implementation of foldN. Indeed, in the presence of general recursion, non-terminating
computations abound; static approximations are however possible, e.g. that of Abel
and Altenkirch [148], which checks for decreasing-size arguments to recursive calls,
but these, along with pattern matching, are non-trivial to implement.

Continuing after our slight digression, as an example, T̂ (2, 2) is shown in Fig. 4.13,
with the corresponding schematic shown in Fig. 4.14.

Having shown how to construct T̂ (k, l), we now consider T_(k, l); we simply need to
modify the node and leaf components from their definitions for T̂ (k, l): rather than

2The pattern match is of course “incomplete”, since there is no case for 0, but such a matter is not
important for the purposes of our discussion.

86 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

Figure 4.13: T̂ (2, 2)

ROOT NODÊ

LEAF̂ LEAF̂ ?

ID

NODÊ

LEAF̂ LEAF̂ ?

ID

?

Figure 4.14: Schematic of T̂ (2, 2)

single transitions into the node (leaf) and its sibling, we have separate transitions. The
modified components are illustrated in Fig. 4.15.

(a) NODE_ : (1, 2) (b) LEAF_ : (1, 1)

Figure 4.15: T_(k, l) component nets

Indeed, by replacing NODÊ with NODE_ and LEAF̂ with LEAF_ in the specification, we
obtain T_(k, l). As an example, T_(2, 2) is illustrated in Fig. 4.16.

4.1.5 Cliques

A (directed) clique is a (directed) graph where there is an edge between every pair of
nodes. Similarly, a clique net has transitions such that for every pair of distinct places,
there are transitions to-and-from the places.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 87

Figure 4.16: T_(2, 2)

Figure 4.17: CLIQUE1 : (2, 2)

Perhaps surprisingly, a compact, component-wise specification can be given for cliques;
if we specify a single “clique component”, we can construct a (suitably terminated) se-
quence of such components to arrive at the specification of a clique. Indeed, a single
clique component, CLIQUE1, is illustrated in Fig. 4.17. Such a component has transi-
tions that allow it to produce tokens at the next and previous components, consume
tokens from the next and previous components, and pass tokens through from left
to right boundaries and vice-versa (it is these last transitions that allow, say, the 3rd

component to produce tokens at the 1st, only via connections to the 2nd. Using the
previously-defined INJECTOR component, we can inject a single token into the clique
system.

Figure 4.18: CLIQUE(3)

88 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

"""
2

INJECTOR

ID

CLIQUE1 CLIQUE1 CLIQUE1 ###
2

Figure 4.19: Schematic of CLIQUE(3)

As an example, CLIQUE(3) is illustrated in Fig. 4.18, with its schematic shown in Fig. 4.19.
Cliques of arbitrary size are defined:

CLIQUE(k)
def
= """

2
; (ID ⌦ INJECTOR) ; n_sequence k CLIQUE1 ; ###

2

4.1.6 Powersets

A POWERSET(k) net has k+1 places. There is a chosen start place, S, with the remain-
ing places being the elements of k. There are 2k transitions, all with a single source, S,
and with targets being the elements of 2k. For example, POWERSET(3) is illustrated in
Fig. 4.20, where transition t

X

connects S to all x 2 X.

S

10 2

t?

t{0}
t{1}

t{2}

t{0,1} t{1,2}

t{0,2} t{0,1,2}

Figure 4.20: POWERSET(3)

To obtain a component-wise specification, consider partitioning the non-start places
of the net into individual components. Then, the global transitions must be constructed
from compositions of suitable local transitions. Locally, each incoming partially specified

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 89

transition should be connected to the place of the component (and other components)
in three ways:

1. To the local place and any further specified places

2. To the local place alone,

3. Only to the further specified places.

(a) ROOT : (1, 1) (b) POWERSET1 : (1, 1)

Figure 4.21: POWERSET(k) component nets

Such a component is illustrated in Fig. 4.21b. With the ROOT component illustrated in
Fig. 4.21a (which either passes its token into a sequence of POWERSET1 components
or not) and the INJECTOR component from TOKENRING(k), we have:

POWERSET(k)
def
= """ ; INJECTOR ; ROOT ; n_sequence k POWERSET1 ; ###

The schematic for the POWERSET(3) net illustrated in Fig. 4.20, is shown in Fig. 4.22.

""" INJECTOR ROOT POWERSET1 POWERSET1 POWERSET1 ###

Figure 4.22: Schematic of POWERSET(3)

4.2 Benchmark Systems

In this section, we introduce several more realistic benchmark systems than those in-
troduced thus far. Several of the systems are taken from Corbett’s [143] benchmark
suite, but have been reformulated in terms of compositional specifications. To arrive
at the component-based specifications, we examined the original monolithic Petri net
and Ada models, as they existed in the Petri net community, and decomposed them
into components by hand. By doing so, the natural system descriptions in terms of
component structure and component compositions can be explicitly presented.

90 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

4.2.1 Overtake Protocol

The OVERTAKE(k) net system simulates a queue of k automated cars that can overtake
one another. To ensure that no collisions occur, a collection of locks are used: one
between each pair of cars. To overtake, a car must hold both the lock in front of it, and
the lock behind it; this prevents, for example, a car attempting to overtake a car that is
itself overtaking.

To give a component-wise specification of such a system, we construct components
that represent a single car, a single shared lock and then form a sequence of such
components. Indeed, the component for a single car has simple local behaviour (where
we name the states reached after each action):

1. Request the rear lock (⇢),

2. If request failed, reset (◆), if successful (†), request the front lock (?),

3. If request failed, release rear lock (]), if successful, (‡), perform overtake (�),

4. Release the rear lock (⇤),

5. Release the front lock (◆).

A component embodying such a local behaviour is illustrated in Fig. 4.23, where the
“perform overtake” transition is highlighted in blue.

◆

⇢

†

?

]

‡

�

⇤

RUnlock

requestRLock

RLockFail

RLockOk

FUnlock

requestFLock

FLockFail

FLockOk

Figure 4.23: CAR : (4, 4)

The lock component has three states:

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 91

U

B F

unlockBehind

lockBehind

cantLockBehind

unlockFront

lockFront

cantLockFront

Figure 4.24: LOCK : (3, 3)

(a) RLOCKINTERFACE : (4, 3) (b) FLOCKINTERFACE : (3, 4)

Figure 4.25: Lock interface components

1. Unlocked (U)

2. Locked by the car behind (B)

3. Locked by the car infront (F)

with partially-specified transitions that allow the cars infront/behind to lock/unlock and
check if they can lock the lock. Such a component is illustrated in Fig. 4.24.

The desired system behaviour requires that cars can request the lock, which can then
fail or succeed. In order to separate this behaviour into two steps, we require suitable
“impedence matcher” interface components between each CAR and LOCKs. Such inter-
faces have local states to distinguish between request made/request response, passing
signals to their boundaries as appropriate, as illustrated in Fig. 4.25.

Given these components, we can define the OVERTAKE(k) net system:

OVERTAKE(k)
def
= bind interfacedLock = RLOCKINTERFACE ; LOCK ; FLOCKINTERFACE in

bind lockCar = interfacedLock ; CAR in

"""
4
; n_sequence k lockCar ; interfacedLock ; ###

4

Due to the complexity of the components, we do not draw the composite OVERTAKE(k)

system. The schematic for OVERTAKE(2) is shown in Fig. 4.26, where, for simplicity, we
have collapsed the three constituents of interfacedLock into a single component, iLock .

92 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

>4 iLock

CAR
iLock

CAR
iLock

?4

Figure 4.26: Schematic of OVERTAKE(2)

4.2.2 Hartstone

The HARTSTONE(k) system models a program that starts k tasks in some order, lets
them compute, before instructing them to stop them in the same order. In the original
description of the problem, a central controller is directly connected to the k tasks.
Using PNBs, we can simplify this description: we construct k “single task” controllers,
each responsible for a single task, with each controller passing signals to the next
controller.

reqIn

startTask

stopTask

reqOut

(a) CONTROLLER : (1, 3) (b) TASK: (2, 0)

(c) MASTER : (1, 1)

(d) OPB : (1, 1)

Figure 4.27: HARTSTONE(k) component nets

The component in Fig. 4.27d is a one-place buffer (OPB), which allows a token to asyn-
chronously flow through a series of connected components. Without the OPBs, the fully
specified transitions would connect the “ready” place in each CONTROLLER component
together, similarly for the “working” place; the tasks would therefore be simultaneously
stopped, which is not what we wish to model.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 93

The PNBml expression to represent a HARTSTONE(k) system, with k tasks is as follows:

HARTSTONE(k)
def
= bind asyncTask = OPB ; CONTROLLER ; (TASK ⌦ ID) in

bind tasks = n_sequence k asyncTask in

ETA ; (MASTER ; tasks) ⌦ ID ; EPSILON

This expression represents a sequence of controller/tasks, which are wired to a mas-
ter controller (that models the protocol of repeatedly starting all processes and then
stopping them). Signals are looped back around (via ETA/EPSILON), such that MAS-
TER receives the signal when all controllers have already received it. The schematic of
HARTSTONE(2) is shown in Fig. 4.28.

ETA

MASTER OPB CONT

TASK

ID
OPB CONT

TASK

ID

ID

EPSILON

Figure 4.28: Schematic of HARTSTONE(2)

4.2.3 Iterated Choice

The ITER-CHOICE(k) system models a simple sequence of components that each have
a choice between two transitions to fire; the choice they make is recorded in the result-
ing marking. Such a system has a simple component-wise specification as a sequence
of suitable “choice” components.

A single choice component is illustrated in Fig. 4.29b; the choice of transition is between
those consuming tokens from p1: either t1 or t2. When t2 is chosen, the choice is
recorded by a token being present in p2. A single token is injected into a sequence of
single choice components by the ADDTOK component, as shown in Fig. 4.29a.

(a) ADDTOK: (0, 1)

p1

p2

t1

t2

(b) CHOICE: (1, 1)

94 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

The component-wise specification of a sequnce of choice components is then:

ITER-CHOICE(k)
def
= ADDTOK ; n_sequence k CHOICE ; ?

the schematic of such a system is almost trivial, e.g. the schematic of ITER-CHOICE(2)

is illustrated in Fig. 4.30, with the corresponding composite net shown in Fig. 4.31.

ADDTOK CHOICE CHOICE ?

Figure 4.30: Schematic of ITER-CHOICE(2)

Figure 4.31: ITER-CHOICE(2)

4.2.4 Replicator

A replicator is a simple component that is able to fire the transition connected to its
right boundary port an unbounded number of times, once the transition connected to
its left boundary port has fired once. Sequences of such replicators can be formed into
a chain, similarly to the ITER-CHOICE(k) system.

(a) REPLICATOR: (1, 1)

(b) TAKETOK: (1, 0)

The REPLICATORS(k) system is defined:

REPLICATORS(k)
def
= ADDTOK ; n_sequence k REPLICATOR ; TAKETOK

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 95

the schematic of such a system is again almost trivial, e.g. the schematic for REPLICATORS(3)

is illustrated in Fig. 4.33, with the corresponding composite net shown in Fig. 4.34.

ADDTOK REPLICATOR REPLICATOR REPLICATOR TAKETOK

Figure 4.33: Schematic of REPLICATORS(3)

Figure 4.34: REPLICATORS(3)

4.2.5 DAC: Divide and Conquer

The DAC(k) system [143] models the recursion in divide and conquer approaches to
problem solving. DAC(k) is comprised of k WORKER components; each worker can
chose to invoke a computation in a child process, or perform all computation itself. If
a worker invokes a child process, it must then wait for it and all of its descendants to
finish. Each layer in the recursion is modelled by the addition of a worker net. Varying
the number of worker nets allows one to treat recursion up to any depth. The worker
chain is terminated by a net without synchronising transitions, forcing the last worker to
do any remaining work itself.

The components of DAC(k) are illustrated in Fig. 4.35; the CONTROLLER component
starts the chain of workers, before “joining” (waiting for) them.

The specification of DAC(k) with k workers is:

DAC(k)
def
= CONTROLLER ; n_sequence k WORKER ; ###

2

The schematic of DAC(3) is shown in Fig. 4.36.

4.2.6 Dining Philosophers

The DPH(k) system is the classic example of a concurrent system modelled by Petri
nets. A natural compositional specification is to describe components for individual

96 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

forkTasks

joinTasks

(a) CONTROLLER : (0, 2)

forkChild

joinChild

forkMe

joinMe

(b) WORKER : (2, 2)

Figure 4.35: DAC(k) component nets

CONTROLLER WORKER WORKER WORKER ###
2

Figure 4.36: Schematic of DAC(3)

philosophers and forks, which are connected in a loop. The PHILO component, shown
in Fig. 4.37a, attempts to take the forks on its left and right (in either order), before
eating and replacing the forks. A FORK component, illustrated in Fig. 4.37b, can be
taken and replaced from either its left or right.

takeL

putL

takeR

putR

(a) PHILO : (2, 2)

(b) FORK : (2, 2)

Figure 4.37: Dining Philosophers component nets

To form a “dining table” of philosophers, a sequence of alternating philosopher/forks is
created, before connecting the first philosopher to the last fork to close the ‘loop” of the

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 97

table. The following expression embodies this specification:

DPH(k)
def
= bind philoFork = PHILO ; FORK in

ETA2 ; (n_sequence k philoFork ⌦ ID2) ; EPSILON2

The schematic for DPH(2) is shown in Fig. 4.38.

ETA2

PHILO FORK PHILO FORK

ID2

EPSILON2

Figure 4.38: Schematic of DPH(2)

4.2.7 Milner’s Cyclic Scheduler

Milner’s CYCLIC(k) system models a set of k processes arranged in a cycle; each pro-
cess starts in turn and notifies the next process in the cycle to start. Upon finishing,
the processes may start again, but only if they have been signalled to do so by the
previous process; similarly, if a process is signalled whilst still running, it must wait to
finish before starting and passing the signal along.

signalMe

startTask

taskFinished

signalNext

Figure 4.39: SCHEDULER : (2, 2)

The component-wise specification of CYCLIC(k) makes use of the same task compo-
nent net as HARTSTONE(k) (illustrated in Fig. 4.27b). Each SCHEDULER component,

98 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

illustrated in Fig. 4.39 has a corresponding TASK componet that it controls. Each sched-
uler/task component feeds its signalNext into the next component; the cycle is initially
started by the INJECTOR component from TOKENRING(k) (shown in Fig. 4.8a). The
specification is then:

CYCLIC(k)
def
= bind schedTask = SCHEDULER ; TASK ⌦ ID in

bind tasks = INJECTOR ; n_sequence k schedTask in

ETA ; (tasks ⌦ ID) ; EPSILON

The schematic of CYCLIC(2) is shown in Fig. 4.40.

ETA

INJECTOR SCHEDULER
TASK

ID

SCHEDULER
TASK

ID

ID

EPSILON

Figure 4.40: Schematic of CYCLIC(2)

4.2.8 k-bit Counter

The COUNTER(k) system models a “counter” system that counts from 0�n allowing in-
crement/decrement. Intuitively, a k-bit counter is formed by synchronously composing
k of the single-bit counter components from Fig. 4.41a, and terminating with a ZERO-
BIT component, shown in Fig. 4.41b, which always reports as being full and can’t be
incremented or decremented. The intuitive description of a 1-bit component is that it is
either “empty” or “full”. A full component may be directly decremented, or may pass its
token to the next component, in either case it becomes empty. Passing tokens along a
chain of components allows the chain to become full — a k-bit counter is not full if any
component has a token in the empty place; it is full if all places have tokens in the full
place.

The specification of COUNTER(k) is simple:

COUNTER(k)
def
= TESTER ; n_sequence k ONEBIT ; ZEROBIT

Clients of COUNTER(k) interact with the 4 boundary ports on its left boundary: they may
increment, decrement and test for notfull/full (if the counter is full to capacity, transitions
connected to lfull may fire and otherwise not). Indeed, while the counter sequence

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 99

linc

ldec

lnotfull

lfull

rinc

rdec

rnotfull

rfull

(a) ONEBIT : (4, 4)

full

(b) ZEROBIT : (4, 0)

Figure 4.41: k-bit Counter component nets

Figure 4.42: TESTER component net

“reports” that it is not full, the tester component repeatedly fires the sequence’s inc

transtion and then tests that the sequence “reports” as being full. The schematic for
COUNTER(3) is shown in Fig. 4.43.

TESTER ONEBIT ONEBIT ONEBIT ZEROBIT

Figure 4.43: Schematic of COUNTER(3)

4.3 Specification Domain Specific Language

In this section we give a formal description of the language PNBml for specifying net
compositions. In particular, we show how PNBml expressions are evaluated to nets,
and how the type system ensures that only valid expressions are processed, via the
slogam well-typed programs are well-composed theorem (Thm. 4.1), in the style of
Milner [149].

100 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

PNBml is a monomorphic, call-by-value functional language; it follows the tradition in
classic functional programming languages, such as ML, of extending the syntax of the
lambda calculus with convenient programming constructs. In particular, we add natural
numbers, net literals/composition, syntax for variable binding and recursion over natural
numbers.

The abstract syntax of PNBml is given in Fig. 4.44: x is drawn from a countable set of
variables, n is a net literal (defined using a low-level syntax that we describe in §4.3.3).
Natural number literals are written as standard: 0, 1, . . . , but semantically are in Peano
form: p is either 0 or S(p0) for some natural literal p0. Function application is indicated
by simple juxtaposition: e1 e2. Following mathematical convention, ‘;’ and ‘⌦’ associate
to the left, with ‘⌦’ binding tighter than ‘;’.

e = x (variable)

| p (natural number literal)

| n (net literal)

| bind x = e1 in e2 (variable binding)

| �x : ⌧ . e (function abstraction)

| e1 e2 (function application)

| e1 ; e2 (sequential net composition)

| e1 ⌦ e2 (tensor net composition)

| foldN e
n

e
z

e
s

(recursion over natural numbers)

Figure 4.44: Syntax of PNBml

Note that the sequence construction, n_sequence e
n

e1 for an expression e
n

, dis-
cussed in §4.1.3, does not appear in the formal syntax, since it is a syntactic sugar for
a fold:

n_sequence e
n

e1
def
= foldN (e

n

� 1) e1
�

�x : Nethk, ki . e1 ; x
�

where S(p) � 1
def
= p. Notice however, that n_sequence 0 e1 cannot appear in any

expression: 0 � 1 is undefined3. We discuss the importance of the type annotation,
Nethk, ki on the lambda expression in §4.3.2, but briefly, for the sequence to be correct,
e1 must be an expression representing a net with k boundary ports on each side.

3An alternative, would be to consider n0 as IDk, assuming n : (k, k)

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 101

4.3.1 Operational Semantics

We define the big-step operational semantics of PNBml in Fig. 4.46, using an explicit
variable binding environment E, which we discuss shortly. The language is call-by-
value, and the evaluation rules reduce PNBml expressions to values, which have three
forms: (i) (Composite) nets, (ii) Natural numbers, and (iii) Function closures (consisting
of an environment and lambda abstraction). A variable binding environment, E, is
simply a map from variables, x, to values, v, as shown in Fig. 4.45.

v = n (Net Literal)

| p (Natural Number Literal)

| hE, �x : ⌧ . ei (Function Abstraction)

E = • (Empty Environment)

| E, x 7! v (Environment Extension)

Figure 4.45: PNBml Values and Operational Environments

The evaluation rules are of the form: E ` e + v, meaning that in environment E,
expression e reduces to value v. Evaluation intuitively proceeds as follows: variables
are simply looked up in the environment, lambdas evaluate to a closure over the current
environment, and numeric/net literals evaluate to themselves. Bindings evaluate their
body in an extended environment, similarly for applications. Synchronous and tensor
composition evaluate both expressions to net literals, before applying the appropriate
net operation. Structural recursion over the natural numbers (commonly referred to as
a fold, e.g. see [150]) is implemented via repeated function application of e

s

to e
z

.

For example, considering the PNBml expression given at the end of §4.1.3; after ex-
panding syntatic sugar, the following example reduction holds.

Example 4.1.
For expression

e = bind makeRing = �x : Neth1, 1i . ETA ; (x ⌦ ID) ; EPSILON in

bind procs = foldN 2 WORKER
�

�x : Neth1, 1i . WORKER ; x
�

in

makeRing (INJECTOR ; procs)

and value

v = ETA ;
⇣

INJECTOR ;
�

WORKER ; (WORKER ; WORKER)
�

⌘

⌦ ID ; EPSILON

we have that

? ` e + v

102 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

(EVAR)
E ` x + E(x)

(ELAM)
E ` �x : ⌧ . e + hE, �x : ⌧ . ei

(EBIND)
E ` e1 + v1 E, x 7! v1 ` e2 + v2

E ` bind x = e1 in e2 + v2

(EAPP)
E ` e1 +

D

E0, �x : ⌧ . e3
E

E ` e2 + v2 E0, x 7! v2 ` e3 + v3

E ` e1 e2 + v3

(ENAT)
E ` p + p

(ENET)
E ` n + n

(ESEQ)
E ` e1 + n1 E ` e2 + n2

E ` e1 ; e2 + n1 ; n2

(ETEN)
E ` e1 + n1 E ` e2 + n2

E ` e1 ⌦ e2 + n1 ⌦ n2

(EFOLDZ)
E ` e

n

+ 0 E ` e
z

+ v

E ` foldN e
n

e
z

e
s

+ v

(EFOLDS)
E ` e

n

+ S(p) E ` e
s

(foldN p e
z

e
s

) + v

E ` foldN e
n

e
z

e
s

+ v

Figure 4.46: Operational Semantics of PNBml

Proof. Direct, by the definition of the evaluation rules.

4.3.2 Static Type Checking

As mentioned in §4.1.3, run-time synchronous composition errors are encountered
when attempting to synchronously compose nets with differently-sized boundaries. Such
errors can be ruled out statically, that is, before evaluation is performed, by using a type
system. Such a type system ascribes a type to each expression, with a type being a
static approximation of the dynamic (after evaluation, at run-time) form of the expres-
sion [151]. Indeed, other run-time errors can be ruled out by using a static type system;
such errors include treating a net as a function or trying to tensor two lambda expres-
sions.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 103

In this subsection, we introduce a simple, monomorphic type system, giving rules for
ascribing types to expressions, before proving a safety property: if a expression can be
typed, it cannot fail to evaluate to a value with the same type.

4.3.2.1 Monomorphic Type System

A monomorphic type system ascribes a single type to any particular expression. Our
monomorphic type system uses only two types, as shown in Fig. 4.47. As we will prove,
these types can be used to rule out all possible run-time failures for PNBml expres-
sions. The novel feature is that component boundary sizes are tracked, achieved by
parametrising the net base type: Nethl, ri by l, r 2 N, which describe the left and right
boundary sizes respectively. Indeed, the net component type, Nethk, li, will be ascribed
to any expression, that, when evaluated, results in a (composite) net with boundaries k

and l, for a particular choice of k and l. Thus the type Nethk, li approximates the form
of the resulting expression in that it only records the boundary sizes.

The deductive rules for assigning types to PNBml expressions are shown in Fig. 4.48.
As is standard (e.g. [152]) for a monomorphic language, � is a sequence of bindings
from variables to types (shown in Fig. 4.47), which is extended in the TBIND and TLAM

rules and inspected in the TVAR rule.

It is important to note is that lambda expressions parameters are annotated with their
type. This is necessary to infer the type of arbitrary expressions; inference involves
reading type rules “in reverse”, from conclusion to premise, and regarding � and e as
inputs, and ⌧ as an output. Indeed, in TLAM, we require a single monomorphic type for
x, with which to extend the type environment; without the annotation, we have no such
type. For such a reverse reading to be correct, the rules must be syntax-directed : each
syntactic form of the expression language corresponds to exactly one type rule.

⌧ = N (Natural Number)

| Nethk, li (k, l 2 N) (Net Component)

| ⌧1 ! ⌧2 (Function Type)

� = • (Empty Environment)

| �, x 7! ⌧ (Environment Extension)

Figure 4.47: Monomorphic Types and Type Environments of PNBml

We say an expression e is well-typed, if there exists a type environment binding all free
variables appearing in e, �, and a type, ⌧ , such that � ` e : ⌧ .

104 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

(TVAR)
�(x) = ⌧

� ` x : ⌧
(TBIND)

� ` e1 : ⌧1 �, x 7! ⌧1 ` e2 : ⌧2

� ` bind x = e1 in e2 : ⌧2

(TLAM)
�, x 7! ⌧1 ` e : ⌧2

� ` �x : ⌧1 . e : ⌧1 ! ⌧2
(TAPP)

� ` e1 : ⌧1 ! ⌧2 � ` e2 : ⌧1

� ` e1 e2 : ⌧2

(TNAT)
� ` p : N

(TNET)
n : (k, l)

� ` n : Nethk, li

(TTEN)
� ` e1 : Nethk, li � ` e2 : Nethm, ni

� ` e1 ⌦ e2 : Nethk +m, l + ni

(TSEQ)
� ` e1 : Nethk, li � ` e2 : Nethm, ni l = m

� ` e1 ; e2 : Nethk, ni

(TFOLD)
� ` e

n

: N � ` e
z

: ⌧ � ` e
s

: ⌧ ! ⌧

� ` foldN e
n

e
z

e
s

: ⌧

Figure 4.48: Syntax-directed Monomorphic Typing Rules for PNBml

As an example use of the typing rules, consider composing the lambda expression that
forms a loop from a sequence of workers, introduced in §4.1.3, reproduced here:

�x : Neth1, 1i . ETA ; (x ⌦ ID) ; EPSILON

We can confirm that this expression is well-composed (i.e. that it contains no invalid
compositions, a consequence of being well-typed) with the proof illustrated in Fig. 4.49
(using ⌘, i, ✏ in place of ETA, ID, EPSILON).

⌘ : (0, 2)

� ` ⌘ : Neth0, 2i

�(x) = Neth1, 1i

� ` x : Neth1, 1i

i : (1, 1)

� ` i : Neth1, 1i

� ` x ⌦ i : Neth2, 2i

✏ : (2, 0)

� ` ✏ : Neth2, 0i

� ` (x ⌦ i) ; ✏ : Neth2, 0i

•, x 7! Neth1, 1i ` ⌘ ; (x ⌦ i) ; ✏ : Neth0, 0i

• ` �x : Neth1, 1i . ⌘ ; (x ⌦ i) ; ✏ : Neth1, 1i ! Neth0, 0i

For compact presentation, let � def
= •, x 7! Neth1, 1i.

Figure 4.49: Example typing proof

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 105

Values can be ascribed types; we write ✏ v : ⌧ if value v has type ⌧ . Furthermore,
an operational environment (mapping lambda-bound-variables to values), E, respects
a type environment, �, iff the domains of � and E are equal and E point-wise respects
�, as per Fig. 4.50.

✏ • : •

✏ E : � ✏ v : ⌧

✏ E, x 7! v : �, x 7! ⌧

✏ p : N

n : (k, l)

✏ n : Nethk, li

✏ E : � �, x 7! ⌧1 ` e : ⌧2

✏ hE, �x : ⌧1 . ei : ⌧1 ! ⌧2

Figure 4.50: Typing of Values and Operational Environments

Now we can state our formal notion of well-typed expressions can always be evaluated
to well-composed values:

Theorem 4.1.
For a well-typed expression, � ` e : ⌧ , and operational environment E such that ✏ E : �,
we have:

E ` e + v with ✏ v : ⌧

Proof. Induction over the structure of the proof of � ` e : ⌧ , uniquely determined by the
structure of e. We only state the non-standard cases here:

- In the base cases of e being a net or natural number literal the result is trivial.

- In the case of a tensor composition, e1 ⌦ e2, we apply the I.H. to e1 and e2,
obtaining values v1 and v2 such that ✏ v1 : Nethk, li and ✏ v2 : Nethm, ni for
some k, l,m and n. Now, by the inversion of the syntax-directed typing rules, v1
and v2 must be net literals, n1 : (k, l) and n2 : (m, n). Thus the premises for ETEN

are satisfied and we have e1 ⌦ e2 + n1 ⌦ n2, where n1 ⌦ n2 : (k + m, l + n),
giving ✏ n1 ⌦ n2 : Nethk +m, l + ni, as required.

- The case of synchronous composition is similar: we apply the I.H. to e1 and e2,
obtaining values v1 and v2 such that ✏ v1 : Nethk, li and ✏ v2 : Nethm, ni for
some k, l,m and n. Observe that the conclusion of ESEQ is only defined when
l = m, which is ensured by the final premise on TSEQ. Thus, by the definition of
synchronous composition on net components, v is a net literal, n1 ; n2 : (k, n),
giving ✏ n1 ; n2 : Nethk, ni, as required.

- Finally, for a fold, foldN e
n

e
z

e
s

, we apply the I.H. three times, obtaining values
v
n

, v
z

and v
s

such that ✏ v
n

: N, ✏ v
z

: ⌧ and ✏ v
s

: ⌧ ! ⌧ .

106 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

Now, we have to consider the the form of v
n

, which, by the inversion of the typing
rules, must be a natural number literal, either 0 or S(p): in the former case, E `
foldN 0 e

z

e
s

+ v
z

, with ✏ v
z

: ⌧ , as required. In the latter case, where v
n

is
S(p), by our assumption that � ` foldN e

n

e
z

e
s

: ⌧ , we have that e
s

: ⌧ ! ⌧ ,
and furthermore, that � ` foldN p e

z

e
s

: ⌧ (by substituting a leaf for p for the
sub-tree corresponding to e

n

). We therefore have the premises for TAPP, giving
the conclusion that � ` e

s

�

foldN p e
z

e
s

�

: ⌧ . Now, by the I.H., we have that
E ` e

s

�

foldN p e
z

e
s

�

+ v and therefore foldN S(p) e
z

e
s

+ v, such that ✏ v : ⌧ , as
required.

4.3.3 Net Literal Specification

To finish this chapter, for completeness, we briefly discuss how component nets are
specified, such that they can be referred to within PNBml expressions. Later in this
thesis, we will be concerned with checking reachability of net systems specified by
PNBml expressions, therefore our component specification language incorporates the
initial/target markings of component places.

The grammar of the net specification language is as illustrated in Fig. 4.51.

Each component definition specifies a list of places, a list of left and right boundary port
names, and a set of transitions. Each place is specified as a triple of a (unique) name,
initial marking and target marking, where the target marking can be one of 3 values:
“yes” (1), “no” (0) or “don’t care” (*). N.B. since we allow “don’t care” target markings,
we are able to specify coverability problems in addition to reachability. Each transition
is specified as the set of ports that it connects, where each port is one of 5 different
types:

1. Left boundary (denoted by a (left) boundary name),

2. Right boundary (denoted by a (right) boundary name),

3. Place input (Produce) (denoted by a place name preceded by ’>’),

4. Place output (Consume) (denoted by a place name followed by ’>’),

5. Place Read (denoted by a place name followed by ’?’).

As an example of the component specification format, we show the definition of the
PHILO component, from §4.2.6.

Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions 107

pnbdef ::= "NET", name , "PLACES", places , "LBOUNDS", bounds ,
"RBOUNDS", bounds , "TRANS", transitions ;

name ::= ?sequence of alphanumeric characters?

places ::= "[", { place , "," }, place , "]"
| "[", "]" ;

place ::= "<", name , ",", initialmarking , ",", targetmarking ">" ;

bounds ::= "[", { name , "," }, name , "]"
| "[", "]" ;

transitions ::= "{", { transition , "," }, transition , "}"
| "{", "}";

transition ::= "{", { port , "," }, port "}"
| "{", "}" ;

port ::= ">", name
| name , ">"
| name , "?"
| name ;

initialmarking ::= "0"
| "1" ;

targetmarking ::= "0"
| "1"
| "*" ;

Figure 4.51: BNF grammar for the input language

4.4 Summary

In this section we introduced the example systems we use to demonstrate and bench-
mark our reachability checking techniques. We illustrated that using a suitable DSL
for net system specification gives convenient representations, especially for parametric
systems, such as the example systems we consider. We illustrated our net system DSL,
PNBml, and proved that by using a static type system, we can ensure that well-typed
expressions are guaranteed to terminate and construct well-composed net systems.

108 Chapter 4 Benchmarks and a Domain Specific Language for Net Compositions

NET philo
PLACES

[<none , 1,*>
, <left , 0,*>
, <right , 0,*>
, <both , 0,1>
]

LBOUNDS [takeL , putL]
RBOUNDS [takeR , putR]
TRANS

{ { none>, takeL, >left }
, { none>, takeR, >right }
, { left>, takeR, >both }
, { right>, takeL, >both }
, { both>, putL, putR, >none }
}

none

left right

both

takeL

putL

takeR

putR

Figure 4.52: PHILO using component specification format

Chapter 5

Compositional Statespace
Generation

In this chapter we introduce a technique for compositional generation of the global
statespace of systems modelled using the PNB specifications of Chapter 4, without first
forming the corresponding composite global net. We show that because the boundary
interactions of component nets are recorded in their statespaces, we are able to recon-
struct the global statespace from the just the component statespaces.

Our goal is to use our method of compositional statespace generation (§5.1) as the
basis of a compositional approach for checking reachability. However, the intial compo-
sitional approach we introduce here makes no attempt to limit the effects of statespace
explosion. Existing approaches also consider the global statespace, but use techniques
such as unfoldings or partial-order reduction to avoid generating the entire statespace.
We will use compositionality to avoid the statespace explosion problem, but first show
that we can indeed generate the global statespace in a compositional manner. While
we prove our compositional technique correct (§5.3), evaluating its performance (§5.2)
shows degredation due to statespace explosion. However, as we will demonstrate in
Chapter 6, with suitable optimisations, our compositional technique is particularly effi-
cient for several systems.

5.1 Reachability via Statespace Generation

We begin this section with a simple running example that we will use to illustrate our
technique. Recall the simple k-bit buffer system, BUFFER(k), described in §4.1.1. We
will consider checking this system for reachability of the marking with tokens in all the
lower places, starting from the marking with tokens in all the upper places. The com-
posite system, for k = 3, is illustrated with this initial/target marking, in Fig. 5.1.

109

110 Chapter 5 Compositional Statespace Generation

p1

p2

t2t1

p3

p4

t3

p5

p6

t4

Figure 5.1: Reachability problem for marked PNB BUFFER(3)

Remark 5.1. An important point to note is that while the BUFFER(k) system is specified
as the PNBml expression:

BUFFER(k)
def
= > ; n_sequence k BUFFER ; ?

for statespace generation, we need only consider the evaluated expression — a PNB
expression. Indeed, since PNBml expressions are compact representations of PNB ex-
pressions, we can avoid a level of complexity (in particular, in the proof of correctness)
by only considering the underlying PNB expressions. With this in mind, we assume that
PNBml expressions have been evaluated as per §4.3.1 throughout this chapter.

5.1.1 Monolithic Statespace Generation

First, we describe the naive, monolithic approach: simply compose the PNB specifi-
cation into a single global net, before generating its 2-NFA semantics; if we encounter
an accepting state of the 2-NFA, the marking is reachable. This naive approach is
embodied in Algorithm 5.1.

Algorithm 5.1 Naive algorithm to check reachability of PNB expression
1: Evaluate the PNB expression to obtain a single marked PNB,
2: Generate the 2-NFA semantics of the marked PNB (as per Defn. 2.43),
3: Check the resulting 2-NFA for emptiness; as per Remark 2.29, if the 2-NFA is empty

then the target marking cannot be reached from the initial marking.

We outline running Algorithm 5.1 on BUFFER(3). The input is (up-to associativity) the
PNB expression:

> ; BUFFER ; BUFFER ; BUFFER ; ? (5.1)

After performing step 1, we obtain the marked PNB shown in Fig. 5.1. Since this PNB
has no boundaries, it can be considered as an ordinary Petri net, thus we can calculate
the corresponding reachability NFA, illustrated in Fig. 5.2, where the states are labelled
with (marked) net states and transitions are labelled with the fired net transitions.

Chapter 5 Compositional Statespace Generation 111

{p1, p3, p5}

{p1, p3, p6}

{p1, p4, p5}

{p1, p4, p6}

{p2, p3, p5}

{p2, p3, p6}

{p2, p4, p5}

{p2, p4, p6}

?
?

?

?

?

?

?
?

{t4}

{t3}

{t4}

{t2}

{t2, t4}

{t2}

{t1}

{t1, t4}

{t4}

{t1}

{t1, t3}

{t3}

{t1}

{t1, t4}

{t4} {t1}

Figure 5.2: Reachability NFA for the marked PNB of Fig. 5.1 when considered
as a Petri net

It is easy to confirm that this NFA has a non-empty language; an example word is
⌦

{t4} , {t3} , {t4} , {t2} , {t3} , {t4}
↵

. Simple inspection of the net in Fig. 5.1 confirms that
firing the corresponding transitions, in sequence, does indeed transform the net from
the initial marking to the target marking. If we do not consider the composite PNB as
a Petri net, the generated 2-NFA is homomorphic to the NFA in Fig. 5.2 — the state
component of the homomorphism is identity and the label component is the constant
function that maps every set of transitions to ‘/’. The homomorphic 2-NFA is shown
in Fig. 5.3, where we omit the unique label for neatness; indeed, for all PNBs with 0
boundaries, the corresponding 2-NFA has a unique, singleton set of labels.

Remark 5.2. The reader should note that we have not formally defined composition
operations on marked PNBs, since it is not important for providing intuition. However,

112 Chapter 5 Compositional Statespace Generation

{p1, p3, p5}

{p1, p3, p6}

{p1, p4, p5}

{p1, p4, p6}

{p2, p3, p5}

{p2, p3, p6}

{p2, p4, p5}

{p2, p4, p6}

Figure 5.3: 2-NFA that is homomorphic to that in Fig. 5.2

we do define such operations in the proof of correctness, in §5.3.

5.1.2 Compositional Statespace Generation

We now move on to discussing our alternative, compositional, approach, which will
produce an isomorphic 2-NFA to that obtained by the naive algorithm. We compute
the 2-NFA semantics of individual marked PNB components, obtaining local 2-NFA
semantics, which are combined into a global 2-NFA semantics of the composite system.
This global semantics can be checked for language emptiness, as before. This modified
algorithm is outlined in Algorithm 5.2.

Chapter 5 Compositional Statespace Generation 113

Algorithm 5.2 Compositional, local algorithm to check reachability of PNB expression
1: Convert each (marked) component PNB to its corresponding local 2-NFA,
2: Combine the 2-NFAs to obtain a global 2-NFA representing reachability of the com-

posite net,
3: Check the resulting 2-NFA for emptiness.

We again illustrate our algorithm with 5.1, however, we now directly consider the marked
PNB components, illustrated in Figs. 5.4, 5.5 and 5.6, where we also give the definition
in terms of the component specification language of §4.3.3.

p0

p1

NET buffer
PLACES [<p0 , 1, 0>

, <p1, 0, 1>
]

LBOUNDS [left]
RBOUNDS [right]
TRANS { {p0>, right , >p1}

, {p1>, left , >p0}
}

Figure 5.4: BUFFER : (1, 1)

NET >
PLACES []
LBOUNDS []
RBOUNDS [in]
TRANS { {in} }

Figure 5.5: > : (0, 1)

NET ?
PLACES []
LBOUNDS [in]
RBOUNDS []
TRANS { {in} }

Figure 5.6: ? : (1, 0)

By the left-associativity of ‘;’, this expression is the binary tree with internal nodes being
compositions and leaves PNB components illustrated in Fig. 5.7.

As per step 1 of Algorithm 5.2, we traverse the PNB expression tree, converting each
component into its local reachability NFA. The translations for each component are
illustrated in Fig. 5.8.

114 Chapter 5 Compositional Statespace Generation

;

;

p0

p1

;

p0

p1

;

p0

p1

Figure 5.7: PNB BUFFER(�) Expression tree

Traversing the expression tree of Fig. 5.7 and applying the conversions shown in Fig. 5.8
produces another expression tree. This new tree has identical shape and internal
nodes, but 2-NFAs at the leaves instead of PNBs, as illustrated in Fig. 5.9. At this
point, it is important to note that (up-to isomorphism) the names of a 2-NFA’s states are
unimportant, thus we elide them from now on when illustrating 2-NFAs.

For step 2 of Algorithm 5.2, we must collapse the tree of 2-NFAs into a single 2-NFA,
representing reachability of the global marking in the composed net. To do so, we tra-
verse the expression tree in a depth-first, left-to-right fashion performing compositions;
since there are 4 internal composition nodes, we must perform 4 2-NFA compositions,
generating the intermediate trees illustrated in Fig. 5.10, Fig. 5.11 and Fig. 5.12, be-
fore obtaining the final result (a tree with a single leaf node) illustrated in Fig. 5.13.
In Fig. 5.13, for completeness, we have explicitly labelled the 2-NFA states using the

Chapter 5 Compositional Statespace Generation 115

? /⇤

p0

p1

{p0}

{p1}

0/0

0/1

0/0

1/0

? ⇤/

Figure 5.8: Translations of component marked PNBs to their 2-NFA semantics

following mapping to save space1:

0 7! ? ; {p0} ; {p0} ; {p0} ; ?

1 7! ? ; {p0} ; {p0} ; {p1} ; ?

2 7! ? ; {p0} ; {p1} ; {p0} ; ?

3 7! ? ; {p0} ; {p1} ; {p1} ; ?

4 7! ? ; {p1} ; {p0} ; {p0} ; ?

5 7! ? ; {p1} ; {p0} ; {p1} ; ?

6 7! ? ; {p1} ; {p1} ; {p0} ; ?

7 7! ? ; {p1} ; {p1} ; {p1} ; ?

As an example, state 5 corresponds to the PNB marking:

�

inl (inl (inl (inr p1))), inl (inl (inr p0)), inl (inr p1)

1Recall that we write x ; y for the states (x, y) of a synchronous composition, with ‘;’ being left associa-
tive.

116 Chapter 5 Compositional Statespace Generation

;

⇤/

;

0/0

0/1

0/0

1/0

;

0/0

0/1

0/0

1/0

;

0/0

0/1

0/0

1/0

/⇤

Figure 5.9: Expr. tree of Fig. 5.7, after converting marked PNBs to 2-NFAs

;

⇤/

;

0/0

0/1

0/0

1/0

;

0/0

0/1

0/0

1/0

/0

/0

/1/0

Figure 5.10: Expr. tree of Fig. 5.9, after performing a single 2-NFA composition

At this stage, we have generated two isomorphic NFAs; one (Fig. 5.3) by the naive,
monolithic Algorithm 5.1 and the other (shown in Fig. 5.13) by the compositional Algo-
rithm 5.2. In the next section, we investigate the performance of Algorithm 5.2, while we
defer a proof of its correctness—that it and Algorithm 5.1 always generate isomorphic
NFAs—to the final section.

Chapter 5 Compositional Statespace Generation 117

;

⇤/

;

0/0

0/1

0/0

1/0

/0

/0

/0

/0/1

/0

/1/0

/1

/0

Figure 5.11: Expr. tree of Fig. 5.9, after performing two 2-NFA compositions

5.2 Performance of the Compositional Algorithm

We now turn to examining the performance of Algorithm 5.2, using the example sys-
tems introduced in §4.1. To do so, we must first specify the particular initial and target
markings that we will use for each system. These markings are specified in Fig. 5.14
(some are expected to be reachable, some not).

Given these marked examples, we execute our implementation, recording the total time
taken, averaged over 5 runs. The results are illustrated in Table 5.1.

Consider the first entry in Table 5.1, that of BUFFER(3), which we evaluated by hand
at the end of §5.1: the maximum composition size encountered there (illustrated in
Fig. 5.12) was (8, 1), agreeing with the recorded result.

For all systems, small parameters lead to run-times of < 1 second; but small incre-
ments in the parameter sizes lead to vastly slower run-times, of many seconds, ac-
companied with large composition sizes. Indeed, moving from a parameter of 4 to 5

for OVERTAKE(�) is catastrophic for the algorithm’s performance, with a much larger
2-NFA composition encountered.

Indeed, the largest encountered compositions grows exponentially with the size of the
system - indeed, this should be intuitively clear, since the number of markings of a net
(and thus the number of states of its 2-NFA) is exponential in the number of places.

118 Chapter 5 Compositional Statespace Generation

;

⇤/
/0

/0

/0

/0

/0

/0

/0

/0

/1

/0

/1

/0

/1

/0

/0

/1

/1

/0

/0

/0

/0

/1

/1 /0

Figure 5.12: Expr. tree of Fig. 5.9, after performing three 2-NFA compositions

A final point to note is that in some cases, in particular, TOKENRING(�),OVERTAKE(�),
and CYCLIC(�), the result for k = 1 differs to that for higher values of k. Indeed,
inspecting the desired markings for these systems, we observe that they specify the
target marking as a behaviour of all components, which can/cannot be reached for
multiple components, but however is easily reachable for single components.

Summarising these results, and to set the scene for the following chapter, we can ex-
tract some key points that we will address:

1. Without mitigation, the statespace explosion leads to NFA sizes that grow expo-
nentially. We will investigate weak language preserving reductions to reduce NFA
sizes, while preserving correctness (§6.1).

2. The behaviour of BUFFER(3) should intuitively be no different to that of BUFFER(4),
yet the current compositional algorithm does not exploit this. We will investigate
fixed-points of behaviour in such systems, and use memoisation to avoid repeated
work in their presence (§6.2).

3. While PNB composition is associative (up to isomorphism) w.r.t. the generated
2-NFA, we will see that when employing reduction, it is not associative w.r.t. the
(size of) intermediate 2-NFAs generated and thus the performance of the algo-
rithm. We will show that the performance is subtly affected by reassociating cer-
tain compositions (§6.3).

Chapter 5 Compositional Statespace Generation 119

0

1

2

3

4

5

6

7

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/ /

Figure 5.13: Expression tree of Fig. 5.9 after performing all compositions

5.3 Proof of Correctness

In the previous section we gave an intuitive view of the first step of our compositional
approach to checking reachability in systems modelled by PNBml expressions. To com-
plete this chapter, we now prove that Algorithm 5.2 is correct. Correctness in this case
refers to obtaining isomorphic 2-NFAs by Algorithm 5.2 and Algorithm 5.1.

First, we give a formal definition of PNB expressions. As discussed in Remark 5.1,
we evaluate PNBml expressions to PNB expressions, which are formed of two types
of composition and component nets. Therefore, we represent PNB expressions using
wiring expressions; a wiring expression is the abstract syntax tree of a PNB expression,
where internal nodes are labelled with either ; or ⌦, and leaves are variables. The
grammar of wiring expressions is simply:

T ::= x | T ; T | T ⌦ T

where we again take ‘;’ and ‘⌦’ to be left associative, with ‘⌦’ binding tighter than ‘;’.

Now, a wiring expression, t, together with an assignment map, V, taking variables to
marked PNBs, can be evaluated recursively to obtain a single marked PNB, which
we write as JtKV . However, as mentioned in Remark 5.2, before we can define this
evaluation, we require definitions of synchronous and tensor composition on marked

120 Chapter 5 Compositional Statespace Generation

Table 5.1: Checking reachability of markings in Fig. 5.14, using Algorithm 5.2.
Key: M = Maximum # States in a Composition, T = Time (s), R? = Reachable?

Sys M T R?
BUFFER(3) (8,1) 0.004 XXX
BUFFER(6) (64,1) 0.027 XXX
BUFFER(9) (512,1) 0.258 XXX

BUFFER(12) (4096,1) 3.270 XXX
TOKENRING(1) (12,1) 0.017 XXX
TOKENRING(2) (72,1) 0.092 ⇥⇥⇥
TOKENRING(4) (2592,1) 5.422 ⇥⇥⇥
TOKENRING(5) (15552,1) 49.881 ⇥⇥⇥

T̂ (1, 10) (2,1024) 1.506 XXX
T̂ (2, 4) (104,104) 3.560 XXX
T̂ (4, 2) (10,4) 0.013 XXX
T̂ (12, 2) (2050,4) 19.455 XXX
T_(1, 8) (2,256) 0.372 XXX
T_(2, 3) (2,16384) 10.741 ⇥⇥⇥
T_(3, 2) (2,4096) 2.188 ⇥⇥⇥
T_(15, 1) (2,32768) 26.002 ⇥⇥⇥

CLIQUE(2) (16,1) 0.030 XXX
CLIQUE(4) (64,1) 0.134 XXX
CLIQUE(7) (512,1) 2.314 XXX
CLIQUE(9) (2048,1) 20.200 XXX

POWERSET(3) (2,8) 0.006 XXX
POWERSET(6) (2,64) 0.055 XXX
POWERSET(9) (2,512) 0.686 XXX

POWERSET(12) (2,4096) 12.410 XXX
OVERTAKE(1) (12,7) 0.068 XXX
OVERTAKE(3) (20,102) 0.596 ⇥⇥⇥
OVERTAKE(4) (20,594) 3.985 ⇥⇥⇥
OVERTAKE(5) (20,3462) 32.502 ⇥⇥⇥

Sys M T R?
HARTSTONE(2) (6,8) 0.039 ⇥⇥⇥
HARTSTONE(4) (6,32) 0.136 ⇥⇥⇥
HARTSTONE(8) (6,512) 2.696 ⇥⇥⇥

HARTSTONE(10) (6,2048) 12.174 ⇥⇥⇥
ITER-CHOICE(1) (2,16) 0.008 XXX
ITER-CHOICE(2) (2,256) 0.042 XXX
ITER-CHOICE(3) (2,4096) 0.790 XXX
ITER-CHOICE(4) (2,65536) 17.548 XXX
REPLICATORS(1) (2,4) 0.003 XXX
REPLICATORS(3) (2,32) 0.014 XXX
REPLICATORS(6) (2,851) 0.527 XXX
REPLICATORS(8) (2,7655) 7.557 XXX

DAC(10) (65,5) 0.107 ⇥⇥⇥
DAC(25) (350,5) 0.930 ⇥⇥⇥
DAC(50) (1325,5) 6.178 ⇥⇥⇥
DAC(75) (2925,5) 19.702 ⇥⇥⇥
DPH(1) (8,1) 0.038 XXX
DPH(2) (8,8) 0.114 XXX
DPH(4) (72,8) 1.146 XXX
DPH(6) (648,8) 12.689 XXX

CYCLIC(1) (2,5) 0.016 ⇥⇥⇥
CYCLIC(2) (2,18) 0.036 XXX
CYCLIC(4) (2,278) 0.512 XXX
CYCLIC(6) (2,4438) 11.273 XXX

COUNTER(1) (2,1) 0.003 XXX
COUNTER(2) (4,1) 0.010 XXX
COUNTER(4) (16,1) 0.056 XXX
COUNTER(8) (256,1) 1.238 XXX

PNBs:

(N,m, n) ; (M, o, p) = (N ; M,m] o, n] p)

(N,m, n) ⌦ (M, o, p) = (N ⌦M,m] o, n] p)

we assure ourselves that the definition is correct by a simple lemma:

Lemma 5.3.
For PNBs, N and M , m and n are markings of N and M , respectively, iff m] n is a
marking of N ; M (and N ⌦M).

Chapter 5 Compositional Statespace Generation 121

Proof. Immediate, since places(N ; M) = places(N)] places(M) = places(N ⌦ M).

Now we may define JtKV :

JxKV = V(x)

Jt1 ; t2KV = Jt1KV ; Jt2KV
Jt1 ⌦ t2KV = Jt1KV ⌦ Jt2KV

where we implicitly assume that variable assignments are compatible with t, in the
sense that only nets with compatible boundaries are composed. However, recall that
in §4.3, we introduced a type system for the more expressive language, PNBml, which
disallows invalid expressions, and could be trivially adapted to wiring expressions.

Example 5.1.
The following are the wiring expression and variable assignment corresponding to (5.1):

t = x1 ; x2 ; x2 ; x2 ; x3 V = {x1 7! >, x2 7! BUFFER, x3 7! ?}

observe that JtKV is isomorphic to the PNB shown in Fig. 5.1.

At this point, we have defined the operation to collapse a wiring expression with corre-
sponding variable assignment, into a single composite PNB. We now turn to defining
an operation to collapse a wiring expression into a single 2-NFA.

Given a wiring expression t and variable assignment V we can recursively translate t

into a 2-NFA, which we write as �t�V . Recall from Defn. 2.43, that for a marked PNB
N , �N� is the corresponding 2-NFA encoding reachability. We define �t�V as follows:

�x�V = �V(x)�
�t1 ; t2�V = �t1�V ; �t2�V
�t1 ⌦ t2�V = �t1�V ⌦ �t2�V

Finally, we can state and prove correctness: converting a wiring expression to a PNB
and then constructing its 2-NFA semantics is equivalent to directly constructing the
2-NFA semantics of the wiring expression. This property is known as compositionality.

Proposition 5.4 (Compositionality).
�t�V ⇠= �JtKV�
Proof. We proceed by induction on the structure of t:

- In the base case of a variable, the result is trivial: the 2-NFAs on both sides are
equal by definition.

122 Chapter 5 Compositional Statespace Generation

- In the case of t1 ; t2, we must show that �t1 ; t2�V ⇠= �Jt1 ; t2KV�. After expanding
the definitions of ���V and J�KV , we obtain:

�t1�V ; �t2�V ⇠= �Jt1KV ; Jt2KV� (5.2)

To proceed, we apply the I.H. to t1 and t2, obtaining

�t1�V ⇠= �Jt1KV� (5.3)

and
�t2�V ⇠= �Jt2KV� (5.4)

Substituting 5.3 and 5.4 into 5.2 gives:

�Jt1KV� ; �Jt2KV� ⇠= �Jt1KV ; Jt2KV�
Now, letting, (N,m, n) = Jt1KV and (M, o, p) = Jt2KV , we obtain:

�(N,m, n)� ; �(M, o, p)� ⇠= �(N,m, n) ; (M, o, p)�
Now, by Prop. 3.43, the underlying 2-LTSs are isomorphic, thus it only remains
to show that states are initial/accepting in the LHS iff they are in the RHS. A
state of �(N,m, n)� ; �(M, o, p)�, is (x, y) 2 2places(N) ⇥ 2places(M), and is initial
iff x = m and y = o; applying the state component of the 2-LTS isomorphism,
we obtain the state {inl p | p 2 x}[{inr q | q 2 y}, i.e. m] n, which is initial in
�(N,m, n) ; (M, o, p)� by the definition of composition on marked PNBs. In the
reverse direction, a state of �(N,m, n) ; (M, o, p)�, is z 2 2places(N)]places(M), and
initial iff z = m] o. The state component of the isomorphism partitions this state
into (m, o) 2 2places(N)⇥2places(M), which is initial in �(N,m, n)� ; �(M, o, p)�. The
case for accepting states follows the same argument.

- Finally, the case for t1 ⌦ t2, is similar, but using Prop. 3.46 in place of Prop. 3.43.

5.4 Conclusion

In this chapter we introduced a technique for compositional statespace generation of
systems specified using PNBs, using it to form the basis of a reachability check. We
proved the technique correct and illustrated the performance of the technique using the
example systems of Chapter 4. Our results highlighted that without mitigation, states-
pace explosion leads to poor performance, even in small systems. To combat this, in the

Chapter 5 Compositional Statespace Generation 123

next chapter, we show that by exploiting the component-wise specification of systems,
we can mitigate the statespace explosion problem and obtain good performance.

124 Chapter 5 Compositional Statespace Generation

system: BUFFER(�) (§4.1.1)
initial : “empty”: only tokens in up-

per places
target (XXX): “full”: only tokens in lower

places

system: TOKENRING(�) (§4.1.2)
initial : System ready: workers idle

target (⇥⇥⇥): System started: all workers
working

system: T̂ (�,�) (§4.1.4)
initial : Root contains the only to-

ken
target (XXX): Leaves each contain a to-

ken

system: T_(�,�) (§4.1.4)
initial : Root contains the only to-

ken
target (⇥⇥⇥): Leaves each contain a to-

ken

system: CLIQUE(�) (§4.1.5)
initial : Injector contains the only

token
target (XXX): Final (rightmost) place con-

tains the only token

system: POWERSET(�) (§4.1.6)
initial : Injector contains the only

token
target (XXX): All places except root con-

tain a token

system: OVERTAKE(�) (§4.2.1)
initial : All locks and interfaces un-

locked, each car ready
target (⇥⇥⇥): All cars overtaking

system: HARTSTONE(�) (§4.2.2)
initial : Controllers, tasks and mas-

ter all ready
target (XXX): Each task working

system: ITER-CHOICE(�) (§4.2.3)
initial : ADDTOK contains the only

token
target (XXX): Alternating taken/not-taken

marking, ADDTOK has no
token

system: REPLICATORS(�) (§4.2.4)
initial : ADDTOK contains the only

token
target (XXX): TAKETOK contains the only

token

system: DAC(�) (§4.2.5)
initial : Controller and workers

ready
target (⇥⇥⇥): Every worker and controller

awaiting a join

system: DPH(�) (§4.2.6)
initial : Philos ready, forks present

target (XXX): Every fork taken

system: CYCLIC(�) (§4.2.7)
initial : Injector contains token,

each scheduler ready
target (XXX): Each task working

system: COUNTER(�) (§4.2.8)
initial : Counter set to 0: all com-

ponents zero
target (XXX): Counter set to n: tester

recognises counter is full

Figure 5.14: Example markings used in benchmarking Algorithm 5.2. Those
marked XXX are expected to be reachable and those ⇥⇥⇥ are not

Chapter 6

Efficient Compositional
Reachability Checking

In the previous chapter we introduced a technique for compositional statespace gener-
ation for systems modelled using PNBs. We proved that it was correct, but its perfor-
mance left something to be desired — indeed, even for reasonably small examples, the
generated intermediate 2-NFAs were large, hindering performance of 2-NFA composi-
tion and thus the overall technique.

In this chapter, we describe improvements that can be made to the naive compositional
algorithm to improve its performance, such that it can be used to efficiently check mark-
ing reachability. Briefly, the two key improvements are: we exploit the fact that (weak)
language equivalence is a congruence, to reduce intermediate 2-NFAs, and use mem-
oisation to avoid repeated computation.

First, we introduce the notion of boundary protocol and internal, or ⌧ , transitions which
must be preserved by any structural reduction performed on intermediate 2-NFAs, to
ensure correctness of the resulting performance improvements.

6.1 Boundary protocol and ⌧ -transitions

For a simple marked PNB, the possibly empty collection of firing sequences (and thus
boundary interactions) that will take it from the initial marking to the desired marking
can be readily identified. For example, consider the simple PNB that will be our running
example, illustrated in Fig. 6.1; we can see that the firing sequences are those with
either a single firing of t1, or a firing of t2 then t3 and t4. Indeed, we can abstract over
the identities of the transitions that must be fired, and only consider their interactions
on the boundary ports, giving those sequences with either a 1/0, or 0/0 followed by 0/1

125

126 Chapter 6 Efficient Compositional Reachability Checking

and 0/0. We refer to this collection as the boundary protocol of the PNB. Indeed, the
boundary protocol of a (marked) PNB is precisely the language of its 2-NFA semantics.
Intuitively, the boundary protocol encompasses all sequences of external interactions,
that take the component between its local intial and target markings.

t1

t2

t3

t4

Figure 6.1: Example PNB

Since the boundary protocol of a PNB, N , corresponds to the language of �N�, we can
apply language-preserving modifications to �N� to obtain a more compact represen-
tation of N ’s boundary protocol. Furthermore, we are able to perform such language-
preserving modifications, whilst preserving compositions of 2-NFAs:

Theorem 6.1 ((Strong) 2-NFA language equivalence is a congruence).
Suppose that:

(i) N,N 0 are (k, l)-NFAs, with N ⇠L N 0,

(ii) M,M 0 are (l, m)-NFAs, with M ⇠L M 0,

(iii) O,O0 are (m, n)-NFAs, with O ⇠L O0.

Then, the following hold:

(i) N ; M ⇠L N 0 ; M 0,

(ii) N ⌦ O ⇠L N 0 ⌦ O0.

Proof. For (i), suppose that
»
↵/� 2 L (N ; M). Then, there exists a #»� , such that

»
↵/� 2

L (N) and
»
�/� 2 L (M). By the asssumptions that N ⇠L N 0 and M ⇠L M 0, then also

»
↵/� 2 L

�

N 0� and
»
�/� 2 L

�

M 0� and thus
»
↵/� 2 L

�

N 0 ; M 0�, as required. For (ii),
suppose that

»
↵�/�� 2 L (N ⌦ O). Then, we have that

»
↵/� 2 L (N) and

»
�/� 2 L (O).

Chapter 6 Efficient Compositional Reachability Checking 127

By the assumptions, we have that
»
↵/� 2 L

�

N 0� and
»
�/� 2 L

�

O0� and thus
»
↵�/�� 2

L
�

N 0 ⌦ O0�, as required.

Observe that Thm. 6.1 is the (strong) language equivalence analogue of Prop. 3.32(i)
and Prop. 3.34(i); indeed, both language-equivalence and isomorphism are congru-
ences. Intuitively, being a congruence means that we are free to reduce component
2-NFAs, whilst ensuring that we preserve the language of their composition. Thus, to
reduce the size of 2-NFAs generated by our technique, and therefore improve its per-
formance, we can replace any 2-NFA that arises with one that is smaller, yet language
equivalent.

In fact, we can do even better, by considering the boundary protocol (and thus 2-NFA
semantics) only up-to internal behaviour. By ignoring internal computations, we can
reduce the size of 2-NFAs even further and indeed, in some cases, reach fixed-points
of behaviour w.r.t. composition, leading to linear time complexity. First, we introduce
⌧ -transitions as the representation of internal behaviour that we wish to ignore.

6.1.1 ⌧ -transitions in 2-NFA semantics

Recall that every state in the (k, l)-NFA semantics of a PNB, N : (k, l) has a self-
loop labelled with 0k/0l, since ? ✓ trans(N) can always be fired with no effect on the
boundaries. In general, such-labelled 2-NFA-transitions need not be self-loops and we
refer to them as ⌧(k,l)-transitions1. Indeed, firing any (set of) net-transitions that do not
connect to the left or right boundaries will generate ⌧ -transitions. One particular source
of such net-transitions is composition of PNB components with transitions that connect
only to shared boundary ports.

Our semantic model does not distinguish between those ⌧ -transitions originating from
firing the empty set of transitions and those from firing a set of transitions unconnected
to the boundaries. In other words, we abstract over internal behaviour in that “no be-
haviour” and “no externally observable behaviour” are represented the same. It is pre-
cisely this abstraction that allows us to reduce the generated statespace: statespace
that cannot be distinguished by observable interactions can simply be forgotten.

To describe the behaviour that we wish to preserve, we consider a notion of boundary
protocol that only incorporates observable boundary interactions. We say that the weak
boundary protocol of a PNB is its boundary protocol with all ⌧ labels removed. The
removal of ⌧ labels is realised as the unique monoid homomorphism:

b� :
⇣

Bk ⇥ Bl

⌘⇤
!

⇣

Bk ⇥ Bl \ ⌧(k,l)
⌘⇤

1Dropping the subscript when k and l are clear from context.

128 Chapter 6 Efficient Compositional Reachability Checking

defined on individual elements, e, of Bk ⇥ Bl as follows:

be =

8

>

<

>

:

✏ if e = ⌧(k,l)

e otherwise

Definition 6.2.
Given a (k, l)-NFA, N , the weak language of N , written L\⌧ (N), is:

L\⌧ (N)
def
=

�

bx
�

� x 2 L (N)

Definition 6.3.
For (k, l)-NFAs, N and M , we say N and M are weak language-equivalent, written
N ⇡L M if:

L\⌧ (N) = L\⌧ (M)

As an example, consider the 2-NFA semantics of the simple PNB in Fig. 6.1, which
illustrated in Fig. 6.2.

0

1

2

3

0/0

1/0

0/0

0/0

0/1

0/0

0/0

0/0

Figure 6.2: (1, 1)-NFA semantics, N , of the PNB in Fig. 6.1

The language of this 2-NFA is2:
�

0/0
�⇤
⇣

1/0
�

�

�

0/0
�

0/0
�⇤

0/1
�

0/0
�⇤

0/0
⌘

�

0/0
�⇤, whereas

the weak language is much simpler:
�

1/0
�

� 0/1
�

. A simple observation is that N ⇡L M ,
where M is illustrated in Fig. 6.3.

2Using a regular expression notation.

Chapter 6 Efficient Compositional Reachability Checking 129

0

1

2 3

4

0/0

0/1 1/0

0/0 0/0

Figure 6.3: M , weakly-equivalent to N shown in Fig. 6.2

Now, we have shown how we can consider equivalence up-to “internal behaviour” of
2-NFAs using weak-language equivalence; however, to improve the performance of
2-NFA composition (and thus our compositional technique), we must reduce the size
of component 2-NFAs, by modifying their structure, yet preserving weak language to
ensure correctness.

The first step of this procedure is to ignore ⌧ -transitions, by closing the 2-NFA w.r.t.
them, which requires the notion of the ⌧ -closure of a single state. ⌧ -closure is closely
related to ✏-closure from automata theory, as we discuss in Remark 6.9. The ⌧ -closure
of a single state is the set of states that can be reached by taking zero or more transi-
tions labelled by ⌧ :

Definition 6.4 (State ⌧ -closure).
For a state, x, of a (k, l)-NFA, (Q,⌃,�!, i, A), we define its ⌧ -closure, written ⌧ -cl(x) as:

⌧ -cl(x) = {x}[
[

n

⌧ -cl(y)
�

�

�

x
⌧�! y

o

Intuitively, the ⌧ -closure of a 2-NFA, N , is formed by “saturating” N with transitions that
remove ⌧s from traces:

1. Any state whose ⌧ -closure contains an accepting state is also accepting, i.e. we
can ignore any trailing ⌧s,

130 Chapter 6 Efficient Compositional Reachability Checking

2. The transition relation has new entries corresponding to the pre-closure of the
transitions relation w.r.t. state ⌧ -closure, i.e. we can ignore any “leading/internal”
⌧s.

Definition 6.5 (2-NFA ⌧ -closure).
For a (k, l)-NFA, (Q,⌃,�!, i, A), its ⌧ -closure is: (Q,⌃,�! [�!0, i, A[A0), where:

A0 =
�

x
�

� x 2 Q, ⌧ -cl(x) \A 6= ?

�!0 =
n

(x,�, y)
�

�

�

9x0 2 ⌧ -cl(x) s.t. x0 ��! y
o

In general, it is obvious that ⌧ -closure changes the strong language of a 2-NFA:

Lemma 6.6 (Strong language is not preserved by ⌧ -closure).
For a 2-NFA, N , it is not necessarily the case that: N ⇠L ⌧ -cl(N).

Proof. For an example, consider again the (1, 1)-NFA, N , in Fig. 6.2 and its ⌧ -closure,
⌧ -cl(N), in Fig. 6.4. The languages of these 2-NFA are clearly different; for example,
the word

⌦

0/1
↵

is in the language of ⌧ -cl(N), but not of N , therefore, N 6⇠L ⌧ -cl(N).

0

1

2

3

0/0

1/0

0/0

0/1

0/0

0/1

0/0

0/0

0/0

Figure 6.4: (1, 1)-NFA of Fig. 6.2 after ⌧ -closure

Indeed, there are certain cases where strong language is not affected (e.g. a 2-NFA
that contains no ⌧ -transitions, or has no accepting states), but we are not concerned
with such 2-NFA; we therefore only prove that weak language is preserved.

Chapter 6 Efficient Compositional Reachability Checking 131

First, before proving that weak language is preserved by ⌧ -closure, we prove a tech-
nical lemma. By the construction of ⌧ -cl(N), we have that the only additional words in
L
�

⌧ -cl(N)
�

, relative to L (N), are words of N with ⌧ labels removed:

Lemma 6.7.
Let N = (Q,⌃,�!, i, A) and M = ⌧ -cl(N) = (Q,⌃,�!

⌧

, i, A0). For any w 2 L (M), with
|w| = k, such that w 62 L (N), we can construct a word w0 2 L (N) by inserting zero or
more ⌧ labels into w.

Proof. By definition, w 2 L (M) implies there are states x0, x1, . . . , x
k

2 Q, such that
there are transitions x

i�1
wi�!

⌧

x
i

, for 1 i k, with x0 = i, and x
k

2 A0. Indeed,
by the definition of ⌧ -closure, each single transition of M , x

i�1
wi�!

⌧

x
i

, for 1 i k

is either a transition of N , or corresponds to a (not necessarily unique) sequence of
one or more transitions of N (between the same pair of states: x

i�1 and x
i

), with
the final transition of the sequence being labelled with w

i

, and every other transition
by ⌧ . Concatenating these (sequences of) transitions gives a sequence of transitions
from x0 (the initial state), to x

k

(an accepting state in M). If x
k

2 A, we are done,
otherwise, by the definition of A0, there exists a sequence of ⌧ transitions from x

k

, that
reach some x

o

2 A; appending this final sequence of ⌧ transitions, gives the required
w0 2 L (N).

A graphical presentation of the idea of the proof of Lem. 6.7 is given in Fig. 6.5, the
transitions forming word w 2 L (M) are highlighted in blue. For each such transition,
either it is also a transition of N , or there will exist a sequence of transitions in N ,
between the same start and end states.

Now we prove that weak language is preserved by ⌧ -closure:

Lemma 6.8 (Weak language is preserved by ⌧ -closure).
For any 2-NFA, N , we have: ⌧ -cl(N) ⇡L N .

Proof. By the definition of weak language equivalence, we must have the following:

�

bw
�

� w 2 L (N)

=
n

bv
�

�

�

v 2 L
�

⌧ -cl(N)
�

o

By construction, w 2 L (N) =) w 2 L
�

⌧ -cl(N)
�

since we have not removed
transitions or initial/accepting states. The converse does not hold; however, for any
w 2 L

�

⌧ -cl(N)
�

such that w 62 L (N), then by Lem. 6.7, there exists a v 2 L (N), such
w and v only differ in ⌧s; however, since weak language equivalence removes all ⌧

labels from words, w and v will be considered equal, as required.

Remark 6.9. The reader may observe that ⌧ transitions and ⌧ -closure are similar to
✏-moves and closure of ✏-NFA in Automata theory. Indeed, they are very similar: our

132 Chapter 6 Efficient Compositional Reachability Checking

x0

00

···

0
l

⌧

⌧

⌧

x1
w1

w1

10

···

1
m

⌧

⌧

⌧

x2
w2

w2

. .
.

. . .

x
k�1

...

. .
.

. . .

x
k

w
k

w
k

k0

···

k
n

⌧

⌧

⌧

Figure 6.5: Expansion of a word using only additional ⌧ labels

lemma regarding weak-language preservation by ⌧ -closure is the analogue of the the-
orem stating that ✏-closed ✏-NFAs recognises the same language as the original. How-
ever, there are subtle differences: ✏ is not considered as part of the alphabet of a ✏-NFA
and thus doesn’t consume any of the input string when taking the transition. Further-
more, ✏-closure removes all transitions labels from the ✏-NFA, whereas our ⌧ -closure
simply supplements the existing transitions and accepting states. Indeed, we could
have used the standard definition of ✏-closure, making an alternative design decision:
the theorems required to prove correctness would be slightly altered and indeed, we

Chapter 6 Efficient Compositional Reachability Checking 133

would need to insert “artificial” transitions to ensure the important property of reflexivity
(discussed later, in Defn. 6.10) was preserved, but essentially the choice is inconse-
quential.

We want to be sure that weak language equivalence is also a congruence w.r.t. 2-
NFA compositions. However, it is not in general, which we demonstrate by way of an
example: consider the 2-NFAs, N , shown in Fig. 6.6, M , shown in Fig. 6.7a, and M 0, in
Fig. 6.7b. It is easy to verify that M ⇡L M 0, thus if weak language equivalence was a
congruence, we should have N ; M ⇡L N ; M 0. This does not hold: the LHS, N ; M , is
illustrated in Fig. 6.8a, whilst the RHS is illustrated in Fig. 6.8b; these two compositions
are not weak language equivalent, since the latter’s language is empty.

0

1

2

3

0/0

0/0

0/1

0/0

0/0

0/0

0/0

Figure 6.6: 2-NFA, N

The failure of compositionality is due to the missing ⌧ transitions in M 0, whereby the
/0 transitions in N cannot “synchronise” with any transitions in M 0 and thus there can
be no transitions in the composition. Indeed, since ⌧ transitions represent “internal”
behaviour, their presence allows either component to perform internal behaviour, whilst
the other component “does nothing” (similarly represented by a ⌧ transition), before
synchronising on transitions that do have an effect on the common boundary. Indeed,
weak language equivalence is too coarse - it equates 2-NFAs that are not equivalent in
the sense of their compatibility with a common (composition) context. It is important to
note that ⌧ -closureshould be thought of as abstracting over internal behaviour, rather

134 Chapter 6 Efficient Compositional Reachability Checking

0

1

2

3

0/0

0/0

1/0

0/0

0/0

0/0

0/0

(a) 2-NFA, M

⇡L

0

1

1/0

(b) 2-NFA, M 0

than “do-nothing” behaviour, which is also represented by ⌧ -transitions. Since weak-
language equivalence ignores any ⌧ -transition, whether representing internal or do-
nothing behaviour, we must ensure that do-nothing behaviour of every state is always
preserved to ensure compositionality.

6.1.2 Reflexivity and Compositionality

If were to ensure that all 2-NFAs could perform a ⌧ transition in each state, the example
of the previous subsection would not fail, and then indeed, weak language equivalence
would be a congruence. We 2-NFAs that can perform a ⌧ -transition in each state re-
flexive, recognising that in each state, there is a self-loop, labelled by ⌧ :

Definition 6.10 (Reflexive 2-NFA).

A (k, l)-NFA, (Q,⌃,�!, i, A) is said to be reflexive, if: 8x 2 Q, x
⌧(k,l)���! x.

Ensuring reflexivity ensures that the ⌧ transitions that correspond to “do nothing” be-
haviour are preserved. Indeed, composing M with the reflexive 2-NFA, N 00, illustrated
in Fig. 6.9, such that N ⇡L N 00, gives the required, weak-language equivalent compo-
sition: N ; M ⇡L N ; M 00, as illustrated in Fig. 6.10.

Chapter 6 Efficient Compositional Reachability Checking 135

(0, 0)

(0, 1) (1, 0)

(1, 1)

(2, 2)

(2, 3) (3, 2)

(3, 3)

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

1/1

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

0/0

(a) 2-NFA, N ; M

6⇡L (0, 0)

(b) 2-NFA, N ; M 0

Indeed, weak language-equivalence is a congruence w.r.t. 2-NFA compositions, if the
2-NFAs are reflexive.

First, we prove two technical lemmas; the first says that we can place arbitrarily many
⌧ labels inside an existing word of a reflexive 2-NFA and obtain another word:

Lemma 6.11.
Suppose N is a reflexive 2-NFA and that w 2 L (N). We can obtain another word,
w0 2 L (N), that results from inserting finitely-many ⌧ labels into w.

Proof. Since w 2 L (N), any prefix of w corresponds to a state of N , at which, since N

is reflexive, we are able to take a ⌧ -labelled transition (multiple times if necessary) and
remain in the same state. Thus, at any prefix of (i.e. position within) w we are able to
insert finitely-many ⌧ transitions and finish in the same accepting state.

136 Chapter 6 Efficient Compositional Reachability Checking

0

1

0/0

1/0

0/0

Figure 6.9: 2-NFA, M 00

(0, 0)

(1, 0)

(2, 1)

(3, 1)

0/0

0/0

0/0

0/0

0/0

1/1

0/0

Figure 6.10: 2-NFA, N ; M 0

The second says that, given two weak -language-equivalent, reflexive 2-NFAs, and a
word, w, in the language of one, we can find a word in the intersection of the two 2-
NFA’s languages that is weakly-equivalent to w. Since we know that the languages
are equal when ⌧ labels are disregarded, when given a word in the language of one,
we can remove existing ⌧ labels and insert ⌧ labels in (potentially) different positions
to obtain a word in the second 2-NFA. Then we can pad both words with ⌧ labels, to
obtain a third word in the intersection of the 2-NFA’s languages.

Lemma 6.12.

Chapter 6 Efficient Compositional Reachability Checking 137

Suppose N,N 0 are reflexive 2-NFAs, such that N ⇡L N 0 and w 2 L (N). Then, there
exists a v 2 L (N) \ L

�

N 0�, with bw = bv.

Proof. By our assumption on w, we have that bw 2 L\⌧ (N), and furthermore, by our
assumption that N ⇡L N 0, bw 2 L\⌧�N 0�. Then, there must exist a w0 2 L

�

N 0� such
that bw = bw0, i.e. w and w0 are equal when disregarding ⌧ labels. Then, since N and
N 0 are both reflexive, by Lem. 6.11, we can pad w and w0 with ⌧ , to obtain a common
v 2 L (N) \ L

�

N 0�, with bw = bw0 = bv.

Theorem 6.13 (Weak 2-NFA language equivalence is a congruence for reflexive 2-N-
FAs).
Suppose that:

(i) N,N 0 are reflexive (k, l)-NFAs, with N ⇡L N 0,

(ii) M,M 0 are reflexive (l, m)-NFAs, with M ⇡L M 0,

(iii) O,O0 are reflexive (m, n)-NFAs, with O ⇡L O0.

Then, the following hold:

(i) N ; M ⇡L N 0 ; M 0,

(ii) N ⌦ O ⇡L N 0 ⌦ O0.

Proof. For (i), suppose that w 2 L\⌧ (N ; M), then, by the definition of weak language,

there exists
»
↵/� 2 L (N ; M), such that d

»
↵/� = w. Thus, there exists � such that

»
↵/� 2 L (N) and

»
�/� 2 L (M).

Now, since N,N 0,M and M 0 are reflexive 2-NFAs, with N ⇡L N 0 and M ⇡L M 0, by
Lem. 6.12, we have:

1.
»

↵0/�0 2 L (N) \ L
�

N 0� with [# »

↵0/�0 =
d

»
↵/�, and

2.
»

�00/�0 2 L (M) \ L
�

M 0� with \# »

�00/�0 =
d

»
�/�,

N.B. that �0 6= �00, but b�0 = c�00, thus we need to modify
»

↵0/�0 and
»

�00/�0 to obtain a pair of
labels with equal common boundary component; by Lem. 6.11, we can pad

»

↵0/�0 and
»

�00/�0 to obtain the required labels, namely
»

↵00/�000 2 L
�

N 0� and
»

�000/�00 2 L
�

M 0�, with
\# »

↵00/�000 =
d

»
↵/� and \# »

�000/�00 =
d

»
�/�. Thus we have that \# »

↵00/�00 =
d

»
↵/�; furthermore, since

»

↵00/�000 2 L
�

N 0� and
»

�000/�00 2 L
�

M 0�, it follows that
»

↵00/�00 2 L
�

N 0 ; M 0�. Indeed,
\# »

↵00/�00 =
d

»
↵/� = w 2 L\⌧�N 0 ; M 0�, as required.

138 Chapter 6 Efficient Compositional Reachability Checking

For (ii), suppose that w 2 L\⌧ (N ⌦ O). Then, by the definition of weak language there

exists a
»
↵�/�� 2 L (N ⌦ O) such that \# »

↵�/�� = w. Then, we have that
»
↵/� 2 L (N)

and
»
�/� 2 L (O).

Now, since N,N 0, O and O0 are reflexive 2-NFAs, with N ⇡L N 0 and O ⇡L O0, by
Lem. 6.12, we have:

1.
»

↵0/�0 2 L (N) \ L
�

N 0� with [# »

↵0/�0 =
d

»
↵/�, and

2.
»

�0/�0 2 L (O) \ L
�

O0� with [# »

�0/�0 =
d

»
�/�,

Now, since
»

↵0/�0 2 L
�

N 0� and
»

�0/�0 2 L
�

O0� we have that
»

↵0�0/�0�0 2 L
�

N 0 ⌦ O0�,
and furthermore, \↵0�0/�0�0 = \↵�/�� = w 2 L\⌧�N 0 ⌦ O0�, as required.

Now, before we can employ weak-language equivalence as a quotient in our compo-
sitional reachability algorithm (Algorithm 5.2), we must assure ourselves that the initial
2-NFA semantics are reflexive, and that reflexivity is preserved by composition:

Lemma 6.14 (2-NFA semantics of PNBs are always reflexive).
For a marked PNB, N , its 2-NFA semantics, �N� is reflexive.

Proof. For any marking of N , we can always fire the empty set of transitions, which has
no effect on the boundaries. Thus, for every state of the 2-NFA, we have a self-loop
with ⌧ label, i.e. �N� is reflexive.

Lemma 6.15 (Reflexivity of 2-NFAs is presevered under composition).
If N , a (k, l)-NFA, M a (l, m)-NFA, and O a (m, n)-NFA are reflexive then:

- N ; M is reflexive

- N ⌦ O is reflexive

Proof. The states of N ; M and N ⌦ O are pairs of states of the underlying 2-NFAs.
Since the components are reflexive, in any state (pair of states), we can take a ⌧ tran-
sition in both components, leading to a ⌧ transition in the composite, as required.

Now we have shown that we can arbitrarily replace reflexive 2-NFAs with (reflexive)
weak-language equivalent 2-NFAs, and retain the weak language of the composite.
At this point, it is worth noting that after quotienting by weak-language equivalence,
the states of a 2-NFA semantics will not necessarily correspond to markings of the
underlying PNB; indeed, we only preserve the (weak) boundary protocol.

In fact, we can loosen our restriction requiring reflexive 2-NFAs, and instead require
only that 2-NFAs are strong language equivalent to reflexive 2-NFAs, i.e. if we have:

Chapter 6 Efficient Compositional Reachability Checking 139

N ⇡L N 0 ⇠L N 00 where N,N 0 are reflexive, then we should expect, for some compatible
M , that N ; M ⇡L N 00 ; M . However, we might immediately notice that reflexivity is not
necessarily preserved by (strong) language equivalence, as illustrated in Fig. 6.11.

0

1

2

0/0

0/0

0/0

1/1

0/0

(a) N , which is reflexive

0

1

2

0/0

0/0

1/1

0/0

(b) N 0, such that N 0 ⇠L N but N 0 is not reflexive

Figure 6.11: Reflexivity is not preserved by language equivalence

However, this does not turn out to cause trouble; since strongly equivalent 2-NFAs
can replicate language, they must contain an equivalent transitions(s) to simulate the
reflexivity of a reflexive 2-NFA. Indeed, we can prove that weak-language equivalence
up-to strong-language equivalence is a congruence:

Theorem 6.16.
Suppose that:

- N,N 0, N 00 are (k, l)-NFA (N , N 0 reflexive), N ⇡L N 0, and N 0 ⇠L N 00,

- M,M 0,M 00 are (l, m)-NFA (M , M 0 reflexive), M ⇡L M 0, and M 0 ⇠L M 00.

Then, we have:
N ; M ⇡L N 00 ; M 00

Proof. We have:

N ; M ⇡L N 0 ; M 0 by Thm. 6.13

N 0 ; M 0 ⇠L N 00 ; M 00 by Thm. 6.1

N 0 ; M 0 ⇡L N 00 ; M 00 by definition of ⇡L

N ; M ⇡L N 00 ; M 00 by transitivity of ⇡L

140 Chapter 6 Efficient Compositional Reachability Checking

Thus, we are justified in using standard language-equivalence preserving transforma-
tions to quotient ⌧ -closed 2-NFA to improve performance.

Returning to an earlier example, consider again the ⌧ -closed 2-NFA shown in Fig. 6.4
and observe that the language it accepts is simple:

�

0/0
�⇤ �

1/0 | 0/1
� �

0/0
�⇤. Indeed,

there is a smaller 2-NFA with the same language; in general, NFA minimisation tech-
niques aim to find a structurally smaller (but not necessarily minimal) NFA that recog-
nises the same language; an example of such a minimised 2-NFA is shown in Fig. 6.12.
This 2-NFA recognises the weak boundary protocol:

n

⌦

0/1
↵

,
⌦

1/0
↵

o

; indeed, inspect-
ing the original PNB (Fig. 6.1) we can see that (modulo internal firings) it can either
perform a single 0/1 or 1/0 interaction to reach its desired marking.

0

1

0/0

�

1/0, 0/1

0/0

Figure 6.12: Minimised 2-NFA of Fig. 6.4

A final important point to note is that there is a single 2-NFA up-to weak-language, for
a N : (0, 0). Indeed, since there are no boundaries, all transitions of the 2-NFA will
be ⌧ -labelled. Therefore, if there is a (connected) accepting state, then the 2-NFA is
weak-language equivalent to the 2-NFA with a single state self-loop labelled with ⌧ ,
such that the state is initial, and accepting. If there is no such accepting state, the
language is empty and thus is equivalent to that of the same single-state 2-NFA, but
with no accepting state. These single-state 2-NFAs are illustrated in Fig. 6.13.

0 / 0 /

Figure 6.13: 2-NFAs that the semantics of any N : (0, 0) are weak-langauge
equivalent to

Chapter 6 Efficient Compositional Reachability Checking 141

6.2 Memoisation, Associativity and Fixed Points

To improve the efficiency of our approach further, we can avoid unnecessary re-computation,
by using memoisation. Indeed, there are two potential points at which memoisation can
improve performance:

1. When computing the 2-NFA semantics of a arbitrary PNB expression, we may
often encounter the same PNB component,

2. When composing 2-NFAs, we may compose “the same” 2-NFAs multiple times.

in both cases, each repeated component/composition only incurs the additional cost of
checking for the existence of a pre-computed result. Since memoisation allows us to
only compute a single representative of a language-equivalence class of 2-NFAs once,
are approach is somewhat similar to symmetry-reduction (see §1.5).

Since weak-language equivalence is a congruence, we can freely substitute 2-NFAs
if their weak-language is respected. We say that a 2-NFA is weak-language reduced
if it has been structurally reduced while preserving weak-language. Indeed, exploiting
case 1 is simple: we maintain a mapping from PNB components to their (weak lan-
guage reduced) 2-NFA semantics; upon encountering a PNB component, we simply
look for its presence in the mapping, returning the previously computed 2-NFA or com-
puting (and reducing) the 2-NFA and updating the mapping, as appropriate. Case 2
leads us to maintain a mapping from (weak language reduced) pairs of 2-NFA to their
(weak language reduced) composition. When encountering a composition, we check
for membership in the mapping up-to weak-language, returning the reduced 2-NFA or
computing the reduced composition and updating the mapping as necessary.

As an example of the utility of memoisation, consider the somewhat contrived PNB, S,
and its 2-NFA semantics, �S�, illustrated in Fig. 6.14. This PNB can reach its target
marking by a single firing of t1, interacting on both boundaries; in both its initial and
target marking the PNB is able to fire the empty set of transitions and also fire t0, which
only connects to the two boundary ports.

Now, consider a sequence of k such PNBs that are synchronously composed; in travers-
ing this sequence from left to right to perform the required compositions, we encounter
k S PNBs. Due to memoisation, we only need compute and reduce S’s 2-NFA se-
mantics, �S�, obtaining the 2-NFA, M , shown in Fig. 6.15; thus, a mapping S 7! M

is added. On each subsequent S component we simply lookup this new entry in the
mapping.

Now, consider the first composition; at this stage the mapping from compositions to
2-NFAs is empty, so we must perform the composition M ; M , obtaining the 2-NFA,

142 Chapter 6 Efficient Compositional Reachability Checking

p0 p1t0

t1

(a) PNB, S

0

1

�

0/0, 1/1

1/1

�

0/0, 1/1

(b) 2-NFA, �S�
Figure 6.14: Example PNB and its 2-NFA semantics

0

1

0/0

1/1

�

0/0, 1/1

Figure 6.15: M , (weak) language-equivalent to the 2-NFA in Fig. 6.14b

O, illustrated in Fig. 6.16, thus, we store the mapping (M ; M) 7! O. On the next (and
each subsequent) composition, we have O ; M ; the only mapping we have is from
M ; M , however, we lookup entries up-to (weak) langauge-equivalence, and M ⇠L O,
thus we are able to match the mapping’s entry and can simply return O rather than
perform any further compositions. To summarise:

- We have a single PNB to 2-NFA mapping: S 7!M ,

- We have a single 2-NFA-composition to 2-NFA mapping: (M ; M) 7! O,

- The 2-NFA semantics of any k S nets in a sequence is O; when determining this,
we perform a single PNB to 2-NFA conversion, with k � 1 lookups and a single
2-NFA composition with k � 2 lookups.

Intuitively, the behaviour of such a sequence of S nets is that each component must
perform one firing of t1 to reach its desired marking, and in doing so interact on both
boundaries. Indeed, each component can either fire t1 at the same time, or can simply
“pass the interaction” along the sequence by firing t0. Any components remaining that
need to fire t1 can do so, as encoded by the 1/1 self-loop in the accepting state of M .

Chapter 6 Efficient Compositional Reachability Checking 143

(0 ; 0)

(1 ; 1)

0/0

1/1

�

0/0, 1/1

Figure 6.16: 2-NFA O = M ; M

6.2.1 Behavioural fixed-points

The previous example demonstrated an important feature of certain PNB expressions,
that of reaching a fixed-point w.r.t. 2-NFA semantics:

Definition 6.17 (Left-composition fixed-point of 2-NFA semantics).
For a (k, l)-NFA, N , and (l, m)-NFA, M , we say that there is a left-composition, n-step
fixed-point, if N ; O

n

⇡L O
n

, where:

O0
def
= M

O
i+1

def
= N ; O

i

we refer to O
n

as the fixed-point.

Definition 6.18 (Right-composition fixed-point of 2-NFA semantics).
For a (k, l)-NFA, M , and (l, m)-NFA, N , we say that we say that there is a right-
composition, n-step fixed-point, if O

n

; N ⇡L O
n

, where:

O0
def
= M

O
i+1

def
= O

i

; N

again, we refer to O
n

as the fixed-point.

In other words, after composing M with N some number of times, composing again
with N has no effect on the weak language of the resulting 2-NFA.

In our previous example, we reached a left-composition fixed-point of N (Fig. 6.14a)
composed with itself, after 0 steps, with the simple fixed-point illustrated in Fig. 6.16.
However, fixed-points need not be trivial, for example the sequence of PHILO-with-
FORK components in the DPH(�) system reaches a fixed-point, which is illustrated

144 Chapter 6 Efficient Compositional Reachability Checking

in Fig. 6.17, at 2; indeed, we have:

8k � 2. (PHILO ; FORK)k ⇡L (PHILO ; FORK)k+1

In fact, a independent observation of the fixed-point behaviour of the dining philoso-
phers was made in the settng of Span(Graph) [153].

1

26

3

4

5

00/00

10/00

00/01

00/10

10/10

10/01

01/00

00/00

01/01

01/10

00/10

00/01

00/10

10/10

00/00

10/00

00/01

10/01

00/00

10/00

01/0100/01

01/00

00/00

01/10

00/10

01/00

00/00

Figure 6.17: Fixed-point of (PHILO ; FORK)k, reached at k = 2

The performance of our technique is vastly improved when a system reaches a fixed-
point — rather than perform additional conversion/compositions, we simply look up
and return previously-computed results; additional repetitions become essentially free.
However, an interesting property is that not all isomorphic PNB expressions (i.e. when
evaluated to a single PNB) will reach fixed-points: indeed, even re-associating an ex-
pression can cause a fixed-point to not be reached.

We return once more to the BUFFER(3) system, to illustrate this property of PNB ex-
pressions. Consider the two expression trees shown in Fig. 6.18; indeed we can trivially
transform one into the other by re-associating the ‘;’ nodes.

Now, consider a depth-first traversal of the expression trees, performing conversion to
2-NFA, before applying ⌧ -closure and then minimisation. We highlight the intermediate
2-NFAs obtained at each step (i.e. after each composition) in Fig. 6.19 for the left-
associative case and Fig. 6.20 for the right-associative case. Indeed, the end result

Chapter 6 Efficient Compositional Reachability Checking 145

;

;

p0

p1

;

p0

p1

;

p0

p1

(a) Left associative
;

;

;

;

p0

p1

p0

p1

p0

p1

(b) Right associative

Figure 6.18: Left vs Right associativity of ‘;’ in BUFFER(3) Expression tree

is guaranteed to be equal, since, as a direct corollary of Prop. 3.32(ii), composition of
2-NFAs is associative. However, the intermediate 2-NFAs are vastly different.

As is readily seen in Fig. 6.20, when processing the right-associative expression, we
reach a fixed-point after 0 steps (indeed, BUFFER ; ? ⇡L ?). On the other hand,
processing the left-associative expression does not reach a fixed-point. Not (quickly)
reaching a fixed-point leads to poor performance - at each composition step we check
for weak-language equivalence with every previous composition, since the cache mono-
tonically increases in size. Indeed, one might think that expiring infrequently-used
cache entries (e.g. using a LRU cache algorithm, commonly found in operating system
memory managers) may aleviate the problem, and it does to an extent, but a greater

146 Chapter 6 Efficient Compositional Reachability Checking

0 /0

0

1

/0

/1

/⇤

0

1

2

/0

/1

/0

/1

/⇤

0

1

2

3

/0

/1

/0

/1

/0

/1

/⇤

0 /

Figure 6.19: Intermediate 2-NFAs encountered when converting the expres-
sion of Fig. 6.18a

0 / 0 ⇤/ 0 ⇤/ 0 ⇤/ 0 ⇤/

Figure 6.20: Intermediate 2-NFAs encountered when converting the expres-
sion of Fig. 6.18b

overhead is that not only is the number of entries cache growing, but the size of the
cache entries is growing, leading to increasing time to check for membership.

The conclusion we draw is that while it is semantically unimportant which way an ex-
pression’s compositions are associated, when using the optimisation techniques out-
lined in this chapter, different composition associations may lead to vastly different per-
formance. Unfortunately, this leads us to conclude that we must carefully consider the
form of expressions that specify systems. Indeed, it is not clear that we can determine
a priori that changing associations in an expression will improve performance (or not!).

6.2.2 Quadratic firing sequence! linear reachability check

Consider again the composite BUFFER(�) net, e.g. we illustrate BUFFER(4) in Fig. 6.21.

Chapter 6 Efficient Compositional Reachability Checking 147

p1

p2

t2t1

p3

p4

t3

p5

p6

t4

p7

p8

t5

Figure 6.21: BUFFER(4)

Now, the minimal length of a firing sequence required to reach the target marking in
BUFFER(k) is quadratic in k; precisely, it is the kth triangle number, T

k

, with:

T1
def
= 1

T
i+1 = i+ T

i

Indeed, for BUFFER(4) to reach its target marking, t
i

must appear i�1 times in the firing
sequence.

Thus the naive monolithic approach of simply firing enabled transitions until reaching
the target marking has to fire a quadratic number of transitions. Improving slightly, us-
ing the compositional technique without optimisation, each of the k single-buffer com-
ponents is converted to their 2-NFA semantics, before composing the 2-NFAs. Without
reduction w.r.t. weak language, the intermediate 2-NFAs quickly grow large (the final 2-
NFA has 2k states, since each marking is reachable). However, with a right-associated
composition, as we have shown, we reach a fixed-point after 0 steps, thus, the only
computation we must perform is:

1. Convert the three distinct components to their 2-NFA semantics,

2. Perform one composition of the 2-NFAs corresponding to BUFFER and ?,

3. For each of the remaining k�1 BUFFER compositions, lookup the cached compo-
sition,

4. Finally, perform a last composition with the 2-NFA of >.

Thus, with a naive cost approximation, we have reduced an inherent quadratic com-
plexity to a linear complexity, assuming a linear cost for conversions, lookup and com-
positions.

148 Chapter 6 Efficient Compositional Reachability Checking

6.3 Reassociated Examples

Due to the performance penalty due to non-associativity, mentioned in the previous
section, we specify some of our benchmarks in a “lower-level” style, to obtain the asso-
ciativity we require. In each case, the alternative expression leads to right-associated
compositions, rather than left-associated compositions.

BUFFER(k)(§4.1.1):

old: BUFFER(k)
def
= > ; BUFFERk ; ?

new: BUFFER(k)
def
= > ; foldN k ?

�

�x : Neth1, 0i . BUFFER ; x
�

ITER-CHOICE(k)(§4.2.3):

old: ITER-CHOICE(k)
def
= ADDTOK ; n_sequence k CHOICE ; ?

new: ITER-CHOICE(k)
def
= ADDTOK ; foldN k ?

�

�x : Neth1, 0i . CHOICE ; x
�

OVERTAKE(k) (§4.2.1):

old: OVERTAKE(k)
def
= bind iLock = RLOCKINTERFACE ; LOCK ; FLOCKINTERFACE in

bind lockCar = iLock ; CAR in

"""
4
; n_sequence k lockCar ; iLock ; ###

4

new: OVERTAKE(k)
def
= bind iLock = RLOCKINTERFACE ; LOCK ; FLOCKINTERFACE in

bind lockCar = iLock ; CAR in

"""
4
; foldN k

⇣

iLock ; ###
4

⌘

�

�x : Neth4, 0i . lockCar ; x
�

6.4 Optimised Algorithm

We now introduce an improved version of Algorithm 5.2, which encorporates the opti-
misations introduced in this chapter. We demonstrate the encouraging performance of
this algorithm, by evaluating it on the examples of Chapter 4 and §6.3.

The optimised algorithm is presented as Algorithm 6.1; observe that 2-NFAs are re-
duced up-to weak-language equivalence (lines 6 and 16) and the memoisation map
is checked for membership up-to weak-language (since all 2-NFAs are reduced w.r.t.
weak-language we simply check for language equivalence at (Line 13)).

Chapter 6 Efficient Compositional Reachability Checking 149

Algorithm 6.1 Optimised Algorithm

Require: knownNetNFAs, knownNFAComps initially empty
1: procedure TONFA(t)
2: if t is a PNB then
3: if CONTAINS(knownNetNFAs, t) then
4: return knownNetNFAs[t]

5: else
6: n REDUCE(⌧ -CLOSE(NETTONFA(t)))
7: knownNetNFAs[t] := n

8: return n

9: end if
10: else . t is (t1, t2, OP), where OP is ‘;’ or ‘⌦’
11: n1 TONFA(t1)
12: n2 TONFA(t2)
13: if CONTAINSEQUIV(knownNFAComps, (n1, n2, OP)) then . Up-to ⇡L

14: return knownNFAComps[(n1, n2, OP)]

15: else
16: n REDUCE(⌧ -CLOSE(n1 OP n2))

17: knownNFAComps[(n1, n2, OP)] := n

18: return n

19: end if
20: end if
21: end procedure

We can now evaluate this algorithm on the examples of Chapter 4 and §6.3, that is,
the original benchmark examples, except those with refactored versions using more-
performant composition associatations. Indeed, we present the new timing and mem-
ory requirements in Table 6.1.

Inspecting the values in Table 6.1 and contrasting with those in Table 5.1, several points
are clear:

- For the majority of examples, the performance has vastly improved; indeed, for
several systems (e.g. OVERTAKE(�)), the time taken by the improved algorithm
for parameter 32768 is less than the naive algorithm for paremeter 1.

- Indeed, we can observe the effects of reaching fixed points — for most systems
(e.g. BUFFER(�)), the time/memory use is essentially constant3

3Our tool is written in Haskell, a language that uses garbage collection for automatic memory manage-
ment, which may explain some of the slight variance in memory usage.

150 Chapter 6 Efficient Compositional Reachability Checking

- The performance is not directly proportional to net size: indeed, OVERTAKE(�) is
a “large” system, with scalable performance, whereas COUNTER(�) is a “small”
system, with poor performance.

To help interpreting our results, we have plotted the data in Fig. 6.22.

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10�3

10�2

10�1

100

101

Problem Size

Ti
m

e
(s

)

disjunction-tree
token-ring
counter

hartstone
philo
over

iterated-choice
replicator

dac
buffer

conjunction-tree

Figure 6.22: Time vs Problem size for Algorithm 6.1

6.5 Poorly performing Examples

An immediate problem with examples that do not reach fixed points is the monotonic
size increase of the 2-NFA-composition cache. One might imagine that expiring old
cache entries (for example, using a least-recently used (LRU) strategy) would improve
performance; however, if there is also a monotonic increase in the size of the 2-NFAs
being composed, the cost of checking equivalence and minimisation will dominate.

Indeed, growth of 2-NFAs does not have to be monotonic. In several examples, the
growth is “intermediate” in the sense that large 2-NFAs are generated, only to be quo-
tiented later. For example, in the TOKENRING(�) system (§4.1.2), intermediate growth

Chapter 6 Efficient Compositional Reachability Checking 151

is caused by the sequence of WORKER components being able to receive multiple to-
kens. However, when composing the WORKERs components with the INJECTOR, which
can only imput a single token into the system, the behaviour is quotiented, vastly re-
ducing the size of the resulting 2-NFA.

Another example of a system exhibiting intermediate growth is the T_(k, l) system, with
depth k and width l (§4.1.4); consider the target marking that places a token in each
leaf place, having started with only a single token in the root place. Intuitively, such a
target marking is not reachable: at each internal node of the tree, we can only pass a
token to a single sub-tree, and thus we can’t pass tokens down to every leaf from the
root. However, until the root node is composed with the rest of the tree, the behaviour
of the subtree is not constrained to only receive a single token and thus has behaviour
that allows it to reach its target marking by receiving a token for each leaf component.

Indeed, the T_(3, 3) system, illustrated in Fig. 6.23, has a component-wise specification
(given in §4.1.4) that builds the composite net by recursively building larger complete
subtrees. As an detailed example, let us consider the 2-NFAs obtained during such a
procedure.

Figure 6.23: T_(3, 3)

The leaf sub-tree is illustrated in Fig. 6.24; first, the component PNBs are converted
to their 2-NFA semantics, as per Fig. 6.25. Then, 2-NFA compositions are performed,
with reduction up to weak-language being performed after each composition. The first
composition leads to the 2-NFA4 is not in Fig. 6.26; notice that the leaf components
can reach their target marking “in either order” since tokens can either be consumed
by a leaf, or passed to the next. Indeed, it is this lack of order that leads to a blowup
in 2-NFA size. Therefore, a simpler, language-equivalent 2-NFA can be constructed,
which disregards the internal state of the composition.

4Here, we use ↵ to stand for either 0 or 1 — N.B. that ↵/↵ =
�
0/0, 1/1

6=
�
0/0, 0/1, 1/0, 1/1

= ⇤/⇤.

152 Chapter 6 Efficient Compositional Reachability Checking

;

;

;

Figure 6.24: Leaves subtree of T_(3, 3)

↵/↵

1/0

↵/↵

0/

Figure 6.25: 2-NFA semantics of leaf components

The reduced 2-NFA for two leaf components is the composed with the 2-NFA of a single
leaf component, leading to the 2-NFA illustrated in Fig. 6.27. Again, the 2-NFA can be
simplified, as shown.

The final composition for the leaf subtree composes the reduced three-leaf 2-NFA with
the 2-NFA of the terminator, leading to the 2-NFA shown in Fig. 6.28, which is the 2-NFA
representing the PNB-expression subtree of three leaf components.

Chapter 6 Efficient Compositional Reachability Checking 153

1/0 1/0

1/0 1/0

↵/↵

↵/↵

↵/↵

↵/↵

↵/↵

1/0

↵/↵

1/0

↵/↵

Figure 6.26: 2-NFA composition of two leaf components

The deepest internal node subtree has the structure shown in Fig. 6.29; leaves is
the subtree of Fig. 6.24. Again the component PNBs are converted to their 2-NFA
semantics, shown in Fig. 6.30. The compositions lead to intermediate 2-NFAs shown
in Fig. 6.31 and Fig. 6.32. Indeed this 2-NFA shows that the boundary protocol of
the deepest internal-node subtree simple requires three tokens to be inserted to the
subtree (and internally, passed to the leaves), while passing additional tokens to the
subtree’s next sibling.

Three deepest internal-node subtrees are composed, as per Fig. 6.33, where dins is
the subtree shown in Fig. 6.29.

Indeed, the reduced 2-NFA shown in Fig. 6.32 has a repeated structure similar to that
of a single leaf component, albeit requiring 3 transitions to reach the accepting state.
Thus, one would expect that composing two such 2-NFAs in order to perform the com-
positions of Fig. 6.33 will lead to similar blow up in state space.

Indeed, this is the case: with the first composition leading to the 2-NFA illustrated in
Fig. 6.34; again, all possible orderings of the subtrees reaching their target markings
are represented in the composite 2-NFA.

Composing the reduced 2-NFA of Fig. 6.34 with another internal-node 2-NFA leads
to the 2-NFA shown in Fig. 6.35. Indeed, such a 2-NFArepresents the semantics of

154 Chapter 6 Efficient Compositional Reachability Checking

1/01/0

1/0
1/0

1/0

1/0 1/0

↵/↵

↵/↵

↵/↵

↵/↵

↵/↵

↵/↵

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

Figure 6.27: 2-NFA composition of three leaf components

0/

1/

0/

1/

0/

1/

0/

Figure 6.28: 2-NFA semantics of a leaves subtree

the sub-tree containing three internal nodes (and thus, 9 leaf components), as can be
witnessed in the language of the reduced 2-NFA.

The preceeding pattern of large composite 2-NFAs being generated, that are later re-
duced, repeats for the final internal-node level of T_(3, 3), with the final composition
leading to a (unminimised) 2-NFA of 190 nodes. We show the intermediate 2-NFA sizes
in Table. 6.2: for any subtree containing k leaf components the minimised 2-NFA se-
mantics will have k + 1 states. Only when composing with the root, does the 2-NFA
drastically in size: since the root can only perform a single /1-labelled transition, thus
the composite 2-NFA only has 2 states, neither of which are accepting, as illustrated

Chapter 6 Efficient Compositional Reachability Checking 155

;

⌦

leaves

Figure 6.29: Deepest internal-node subtree structure

↵/↵0

1/00

↵/↵0

↵/↵1

↵/↵

Figure 6.30: 2-NFA semantics of internal components

↵0/↵

↵1/↵

↵0/↵

↵1/↵

↵0/↵

↵1/↵

↵0/↵

Figure 6.31: 2-NFA of tensor subtree shown from Fig. 6.29

in Fig. 6.36. Therefore, the reduced final 2-NFA only has a single non-accepting state,
indicating the target marking is not reachable.

156 Chapter 6 Efficient Compositional Reachability Checking

↵/↵

1/0 ↵/↵

↵/↵ ↵/↵

1/0 ↵/↵

↵/↵ ↵/↵

1/0 ↵/↵

↵/↵ ↵/↵

1/0

↵/↵

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

Figure 6.32: 2-NFA semantics of deepest internal-node subtree

;

;

dins;

dinsdins

Figure 6.33: Composition of deepest internal node subtrees

6.6 Summary

In this chapter, we have introduced and evaluated improvements to our algorithm for
compositionally checking reachability in PNB systems, taking advantage of weak-language
equivalence and the fixed-points that can be exploited by memoisation. In summary,
our approach embodies a simple divide-and-conquer and memoisation strategy, i.e. a
bottom-up dynamic programming approach. The component-wise specification is ex-
ploited to avoid re-computing local reachability 2-NFAs when particular components
appear more than once, while intermediate 2-NFAs are minimised to reduce compo-
sition costs, possible since 2-NFA (weak) language-equivalence is a congruence w.r.t.
the composition operations.

Chapter 6 Efficient Compositional Reachability Checking 157

↵/↵

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵

1/0

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

Figure 6.34: 2-NFA semantics of deepest internal-node subtree composition

158 Chapter 6 Efficient Compositional Reachability Checking

Table 6.1: Checking reachability of markings in Fig. 5.14, on examples of §6.3,
using Algorithm 6.1. Key: T = Time (s), M = Maximum Resident Memory (MB),
TO = Time Out (300s)

Sys T M
OVERTAKE(2) 0.017 21.02
OVERTAKE(8) 0.017 21.02

OVERTAKE(32) 0.017 21.02
OVERTAKE(512) 0.017 21.06

OVERTAKE(4096) 0.017 21.10
OVERTAKE(32768) 0.019 22.65

DAC(2) 0.001 15.18
DAC(8) 0.001 15.26
DAC(32) 0.001 15.20
DAC(512) 0.001 15.23
DAC(4096) 0.002 15.81
DAC(32768) 0.003 22.18

DPH(2) 0.008 20.02
DPH(8) 0.011 20.64
DPH(32) 0.011 20.64
DPH(512) 0.011 20.64
DPH(4096) 0.011 19.25
DPH(32768) 0.012 22.61
BUFFER(2) 0.001 14.19
BUFFER(8) 0.001 14.24

BUFFER(32) 0.002 14.22
BUFFER(512) 0.001 14.38

BUFFER(4096) 0.002 14.90
BUFFER(32768) 0.007 21.30

REPLICATORS(2) 0.002 15.22
REPLICATORS(8) 0.001 15.23

REPLICATORS(32) 0.001 15.22
REPLICATORS(512) 0.001 15.31

REPLICATORS(4096) 0.002 15.81
REPLICATORS(32768) 0.004 22.31

ITER-CHOICE(2) 0.002 15.23
ITER-CHOICE(8) 0.002 15.25

ITER-CHOICE(32) 0.002 15.24
ITER-CHOICE(512) 0.002 15.30

ITER-CHOICE(4096) 0.002 15.86
ITER-CHOICE(32768) 0.004 22.32

Sys T M
T̂ (2, 2) 0.001 15.22
T̂ (8, 8) 0.001 15.25

T̂ (32, 32) 0.002 15.23
T̂ (128, 128) 0.002 15.26
T̂ (512, 512) 0.011 15.33
T̂ (2048, 2048) 1.069 20.62
HARTSTONE(2) 0.013 19.33
HARTSTONE(4) 0.039 19.61
HARTSTONE(8) 2.013 21.41

HARTSTONE(10) 4.016 20.62
HARTSTONE(13) 10.445 25.74
HARTSTONE(16) 25.252 28.65
TOKENRING(2) 0.008 17.99
TOKENRING(4) 0.035 19.79
TOKENRING(8) 2.043 21.33

TOKENRING(10) 4.072 21.11
TOKENRING(13) 10.026 25.22
TOKENRING(16) 19.247 28.65

CYCLIC(2) 0.005 16.81
CYCLIC(4) 0.017 19.52
CYCLIC(8) 0.094 20.57

CYCLIC(10) 1.077 20.59
CYCLIC(13) 3.075 22.24
CYCLIC(16) 6.091 24.60

COUNTER(2) 0.004 16.09
COUNTER(4) 0.011 20.56
COUNTER(8) 0.087 21.36

COUNTER(10) 1.075 22.75
COUNTER(13) 4.035 28.59
COUNTER(16) 8.649 28.60

T_(1, 1) 0.002 15.60
T_(2, 2) 0.004 15.63
T_(3, 3) 12.455 32.45
T_(4, 4) TO TO
T_(5, 5) TO TO
T_(6, 6) TO TO

Chapter 6 Efficient Compositional Reachability Checking 159

↵/↵

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵ ↵/↵

1/0
1/0

↵/↵

1/0
1/0

↵/↵

1/0
1/0

1/0

↵/↵ ↵/↵

1/0
1/0

↵/↵

1/0
1/0

↵/↵

1/0
1/0

1/0

↵/↵ ↵/↵

1/0
1/0

↵/↵

1/0
1/0

↵/↵

1/0
1/0

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

1/0

1/0

↵/↵ ↵/↵

1/0

1/0

↵/↵

1/0

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

1/0

↵/↵

Figure 6.35: 2-NFA semantics of three composed internal-node subtrees

160 Chapter 6 Efficient Compositional Reachability Checking

/

/

/

Figure 6.36: 2-NFA after composing with the root component

Product Size Minimised NFA size Subtree level
2 ⇥ 2 = 4 3

Leaf level
3 ⇥ 2 = 6 4
4 ⇥ 4 = 16 7

1st Node Level
7 ⇥ 4 = 28 10

10 ⇥ 10 = 100 19
2nd Node Level

19 ⇥ 10 = 190 28
28 ⇥ 2 = 2 1 Root Level

Table 6.2: Intermediate Product Sizes for T_(3, 3)

Chapter 7

Implementation and Comparison

In Chapters 5 and 6, we introduced a compositional approach to checking reachability
in systems specified using PNBml. Exploiting weak language equivalence, we demon-
strated effective statespace reductions, whilst preserving nets’ boundary protocol. In
this chapter we discuss the implementation of our tool, Penrose1, which uses this ap-
proach. We go on to compare and contrast its performance with existing state-of-the-art
tools, giving empirical demonstration of its favourable performance in a variety of ex-
ample systems.

7.1 Implementation

We discuss three key design points of our implementation, each of which strongly
influence its efficiency and performance. As discussed in the previous chapter, our
technique uses weak language-preserving reductions to reduce component semantics,
while ensuring all interactions with neighbouring components are preserved (explored
in §6.1). Furthermore, since the component structure is exposed, we are able to use
memoisation to avoid repeating work by recognising already-computed compositions
(up-to language-equivalence of the component 2-NFAs) as discussed in §6.2. Finally,
as discussed in the related work section (§1.10), using an efficient representation of
transitions can radically improve performance; to this end we use MTBDDs to repre-
sent the transitions of 2-NFAs.

The three key design points are elaborated as follows:

1. The algorithm for language-preserving reduction of 2-NFAs in §7.1.1,

2. The algorithm for checking language-equvialence of 2-NFAs in §7.1.2,
1
Penrose: Petri Net Reachability Ose. According to Wikipedia, an Ose is a demon that gives true

answers to secret things.

161

162 Chapter 7 Implementation and Comparison

3. The data structure used to represent 2-NFA transitions in §7.1.3.

Our tool, Penrose, is written in Haskell [154], a statically-typed, functional program-
ming language. Commonly, model checkers are implemented using C or similar low-
level programming languages, so the use of Haskell is unorthodox in this respect. De-
spite a highly performant compiler, the levels of abstraction that are present in Haskell
(garbage-collection, data structures, etc.) can lead to an overhead that is not present in
C. However, the two major benefits Haskell brings outweigh the potential lack of outright
performance (which, in practice, is often very slight):

1. A powerful static type system is particularly beneficial when prototyping new im-
plementation details: a large number of run time bugs are ruled out, before the
code is executed.

2. High level of abstraction and concise coding style, leads to more direct transla-
tions of abstract design, using data structures such as sets and BDDs as first-
class abstractions.

Later, we will see that Penrose performs favourably against other tools, implemented in
standard languages, such as C.

7.1.1 NFA Reduction

A key component of our technique is the algorithm for NFA reduction, that improves the
performance of 2-NFA composition by reducing component 2-NFA sizes, as discussed
in §6.1. Indeed, as we showed at the end of Chapter 6, the size of 2-NFAs encoun-
tered in certain examples grows rapidly and it is therefore important that we attempt to
minimise this growth, to avoid performance degradation. Of course, this state growth
phenomena is the well-known statespace explosion problem and minimisation is our
approach to avoiding it.

An obvious first choice of NFA minimisation algorithm is to use DFA minimisation tech-
niques: by first converting the NFA to a language-equivalent DFA, for example, us-
ing the well-known powerset-construction, we can apply DFA minimisation techniques.
There are several well-known techniques for DFA minimisation, such as the partition-
refinement approaches of Moore [155] and Hopcroft [156]. A simple-to-describe al-
ternative that does not require prior determinisation is that of Brzozowski [157]; Brzo-
zowski showed that reversing an input NFA, determinising, reversing the resulting DFA
(the result of which is not necessarily deterministic) and finally determinising generates
a minimal DFA, language equivalent to the input NFA.

Chapter 7 Implementation and Comparison 163

Indeed, due to its simplicity, we chose Brzozowski’s method in the first implementation
of our technique [158]. However, implicit in the use of this minimisation technique is the
possibility of exponential blowup due to the (double) determinisation.

On the other hand, a positive aspect of the DFA-minimisation approach is that it renders
language equivalence checking almost trivial. Since the minimal DFA for a NFA with a
particular language is unique, to check language equivalence of two NFA, it is sufficient
to simply convert them both to the corresponding unique minimal DFA. If the resulting
DFA are equal, the original NFA are language equivalent. However, as we further
discuss in §7.1.2, checking language equivalence in this way is still inefficient, since
every pair of states of the determinised automata must be checked.

Due to the potential exponential blowup effect of determinisation, it is preferable to di-
rectly minimise NFA, rather than determinise NFA before minimizing the resulting DFA.
Unfortunately, the minimisation problem is more difficult for NFA than DFA, indeed,
it is NP-hard [159] and furthermore, even approximating minimisation of NFA is in-
tractable [160]. However, practical algorithms with generally-high performance do exist,
such as the recent technique due to Clemente and Mayr [161], which outperforms all
prior techniques. Clemente and Mayr’s algorithm operates by removing transitions and
states, whilst preserving the recognised language: transitions are pruned—those tran-
sitions that are subsumed by “better” transitions are removed—and states quotiented
by an efficiently-computed under-approximation to language equivalence.

Using NFA minimisation means that we can no-longer rely on uniqueness of minimal au-
tomata for checking language equivalence: whereas there necessarily exists a minimal
DFA for a particular language, there may be several equally-minimal NFA (an example
of such NFA is given by Arnold et al. [162]), thus we must use an alternative method of
checking language equivalence; in the next subsection, we describe such a method.

7.1.2 Checking NFA Language Equivalence

As previously mentioned, a naive method of checking language equivalence of NFA
is to determinise and check for equality of the resulting DFA. However, once the min-
imisation technique does not use determinisation, we cannot employ this method. An
alternative approach, originally due to Hopcroft and Karp [156], and further improved
by Bonchi and Pous [163], is to use an on-the-fly determinisation procedure to check
equivalence, aiming to only partially calculate the determinised automata. Bonchi and
Pous’ approach exploits the notion of bisimulation up-to context ; put briefly, if (sets of)
states X and Y have equal language, as do Z and W , then bisimulation up-to context
asserts that X [Y has equal language to Z [W . The advantage of such a composi-
tional technique is that the language equivalence of X [Y and Z [W is not explicitly

164 Chapter 7 Implementation and Comparison

checked. Thus, in the setting of NFA (where a set of NFA states forms a single set of
its determinisation), the full corresponding DFA need not be explored.

In practice, we can further improve the performance of checking language equivalence
when reaching fixed-points (which were introduced and discussed in §6.2.1). If we tag
all 2-NFA with identifiers (that can be checked for equality in constant time), we can
identify fixed-points without explicitly checking language equivalence of the underlying
2-NFA. Recall from §6.2 that we maintain two memoisation maps:

1. From PNBs to their (tagged) 2-NFA semantics,

2. From pairs of (tagged) 2-NFA to their (tagged) 2-NFA composition.

We use the first to ensure that a given PNB is translated to its 2-NFA semantics once,
and that we use 2-NFA as the representative of its equivalence class. In particular,
any member of the same equivalence class will be assigned the same identifier. The
second mapping ensures that we only perform a given (up-to language-equivalence)
composition once.

Now, consider composing a (left-associated) chain of PNBs: N ; N ; . . . ; N that
reaches a fixed-point after a single composition. The first memoisation map will contain
a single entry2:

N 7! �N�0
When performing 2-NFA compositions, if, having composed two 2-NFA that do not ap-
pear in the composition memoisation map, we find a language-equivalent 2-NFA in the
first map, we use it as the result of the composition (and the entry in the second memo-
isation map). To demonstrate, the first composition of 2-NFA is �N�0 ; �N�0, however,
since we reach a fixed point after one composition, we have that �N� ; �N� ⇠= �N�,
and thus the composition memoisation map is updated to contain a single entry:

�N�0 ; �N�0 7! �N�0
Now, for every remaining composition in the chain, we will be considering �N�0 ; �N�0
and thus simply perform two identifier comparisons with the single entry in the composi-
tion map, before returning the result �N�0. In general then, fixed-points w.r.t. language-
equivalence lead to (cheap) comparison of identifiers, rather than (expensive) checking
of language equivalence, a clear optimisation in the case where the fixed-point is non-
trivial, for example in Fig. 6.17.

2We write Ni for a 2-NFA N tagged with identifier i.

Chapter 7 Implementation and Comparison 165

7.1.3 Representing 2-NFA transitions

Recall that the 2-LTS semantics of a PNB N : (k, l), has labels of the form ↵/�, syn-
tactic sugar for (↵,�) 2 Bk ⇥ Bl. Via concatenation, these labels can be written as a
single binary string of length k + l. Therefore, to represent the transitions of the 2-LTS
we require a data structure representing S ⇥ Bk+l ⇥ S, where S is the set of states of
the 2-LTS. The nature of the transition relation means it can be encoded as a function:
S ! Bk+l ! 2S , i.e. for each source state, x 2 S, we have a function Bk+l ! 2S

encoding the set of states reachable from x, via transitions with labels in Bk+l.

A well-known, efficient representation of functions Bk ! B (i.e. k binary valued-variables
that determine a binary value) are Reduced Ordered Binary Decision Diagrams (simply,
BDDs) [99]. However, to use BDDs directly, the 2-LTS transition function codomain must
be suitably encoded as a binary string, to extend the binary label, giving a target of a
single binary bit. A more natural representation uses Multi-Terminal BDDs [111], a gen-
eralisation of BDDs that represent functions with a codomain other than the booleans.

MTBDDs encode functions that take an assignment of boolean variables to a set of
values. Specifically, a MTBDD is a ROBDD, where the two-element Boolean algebra of
B has been replaced with the Boolean algebra of subsets of some non-empty set, S.

For our purposes, S is the set of LTS states. The MTBDD’s variables are boundary
positions:

�

(L, i)
�

� 0 i < k

[
�

(R, j)
�

� 0 j < l

, where, e.g. (L, 0) is the 0th left
boundary port, (R, 1) the first right boundary port and so on. MTBDDs, like BDDs,
require that the variables have a fixed ordering, which we take to be the simple ordering
top-down, left-before-right, i.e. the lexicographic order (where L < R):

(lr1, k) < (lr2, l) =) lr1 < lr2 _ (lr1 = lr2 ^ k < l)

Example 7.1.
Consider the 2-NFA semantics of a single BUFFER component, as illustrated in Fig. 7.1.

The MTBDD representations of the transitions from states 0 and 1 are shown in Fig. 7.2,
where we use the convention that the false branch is a dashed line and the true branch
is solid. State 0’s MTBDD efficiently encodes that there are no transitions from state 0

with a 1/� label.

Similarly to BDDs, the particular ordering chosen for the variables can drastically affect
the representation size of MTBDDs. For example, consider the MTBDD illustrated in
Fig. 7.3, where we get a small size decrease when re-ordering variables. In general
the effect can be much more pronounced. Clearly it would be preferable to chose the
ordering that gave the most compact MTBDD; unfortunately, the problem of choosing
an optimal ordering is NP-complete [116], we therefore use the lexicographic ordering
since it is simple, and empirical results suggests it performs well.

166 Chapter 7 Implementation and Comparison

0

1

0/1

0/0

1/0

0/0

Figure 7.1: 2-NFA semantics of BUFFER

(L, 0)

(R, 0)

{0} {1}?

(a) 0!

(L, 0)

(R, 0) (R, 0)

{1} {0}?

(b) 1!

Figure 7.2: MTBDD representations of the transitions for states 0 and 1, in
Fig. 7.1.

(L, 0)

(R, 0)

{0} {1}?

(a) (L, 0) < (R, 0).

(R, 0)

(L, 0) (L, 0)

{0} {1}?

(b) (R, 0) < (L, 0).

Figure 7.3: MTBDD size affected by variable ordering: MTBDDs representing
0! in Fig. 7.1, with different variable orderings.

7.1.4 Synchronising Composition with MTBDDs

As we have shown, the use of MTBDDs gives efficient representation of transitions in 2-
NFA semantics, and furthermore many operations on transitions, such as union of tran-
sitions, or ✏-closure have efficient implementations. However, not all operations are nat-
ural and efficient, for example, computing the sequential composition of two states re-
quires computing the synchronisation of their transition MTBDDs. Intuitively, we want to
compute the MTBDD cross product since the synchronising composition corresponds

Chapter 7 Implementation and Comparison 167

to taking a transition in each component, before restricting the cross product to transi-
tions that agree on the shared boundary. Thus, when composing a (k, l)-NFA and a
(l, m)-NFA, a simple but naive approach is:

1. Generate each of the 2l variable assignments for the common boundary

2. In turn, instantiate the left and right MTBDDs using each assignment, before per-
forming the cross product on the resulting pair of MTBDDs, generating a collection
of MTBDDs

3. Finally, collapse the collection of MTBDDs using a pairwise union.

Step 2, involves generating a collection of MTBDDs that record the effect on the non-
shared boundaries (i.e. the outer boundaries, the left boundary of the first component
and the right boundary of the second) when the two 2-NFAs synchronise in each of
the 2l ways. Taking the union of these MTBDDs in step 3 is intuitively ignoring which
particular synchronisation occurred. This approach is innefficient: it involves explicitly
generating a large collection of variable instantiations, even for common variables that
do not take part in the synchronisation (and thus do not appear in the MTBDDs), thus
we may unnecessarily perform substantial work.

A more efficient approach, that we explore now, is as follows:

1. Pre-process the two MTBDDs, renaming variables to tag synchronisation vari-
ables (those on the common boundaries),

2. Perform the cross product on these MTBDDs,

3. Remove any invalid sub-graphs of the MTBDD. We consider a sub-graph to be
invalid if it assumes conflicting assignments to a particular boundary variable.

4. Remove the remaining common variables, by taking the union of their sub-graphs.

The pre-processing of step 1 renames the first component’s variable identifiers from
L/R to L/S

R

, and the second component’s from L/R to S
L

/R, i.e. tagging synchro-
nisation variables to identify which component they originated from. Importantly, the
order on the resulting pairs is changed, to form the ordering that places all Left vari-
ables before the interleaving of the Synchronisation variables before all Right variables.
For example, this ordering has the following:

(L, 1) < (SL, 0) < (SR, 0) < (SR, 1) < (SL, 2) < (R, 0)

This ordering means that in a synchronised MTBDD, synchronisation variables appear
in subsequent nodes in the MTBDD, and can easily be checked for conformance.

168 Chapter 7 Implementation and Comparison

As an example, we will consider synchronously composing the 2-NFAs of two BUFFER

components, with the left component’s 2-NFA in state 0, and the right’s in state 1.
Thus we must compose the MTBDDs shown in Fig. 7.2. First, in step 1, the MTB-
DDs are pre-processed, leading to the MTBDDs illustrated in Fig. 7.4. Next, step 2
performs the cross product of these two MTBDDs, leading to the MTBDD shown in
Fig. 7.5. This MTBDD contains semantically invalid sub-graphs, those highlighted red,
which are reached by following a path where the synchronisation variables have taken
different values. Therefore, in step 3, we remove all such sub-graphs, as shown in
Fig. 7.6. Finally, the synchronisations are removed in step 4 by taking the union of the
sub-graphs, giving the final result illustrated in Fig. 7.7, which encodes that the only
transitions possible from state (0, 1) are ⌧ transitions, either staying in the same state
or reaching (1, 0).

(L, 0)

(SR, 0)

{0} {1}?

(a) 0!.

(SL, 0)

(R, 0) (R, 0)

{1} {0}?

(b) 1!.

Figure 7.4: “Pre-processed” MTBDDs of Fig. 7.2

�

(0, 0)
 �

(1, 0)

?
�

(0, 1)
 �

(1, 1)

(R, 0) (R, 0) (R, 0) (R, 0)

(SR, 0) (SR, 0)

(SL, 0)

(L, 0)

Figure 7.5: MTBDD constructed using the cartesian product of those in
Fig. 7.4a and Fig. 7.4b, with invalid sub-graphs highlighted

Chapter 7 Implementation and Comparison 169

�

(1, 0)

?
�

(0, 1)

(R, 0) (R, 0)

(SR, 0) (SR, 0)

(SL, 0)

(L, 0)

Figure 7.6: MTBDD of Fig. 7.5, with invalid sub-graphs removed

(L, 0)

(R, 0)

�

(0, 1) , (1, 0)

?

Figure 7.7: MTBDD of Fig. 7.6, with synchronisations removed

Having discussed the three key implementation details for the efficiency of our imple-
mentation, we now move onto emperically comparing the resulting performance with
existing state-of-the-art tools.

7.2 Comparison with Related Tools

Up to this point, we have explored some of the insights that make our tool efficient.
Now, we compare with existing tools that do not take a component-wise view, and thus
cannot exploit compositionality as we can, instead, computing global statespaces, or
using unfoldings or other partial-order reduction techniques to avoid the statespace

170 Chapter 7 Implementation and Comparison

explosion problem. Essentialy, we would like to show that while compositionality is a
theoretical nicety, it also has significant impact on performance in practice. Therefore, in
this section, we quantatively compare our approach with existing state-of-the-art tools.
First, we introduce the tools we are comparing against, before discussing our testing
platform and methodology. After presenting the results we interpret them, discussing
some key points.

7.2.1 Related Tools

To evaluate the performance of Penrose, it was compared with five tools that make up
part of the current state-of-the-art:

1. LOLA3 [164],

2. The PUNF4 unfolder with CLP5 checker,

3. The CUNF6 [165] unfolder, and CNA7checker,

4. MARCIE8 [166],

5. TAPAAL9.

Several of these tools are the current leading choices of tools for Petri net reachability
checking and state-space generation. Indeed, in the recent Petri net model-checking
competition (MCC’14) [167], LOLA won, and TAPAAL was second in the reachability
category, whilst in the state-space generation category MARCIE won, with TAPAAL
third. The two other tools, CLP and CNA are both comprised of two distinct tools, one
to pre-process (unfold) the input net, and the other to check the required property on
the unfolding. CLP’s unfolder, PUNF, uses parallelisation techniques from [82], while
CLP itself uses linear-programming techniques from [168]. CNA is included since it
handles contextual nets (i.e. those with read arcs), and thus is able, like Penrose, to
calculate results for the OVERTAKE(�) and COUNTER(�) examples.

The tested tools employ different techniques, as reported by the tools’ corresponding
entries in MCC’14:

- LOLA: stubborn sets, symmetry reduction, unfolding,
3
http://download.gna.org/service-tech/lola/

4
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/

5
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/clp/

6
http://code.google.com/p/cunf/

7Available packaged with CUNF
8
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie

9
http://www.tapaal.net/

http://download.gna.org/service-tech/lola/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/clp/
http://code.google.com/p/cunf/
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie
http://www.tapaal.net/

Chapter 7 Implementation and Comparison 171

- PUNF/CLP: parallelisation, linear programming,

- CUNF/CNA: unfolding, SAT/SMT,

- MARCIE: decision diagrams,

- TAPAAL: symmetry reduction.

For overviews of these techniques, refer back to §1.2.

7.2.2 Testing Platform

All experiments were run on two Ubuntu Linux virtual machines (both with 4GB RAM
and a 4-core CPU: one a 32-bit and the other a 64-bit CPU), hosted on an Intel i5-
2450 2.50GHz CPU, 8GB of RAM, running 64-bit Ubuntu Linux. CLP required a 32-bit
platform, and thus virtual machines were used to give a common-specification platform.

For MARCIE and TAPAAL, we used the virtual machine images provided for the 2014
Petri net Model Checking Competition (MCC 2014) [167], available at http://mcc.

lip6.fr/2014/results.php. For CUNF, CNA, PUNF and CLP we used pre-compiled
binaries from the corresponding authors’ websites, and compiled LOLA from source.

7.2.3 Testing Methodology

Tool performance was recorded using the standard Unix time command, measuring
total (wall-clock) time and peak memory usage10. For each tool and example configu-
ration (i.e. example and size parameter(s)) we took the mean of 5 runs, obtaining the
average time and memory consumption.

While Penrose directly computes using the particular wiring decomposition that speci-
fies each problem; all other tools were provided input that was generated by first com-
puting the composite net and then converting into suitable format11. The time taken for
this conversion was not included in the performance benchmarking—only the process-
ing time of the individual tools was recorded.

7.2.4 Testing Results

In the following results tables we use the key:
10Specifically, using the command /usr/bin/time -f ‘%E %M’ CMD.
11Either LL_NET format or LOLA’s input format.

http://mcc.lip6.fr/2014/results.php
http://mcc.lip6.fr/2014/results.php

172 Chapter 7 Implementation and Comparison

T =) time-out (300 seconds)
M =) memory-exhaustion (4GB)
/ =) incorrect result

R =) example skipped due to lack of read arc support

The best performance for each problem instance is highlighted. We present four tables,
two recording total time spent, and two recording total memory usage. The tables
are split not only for space reasons, but also to differentiate clearly between examples
where Penrose exhibits scalable performance relative to the competition, and those
where it exhibits poor performance. The timing results are presented in Tables 7.1
and 7.2 and the memory results in Tables 7.3 and 7.4.

7.2.5 Discussion

For the systems with scalable performance, Penrose is able to check reachability in
around 100 milliseconds, even for large parameter-sizes. Similarly, the memory use
of Penrose is always less than 10MB. A general observation is that other tools do not
perform as well for anything other than small parameter sizes. Indeed, the simplest
system, BUFFER(�) is only checkable by Penrose, LOLA and MARCIE at parameter
512, and only Penrose for larger parameters, despite a simple structure and marking.

Since CNA can only check coverability (i.e. it cannot specify that particular places
should not be marked), we must trivially adapt the FORK component of DPH(�), such
that it has two places: one is marked when the fork is present and the other when it
is absent. Thus we can specify all forks being taken with the positive marking of all
“taken” places, rather than the absence of the token in the original “status” place.

ITER-CHOICE(�) is an example given by Khomenko et al. [93] that is shown to have an
exponential unfolding; precisely, ITER-CHOICE(k) has an unfolding with 2k+1�1 places.
Due to this exponentially-sized unfolding, the results show that moderately-sized in-
stances cannot be handled by the tested tools. Penrose, on the other hand, is able to
handle very large instances quickly. In the originating paper ([93]), an alternative struc-
ture, Merged Processes (MPs), were introduced to avoid such exponential unfoldings,
however, we are not aware of a model checker that implements MPs.

Some proportion of the overhead encountered by other tools in large examples can be
attributed to the size of the input file that must be processed (e.g. the ll_net format is
⇡ 500 KB for OVERTAKE(512) and LOLA’s input is ⇡ 1.3 MB for DAC(4096)). Indeed,
this is part of the point of this thesis: using component-wise specification and PNBml,
we can specify certain systems in a vastly more concise way.

Furthermore, since we interpret the benchmark systems as 1-bounded (recall that
PNBs use elementary-net firing semantics) and that the tested tools do not give the

Chapter 7 Implementation and Comparison 173

Table 7.1: Time results

Problem Time (s)
name size Penrose CLP CNA LOLA TAAPL MARCIE
buffer 2 0.009 0.002 0.024 0.005 0.002 0.045
buffer 8 0.009 0.002 0.022 0.002 0.002 0.045
buffer 32 0.008 0.004 0.279 0.002 0.005 0.048
buffer 512 0.009 T M 0.061 T 154.241
buffer 4096 0.011 T M T T M
buffer 32768 0.016 T M T T M
over 2 0.028 R 0.021 R R R
over 8 0.027 R 0.062 R R R
over 32 0.028 R M R R R
over 512 0.028 R M R R R
over 4096 0.027 R M R R R
over 32768 0.030 R M R R R
dac 2 0.009 0.002 0.021 0.002 0.002 0.046
dac 8 0.009 0.002 0.019 0.001 0.002 0.044
dac 32 0.009 0.002 0.034 0.002 0.004 0.053
dac 512 0.010 T T 4.034 0.083 25.451
dac 4096 0.009 T T T M M
dac 32768 0.011 T T T M M
philo 2 0.017 / 0.021 0.008 0.002 0.044
philo 8 0.022 / 0.021 0.015 0.004 0.047
philo 32 0.021 / 0.025 M 0.009 0.083
philo 512 0.020 T 1.067 M T 197.861
philo 4096 0.021 T M M T M
philo 32768 0.022 T M M T M

iter-choice 2 0.009 0.002 0.022 0.001 0.002 0.044
iter-choice 8 0.010 19.247 19.054 0.006 0.003 0.046
iter-choice 32 0.010 T M M 0.006 0.055
iter-choice 512 0.009 T M M 6.066 36.059
iter-choice 4096 0.010 T M M M M
iter-choice 32768 0.012 T M M M M
replicator 2 0.009 / 0.024 0.002 0.002 T
replicator 8 0.008 / 0.022 0.001 0.003 T
replicator 32 0.009 / 0.023 0.002 0.005 T
replicator 512 0.010 / 1.025 0.004 111.428 T
replicator 4096 0.009 / 74.057 0.086 M T
replicator 32768 0.012 / M 231.852 M T
T̂ (�,�) 1,1 0.008 0.002 0.019 0.002 0.002 0.044
T̂ (�,�) 2,2 0.009 0.002 0.019 0.001 0.003 0.044
T̂ (�,�) 3,3 0.010 0.002 0.019 0.001 0.004 0.046
T̂ (�,�) 4,4 0.009 0.002 0.025 0.001 0.012 2.065
T̂ (�,�) 5,5 0.009 0.009 0.077 0.006 9.070 M
T̂ (�,�) 6,6 0.009 10.024 12.449 12.087 M M
T̂ (�,�) 7,7 0.009 T M T M M

174 Chapter 7 Implementation and Comparison

Table 7.2: Time results continued

Problem Time (s)
name size Penrose CLP CNA LOLA TAAPL MARCIE

counter 2 0.011 R 0.020 R R R
counter 4 0.021 R 0.022 R R R
counter 8 0.640 R 0.047 R R R
counter 10 1.278 R 1.045 R R R
counter 13 4.038 R 14.057 R R R
counter 16 8.050 R T R R R
cyclic 2 0.012 / 0.021 0.001 0.003 0.043
cyclic 4 0.026 / 0.020 0.001 0.003 0.045
cyclic 8 1.014 / 0.022 0.001 0.004 0.053
cyclic 10 1.274 / 0.024 0.002 0.005 0.069
cyclic 13 4.004 / 0.023 0.002 0.006 2.035
cyclic 16 7.048 / 0.021 0.003 0.005 19.220

hartstone 2 0.017 0.002 / 0.002 / /
hartstone 4 0.037 0.002 / 0.001 / /
hartstone 8 1.084 0.002 / 0.001 / /
hartstone 10 3.270 0.001 / 0.001 / /
hartstone 13 10.045 0.002 / 0.002 / /
hartstone 16 25.031 0.002 / 0.002 / /
token-ring 2 0.015 0.002 0.020 0.001 0.001 0.043
token-ring 4 0.048 0.002 0.025 0.001 0.001 0.044
token-ring 8 2.063 0.007 0.080 0.002 0.002 0.045
token-ring 10 4.466 0.053 4.637 0.002 0.003 0.047
token-ring 13 10.650 T 95.065 0.016 0.003 0.050
token-ring 16 20.460 T T 2.030 0.003 0.048
T_(�,�) 1,1 0.009 0.001 0.020 0.001 0.001 0.045
T_(�,�) 2,2 0.011 / / 0.001 / /
T_(�,�) 3,3 13.478 / / 0.001 / /
T_(�,�) 4,4 T / / 0.002 / /
T_(�,�) 5,5 T / / 0.009 / M
T_(�,�) 6,6 T / / 18.669 M M

Chapter 7 Implementation and Comparison 175

Table 7.3: Memory results

Problem Max Resident (MB)
name size Penrose CLP CNA LOLA TAAPL MARCIE
buffer 2 4.66 8.23 14.54 2.60 6.47 506.98
buffer 8 4.67 8.23 14.87 2.86 11.07 507.24
buffer 32 4.66 8.50 19.75 2.87 29.69 509.56
buffer 512 4.69 T M 31.52 T 1087.10
buffer 4096 4.93 T M T T M
buffer 32768 6.71 T M T T M
over 2 7.39 R 14.77 R R R
over 8 7.39 R 28.36 R R R
over 32 7.39 R M R R R
over 512 7.42 R M R R R
over 4096 7.75 R M R R R
over 32768 8.69 R M R R R
dac 2 4.73 8.24 14.59 2.61 2.12 507.23
dac 8 4.73 8.26 15.08 2.87 2.37 507.50
dac 32 4.72 8.55 20.43 3.12 3.04 510.66
dac 512 4.76 T T 52.00 75.49 1092.43
dac 4096 5.01 T T T M M
dac 32768 6.73 T T T M M
philo 2 6.20 / 14.62 2.87 9.55 507.24
philo 8 6.23 / 15.01 3.38 23.60 508.11
philo 32 6.22 / 16.52 M 79.86 523.23
philo 512 6.22 T 196.01 M T 1094.48
philo 4096 6.22 T M M T M
philo 32768 9.73 T M M T M

iter-choice 2 4.75 8.24 14.71 2.61 8.54 507.24
iter-choice 8 4.75 116.25 783.72 15.92 17.70 507.49
iter-choice 32 4.76 T M M 55.05 512.76
iter-choice 512 4.78 T M M 864.47 1160.22
iter-choice 4096 5.02 T M M M M
iter-choice 32768 6.75 T M M M M
replicator 2 4.70 / 14.57 2.61 7.25 T
replicator 8 4.69 / 14.72 2.86 11.88 T
replicator 32 4.68 / 15.36 2.86 30.66 T
replicator 512 4.71 / 35.98 6.47 818.19 T
replicator 4096 4.96 / 1582.63 37.59 M T
replicator 32768 6.73 / M 504.84 M T
T̂ (�,�) 1,1 4.69 8.21 14.52 2.61 5.56 506.98
T̂ (�,�) 2,2 4.74 8.22 14.55 2.61 7.78 506.98
T̂ (�,�) 3,3 4.74 8.23 14.75 2.86 20.45 507.49
T̂ (�,�) 4,4 4.73 8.30 16.42 3.12 136.62 589.97
T̂ (�,�) 5,5 4.73 9.54 36.46 7.76 1556.56 M
T̂ (�,�) 6,6 4.73 55.53 1291.74 81.94 M M
T̂ (�,�) 7,7 4.73 T M T M M

176 Chapter 7 Implementation and Comparison

Table 7.4: Memory results continued

Problem Max Resident (MB)
name size Penrose CLP CNA LOLA TAAPL MARCIE

counter 2 5.33 R 14.59 R R R
counter 4 6.14 R 14.80 R R R
counter 8 8.00 R 25.38 R R R
counter 10 9.73 R 62.12 R R R
counter 13 11.84 R 464.33 R R R
counter 16 13.62 R T R R R
cyclic 2 5.77 / 14.65 2.86 10.89 507.24
cyclic 4 6.03 / 14.82 2.86 16.17 507.50
cyclic 8 6.25 / 15.14 2.86 27.29 510.95
cyclic 10 7.67 / 15.28 2.86 32.78 520.14
cyclic 13 8.04 / 15.52 3.12 40.96 603.46
cyclic 16 9.73 / 15.76 3.41 48.96 1041.87

hartstone 2 6.02 8.23 / 2.65 / /
hartstone 4 6.09 8.23 / 2.86 / /
hartstone 8 6.46 8.24 / 2.87 / /
hartstone 10 8.02 8.24 / 2.86 / /
hartstone 13 8.02 8.24 / 2.86 / /
hartstone 16 8.96 8.25 / 2.86 / /
token-ring 2 5.82 8.23 14.64 2.76 2.12 507.24
token-ring 4 6.26 8.24 15.41 2.87 2.19 507.24
token-ring 8 7.04 9.78 42.08 2.87 2.31 507.49
token-ring 10 8.96 28.87 151.99 3.51 2.42 507.75
token-ring 13 9.73 T 1403.45 16.85 2.51 508.35
token-ring 16 10.76 T T 145.44 2.61 508.79
T_(�,�) 1,1 4.69 8.21 14.52 2.61 5.56 506.98
T_(�,�) 2,2 5.07 / / 2.61 / /
T_(�,�) 3,3 13.67 / / 2.87 / /
T_(�,�) 4,4 T / / 3.90 / /
T_(�,�) 5,5 T / / 16.60 / M
T_(�,�) 6,6 T / / 213.56 M M

Chapter 7 Implementation and Comparison 177

ability to restrict place token bounds, is likely that a large proportion of the time spent is
wasted exploring unnecessary states (where places have >1 token).

An observation regarding Penrose’s performance is that certain markings are certainly
going to be much faster to check for a given system than others; a simple example
being T_(�,�). The tested marking requires a token in every leaf place, given a single
starting token in the root place. Penrose is extremely slow to check this reachabil-
ity problem, due to the statespace explosion problem: large intermediate 2-NFAs are
constructed, as discussed at the end of Chapter 6. Indeed, Penrose calculates the
intermediate results that record all possible ways to introduce enough tokens into the
sub-systems, to reach the desired marking. However, it is only at the final composition
step that Penrose discovers that there will only ever be a single token in the system,
and thus all intermediate results are discarded. Indeed, changing to the target mark-
ing that requires a token in any one leaf place is fast to check. Observe that Penrose
currently implements a strict evaluation strategy, sub-system reachability 2-NFAs are
calculated, without them necessarily being required. Indeed, this is necessary for the
current memoisation implementation — to know if we have seen a particular 2-NFA
composition before, we must fully evaluate each of the arguments. Future work is to
explore the possibility of using a lazy evaluation strategy, whereby evaluation is only
performed on demand — in the poorly performing example, one could imagine only
evaluating two far enough to observe that the sub-system requires at least two tokens
to reach its target marking, which cannot be provided by the root’s single token, thus
the global marking is not reachable.

Similarly, HARTSTONE(�) and TOKENRING(�) (which are fundamentally quite similar),
contain sub-nets that can store n tokens, thus the 2-NFA must represent that tokens can
be (arbitrarily) added or removed. In fact, only one “token” is ever inserted/removed into
the system. Future work will investigate the applicability of techniques such as Larsen’s
relativized bisimulation [169], that control the allowable interactions with an environment
(in this case, ensuring at most one token is taken from the context).

Our final comments are to draw attention to the fact that tools based on unfolding or
other partial-order reduction are mature, with years of development, and established
tools such as LOLA have been highly optimised. Penrose is implemented in the high
level functional language Haskell, and further, has had little to no optimisation effort ap-
plied — it is a proof-of-concept. Despite this, it is able to out-perform the tools in several
examples, as demonstrated by our results. It could be argued that the playing field is
unfair: Penrose uses a formal description of the decomposition of a problem at hand
into smaller components while other tools take a global, monolithic net as input. This
is, however, precisely our point: there is no reason for model checkers not to take ad-
vantage of compositional descriptions — it is how real systems are specified/designed.

178 Chapter 7 Implementation and Comparison

We see significant room for future improvement in Penrose; indeed, our approach
makes no use of the partial-order reduction techniques of other tools, which we conjec-
ture are orthogonal to and therefore compatible with our compositional approach.

7.3 Summary

In this chapter, we have shown that in addition to being a theoretical nicety, composition-
ality also leads to impressive reachability checking performance of our tool, Penrose,
for many example systems. However, while in many cases fixed-points of behaviour
exist, and lead to exponential increases in performance, there are examples where
the statespace explosion problem still presents itself, hampering our compositional ap-
proach. Future work will investigate integrating existing approaches to avoiding states-
pace explosion with our compositional approach, but we think that the initial results
presented show that compositionality, and the component-wise approach, is a promis-
ing orthogonal method of attacking statespace explosion.

Chapter 8

Conclusion

In this thesis, we investigated and advocated compositional system specification and
an alternative approach to reachability checking that uses the structural compositional
information to its advantage, in order to vastly improve efficiency in many examples.

The contributions presented in this thesis were:

1. The elucidation of the categorical structure of PNBs and their semantics: we
showed the well-known property of compositionality in a new light, as an instance
of functoriality for suitable categories.

2. The introduction of contextual PNBs, which naturally model behaviour that non-
destructively reads the token state of a place.

3. The motivation and introduction of a type-checked specification programming lan-
guage for PNBs, which ensures that only correct compositions are expressible.

4. We demonstrated compositional statespace generation for PNB systems, and
that it can be used to check reachability, without constructing the global net.

5. We showed that compositional specifications can be exploited, to attack the states-
pace explosion problem, and improve the efficiency of reachability checking of
systems modelled using PNBs. We showed that by considering weak language
equivalence of PNB semantics, we are able to reduce the representation size of
PNB semantics, whilst ensuring global behaviour is preserved. We demonstrated
that memoisation allows us to avoid repeated computation.

6. We gave compositional specification of existing benchmarks in a more natural
component-wise specification, with explicit specification of repeated structure.

Many of these contributions had been introduced in the author’s papers [158, 170, 144].

179

180 Chapter 8 Conclusion

Chapter 2 contained the required preliminaries. In Chapter 3, the categorical structure
of PNBs and the LTS that form their semantics was presented, exposing the notion of
compositionality as functoriality. Chapter 4 introduced the example systems that we
used to demonstrate and evaluate our technique, and a specification DSL that uses
a static type system to ensure that only valid component-wise specifications can be
constructed. In Chapter 5 we introduced a compositional technique for generating the
statespace of systems specified using our DSL, and thus checking marking reachability.
We proved the technique correct and give some example timings of a tool implementing
the technique. Chapter 6 showed how to exploit the fact that language equivalence is a
congruence to vastly improve the performance of our reachability-checking technique,
introducing the notion of internal behaviour that we ignore in order to aggressively prune
statespace. We proved the more-efficient algorithm correct. In Chapter 7, we discussed
the implementation of our technique, and compared and discussed its performance
relative to current state-of-the-art tools.

8.1 Future Work

We now briefly discuss several avenues of work to extend the compositional approach
introduced in this thesis.

1. What is a good decomposition? What characterises good performance?

When discussing our example systems in §4.1, we did not discuss how we arrived
at the particular decompositions. In practice, the decompositions were natural, and
were generated by hand. However, an automated decomposition search might be
preferred, which could detect and abstract out repeated components. In our original
paper [158] introducing our technique, we described a naive decomposition algo-
rithm; unfortunately, in practice the decomposition algorithm tended to not obtain
the natural by hand decompositions, and did not give generally acceptable per-
formance. We will further investigate decomposition as a method of applying our
technique to existing monolithic models. The size of a PNB’s boundaries and the
number of places it contains influences the size of the corresponding 2-NFA and
thus the performance of our technique. As per our preprint paper [145] the rank
width of the underlying hypergraph is important in determining behaviour; we will
further investigate structurally characterisations of PNBs.

2. How to produce witnesses?

A drawback of using ⌧ -closure and minimisation to combat the statespace explosion
problem is that we cannot immediately produce witnessing transitions that confirm
the yes/no answer to the reachability question. The difficulty would be to preserve

Chapter 8 Conclusion 181

the minimal information required to generate a witnessing transition sequence, with-
out forcing all possibly valid sequences to be remembered.

3. Directed exploration of statespaces

In the style of Bonet et al. [83], the conversion of a PNB expression to a 2-NFA might
be directed towards sub-expressions with not-reachable markings. Recall that if any
component’s local marking is unreachable, the global marking is unreachable; if
the evaluation can quickly identify such components, then it can quickly determine
unreachability in the global net.

4. Prevention of invalid intermediate behaviour

As noted in §6.5 and by Graf and Steffan [47] intermediate results may exhibit be-
haviours that are ultimately not performed in the composite system. Here, the ideas
of contextual bisimulation [169], or interface components of Clarke et al. [39] will help
alleviate intermediate 2-NFA sizes. However, the main difficulty will be determining
the correct restrictions that the context should enforce — for example, in the case of
TOKENRING(�), how should the procedure determine that only a single token should
be emitted from the context? Additionally, lazy evaluation of 2-NFA may be helpful,
such that only the structure that takes part in successful computation is evaluated.
For example, since the token ring context only emits a single token, the token ring
itself should not evaluate transitions that rely on more than one token being emitted.

5. Unfoldings/Merged processes for PNBs

Similarly to how an unfolding is a (suitably restricted) Petri net, we expect that with
suitable restrictions, the unfolding of a PNB will itself be a PNB. Furthermore, we
expect that compositionality should also hold for unfoldings of PNB components
(with a suitable equivalence relation).

We can foresee at least three subtle points that must be accounted for:

(a) Unfoldings will likely require complement places, to record token absence

(b) Composition of unfoldings will induce additional contention

(c) Equivalence must be suitably defined, isomorphism is likely too strong

To demonstrate these points, consider the left PNB in Fig. 8.1; we postulate that
its unfolding will necessarily contain a complement place, p̄, and transitions to en-
sure that when the p is empty, p̄ is full and vice-versa. An unfolding is seeded with
a place for each place assigned a token by the initial marking; if there is no such
places, the unfolding will be empty. Furthermore, there should be additional con-
tention between transitions of composed PNB unfoldings: consider synchronously
composing the two leftmost unfoldings shown in Fig. 8.2, the composition should not
allow for example the dashed transition in one component unfolding to synchronise
with a solid transition in the other component. Since unfoldings record the history of

182 Chapter 8 Conclusion

a net, allowing such synchronisations would be akin to one component going back
in time. Finally, the notion of equivalence would need to be suitably defined; using
a naive approach, the composition of unfoldings is not isomorphic to the unfolding
of a composed net. For example, composing the two leftmost unfoldings in Fig. 8.2
should obtain an equivalent PNB to the rightmost PNB, which is the unfolding of the
composite net of Fig. 8.1; immediately, the composition of unfoldings contains too
many places, arising from the complement places p̄ and q̄.

p q p q

Figure 8.1: Two example PNBs and their composition

p̄

p

p̄

p

..
.

q

q̄

q

q̄

..
.

q

p

q

p

..
.

Figure 8.2: Unfoldings of the PNBs in Fig. 8.1

6. Applying existing statespace avoidance techniques to PNBs

Since our approach to avoiding statespace explosion (minimisation w.r.t. weak
language-equivalence) is orthogonal to existing approaches discussed in §1.2, we

Chapter 8 Conclusion 183

will investigate integrating these methods, to improve the performance of our tech-
nique, especially when fixed points of behaviour are not found.

References

[1] C. A. Petri, “Kommunication mit Automaten,” Ph.D. dissertation, Technischen
Hoschule Darmstadt, 1962.

[2] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings
of the IEEE, vol. 77, no. 4, pp. 541–580, 1989. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=24143

[3] E. W. Mayr, “An Algorithm for the General Petri Net Reachability Problem,” in
Symposium on Theory of Computing. New York, New York, USA: ACM Press,
1981, pp. 238–246. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
800076.802477

[4] S. R. Kosaraju, “Decidability of Reachability in Vector Addition Systems,” in Sym-
posium on Theory of Computing. ACM, 1982, pp. 267–281.

[5] J. Lambert, “A Structure to Decide Reachability in Petri Nets,” Theoretical Com-
puter Science, vol. 99, pp. 79–104, 1992.

[6] R. J. Lipton, “The Reachability Problem Requires Exponential Space,” Depart-
ment of Computer Science, Yale University, Technical Report 63, 1976.

[7] J. Esparza and M. Nielsen, “Decidability Issues for Petri nets,” Bulletin
of the EATCS, vol. 52, no. May, pp. 244–262, 1994. [Online]. Available:
http://home.ifi.uio.no/andersmo/petrinet/papers/complexity/brics_98_8.pdf

[8] A. Cheng, J. Esparza, and J. Palsberg, “Complexity Results for 1-safe Nets,”
Theoretical Computer Science, vol. 147, no. 1-2, pp. 117–136, Aug. 1995.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/0304397594002317

[9] K. Wolf, “The Petri net Twist in Explicit Model Checking,” Software & Systems
Modelling, 2014.

[10] A. Valmari, “The State Explosion Problem,” LNCS - Lectures on Petri
Nets I: Basic Models, vol. 1491, pp. 429–528, 1998. [Online]. Available:
http://www.cs.vsb.cz/kot/download/Texts/StateSpace.pdf

185

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=24143
http://portal.acm.org/citation.cfm?doid=800076.802477
http://portal.acm.org/citation.cfm?doid=800076.802477
http://home.ifi.uio.no/andersmo/petrinet/papers/complexity/brics_98_8.pdf
http://linkinghub.elsevier.com/retrieve/pii/0304397594002317
http://www.cs.vsb.cz/kot/download/Texts/StateSpace.pdf

186 REFERENCES

[11] ——, “Stubborn Sets for Reduced State Space Generation,” in Application and
Theory of Petri Nets, vol. 483, 1990, pp. 491–515.

[12] P. Godefroid, “Using Partial Orders to Improve Automatic Verification Methods,”
in Computer Aided Verification. Springer Berlin Heidelberg, 1990, pp. 176–185.
[Online]. Available: http://portal.acm.org/citation.cfm?id=735044

[13] D. Peled, “All from One, One for All: on Model Checking using Representatives,”
in Computer Aided Verification. Springer Berlin Heidelberg, 1993, pp. 409–423.
[Online]. Available: http://link.springer.com/chapter/10.1007/3-540-56922-7_34

[14] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer Berlin Heidelberg,
1996. [Online]. Available: http://portal.acm.org/citation.cfm?id=547238

[15] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled, “State Space Reduction
using Partial Order Techniques,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 3, pp. 279–287, 1999. [Online]. Available:
http://link.springer.com/article/10.1007/s100090050035

[16] A. Valmari and H. Hansen, “Can Stubborn Sets be Optimal?” in Application and
Theory of Petri Nets, 2010, pp. 43–62.

[17] K. Schmidt, “Stubborn Sets for Standard properties,” in Application and Theory
of Petri Nets. Springer Berlin Heidelberg, 1999, pp. 46–65. [Online]. Available:
http://www.springerlink.com/index/mtj3p6183xchedr9.pdf

[18] P. Godefroid and D. Pirottin, “Refining Dependencies Improves Partial-order
Verification Methods,” Computer Aided Verification, vol. 697, no. 6021, pp.
438–449, 1993. [Online]. Available: http://dx.doi.org/10.1007/3-540-56922-7_36

[19] P. Wolper and P. Godefroid, “Partial-Order Methods for Temporal Verification,” in
CONCUR, vol. 715. Springer-Verlag, 1993, pp. 233–246.

[20] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, and S. Rajamani, “Partial-order
Reduction in Symbolic State Space Exploration,” in Computer Aided Verification.
Springer Berlin Heidelberg, 1997, pp. 340–351.

[21] H. Hansen and X. Wang, “Compositional Analysis for Weak Stubborn Sets,” in
Application of Concurrency to System Design. IEEE, 2011, pp. 36–43.

[22] F. Vernadat, P. Azéma, and F. Michel, “Covering Step Graph,” in Application and
Theory of Petri Nets. Springer Berlin Heidelberg, 1996, pp. 516–535.

[23] P.-O. Ribet, B. Berthomieu, and F. Vernadat, “On Combining the Persistent Sets
Method with the Covering Steps Graph Method,” in Formal Techniques for Net-
worked and Distributed Systems, 2002, pp. 344–359.

http://portal.acm.org/citation.cfm?id=735044
http://link.springer.com/chapter/10.1007/3-540-56922-7_34
http://portal.acm.org/citation.cfm?id=547238
http://link.springer.com/article/10.1007/s100090050035
http://www.springerlink.com/index/mtj3p6183xchedr9.pdf
http://dx.doi.org/10.1007/3-540-56922-7_36

REFERENCES 187

[24] P. Godefroid, “On the Costs and Benefits of Using Partial-Order Methods for the
Verificiation of Concurrent Systems,” in DIMACS workshop on Partial Order Meth-
ods in Verification, 1996, pp. 289–303.

[25] P. H. Starke, “Reachability analysis of petri nets using symmetries,” Systems
Analysis Modeling Simul, vol. 8, no. 4-5, pp. 293–303, Aug. 1991. [Online].
Available: http://dl.acm.org/citation.cfm?id=115220.115224

[26] E. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting Symmetry in Temporal
Logic Model Checking,” in Computer Aided Verification, 1993, pp. 450–462.
[Online]. Available: http://link.springer.com/article/10.1007/BF00625969

[27] E. A. Emerson and A. P. Sistla, “Symmetry And Model Checking,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, C. Courcoubetis, Ed.,
vol. 697, no. 1-2. Berlin, Heidelberg: Springer Berlin Heidelberg, Aug. 1993, pp.
105–131. [Online]. Available: http://link.springer.com/10.1007/BF00625970http:
//www.springerlink.com/index/10.1007/3-540-56922-7

[28] C. Norris Ip and D. L. Dill, “Better Verification Through Symmetry,” Formal
Methods in System Design, vol. 9, no. 1-2, pp. 41–75, Aug. 1996.
[Online]. Available: http://link.springer.com/article/10.1007/BF00625968http:
//link.springer.com/10.1007/BF00625968

[29] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla, “Symmetry Reductions in
Model Checking,” in Computer Aided Verification, A. J. Hu and M. Y. Vardi, Eds.,
no. 388. Vancouver BC, Canada: Springer Berlin Heidelberg, 1998, pp. 147–
158. [Online]. Available: http://link.springer.com/chapter/10.1007/BFb0028741

[30] R. C. Read and D. G. Corneil, “The Graph Isomorphism Disease,” Journal
of Graph Theory, vol. 1, no. 4, pp. 339–363, Jan. 1977. [Online].
Available: http://onlinelibrary.wiley.com/doi/10.1002/jgt.3190010410/abstracthttp:
//doi.wiley.com/10.1002/jgt.3190010410

[31] A. Sistla, V. Gyuris, and E. Emerson, “SMC: a Symmetry-Based Model
Checker for Verification of Safety and Liveness Properties,” ACM Transactions
on Software . . . , vol. 9, no. 2, pp. 133–166, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=350891

[32] M. Leuschel and M. Butler, “ProB: A Model Checker for B,” in FME
2003: Formal Methods, 2003, pp. 855–874. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-540-45236-2_46

[33] G. Holzmann, “The Model Checker SPIN,” IEEE Transactions on Software
Engineering, vol. 23, no. 5, pp. 279–295, May 1997. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=588521

http://dl.acm.org/citation.cfm?id=115220.115224
http://link.springer.com/article/10.1007/BF00625969
http://link.springer.com/chapter/10.1007/BFb0028741
http://dl.acm.org/citation.cfm?id=350891
http://link.springer.com/chapter/10.1007/978-3-540-45236-2_46
http://link.springer.com/chapter/10.1007/978-3-540-45236-2_46
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=588521

188 REFERENCES

[34] K. Schmidt, “How to Calculate Symmetries of Petri nets,” Acta In-
formatica, vol. 36, no. 7, pp. 545–590, Jan. 2000. [Online]. Avail-
able: http://link.springer.com/article/10.1007/s002360050002http://link.springer.
com/10.1007/s002360050002

[35] T. A. Junttila, “Computational Complexity of the Place / Transition-Net Symmetry
Reduction Method,” Journal of Universal Computer Science, vol. 7, no. 4, pp.
307–326, 2001.

[36] K. Schmidt, “Integrating Low Level Symmetries into Reachability Analysis,”
in Tools and Algorithms for the Construction and Analysis of Systems, vol.
1785, 2000, pp. 315–330. [Online]. Available: http://www.springerlink.com/index/
D8DCKGMUF9P3BQ3C.pdf

[37] T. Wahl and A. Donaldson, “Replication and Abstraction: Symmetry in
Automated Formal Verification,” Symmetry, vol. 2, no. 2, pp. 799–847, Apr. 2010.
[Online]. Available: http://www.mdpi.com/2073-8994/2/2/799/

[38] A. Miller, A. Donaldson, and M. Calder, “Symmetry in Temporal Logic
Model Checking,” ACM Computing Surveys, vol. 38, no. 3, pp. 1–40,
Sep. 2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=1132962http:
//portal.acm.org/citation.cfm?doid=1132960.1132962

[39] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional Model
Checking,” in Proceedings of the Fourth IEEE Symposium on Logic in
Computer Science, no. 4976, 1989, pp. 353–362. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=39190

[40] R. Milner, A Calculus of Communicating Systems. Springer Berlin Heidelberg,
1990, vol. 92.

[41] W. J. Yeh and M. Young, “Compositional Reachability Analysis using Process
Algebra,” in International Symposium on Testing, Analysis and Verification.
Victoria, BC, Canada: ACM New York, 1991, pp. 49–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=120812

[42] A. Valmari, “Compositional State Space Generation,” in Advances in Petri Nets
1993, G. Rozenber, Ed. Springer Berlin Heidelberg, 1993, pp. 427–457.
[Online]. Available: http://link.springer.com/chapter/10.1007/3-540-56689-9_54

[43] ——, “Compositionality in State Space Verification Methods,” in Application and
Theory of Petri Nets, J. Billington and W. Reisig, Eds. Osaka, Japan: Springer
Berlin Heidelberg, 1996, pp. 29–56.

[44] ——, “Compositional Analysis with Place-Bordered Subnets,” in Application
and Theory of Petri Nets, R. Valette, Ed. Zaragoza, Spain: Springer Berlin

http://www.springerlink.com/index/D8DCKGMUF9P3BQ3C.pdf
http://www.springerlink.com/index/D8DCKGMUF9P3BQ3C.pdf
http://www.mdpi.com/2073-8994/2/2/799/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=39190
http://dl.acm.org/citation.cfm?id=120812
http://link.springer.com/chapter/10.1007/3-540-56689-9_54

REFERENCES 189

Heidelberg, 1994, pp. 531–547. [Online]. Available: http://link.springer.com/
chapter/10.1007/3-540-58152-9_29

[45] E. Kindler, “A Compositional Partial Order Semantics for Petri Net Components,”
in Application and Theory of Petri Nets, P. Azéma and G. Balbo, Eds. Toulouse,
France: Springer Berlin Heidelberg, 1997, pp. 235–252.

[46] P. Baldan, F. Bonchi, F. Gadducci, and G. Valentina, “Modular Encoding
of Synchronous and Asynchronous Interactions Using Open Petri Nets,”
Science of Computer Programming, vol. In Press, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2014.11.019

[47] S. Graf and B. Steffen, “Compositional Minimization of Finite State Systems,”
in Computer Aided Verification. Springer-Verlag, 1990, pp. 186–196. [Online].
Available: http://link.springer.com/chapter/10.1007/BFb0023732

[48] S. C. Cheung and J. Kramer, “Enhancing Compositional Reachability
Analysis with Context Constraints,” ACM SIGSOFT Software Engineering
Notes, vol. 18, no. 5, pp. 115–125, 1993. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=167071

[49] J.-P. Krimm and L. Mounier, “Compositional State Space Generation From Lotos
Programs,” in Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, 1997, pp. 239–258.

[50] W. J. Lee, S. D. Cha, Y. R. Kwon, and H. N. Kim, “A Slicing-Based
Approach to Enhance Petri net Reachability Analysis,” Journal of Research
Practices and Information Technology, vol. 32, no. 2, pp. 131–143, 2000.
[Online]. Available: http://pdf.aminer.org/000/564/122/scalable_compositional_
reachability_analysis_of_real_time_concurrent_systems.pdf

[51] A. Rakow, “Slicing Petri Nets with an Application to Workflow Verification,”
in SOFSEM 2008: Theory and Practice of Computer Science, V. Geffert,
J. Karhumäki, A. Bertoni, B. Preneel, Pavol Návrat, and M. Bieliková, Eds. Novy
Smokovec, Slovakia: Springer Berlin Heidelberg, 2008, pp. 436–447. [Online].
Available: http://link.springer.com/chapter/10.1007/978-3-540-77566-9_38

[52] M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal, “Dynamic
Slicing Techniques for Petri Nets,” Electronic Notes in Theoretical Computer
Science, vol. 223, pp. 153–165, Dec. 2008. [Online]. Available: http:
//linkinghub.elsevier.com/retrieve/pii/S1571066108005008

[53] S. Christensen and L. Petrucci, “Modular Analysis of Petri Nets,” The
Computer Journal, vol. 43, no. 3, pp. 224–242, 2000. [Online]. Available:
http://comjnl.oxfordjournals.org/content/43/3/224.abstract

http://link.springer.com/chapter/10.1007/3-540-58152-9_29
http://link.springer.com/chapter/10.1007/3-540-58152-9_29
http://dx.doi.org/10.1016/j.scico.2014.11.019
http://link.springer.com/chapter/10.1007/BFb0023732
http://dl.acm.org/citation.cfm?id=167071
http://dl.acm.org/citation.cfm?id=167071
http://pdf.aminer.org/000/564/122/scalable_compositional_reachability_analysis_of_real_time_concurrent_systems.pdf
http://pdf.aminer.org/000/564/122/scalable_compositional_reachability_analysis_of_real_time_concurrent_systems.pdf
http://link.springer.com/chapter/10.1007/978-3-540-77566-9_38
http://linkinghub.elsevier.com/retrieve/pii/S1571066108005008
http://linkinghub.elsevier.com/retrieve/pii/S1571066108005008
http://comjnl.oxfordjournals.org/content/43/3/224.abstract

190 REFERENCES

[54] M. Notomi and T. Murata, “Hierarchical Reachability Graph of Bounded Petri Nets
for Concurrent-Software Analysis,” IEEE Transactions on Software Engineering,
vol. 20, no. 5, pp. 325–336, 1994.

[55] P. Buchholz and P. Kemper, “Hierarchical Reachability Graph Generation for Petri
Nets,” Formal Methods in System Design, vol. 21, pp. 281–315, 2002.

[56] A. Mazurkiewicz, “Compositional Semantics of Pure Place/Transition Systems,”
in Advances in Petri Nets, vol. 340. Springer-Verlag, 1988, pp. 307–330.

[57] P. Sobociński, “Representations of Petri net Interactions,” in 21st International
Conference on Concurrency Theory, F. Laroussinie and P. Gastin, Eds.
Springer Berlin Heidelberg, 2010, pp. 554–568. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-642-15375-4_38

[58] R. Bruni, H. Melgratti, U. Montanari, and P. Sobociński, “Connector algebras for
C/E and P/T nets’ Interactions,” Logical Methods in Computer Science, vol. 9,
no. 3, Sep. 2013. [Online]. Available: http://eprints.soton.ac.uk/339065/http:
//www.lmcs-online.org/ojs/viewarticle.php?id=1189

[59] E. Best, R. Devillers, and J. G. Hall, “The Box Calculus: a New Causal Algebra
with Multi-label Communication,” Advances in Petri Nets, pp. 21–69, 1992.
[Online]. Available: http://link.springer.com/chapter/10.1007/3-540-55610-9_
167http://www.springerlink.com/index/p8g077k2p883013r.pdf

[60] M. Koutny and E. Best, “Operational and Denotational Semantics for the Box
Algebra,” Theoretical Computer Science, vol. 211, no. 1-2, pp. 1–83, 1999.

[61] E. Best, M. Koutny, and U. Hildesheim, “A Refined View of the Box Algebra,” in
Application and Theory of Petri Nets. Springer-Verlag, 1995, pp. 1–20.

[62] W. Reisig, “Simple Composition of Nets,” in Application and Theory of Petri Nets.
Springer Berlin Heidelberg, 2009, pp. 23–42.

[63] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel, “Compositional Modeling
of Reactive Systems Using Open Nets,” in Concurrency Theory, vol. 2154.
Springer-Verlag Berlin Heidelberg, 2001, pp. 502–518. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44685-0_34

[64] L. Priese and H. Wimmel, “A Uniform Approach to True-concurrency and Inter-
leaving Semantics for Petri Nets,” Theoretical Computer Science, vol. 206, pp.
219–256, 1998.

[65] P. Katis, N. Sabadini, and R. F. C. Walters, “Span (Graph): A Categorical Algebra
of Transition Systems,” in Algebraic Methodology and Software Technology,
M. Johnson, Ed. Sydney, Australia: Springer Berlin Heidelberg, 1997, pp. 307–
321. [Online]. Available: http://link.springer.com/chapter/10.1007/BFb0000479

http://link.springer.com/chapter/10.1007/978-3-642-15375-4_38
http://link.springer.com/chapter/10.1007/978-3-642-15375-4_38
http://dx.doi.org/10.1007/3-540-44685-0_34
http://link.springer.com/chapter/10.1007/BFb0000479

REFERENCES 191

[66] ——, “Representing Place/Transition Nets in Span(Graph),” in Algebraic
Methodology and Software Technology, M. Johnson, Ed. Springer Berlin
Heidelberg, 1997, pp. 322–336. [Online]. Available: http://link.springer.com/
chapter/10.1007/BFb0000480

[67] R. Bruni, H. Melgratti, and U. Montanari, “A Connector Algebra for
P/T Nets Interactions,” in CONCUR 2011âĂŞConcurrency Theory, J.-
P. Katoen and B. König, Eds., no. Prin 2008. Aachen, Germany:
Springer Berlin Heidelberg, 2011, pp. 312–326. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-642-23217-6_21

[68] J. Esparza and C. Schröter, “Net Reductions for LTL Model-checking,” in
Correct Hardware Design and Verification Methods. Springer Berlin Heidelberg,
2001, pp. 310–324. [Online]. Available: http://www.springerlink.com/index/
26vhetvhhg2drtkh.pdf

[69] G. Berthelot, “Checking Properties of Nets using Transformations,” in Advances
in Petri Nets. Springer Berlin Heidelberg, 1985, pp. 19–40.

[70] S. Haddad and J.-F. Pradat-Peyre, “New Efficient Petri Nets Reductions for Paral-
lel Programs Verification,” Parallel Processing Letters, vol. 16, no. 1, pp. 101–116,
2006.

[71] A. Rakow, “Decompositional Petri Net Reductions,” in Integrated Formal Meth-
ods, M. Leuschel and H. Wehrheim, Eds. Düsseldorf, Germany: Springer Berlin
Heidelberg, 2009, pp. 352–366.

[72] E.-R. Olderog, “Strong Bisimilarity on Nets: A New Concept for Comparing Net
Semantics,” in Linear Time, Branching Time and Partial Order in Logics and Mod-
els for Concurrency. Springer Berlin Heidelberg, 1989, pp. 549–573.

[73] C. Autant, Z. Belmesk, and P. Schnoebelen, “Strong Bisimilarity on Nets Revis-
ited,” in Parallel Architectures and Languages Europe. Springer Berlin Heidel-
berg, 1991, pp. 717–734.

[74] C. Autant, W. Pfister, and P. Schnoebelen, “Place Bisimulations for the Reduction
of Labeled Petri nets with Silent Moves,” in International Conference on Comput-
ing and Information, 1994, pp. 230–246.

[75] P. Schnoebelen and N. Sidorova, “Bisimulation and the Reduction of Petri Nets,”
in Application and Theory of Petri Nets, vol. 1825, 2000, pp. 409–423. [Online].
Available: http://www.springerlink.com/content/y1m5wx4btvxnv20d/

[76] M. Nielsen, G. Plotkin, and G. Winskel, “Petri Nets, Event Structures
and Domains, Part I,” Theoretical Computer Science, vol. 13, no. 1, pp.
85–108, Jan. 1981. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
0304397581901122

http://link.springer.com/chapter/10.1007/BFb0000480
http://link.springer.com/chapter/10.1007/BFb0000480
http://link.springer.com/chapter/10.1007/978-3-642-23217-6_21
http://link.springer.com/chapter/10.1007/978-3-642-23217-6_21
http://www.springerlink.com/index/26vhetvhhg2drtkh.pdf
http://www.springerlink.com/index/26vhetvhhg2drtkh.pdf
http://www.springerlink.com/content/y1m5wx4btvxnv20d/
http://linkinghub.elsevier.com/retrieve/pii/0304397581901122
http://linkinghub.elsevier.com/retrieve/pii/0304397581901122

192 REFERENCES

[77] J. Engelfriet, “Branching Processes of Petri nets,” Acta Informatica, vol. 28,
no. 6, pp. 575–591, 1991. [Online]. Available: http://link.springer.com/article/10.
1007/BF01463946

[78] K. L. McMillan, “Using Unfoldings to Avoid the State Explosion Problem in
the Verification of Asynchronous Circuits,” in Computer Aided Verification,
G. von Bochmann and D. K. Probst, Eds. Springer Berlin Heidelberg, 1992,
pp. 164–177. [Online]. Available: http://link.springer.com/content/pdf/10.1007/
3-540-56496-9_14.pdf

[79] J. Esparza, S. Römer, and W. Vogler, “An Improvement of McMillan’s
Unfolding Algorithm,” LNCS - Tools and Algorithms for the Construction
and Analysis of Systems, vol. 1055, pp. 87–106, 1996. [Online]. Available:
http://www.springerlink.com/index/77863336g3776g88.pdf

[80] K. Heljanko, “Minimizing Finite Complete Prefixes,” in Workshop on Concurrency,
Specification & Programming, P. Starke, H.-S. Nguyen, L. Czaja, and H.-D.
Burkhard, Eds. Warsaw, Poland: Warsaw University, 1999, pp. 83–95. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.3131

[81] V. Khomenko and M. Koutny, “Towards an Efficient Algorithm for Unfolding
Petri Nets,” in CONCUR 2001 âĂŤ Concurrency Theory, K. G. Larsen and
M. Nielsen, Eds. Springer Berlin Heidelberg, 2001, pp. 366–380. [Online].
Available: http://link.springer.com/chapter/10.1007/3-540-44685-0_25

[82] K. Heljanko, V. Khomenko, and M. Koutny, “Parallelisation of The Petri
net Unfolding Algorithm,” in Tools and Algorithms for the Construction
and Analysis of Systems, J.-P. Katoen and P. Stevens, Eds. Grenoble,
France: Springer Berlin Heidelberg, 2002, pp. 371–385. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-46002-0_26

[83] B. Bonet, P. Haslum, S. Hickmott, and S. Thiébaux, “Directed Unfolding of Petri
Nets,” in Transactions on Petri Nets and Other Models of Concurrency, K. Jensen,
W. M. P. Aalst, and J. Billington, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008, pp. 172–198.

[84] V. Khomenko, M. Koutny, and W. Vogler, “Canonical Prefixes of Petri net
Unfoldings,” Acta Informatica, vol. 40, no. 2, pp. 95–118, Oct. 2003. [Online].
Available: http://link.springer.com/10.1007/s00236-003-0122-y

[85] C. Neumair, J. Desel, and G. Junhás, “Finite Unfoldings of Unbounded Petri Nets,”
in Application and Theory of Petri Nets. Springer Berlin Heidelberg, 2004, pp.
157–176.

[86] J. Esparza and C. Schröter, “Unfolding Based Algorithms for the Reachability
Problem,” Fundamenta Informaticae, vol. 47, no. 3-4, pp. 231–245, 2001.

http://link.springer.com/article/10.1007/BF01463946
http://link.springer.com/article/10.1007/BF01463946
http://link.springer.com/content/pdf/10.1007/3-540-56496-9_14.pdf
http://link.springer.com/content/pdf/10.1007/3-540-56496-9_14.pdf
http://www.springerlink.com/index/77863336g3776g88.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.3131
http://link.springer.com/chapter/10.1007/3-540-44685-0_25
http://link.springer.com/chapter/10.1007/3-540-46002-0_26
http://link.springer.com/10.1007/s00236-003-0122-y

REFERENCES 193

[Online]. Available: http://iospress.metapress.com/index/wc92whqm04tx5q0u.
pdf

[87] K. Heljanko, “Using Logic Programs with Stable Model Semantics to Solve
Deadlock and Reachability Problems for 1-Safe Petri Nets,” Fundamenta
Informaticae, vol. 37, pp. 247–268, 1999. [Online]. Available: http:
//iospress.metapress.com/index/652W44V7H34816N0.pdf

[88] K. Heljanko and J. Esparza, “A New Unfolding Approach to LTL Model Check-
ing,” in International Colloquium On Automata, Languages and Programming1.
Springer Berlin Heidelberg, 2000, pp. 475–486.

[89] F. Wallner, “Model Checking LTL Using Net Unfoldings,” in Computer Aided
Verification, A. J. Hu and M. Y. Vardi, Eds., no. 342. Springer Berlin Heidelberg,
1998, pp. 207–218. [Online]. Available: http://link.springer.com/chapter/10.1007/
BFb0028746

[90] J. Esparza and K. Heljanko, Unfoldings: A Partial-Order Approach to Model
Checking, 2008.

[91] J. Esparza, “A False History of True Concurrency: from Petri to Tools,” Model
Checking Software, 2010. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-642-16164-3_13

[92] V. Khomenko, A. Kondratyev, M. Koutny, and W. Vogler, “Merged Processes:
a New Condensed Representation of Petri net Behaviour,” Acta Informatica,
vol. 43, no. 5, pp. 307–330, Oct. 2006. [Online]. Available: http:
//link.springer.com/10.1007/s00236-006-0023-y

[93] ——, “Merged Processes — A New Condensed Representation of Petri Net Be-
haviour,” in CONCUR, M. Abadi and L. de Alfaro, Eds. Springer Berlin Heidel-
berg, 2005, pp. 338–352.

[94] V. Khomenko and A. Mokhov, “An Algorithm for Direct Construction of
Complete Merged Processes,” in 32nd International Conference, PETRI
NETS, L. Petrucci and L. M. Kristensen, Eds. Springer Berlin Heidelberg,
2011, pp. 89–108. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-21834-7_6

[95] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Sym-
bolic Model Checking: 10ˆ20 States and Beyond,” Information and
Computation, vol. 98, no. 2, pp. 142–170, Jun. 1992. [Online].
Available: http://link.springer.com/chapter/10.1007/978-1-4615-3190-6_3http:
//linkinghub.elsevier.com/retrieve/pii/089054019290017A

http://iospress.metapress.com/index/wc92whqm04tx5q0u.pdf
http://iospress.metapress.com/index/wc92whqm04tx5q0u.pdf
http://iospress.metapress.com/index/652W44V7H34816N0.pdf
http://iospress.metapress.com/index/652W44V7H34816N0.pdf
http://link.springer.com/chapter/10.1007/BFb0028746
http://link.springer.com/chapter/10.1007/BFb0028746
http://link.springer.com/chapter/10.1007/978-3-642-16164-3_13
http://link.springer.com/chapter/10.1007/978-3-642-16164-3_13
http://link.springer.com/10.1007/s00236-006-0023-y
http://link.springer.com/10.1007/s00236-006-0023-y
http://link.springer.com/chapter/10.1007/978-3-642-21834-7_6
http://link.springer.com/chapter/10.1007/978-3-642-21834-7_6

194 REFERENCES

[96] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Synchronous
Sequential Machines Based on Symbolic Execution,” in International Workshop
on Automatic Verification Methods for Finite State Systems. Springer-Verlag,
1990, pp. 365–373. [Online]. Available: http://link.springer.com/chapter/10.1007/
3-540-52148-8_30

[97] G. H. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell System
Technical Journal, vol. 34, pp. 1045–1079, 1955. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1955.tb03788.x/abstract

[98] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, “Automatic Verification of
Sequential Circuits Using Temporal Logic,” pp. 1035–1044, 1986.

[99] R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,”
Computers, IEEE Transactions on, vol. C-35, no. 8, pp. 677–691, 1986. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1676819

[100] H. R. Andersen, “An Introduction to Binary Decision Diagrams,” Tech-
nical University of Denmark, Tech. Rep. October 1997, 1997. [Online].
Available: http://www-sst.informatik.tu-cottbus.de/~db/doc/People/Anderson/An_
Introduction_to_Binary_Decision_Diagrams.bdd.gz.ps

[101] R. Drechsler and D. Sieling, “Binary Decision Diagrams in Theory and Practice,”
International Journal on Software Tools for Technology Transfer, vol. 3, no. 2,
pp. 112–136, 2001. [Online]. Available: http://link.springer.com/article/10.1007/
s100090100056

[102] E. Pastor, O. Roig, J. Cortadella, and R. Badia, “Petri Net Analysis
Using Boolean Manipulation,” in Application and Theory of Petri Nets.
Springer Berlin Heidelberg, 1994, pp. 416–435. [Online]. Available: http:
//link.springer.com/chapter/10.1007/3-540-58152-9_23

[103] E. Pastor and J. Cortadella, “Efficient Encoding Schemes for Symbolic Analysis
of Petri nets,” in Design, Automation and Test in Europe, 1998, pp. 790–795.

[104] E. Pastor, J. Cortadella, and M. A. Peña, “Structural Methods Applied to the
Symbolic Analysis of Petri Nets,” in International Conference on Application and
Theory of Petri Nets, 1999, pp. 26–45.

[105] A. Semenov and A. Yakovlev, “Combining Partial Orders and Symbolic Traversal
for Efficient Verification of Asynchronous Circuits,” in Design Automation Confer-
ence, 1995, pp. 567–573.

[106] A. Miner and G. Ciardo, “Efficient Reachability Set Generation and
Storage Using Decision Diagrams,” in Application and Theory of Petri
Nets. Springer Berlin Heidelberg, 1999, pp. 6–25. [Online]. Available:
http://www.springerlink.com/index/M9F5N8017DX8XULE.pdf

http://link.springer.com/chapter/10.1007/3-540-52148-8_30
http://link.springer.com/chapter/10.1007/3-540-52148-8_30
http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1955.tb03788.x/abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1676819
http://www-sst.informatik.tu-cottbus.de/~db/doc/People/Anderson/An_Introduction_to_Binary_Decision_Diagrams.bdd.gz.ps
http://www-sst.informatik.tu-cottbus.de/~db/doc/People/Anderson/An_Introduction_to_Binary_Decision_Diagrams.bdd.gz.ps
http://link.springer.com/article/10.1007/s100090100056
http://link.springer.com/article/10.1007/s100090100056
http://link.springer.com/chapter/10.1007/3-540-58152-9_23
http://link.springer.com/chapter/10.1007/3-540-58152-9_23
http://www.springerlink.com/index/M9F5N8017DX8XULE.pdf

REFERENCES 195

[107] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton, “Algorithms for Discrete Func-
tion Manipulation,” in IEEE International Conference on Computer-Aided Design.
IEEE, 1990, pp. 92–95.

[108] G. Ciardo, G. Luettgen, and R. Siminiceanu, “Efficient Symbolic State-Space
Construction for Asynchronous Systems,” in Application and Theory of Petri
Nets. Springer Berlin Heidelberg, 2000, pp. 103–122. [Online]. Available:
http://hdl.handle.net/2060/20000011947

[109] K. Strehl and L. Thiele, “Interval Diagram Techniques for Symbolic Model Check-
ing of Petri nets,” in Design, Automation and Test in Europe. IEEE, 1999, pp.
756–757.

[110] A. Tovchigrechko, “Model Checking using Interval Decision Diagrams,” PhD, BTU
Cottbus, 2008.

[111] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral Transforms
for Large Boolean Functions with Applications to Technology Mapping,” in
Design Automation, 1993. 30th Conference on, 1993, pp. 54–60. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1600192

[112] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic Decision Diagrams and their
Applications,” Proceedings of 1993 International Conference on CoCmputer
Aided Design (ICCAD), pp. 188–191, 1993. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=580054

[113] M. Fujita, P. McGeer, and J.-Y. Yang, “Multi-Terminal Binary Decision
Diagrams: An Efficient Data Structure for Matrix Representation,” Formal
Methods in System Design, vol. 169, pp. 149–169, 1997. [Online]. Available:
http://link.springer.com/article/10.1023/A:1008647823331

[114] F. Wang and M. Kwiatkowska, “An MTBDD-Based Implementation of
Forward Reachability for Probabilistic Timed Automata,” in Automated
Technology for Verification and Analysis, D. A. Peled and Y.-K. Tsay,
Eds. Springer Berlin Heidelberg, 2005, pp. 385–399. [Online]. Available:
http://link.springer.com/chapter/10.1007/11562948_29

[115] F. Ciesinski, C. Baier, M. Größ er, and D. Parker, “Generating compact
MTBDD-representations from probmela specifications,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), K. Havelund, R. Majumdar, and
J. Palsberg, Eds., vol. 5156 LNCS. Los Angeles, CA, USA: Springer
Berlin Heidelberg, 2008, pp. 60–76. [Online]. Available: http://link.springer.com/
chapter/10.1007/978-3-540-85114-1_7

http://hdl.handle.net/2060/20000011947
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1600192
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=580054
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=580054
http://link.springer.com/article/10.1023/A:1008647823331
http://link.springer.com/chapter/10.1007/11562948_29
http://link.springer.com/chapter/10.1007/978-3-540-85114-1_7
http://link.springer.com/chapter/10.1007/978-3-540-85114-1_7

196 REFERENCES

[116] B. Bollig and I. Wegener, “Improving the Variable Ordering of OBDDs Is
NP-complete,” IEEE Transactions on Computers, vol. 45, no. 9, pp. 993–1002,
1996. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=537122

[117] H. Fujii, G. Ootomo, and C. Hori, “Interleaving Based Variable Ordering
Methods for Ordered Binary Decision Diagrams,” in International Conference on
Computer Aided Design. Santa Clara, CA, USA: IEEE Comput. Soc. Press,
1993, pp. 38–41. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=580028

[118] E. Felt, G. York, R. Brayton, and A. Sangiovanni-Vincentelli, “Dynamic
Variable Reordering for BDD Minimization,” in Design Automation Conference.
Hamburg, Germany: IEEE Comput. Soc, 1993, pp. 130–135. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=410627

[119] R. Ebendt, W. Günther, and R. Drechsler, “Combining Ordered Best-First Search
With Branch and Bound for Exact BDD Minimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 10,
pp. 1515–1529, 2005. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1512370

[120] S. J. Friedman and K. J. Supowit, “Finding the Optimal Variable Ordering for
Binary Decision Diagrams,” in Proceedings of the 24th ACM/IEEE Design Au-
tomation Conference, A. O’Neill and D. Thomas, Eds. ACM New York, 1987, pp.
348–356.

[121] R. Drechsler, N. Drechsler, and W. Gunther, “Fast Exact Minimization of
BDDs,” in Design and Automation Conference, M. J. Irwin, Ed. San
Francisco, CA, USA: ACM New York, 1998, pp. 200–205. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=724466

[122] R. Ebendt, G. Fey, and R. Drechsler, Advanced BDD Optimization. Springer,
2005.

[123] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking without
BDDs,” in Tools and Algorithms for Construction and Analysis of Systems,
no. 97. Springer Berlin Heidelberg, 1999, pp. 193–207. [Online]. Available:
http://www.springerlink.com/index/VF286K9MQ0JP05DH.pdf

[124] S. Ogata, T. Tsuchiya, and T. Kikuno, “SAT-Based Verification of Safe Petri Nets,”
in Automated Technology for Verification and Analysis. Springer-Verlag Berlin
Heidelberg, 2004, pp. 79–92.

[125] K. Heljanko, “Bounded Reachability Checking with Process Semantics,” in Inter-
national Conference on Concurrency Theory. Springer-Verlag Berlin Heidelberg,
2001, pp. 218–232.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=537122
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=537122
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=580028
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=580028
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=410627
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1512370
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1512370
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=724466
http://www.springerlink.com/index/VF286K9MQ0JP05DH.pdf

REFERENCES 197

[126] E. Best and R. Devillers, “Sequential and Concurrent Behaviour in Petri net The-
ory,” pp. 87–136, 1987.

[127] S. Melzer and S. Römer, “Deadlock Checking Using Net Unfoldings,” in
Computer Aided Verification, vol. 1254. Springer Berlin Heidelberg, 1997, pp.
352 – 363. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.52.3517

[128] V. Khomenko and M. Koutny, “LP Deadlock Checking Us-
ing Partial Order Dependencies,” in CONCUR. Springer-Verlag
Berlin Heidelberg, 2000, pp. 410–425. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.8272&rep=
rep1&type=pdfhttp://link.springer.com/chapter/10.1007/3-540-44618-4_4

[129] ——, “Verification of bounded Petri nets using Integer Programming,” Formal
Methods in System Design, vol. 30, no. 2, pp. 143–176, 2007.

[130] J. Esparza and S. Melzer, “Verification of Safety Properties Using Integer Pro-
gramming: Beyond the State Equation,” Formal Methods in System Design,
vol. 16, no. 2, pp. 159–189, 2000.

[131] J. Desel, “Basic Linear Algebraic Techniques for Place/Transition Nets,” in Lec-
tures on Petri Nets I: Basic Models. Springer Berlin Heidelberg, 1998, pp. 257–
308.

[132] M. Silva, E. Terue, and J. M. Colom, “Linear Algebraic and Linear Programming
Techniques for the Analysis of Place/Transition net Systems,” Lectures on
Petri Nets I: Basic Models, vol. 1491, pp. 309–373, 1998. [Online]. Available:
papers2://publication/uuid/48B69E34-629D-4ACC-864D-FF15690206B0

[133] J. Desel and W. Reisig, “Place/Transition Petri Nets,” in Lectures on Petri Nets I:
Basic Models, 1988, vol. 1491, pp. 122–173.

[134] P. Thiagarajan, “Elementary Net Systems,” Petri Nets: Central Models
and Their Properties, vol. 254, pp. 26–59, 1987. [Online]. Available:
http://link.springer.com/chapter/10.1007/BFb0046835

[135] J. L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3, pp. 223–252,
Sep. 1977. [Online]. Available: http://portal.acm.org/citation.cfm?doid=356698.
356702

[136] J. Engelfriet and G. Rozenberg, “Elementary Net Systems,” in Lectures on Petri
Nets I: Basic Models, ser. Lecture Notes in Computer Science, G. Rozenberg
and W. Reisig, Eds. Springer Berlin Heidelberg, 1998, vol. 1491, pp. 12–121.
[Online]. Available: http://link.springer.com/10.1007/3-540-65306-6

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3517
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3517
papers2://publication/uuid/48B69E34-629D-4ACC-864D-FF15690206B0
http://link.springer.com/chapter/10.1007/BFb0046835
http://portal.acm.org/citation.cfm?doid=356698.356702
http://portal.acm.org/citation.cfm?doid=356698.356702
http://link.springer.com/10.1007/3-540-65306-6

198 REFERENCES

[137] P. Sobociński, “Nets, Relations and Linking Diagrams,” in Algebra and Coalgebra
in Computer Science, R. Heckel and S. Milius, Eds. Springer Berlin Heidelberg,
2013, pp. 282–298. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-40206-7_21

[138] L. Bernardinello and F. De Cindio, “A Survey of Basic Net Models and Modular
Net Classes,” Advances in Petri Nets 1992, vol. 609, pp. 304–351, 1992.
[Online]. Available: http://link.springer.com/chapter/10.1007/3-540-55610-9_177

[139] S. Christensen and N. D. Hansen, “Coloured Petri Nets Extended With Place
Capacities, Test Arcs and Inhibitor Arcs,” in Application and Theory of Petri Nets,
M. A. Marsan, Ed., no. 5. Springer Berlin Heidelberg, 1993, pp. 186–205.
[Online]. Available: http://link.springer.com/chapter/10.1007/3-540-56863-8_47

[140] P. Selinger, “A survey of graphical languages for monoidal categories,”
New Structures for Physics, pp. 1–63, Aug. 2009. [Online]. Available:
http://arxiv.org/abs/0908.3347

[141] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., ser. Graduate
Texts in Mathematics. Springer Verlag, 1998.

[142] S. Lack, “Composing PROPs,” Theory and Applications of Categories, vol. 13,
no. 9, pp. 147–163, 2004.

[143] J. C. Corbett, “Evaluating Deadlock Detection Methods for Concurrent Software,”
IEEE Transactions on Software Engineering, vol. 22, no. 3, pp. 161–180, Mar.
1996. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=489078

[144] P. Sobociński and O. Stephens, “A Programming Language for Spatial Distribu-
tion of Net Systems,” in Application and Theory of Petri Nets and Concurrency,
G. Ciardo and E. Kindler, Eds. Springer International Publishing, 2014, pp.
150–169.

[145] J. Rathke, P. Sobociński, and O. Stephens, “Decomposing Petri nets,”
arXiv:1304.3121, 2013. [Online]. Available: http://arxiv.org/abs/1304.3121

[146] P. A. Abdulla, S. P. Iyer, and A. Nylén, “SAT-Solving the Coverability
Problem for Petri Nets,” Formal Methods in System Design, vol. 24, no. 1,
pp. 25–43, Jan. 2004. [Online]. Available: http://link.springer.com/10.1023/B:
FORM.0000004786.30007.f8

[147] T. Coquand, “Pattern Matching with Dependent Types,” in Workshop on Types for
Proofs and Programs, 1992, pp. 66–80.

[148] A. Abel and T. Altenkirch, “A Predicative Analysis of Structural Recursion,”
Journal of Functional Programming, vol. 12, no. 01, Jan. 2002. [Online].
Available: http://www.journals.cambridge.org/abstract_S0956796801004191

http://link.springer.com/chapter/10.1007/978-3-642-40206-7_21
http://link.springer.com/chapter/10.1007/978-3-642-40206-7_21
http://link.springer.com/chapter/10.1007/3-540-55610-9_177
http://link.springer.com/chapter/10.1007/3-540-56863-8_47
http://arxiv.org/abs/0908.3347
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=489078
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=489078
http://arxiv.org/abs/1304.3121
http://link.springer.com/10.1023/B:FORM.0000004786.30007.f8
http://link.springer.com/10.1023/B:FORM.0000004786.30007.f8
http://www.journals.cambridge.org/abstract_S0956796801004191

REFERENCES 199

[149] R. Milner, “A Theory of Type Polymorphism in Programming,” Journal of
Computer and System Sciences, vol. 17, no. 3, pp. 348–375, 1978. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0022000078900144

[150] R. Hinze, “Theoretical Pearl: Church Numerals, Twice!” Journal of Functional
Programming, vol. 15, no. 1, pp. 1–13, Jan. 2005. [Online]. Available:
http://www.journals.cambridge.org/abstract_S0956796804005313

[151] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints,”
in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of Programming Languages. ACM New York, 1977, pp. 238–252. [Online].
Available: http://dl.acm.org/citation.cfm?id=512973

[152] B. Pierce, Types and Programming Languages, 1st ed. The MIT Press, 2002.

[153] P. Katis, N. Sabadini, and R. F. C. Walters, “Compositional Minimization in
Span(Graph): Some Examples,” in Proceedings of the Workshop of the COMETA
Project on Computational Metamodels, 2004, pp. 181–197.

[154] S. Peyton Jones, “The Haskell 98 language and libraries: The revised report,”
Journal of Functional Programming, vol. 13, no. 1, pp. 0–255, Jan 2003.

[155] E. F. Moore, “Gedanken-experiments on Sequential Machines,” Automata stud-
ies, vol. 34, pp. 129–153, 1956.

[156] J. E. Hopcroft, “An N Log N Algorithm for Minimizing States in a Finite Automa-
ton,” in International Symposium on The Theory of Machines and Computations.
AP, 1971, pp. 189–196.

[157] J. a. Brzozowski, “Canonical Regular Expressions and Minimal State Graphs
for Definite Events,” in Mathematical Theory of Automata, 1962, pp. 529—-561.
[Online]. Available: http://www.diku.dk/hjemmesider/ansatte/henglein/papers/
brzozowski1962.pdf

[158] P. Sobociński and O. Stephens, “Penrose: Putting Compositionality to Work
for Petri Net Reachability,” in Algebra and Coalgebra in Computer Science,
2013, pp. 346–352. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-40206-7_29

[159] H. Björklund and W. Martens, “The Tractability Frontier for NFA Minimization,”
Journal of Computer and System Sciences, vol. 78, no. 1, pp. 198–
210, Jan. 2011. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0022000011000456

http://www.sciencedirect.com/science/article/pii/0022000078900144
http://www.journals.cambridge.org/abstract_S0956796804005313
http://dl.acm.org/citation.cfm?id=512973
http://www.diku.dk/hjemmesider/ansatte/henglein/papers/brzozowski1962.pdf
http://www.diku.dk/hjemmesider/ansatte/henglein/papers/brzozowski1962.pdf
http://link.springer.com/chapter/10.1007/978-3-642-40206-7_29
http://link.springer.com/chapter/10.1007/978-3-642-40206-7_29
http://linkinghub.elsevier.com/retrieve/pii/S0022000011000456
http://linkinghub.elsevier.com/retrieve/pii/S0022000011000456

200 REFERENCES

[160] G. Gramlich and G. Schnitger, “Minimizing NFAs and Regular Expressions,”
Journal of Computer and System Sciences, vol. 73, no. 6, pp. 908–
923, Sep. 2007. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0022000006001735

[161] R. Mayr and L. Clemente, “Advanced Automata Minimization,” in Symposium on
Principles of Programming Languages. Rome, Italy: ACM, 2013, pp. 63–74.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2429069.2429079

[162] A. Arnold, A. Dicky, and M. Nivat, “A Note about Minimal Non-Deterministic Au-
tomata,” Bulletin of the EATCS, vol. 47, pp. 166–169, 1992.

[163] F. Bonchi and D. Pous, “Checking NFA Equivalence with Bisimulations up to Con-
gruence,” in Symposium on Principles of Programming Languages. Rome, Italy:
ACM, 2013, pp. 457–468.

[164] K. Schmidt, “LoLA: A Low Level Analyser,” in Application and Theory of Petri
Nets 2000, ser. Lecture Notes in Computer Science, M. Nielsen and D. Simpson,
Eds., vol. 1825. Berlin, Heidelberg: Springer Berlin Heidelberg, Jun. 2000, pp.
465–474.

[165] C. Rodríguez and S. Schwoon, “Cunf: A Tool for Unfolding and Verifying Petri
Nets with Read Arcs,” in Automated Technology for Verification and Analysis,
2013, pp. 492–495. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-319-02444-8_42

[166] M. Heiner, C. Rohr, and M. Schwarick, “MARCIE - Model checking and reacha-
bility analysis done efficiently,” in Application and Theory of Petri Nets, 2013, pp.
389–399.

[167] F. Kordon, H. Garavel, L.-M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti,
S. Evangelista, A. Hamez, N. Lohmann, E. L. And, E. Paviot-Adet, C. Rodriguez,
C. Rohr, and J. Srba, “HTML results from the Model Checking Contest @ Petri
Nets (2014 edition),” 2014. [Online]. Available: http://mcc.lip6.fr/2014

[168] M. Koutny and V. Khomenko, “Linear Programming Deadlock Checking Using
Partial Order Dependencies,” Newcastle University, Tech. Rep., 2000. [Online].
Available: http://www.ncl.ac.uk/computing/research/publication/160655

[169] K. G. Larsen, “A Context Dependent Equivalence Between Processes,” Theoret-
ical Computer Science, vol. 49, pp. 185–215, 1987.

[170] J. Rathke, P. Sobociński, and O. Stephens, “Compositional Reachability in Petri
Nets,” in Workshop on Reachability Problems, 2014, p. To Appear.

	Declaration of Authorship
	Acknowledgements
	1 Introduction and Related Work
	1.1 Contributions and Thesis Structure
	1.2 Related Work
	1.3 Petri nets and Reachability Checking
	1.4 Partial order reductions
	1.5 Symmetry reduction
	1.6 Compositional approaches
	1.7 Algebras of nets
	1.8 Structural reductions
	1.9 Unfoldings
	1.10 Decision diagrams
	1.11 Linear programming & SAT solving

	2 Preliminaries
	2.1 Notation
	2.2 Labelled Transition Systems
	2.2.1 Isomorphism of LTSs
	2.2.2 2-LTS Compositions

	2.3 Non-deterministic Finite Automata
	2.3.1 Isomorphism of NFAs
	2.3.2 2-NFAs

	2.4 Petri nets
	2.4.1 Labelled transition system semantics of Petri Nets

	2.5 Reachability and Coverability in Petri Nets
	2.5.1 Graphical Notation
	2.5.2 PNB Firing Semantics
	2.5.3 Synchronous composition of PNBs
	2.5.4 Parallel composition of PNBs
	2.5.5 Connectedness, Purity and Simplicity
	2.5.6 2-LTS Semantics of PNBs
	2.5.7 Marked PNBs
	2.5.8 Isomorphism of PNBs
	2.5.9 Read Arcs

	3 Categorical Structure
	3.1 Preliminaries
	3.2 The category of PNBs
	3.3 The category of 2-LTSs
	3.4 Mapping between PNB and 2-LTS
	3.5 Encoding Reachability
	3.5.1 The category of mPNBs
	3.5.2 The category of 2-NFAs
	3.5.3 Mapping between mPNB, 2-NFA, PNB and 2-LTS
	3.5.4 Summary

	4 Benchmarks and a Domain Specific Language for Net Compositions
	4.1 Component-wise Specification of Nets
	4.1.1 k-bit Buffer
	4.1.2 Token Ring
	4.1.3 A Language for Net Composition
	4.1.4 Complete Trees
	4.1.5 Cliques
	4.1.6 Powersets

	4.2 Benchmark Systems
	4.2.1 Overtake Protocol
	4.2.2 Hartstone
	4.2.3 Iterated Choice
	4.2.4 Replicator
	4.2.5 DAC: Divide and Conquer
	4.2.6 Dining Philosophers
	4.2.7 Milner's Cyclic Scheduler
	4.2.8 k-bit Counter

	4.3 Specification Domain Specific Language
	4.3.1 Operational Semantics
	4.3.2 Static Type Checking
	4.3.2.1 Monomorphic Type System

	4.3.3 Net Literal Specification

	4.4 Summary

	5 Compositional Statespace Generation
	5.1 Reachability via Statespace Generation
	5.1.1 Monolithic Statespace Generation
	5.1.2 Compositional Statespace Generation

	5.2 Performance of the Compositional Algorithm
	5.3 Proof of Correctness
	5.4 Conclusion

	6 Efficient Compositional Reachability Checking
	6.1 Boundary protocol and -transitions
	6.1.1 -transitions in 2-NFA semantics
	6.1.2 Reflexivity and Compositionality

	6.2 Memoisation, Associativity and Fixed Points
	6.2.1 Behavioural fixed-points
	6.2.2 Quadratic firing sequence linear reachability check

	6.3 Reassociated Examples
	6.4 Optimised Algorithm
	6.5 Poorly performing Examples
	6.6 Summary

	7 Implementation and Comparison
	7.1 Implementation
	7.1.1 NFA Reduction
	7.1.2 Checking NFA Language Equivalence
	7.1.3 Representing 2-NFA transitions
	7.1.4 Synchronising Composition with MTBDDs

	7.2 Comparison with Related Tools
	7.2.1 Related Tools
	7.2.2 Testing Platform
	7.2.3 Testing Methodology
	7.2.4 Testing Results
	7.2.5 Discussion

	7.3 Summary

	8 Conclusion
	8.1 Future Work

	References

