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Sisukokkuvõte

Antud töö eesmärgiks on leida detailne kirjeldus paljude solitonide üheaegsele
vastastikmõjule. Selleks defineeriti, konstrueeriti ja analüüsiti Kortewegi-de
Vriesi (KdV) tüüpi võrrandite klassi mitmiksolitonilisi lahendeid. Analüüsi
täpsustuseks esitati interaktsioonisolitoni mõiste ja leiti uudne mitmiksolito-
niliste lahendite lahutus. Selle lahutuse kohaselt on mitmiksolitoniline lahend
solitonide ja interaktsioonisolitonide lineaarne superpositsioon. Interaktsiooni-
solitoni mõistet on rakendatud paljude solitonide vastastikmõju interpreteeri-
misel. Vastastikmõju tulemusel tekkivate lainemustrite analüüs vajab selget
geomeetrilist interpretatsiooni. Suvalise arvu solitonide vastastikmõju must-
rite geomeetriliseks kirjelduseks on konstrueeritud uudne algoritmiline mee-
tod. Kõiki uusi mõisteid on demonstreeritud kahe solitoni vastastikmõju juhu
jaoks. On toodud ka vastavaid näiteid kolme ja viie solitoni vastastikmõju
juhtudest. Solitonide vastastikmõju illustreerivate mudelitena on kasutatud
KdV, KdV-Sawada-Kotera ja Kadomtsevi-Petviashvili (KP) võrrandeid. An-
tud töö praktilise rakenduse demonstreerimiseks on vaadeldud laineharjade
pöördülesannet. On tõestatud, et kahe KP solitoni vastastikmõju korral on
sellel pöördülesandel ühene lahend. On uuritud selle lahendi tundlikkust
võimalikele mõõtmisvigadele.

Abstract

The aim of this thesis is to find a detailed description of multi-soliton inter-
actions. For that multi-soliton solutions of KdV type equations are defined,
constructed, and analyzed in phase variables. As a result of the analysis, the
concept of an interaction soliton is introduced and a novel decomposition of
multi-soliton solutions is proposed. According to the decomposition, a multi-
soliton solution is a linear superposition of solitons and interaction solitons.
The concept of the interaction soliton is exploited to interpret multi-soliton
interactions. A geometric representation of interaction patterns is introduced
and an algorithmic way to construct the interaction patterns for an arbitrary
number of solitons is proposed and implemented. All new concepts are il-
lustrated for two-soliton interactions, examples are given also for three- and
five-soliton interactions. For exemplifying models of soliton interactions, the
KdV, KdV-Sawada-Kotera, and KP equations are used. As a practical ap-
plication of these findings, an inverse problem of wave crests is introduced.
The uniqueness of a solution to the inverse problem is proved for the KP two-
soliton interactions. Sensitivity of this solution is analyzed against possible
measurement errors.
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Foreword

In many fields of physics the studies of finite amplitude wave phenomena in
dispersive medium often lead to simplified mathematical models that support
soliton solutions. Various aspects of soliton phenomena have been studied
intensively by many authors over more than recent three decades with pro-
found details. The aim of this thesis is to complement this knowledge by a

detailed description of multi-soliton interactions. This description is needed
for many practical applications, for instance, for solving both the direct and
inverse problems in multi-directional wave phenomenon (e.g. surface waves).

5



List of Publications

Publication I P. Peterson and E. van Groesen. A direct and inverse
problem for wave crests modelled by interactions of two
solitons. Phys. D, 141:316–332, 2000.

Publication II P. Peterson and E. van Groesen. Sensitivity of the in-
verse wave crest problem. Wave Motion, 34:391–399,
2001.

Publication III P. Peterson. Construction and decomposition of multi-
soliton solutions of KdV type equations (submitted).

Publication IV P. Peterson. Construction of multi-soliton interaction
patterns of KdV type equations (submitted).

In this thesis various items from the above publications are referred, for
example, as Figure II.3, Eq. (III.10), Theorem IV.3.1, etc.

My research has been an essential part of all these Publications. I have
performed all the analytical work, computations of plots, and writing of the
Publications. In the following survey on the subject of my thesis, I claim
to express my original thoughts and results from the Publications that are
furnished with several well-known facts, established by others, with references
to relevant sources, to make this thesis self-contained and as easy to follow as
possible.

6



Definitions

KdV type equation ≡ PDE for u = u(x, y, t) that is bi-linearizable into
Hirota bilinear form P (Dx, Dy, Dt) = 0

P = P (µ, ν, ω) ≡ Hirota polynomial of the corresponding KdV type
equation

x ≡ vector of real variables (x, y)T

t ≡ time parameter
ug ≡ g-soliton solution ug(x, t) = Ug(Kx + ωt)
Ug ≡ g-soliton solution in phase variables
Sindex ≡ soliton term with index = κ(α) in the decomposi-

tion Ug =
∑

α∈{0,1}g Sκ(α)

k ≡ wave vector (µ, ν)T

K ≡ wave matrix with transposed wave vectors as row
vectors

µ,ν ≡ columns of the wave matrix K

ϕ ≡ vector of phase variables ϕ = Kx + ωt
∆ij ≡ phase shift parameter ∆ij = − lnAij

Aij ≡ phase shift coefficient Aij = −
P (µi−µj ,νi−νj ,ωi−ωj)
P (µi+µj ,νi+νj ,ωi+ωj)
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1 Introduction

Soliton theory — a theory of nonlinear partial differential equations (nonlinear
PDEs) — started to evolve more than thirty years ago. Today this theory is
deep and mathematically beautiful, but still developing fast, driven by many
applications in various fields of physical science and engineering.

One of the self-evident aims of soliton theory is to provide methods for
solving nonlinear PDEs by analytical means. Indeed, different methods have
been developed during these years. These include, for example, the inverse
scattering theory (IST) [Gardner, Green, Kruskal, and Miura, 1967] that al-
lows to solve the initial-value problems of many (integrable) nonlinear PDEs;
the Hirota n-linear (n > 1) formalism [Hirota, 1980, Grammaticos, Ramani,
and Hietarinta, 1994] according to which whole families of special solutions
can be directly constructed, even for non-integrable equations; etc.

In this thesis the Hirota formalism is exploited. In the framework of Hirota
n-linear formalism, the basic idea of solving nonlinear PDEs is the following:
to find the change of independent variables such that the constitutive equation
for new variables is n-linear (for some positive n). If such a change of variables
exists, constructing various solutions is rather straightforward because finding
solutions to n-linear equations is relatively easy. For simplicity, in the following
n = 2 is assumed. Grammaticos, Ramani, and Hietarinta [1990] classified such,
bi-linearizable, equations into five groups: KdV, mKdV, NLS, SG, and BO
type equations (this list may not be complete). This classification is based on
the different ways how the corresponding equations are bi-linearized. Also the
properties of solutions are expected to be different for members from different
classes of PDEs (see Hietarinta [1987a,b,c, 1988]). In this thesis only KdV
type equations are considered and the notion “KdV type equations” is used
strictly in the sense of Hirota bilinear formalism.

For practical applications as well as for theoretical understanding of soli-
ton phenomenon, a complete analysis of soliton solutions is needed. The key
question in such an analysis is: “How do solitons interact?”. The aim of this
thesis is to clarify this problem for the cases where an arbitrary number of soli-
tons is in simultaneous interaction. Such a problem has not been addressed or
solved before. Although several attempts have been made to describe inter-
actions between up to three solitons [Anker and Freeman, 1978, Moloney and
Hodnett, 1991], no conclusive results have been reported for the general case.

This thesis consists of two parts. The first part (Section 2, except 2.1.3)
is devoted to well-known results on soliton interactions in order to prepare
ground for explaining novel results of this thesis. The second part consists of
an overview of Publications that are listed in Page 6 and appended to this
thesis. The overview contains:

• Two-soliton interactions in one and two space dimensions in Sections 2.1.3
and 3.1, respectively (Publication I).
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• Multi-soliton interactions in two space dimensions in Section 3.2 (Pub-

lication III and Publication IV).

• The inverse problem of wave crests as an application of the above results
in Section 4 (Publication I and Publication II).

In Section 5 possible extensions to this study are discussed. Summary of the
results is given in Section 6.

2 Solitons and their interactions

Soliton phenomena exist on two conditions. First, there must exist stable
solitary waves that travel with constant configurations (shape, speed, etc.) as
long as they do not meet any external obstacles. Second, if a solitary wave
meets another of its kind, they interact, but without destroying each other’s
identities (elastic interaction). Such solitary waves are called solitons.

The soliton phenomenon is essentially a nonlinear phenomenon. First,
solitons can exist due to a delicate equilibrium between (linear) scattering
(the dispersion phenomenon) and (nonlinear) convective (the shock wave phe-
nomenon) actions. And second, the world path (the trajectory in space-time
space) of a soliton suffers phase shifts caused by interactions with other soli-
tons. The values of the phase shifts depend on the amplitudes of interacting
solitons.

Soliton phenomena can certainly be observed in Nature. In order to take
advantage of the existence of solitons for practical applications, it is important
to learn more about the interaction process between solitons. The question
“What actually happens during the interaction process of solitons?” is fun-
damental also from a theoretical point of view. For example, one of the most
robust tests for a mathematical model to be (non-)integrable, is to study in-
teractions of its solitary waves. If the interaction is inelastic, then the model
is unlikely to be integrable.

2.1 Soliton interactions in (1 + 1)-dimensional models

2.1.1 Soliton interactions in the Korteweg-de Vries model

The simplest model for the soliton phenomenon is the Korteweg-de Vries
(KdV) equation. Originally it was derived in 1895 by Korteweg and de Vries
to model unidirectional propagation of small but finite amplitude long surface
waves in shallow water. Later on, the KdV equation proved to be a rather
universal model for long wave phenomena in dispersive media in many fields
of physics. In the following the basic results about KdV soliton interactions
are reviewed.

The KdV equation (in normalized variables) reads

ut + 6uux + uxxx = 0, (1)
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where u = u(x, t) and subscripts denote partial derivatives. The KdV equation
has a solitary wave solution (one-soliton solution) of the form

u1(x, t;µ) =
µ2

2
sech2 µ

2
(x − µ2t), (2)

where µ is a free parameter. Note that the amplitude of this solitary wave
(soliton) is proportional to its speed. Its world path is a straight line x−µ2t = 0
where function u1 obtains its maximum for fixed t. The proof for the stability
of (2) to shape disturbances is given by Benjamin [1972].

For the KdV equation one can find an exact solution for the situation
where two solitary waves, with different amplitudes, meet each other. To be
specific, such a two-soliton solution can be given by the following formula (see
any text-book on solitons):

u2(x, t;µ1, µ2) = 2
∂2

∂x2
ln θ, (3)

where

θ = 1 + eϕ1 + eϕ2 + A12e
ϕ1+ϕ2 , (4)

ϕi = µi(x − µ2
i t), i = 1, 2, (5)

A12 = (µ1 − µ2)
2/(µ1 + µ2)

2, (6)

and µ1,2 are free parameters. It is easy to find that for µ1 > µ2 > 0 (that is
assumed throughout of this Section) the following approximations hold:

u2(x, t;µ1, µ2) ≈ u1(x, t;µ1) + u1(x − δ2, t;µ2) as t → −∞, (7)

u2(x, t;µ1, µ2) ≈ u1(x − δ1, t;µ1) + u1(x, t;µ2) as t → +∞, (8)

where δ1,2 = ∆12/µ1,2 are phase shift constants and ∆12 = − lnA12 is a phase
shift parameter. In the KdV case, δ1,2 are positive because 0 < A12 < 1 holds.
The interpretation of the above approximation is that the interaction between
two solitons causes the larger soliton (with µ1) to shift forwards in x-space by
δ1, while the smaller soliton (with µ2) gets shifted backwards by δ2 > δ1.

The above analysis can be extended for situations where an arbitrary num-
ber of different solitons interact with each other (this is possible for the KdV
equation and a number of other equations that are integrable (in Hirota sense).
A result of this analysis is that the total phase shift of one soliton equals to
the sum of phase shifts obtained by pair-wise interactions with other solitons.
In fact, for the g number of solitons, the i-th soliton experiences a total phase
shift

1

µi

g
∑

j=1

([µj < µi] − [µj > µi])∆ij (9)

as t varies from −∞ to ∞. Here symbol [B] denotes function that has value
1 if the Boolean expression B is true, and 0 otherwise.
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Visualization (of numerical experiments) gives some idea on what happens
during the interaction of two solitons. When two KdV solitons meet, the
resulting wave profile (as seen in the middle of interaction process) can have
two different shapes. If the ratio µ2/µ1 is smaller than 1/3 (one soliton is
considerably smaller than the other), then the profile has only one maximum.
But if 1 > µ2/µ1 > 1/3 (the amplitudes of solitons are close) then the resulting
wave profile has two maxima. See e.g. Yoneyama [1984] for relevant figures.
Note that if µ2 → µ1 (nearly equal solitons), then the visualization may give a
misleading illusion of “bouncing off” solitons (see LeVeque [1987]) — it should
be treated as a simple limiting case of the general behavior (see Hodnett and
Moloney [1989] for more extensive discussion about this matter).

More detailed information on the soliton interaction process is obtained
from the analysis of a two-soliton solution (3). Universal to many such studies
is that the two-soliton solution is decomposed into a sum of terms which
are attached with some relevant meaning. However, different but equally
reasonable approaches may give sometimes contradictory results. Below some
well-known approaches are described.

Historically, the inverse scattering theory (IST) provided the first system-
atic method to derive soliton solutions for various evolution equations (see
e.g. Miura [1976] for a review about IST). Based on the IST, Gardner,
Greene, Kruskal, and Miura [1974] (GGKM) found that a g-soliton solution
can be represented as a sum of g terms, each representing a soliton and being
given in terms of discrete spectrum of the associated Sturm-Liouville equa-
tion. This “eigenvalue and eigenfunction decomposition” have been exploited
by Caenepeel and Malfliet [1985] to explore the internal structure of the two-
soliton solution. By writing

u2 = u(1) + u(2) (10)

for all time moments, where u(1,2) represent the GGKM soliton terms, Caenepeel
and Malfliet visualize the graphs of u(1,2) for the case µ2/µ1 < 1/3 (see above).
They conclude that at the beginning of interaction process the larger soliton
diminishes its amplitude and accelerates at the same time (results positive
phase shift; my note: the acceleration contradicts the amplitude-speed rela-
tion of solitons). And the smaller soliton splits into two parts, the right-hand
part “leaking” to the left-hand part (results negative phase shift; my note:
the splitting contradicts the solitary character of solitons). Moloney and Hod-
nett [1986], Hodnett and Moloney [1989] derive equivalent representation (10)
from Hirota method but they write soliton terms u(1,2) in a more elegant form
(similar to one-soliton solution (2)):

u(1) =
µ2

1

2
gx(ϕ1, ϕ2) sech2 1

2
g(ϕ1, ϕ2), (11)

u(2) =
µ2

2

2
gx(ϕ2, ϕ1) sech2 1

2
g(ϕ2, ϕ1), (12)
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where g(ϕ1, ϕ2) = ϕ1 + ln ((1 + A12e
ϕ2)/(1 + eϕ2)). Yoneyama [1984] shows

that u(1,2) satisfy the so-called Interacting KdV equations:

u(i)
t + 6(u(1) + u(2))u(i)

x + u(i)
xxx = 0.

In order to track the world paths of solitons during the interaction, two differ-
ent definitions of soliton positions have been proposed. The first one, proposed
by Caenepeel and Malfliet [1985], defines the position of the i-th soliton as the
center of its mass:

x
(i)
G (t) =

∫

xu(i) dx
∫

u(i) dx
,

where integration is performed over the real axis. The second one, given by
Moloney and Hodnett [1986], defines the path of the i-th soliton as the function

x
(i)
P = x

(i)
P (t) such that

∫ x
(i)
P

−∞
u(i) dx =

∫ +∞

x
(i)
P

u(i) dx

holds. For t → ±∞, soliton paths x
(i)
G and x

(i)
P coincide which, however, is not

true for finite t. Following the path of the smaller soliton according to x
(2)
G ,

Caenepeel and Malfliet [1985] find that this soliton has negative velocity (au-
thors note: the negative velocity contradicts the assumption of unidirectional
wave propagation). The same observation is made in Moloney and Hodnett

[1986] where the evolution of x
(2)
P is followed. More drastically, the latter

authors find that the speed of the smaller soliton may become infinite.
In conclusion, various contradictions, a few of them have been pointed out

above (see also Bryan and Stuart [1992]), indicate that the GGKM represen-
tation (10) is not suitable for describing the interaction process of solitons in
a detailed manner.

A different decomposition from the GGKM one, is proposed by Bryan and
Stuart [1992]. They introduce the decomposition of a g-soliton solution as
“a linear superposition of accelerating solitary waves and interaction terms”.
The total number of terms in this superposition is 2g. The authors show
that shortcomings in the interpretation of the GGKM decomposition can be
avoided with their decomposition. However, they do not give any meaning to
the interaction terms.

In Publication I a novel decomposition of a two-soliton solution is intro-
duced (this result is generalized in Publication III for g-soliton solutions).
In this decomposition, a soliton solution is written as linear superposition of
solitons and interaction solitons (in general, the total number of soliton terms
being 2g − 1). The main advantage of this representation over previously
described ones is that, first of all, it supports a clear description of what hap-
pens during the interaction of solitons. Conclusions for interactions between
unidirectional solitons are given in Section 2.1.3 below.

12



2.1.2 Soliton interactions in the KdV-Sawada-Kotera model

The majority of studies on soliton interactions concentrate on one equation
— the KdV equation. However, there is a number of equations that support
soliton solutions with exactly the same analytical form as given in (3), and
therefore, all these equations should have similar descriptions about soliton
interactions. Obviously, the KdV equation is preferred as a representative for
demonstrating soliton phenomena because the KdV equation is the simplest
possible equation that has nonlinear and dispersion terms which seem to be
necessary for the soliton phenomenon. However, it turns out that the KdV

equation is too simple to demonstrate all aspects of soliton phenomena.
To illustrate this, consider the KdV-Sawada-Kotera equation studied in

Hirota and Ito [1983]

ut + a(3u2 + uxx)x + b(15u3 + 15uuxx + uxxxx)x = 0 (13)

that, clearly, for b = 0 becomes the KdV equation and for a = 0 the Sawada-
Kotera equation. For all values of a and b, the KdV-Sawada-Kotera equation
supports multi-soliton solutions. A two-soliton solution of the KdV-Sawada-
Kotera equation is in the form as given in (3) but with the following phase
variables and the phase shift coefficient:

ϕi = µi(x − (aµ2
i + bµ4

i )t), i = 1, 2, (14)

A12 =
(µ1 − µ2)

2(3a + 5b(µ2
1 − µ1µ2 + µ2

2))

(µ1 + µ2)2(3a + 5b(µ2
1 + µ1µ2 + µ2

2))
(15)

where µ1,2 are free parameters. Hirota and Ito [1983] reported that for different
amplitude ratios the interaction of two solitons can be one of the following
scenarios: (i) two solitons interact through emitting and absorbing the third
soliton, (ii) two solitons fuse to one soliton and then this splits into two solitons,
(iii) two solitons become singular after colliding with each other. It turns out
that the value of phase shift coefficient A12 determines which one of these
scenarios is realized. The corresponding intervals for the three interaction
scenarios are: (i) 0 < A12 < 1, (ii) 1 < A12, (iii) A12 < 0, respectively.

Note that for the KdV equation only the scenario (i) is possible. And even
then, it is impossible to see the third soliton. Namely, this third soliton can
become visible (i.e. separated from the initial two solitons) only if the phase
shift parameter ∆12 = − lnA12 is large enough (i.e. the phase shift constants
are larger than the widths of solitons). In the KdV case, this is possible only if
two solitons are nearly equal. In Publication I it is shown that the amplitude
of the third soliton decreases to zero as µ2 → µ1. Therefore, we can observe
only the bouncing effect of the KdV solitons where the third soliton is too
small to be visible.

The two-soliton solution of the KdV-Sawada-Kotera equation shows also
that unidirectional solitons can have resonances [Hirota and Ito, 1983]. The
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condition for the resonance is |∆12| = ∞, that is, the phase shifts of solitons
are infinitely large. For the interaction scenario (i) this means the situation
where one soliton spontaneously splits into two solitons. And for the scenario
(ii) the resonance condition means that two solitons fuse into one — the so-
called resonance soliton.

2.1.3 Soliton interactions in KdV type equations

Interactions of two solitons can be treated in a unified manner. This is de-
scribed in Publication I for multi-directional wave models of KdV type. Be-
low these results are given for unidirectional wave models for complementing
the studies described above.

Unified treatment of soliton interactions is possible because all (1 + 1)-
dimensional KdV type models have two-soliton solutions with the same ana-
lytical form u2(x, t) = U2(ϕ1, ϕ2), where

U2 = L[1 + eϕ1 + eϕ2 + A12e
ϕ1+ϕ2 ], (16)

L[θ] = 2(µ1∂1 + µ2∂2)
2 ln θ (in Publication III L[θ] is written in terms of

Hirota derivatives allowing a more general analysis), ϕ1,2 = µ1,2x + ω1,2t are
phase variables, and µ1,2 are free parameters. From the definition of KdV
type equations (see Publication I or Publication III for details) each KdV
type equation can be written in the Hirota bilinear form which is defined by a
related even polynomial P = P (µ, ω). Often this polynomial is in the form of
the dispersion relation. For example, for the KdV-Sawada-Kotera equations
the corresponding polynomial is P = µω + aµ4 + bµ6. This polynomial also
determines the relations for the phase shift coefficient A12 and the parameters
ω1,2 in terms of free parameters µ1,2:

P (µ1, ω1) = 0, (17)

P (µ2, ω2) = 0, (18)

P (µ1 − µ2, ω1 − ω2) + A12P (µ1 + µ2, ω1 + ω2) = 0. (19)

The unified analysis of two-soliton interactions is based on the following
approach. First, function U2 in (16) is studied in terms of (canonical) phase
variables in the (µ1,2, ω1,2,∆12)-parameter space. Note that here no relations
between these parameters are assumed. Finally, the description of how two
solitons interact for a given KdV type equation is determined by the behavior
of U2 on the manifold given by equations (18)– (19) in the parameter space.

The general behavior of the function U2 is illustrated in Figure I.2 for
positive and negative values of the phase shift parameter ∆12. Its structure
is best seen for large phase shift values as shown in Figure I.4. The graph of
U2 consists of three parts. Two parts out of three correspond to two soliton
identities, each part consisting of two long-crested humps being parallel to one
of the phase shift variable axis and being shifted relative to each other near

14



to the origin of phase variables (the interaction region). The third part of
the graph is localized to the interaction region and is a diagonal soliton-like
hump connecting the former two parts. In Publication I this third part of
the graph is called the interaction soliton. It turns out that the function U2

can be analytically decomposed into a sum of three terms that correspond to
the parts above (see Publication I for details and Publication III for the
generalization of this analysis to an arbitrary number of solitons, see Section
3.2.1). This novel decomposition is given as

U2 = S1 + S2 + S12, (20)

where S1,2 are called soliton terms and S12 is the interaction soliton term.
Plots of these terms are shown in Figure I.5 and Figure I.6.

Publication I introduces a geometrical representation of two-soliton in-
teractions. The representation consists of line slices representing the positions
of supporting regions of soliton terms S1,2,12. A collection of these lines is
called the phase pattern set and denoted by PU . Phase pattern sets for U2

are illustrated in Figure I.8. Publication IV generalizes this geometrical
representation for an arbitrary number of solitons (see Section 3.2.2).

In order to describe soliton interactions in the real space using the concepts
above, the relation between phase and real-time variables must be used:

(

ϕ1

ϕ2

)

=

(

µ1

µ2

)

x +

(

ω1

ω2

)

t (21)

or ϕ = µx + ωt for short. It shows that the image of the real space {x ∈ R}
in the space of phase variables is a line µR that has direction vector µ. As
the time parameter t is increased, the image of the real space shifts in the
direction of vector ω. Since the phase pattern set PU represents supporting
regions of the function U2, the positions of solitons in the real space are defined
by the intersection points of the phase pattern set PU and the image of the
real space. In Publication I the set of soliton positions for a given time
moment t is denoted by Pu(t) and called the real pattern set. The real pattern
set Pu(t) represents supporting regions of a two-soliton solution u2. For one
space dimension, the set Pu(t) reads

Pu(t) =
1

µT µ
µT (PU ∩ (µR + ωt) − ωt). (22)

This result is a special case of Proposition IV.4.1.
Figure 1 illustrates the above description of two-soliton interactions for the

KdV-Sawada-Kotera equation. This case corresponds to scenario (i) described
in Section 2.1.2 where two solitons interact through emitting and absorbing
the interaction soliton.

In conclusion, two-soliton interactions for a wide class of KdV type equa-
tions can be described in a unified manner using the concept of an interaction
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Figure 1: Interaction of two KdV-Sawada-Kotera (a = 1, b = −1/5) solitons
with µ1 = 1.987452, µ2 = 0.8 (parameters taken from Hirota and Ito [1983]).
Left plot: The positions of solitons are found as the intersection points of the
phase pattern set (bold lines) and the image of the real space (thin lines, with
direction vector µ) for two time moments t = 0 and t = 20. Right plot: At
a certain distance before the larger soliton meets the smaller one, it splits
into the smaller soliton and the interaction soliton. Interaction ends when the
interaction soliton merges with the smaller soliton resulting the larger soliton.

soliton that is defined through decomposition (20). According to this de-
scription, solitons interact through the interaction soliton that can exist only
limited time and that is either created by a splitting process of one of the
solitons (scenario (i)) or by a collision process of two solitons (scenario (ii)).

A complete analysis of two-soliton interaction for a given KdV type equa-
tion is now reduced (a) to studying the corresponding ∆12 − µ1,2 diagram in
order to determine possible interaction scenarios and (b) to constructing real
pattern set Pu(t) in order to visualize approximate world paths of solitons. No
extensive numerical evaluation of soliton solutions (neither from the analytical
form nor by integrating the equation) is needed for the complete analysis.

2.2 Soliton interactions in (2 + 1)-dimensional models

Soliton phenomena are observed also for multi-directional wave propagation.
Figure 2 illustrates the oblique interaction of two solitary waves in shallow
water. This photo demonstrates vividly all the features of the soliton phe-
nomenon: existence of stable solitary waves, wave crests in different sides of
the interaction region are parallel (indicating elastic interaction) and shifted
(indicating nonlinear interaction).

The oblique interaction of two solitary waves is analyzed by Miles [1977a,b]
where the author derives two-soliton solution directly from the boundary-value
problem for inviscid irrotational motion using the Boussinesq approximation.
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Figure 2: Fig. 12 in Hammack et al. [1995]: “Oblique interaction of two nearly
solitary waves in shallow water, off the coast of Oregon. The interaction
occurred in water about 1 m deep. (Photograph courtesy of T. Toedtemeier.)”

The corresponding model equation for weakly oblique interactions was orig-
inally derived by Kadomtsev and Petviashvili [1970] to study the transversal
stability of KdV solitons (in fact, KdV solitons turn out to be stable to trans-
verse perturbations, see also Matsukawa, Watanabe, and Tanaca [1988]). The
Kadomtsev-Petviashvili (KP) equation models weakly multi-directional prop-
agation of small but finite amplitude long surface waves in shallow water. The
KP equation (in normalized variables) reads

(ut + 6uux + uxxx)x + 3uyy = 0, (23)

where it is assumed that waves travel mainly in the direction of x-axis. Ham-
mack, Scheffner, and Segur [1989], Hammack et al. [1995] demonstrated in
laboratory experiments the oblique interaction of two wave trains and com-
pared them to the corresponding analytical solutions of the KP equation. They
found that the KP equation is a remarkably good model for the phenomenon
of oblique interaction of waves also for relatively large interaction angles.

A related problem of oblique interaction of waves but with “head on”
collisions is studied by Johnson [1996]. To model this phenomenon, the author
introduced the two-dimensional Boussinesq equation

utt + (−ux + 6uux − uxxx)x − uyy = 0. (24)

This equation extends the classical Boussinesq equation to two spatial dimen-
sions analogously like the KP equation extends the KdV equation, that is, the
angles of propagation directions of waves relative to the x-axis are assumed
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to be small. All these equations belong to the class of KdV type equations,
and therefore have two-soliton solutions with the same analytical form (3).
Only expressions for the phase shift coefficient A12 differ — their concrete
expressions are defined by the dispersion relations of the corresponding lin-
earized equations (see e.g. Publication I for details). Note that different from
the KP equation, the two-dimensional Boussinesq equation does not support
multi-soliton solutions [Hietarinta, 1987a].

Publication I analyses two-soliton solutions of (2 + 1)-dimensional KdV
type equations. In particular, the KP equation is considered as a model equa-
tion. The analysis shows that for different amplitude ratios three types of
interactions are possible: (i) with appearance of positive phase shifts, (ii) with
appearance of negative phase shifts, and (iii) interaction becomes singular.
All these interaction types may be realized within the KP model showing that
it is representative for demonstrating the soliton phenomenon in two space
dimensions. The interaction types are analogous to the three interaction sce-
narios described in the previous Section for (1 + 1)-dimensional models. This
analogy is very much expected because in both cases the analytical forms of
soliton solutions are identical. However, interaction of solitons in two space
dimensions requires different interpretation from that in one space dimension.
This is covered in the following Sections of this thesis.

Anker and Freeman [1978], Freeman [1980] describe three-soliton interac-
tions in terms of the motion of KP two-soliton resonant interactions (resonant
triads). However, the authors recognize among other limitations that this de-
scription is very much an idealization because at each interaction point the
condition for a resonant interaction is not met.

3 Soliton interaction patterns

A soliton in two space dimensions is localized in all directions except in the
one that is perpendicular to its propagation direction. The positions of such
solitons are determined by their crests lines. Interacting solitons in two space
dimensions form patterns that consist of soliton crests (or crest lines). Such
interaction patterns evolve in time according to the evolution of solitons.

3.1 Two-soliton interaction patterns

For two unidirectional solitons in two space dimensions the interaction pattern
consists of two parallel crest lines (of solitons) that approach each other as the
faster soliton catches the smaller soliton. As a result of the interaction process
(that is assumed to be nonsingular in what follows), the crest lines of the
faster and slower solitons have exchanged their order and, as the time elapses,
recede relative to each other. During the interaction two scenarios are possible.
According to the first scenario, the crest line of the faster soliton splits into
two parallel lines corresponding to the smaller and the interaction soliton,
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respectively. The crest line of the interaction soliton approaches to the crest
line of the initial slower soliton. At the end of the interaction, the latter crest
lines merge into one line that corresponds to the shifted crest line of the faster
soliton. In the second scenario, the crest lines of the two solitons merge into
one line corresponding to the interaction soliton. At the end of interaction this
crest line splits into two lines corresponding to crest lines of shifted solitons.

Consider now oblique interaction of two solitons in two space dimensions.
In Publication I the case where two solitons propagate in different direc-
tions is analyzed. The analysis is based on the decomposition of a two-soliton
solution into a superposition of two soliton terms and the interaction soliton
term (see (20)). First, a geometrical representation of the two-soliton solution
is introduced in phase variables. In this representation the so-called phase
pattern set PU consists of line slices that represent the supporting regions of
the terms in the decomposition. Two qualitatively different phase pattern sets
are possible for different signs of the phase shift parameter ∆12. These are
illustrated in Figure I.8.

Phase variables are related to real-time variables by

(

ϕ1

ϕ2

)

=

[

µ1 ν1

µ2 ν2

](

x
y

)

+

(

ω1

ω2

)

t, (25)

or ϕ = Kx + ωt for short. The unidirectional case, where the rows of K are
collinear, is considered in the paragraph above. Here, assuming non-collinear
wave vectors, the wave matrix K defines bijective mapping between the spaces
of phase and real variables, respectively. This means that the whole set PU

is an image of the two-soliton interaction pattern in the real space: Pu(t) =
K−1PU − wt where w = K−1ω. In addition, the real pattern set Pu(t) is
stationary in the reference frame moving in the direction of −w. This is
illustrated in Figure I.9 and Figure I.10 for the negative and positive phase
shift cases, respectively. Actual interaction patterns for two-soliton solutions
are shown in Figure I.11.

In conclusion, the two-soliton interaction patterns are stationary and con-
sist of the crest lines of two pairs of half-line solitons that are connected by
the crest line of an interaction soliton in two possible ways defined by the sign
of the phase shift parameter.

3.2 Multi-soliton interaction patterns

Simultaneous interactions between more than two solitons form nonstation-
ary and complicated patterns. The problem of predicting such patterns from
a predefined set of wave parameters (wave amplitudes, traveling directions,
initial positions, etc.) is called the direct problem of wave crests.

In Publication IV the direct problem is solved for an arbitrary number
of interacting solitons. Below the most important steps in this solution are
outlined.
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3.2.1 Multi-soliton solution and its decomposition

Publication III analyses multi-soliton solutions of KdV type equations in
phase variables. A strict definition of such solutions is given (Definition III.4).
From that and from the general bi-linearization transformation for KdV type
equations, multi-soliton solutions in phase variables, Ug(ϕ), are constructed
(Theorem III.3.1). The analytical form of multi-soliton solutions is well-
known (it originates from Hirota [1971]) but here a strict proof is given that
it is applicable for all KdV type equations, and that is a novel result in Pub-

lication III.
A multi-soliton solution in real space-time variables, ug(x, t), is given, for

a fixed time moment, as a restriction of Ug(ϕ) on the image of the real space
in the space of phase variables:

ug(x, t) = Ug(Kx + ωt). (26)

Publication III introduces a decomposition of multi-soliton solutions into
a superposition of soliton and interaction soliton terms (Theorem III.4.1).
This generalizes the decomposition described in Publication I for an arbi-
trary number of solitons. The decomposition is given as

Ug =
∑

α∈{0,1}g

Sκ(α), (27)

where κ(α) denotes the index of the corresponding soliton term (see Publi-

cation III for details).
The interpretation of this decomposition is based on the following state-

ment: interaction of two solitons (of any kind) involves an interaction soliton
that connects the two solitons and their shifted counterparts. Now, interac-
tion solitons (initiated by, say, two solitons) interact with a third soliton in the
same way, generating a new, higher order interaction soliton. This description
can be easily prolonged. The decomposition (27) contains g solitons, all pos-
sible interaction solitons (the number is 2g − g − 1), and a so-called vacuum
soliton S∅ which is identically zero.

The properties of soliton terms Sκ(α) are given in Publication III, these
include the asymptotic behavior (Proposition III.4.3) and the amplitudes
(Proposition III.4.4) of the terms Sκ(α). It turns out that the interaction
soliton terms Sκ(α) are localized in certain directions in the space of phase
variables. The number of such directions is larger for higher order interaction
soliton terms. This property is closely related to the appearance of interaction
solitons in the real space where these have a limited life time. This is clarified
further in the following Section 3.2.3 where actual interaction patterns are
constructed.
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3.2.2 Phase pattern set of multi-soliton solution

A phase pattern set represents the positions of supporting regions of soliton
solutions in phase variables, and therefore, through the relation (26), com-
pletely determines interaction patterns in the real space. The phase pattern
set, PU , of a g-soliton solution is defined in the g-dimensional space of phase
variables which, in general, would make the analysis rather difficult. It turns
out that due to special “recursive” properties of multi-soliton solutions (see
Definition III.4), the analysis is still feasible in spite of possible high dimen-
sions of the space of phase variables. Publication IV gives a definition of a
phase pattern set that is specific for multi-soliton solutions (Definition IV.1).

The crucial part in Publication IV, as well in solving the direct prob-
lem, is the recognition how to construct phase pattern sets for multi-soliton
solutions with an arbitrary number of solitons. This recognition is formulated
in Theorem IV.3.1 that claims that the phase pattern set is a projected set
(to the space of phase variables) of the ridges of a special (g + 1)-dimensional
polyhedron. This polyhedron is completely defined by the phase shift matrix
of the corresponding multi-soliton solution. For the two soliton case the con-
struction of a phase pattern set is illustrated in Figure IV.2. Figure IV.4
shows the phase pattern set for three-soliton solution.

Recall that there are two types of (nonsingular) two-soliton interactions
which are distinguished by the sign of the corresponding phase shift parameter.
For g-soliton interactions the number of different interaction types is equal to
1 + g(g − 1)/2. For example, for the KP three-soliton solution the regions
of nonsingular solutions in the µ-space are shown in Figure IV.3. And a
particular interaction type is determined by the signs of three phase shift
parameters ∆12,13,23 making the number of different interaction types equal
to 4.

Different parts of a phase pattern set represent the supporting regions of
the corresponding soliton terms in the decomposition (27). This is illustrated
for the three soliton case in Figure IV.6.

The fact that the phase pattern set is now defined as a geometrical fig-
ure, allows its algorithmic construction using methods from Computational
Geometry. In this thesis, for manipulating multi-dimensional polyhedra the
software library cddlib by Fukuda [2000] is used.

3.2.3 Interaction patterns of multi-soliton solutions

In this work, interaction patterns, that are formed as a result of simultane-
ous interactions of many solitons, are defined by the real pattern set of the
corresponding multi-soliton solution.

Publication IV defines the real pattern set, Pu(t), for two space dimen-
sions as follows

Pu(t) = {x ∈ R
2|Kx + ωt ∈ PU}, (28)
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Figure 3: The real pattern set (white lines) of a five-soliton solution (abstract
case, corresponds to Figure I.1). Labels are the indices of the soliton terms of
the corresponding decomposition. (Fig. 10 in Publication IV.)

where PU is a phase pattern set of the corresponding multi-soliton solution.
The real pattern set represents the supporting regions of the multi-soliton
solution, ug(x, t), in real variables.

For interpretation and also for practical applications, the real pattern set
can be written as follows (Proposition IV.4.1):

Pu(t) = (KT K)−1KT (PU ∩ (KR
2 + ω⊥t)) − wt, (29)

where w = (KTK)−1KT ω and ω⊥ is a g-vector perpendicular to the two-
dimensional hyperplane KR

2: ω⊥ = ω − Kw. For a fixed time moment,
the two-dimensional real space, represented as R

2, has an image, KR
2, in the

g-dimensional space of phase variables. This image is a two-dimensional hy-
perplane. The supporting regions of ug(x, t) are defined by the intersection
between the hyperplane KR

2 + ωt and the phase pattern set PU . The op-
erator given by (KT K)−1KT maps this intersection into the real space. The
result, shifted by wt, is the real pattern set Pu(t). As the time parameter t is
increased, the hyperplane, representing the image of the real space, shifts in
the direction of vector ω⊥. As a result, the intersection between the hyper-
plane and the phase pattern set varies. These variations are reflected in the
non-stationarity of Pu(t). The above description is illustrated for three-soliton
interactions in Figure IV.8 and Figure IV.9.

Note that multi-soliton interaction patterns can be also stationary. The
stationarity condition is given by ω⊥ = 0.

Finally, Figure 3 illustrates a snapshot of a five-soliton interaction pattern.
This exemplifies the complexity of possible soliton interaction patterns, as well
as the usefulness of the interaction soliton concept, introduced in this work,
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Figure 4: Left (Fig.11 in Hammack et al. [1995]): “Aerial photograph of
waves off the southern coast of Long Island.... Beyond the surf zone, the wave
patterns are two-dimensional, and approximately periodic. They have flat
troughs, sharp crests, and approximately hexagonal shape.” Right (Fig.13 in
Hammack et al. [1995]): “Aerial photograph of waves in shallow water, south
of the Oregon Inlet on Pea Island, off the coast of North Carolina. (Photograph
courtesy of C. Miller.)”

to interpret the multi-soliton interaction patterns.

4 Application: The inverse problem of wave crests

Consider wave patterns that arise from wave interactions of soliton type. For
example, the aerial photos in Figure 4 show hexagonal shape interaction pat-
terns that are typical for interaction of two multi-directional soliton trains.

The aim of the inverse problem of wave crests, first introduced in Pub-

lication I, is to predict wave parameters (most important wave amplitudes)
from the geometry of interaction patterns of waves. Such a photographic mea-
surement technique has several advantages over the more widely used point
measurement technique. To name a few, first, it gives an instant overview
of the overall surface condition. Second, no physical contact is required with
the water surface that could otherwise lead to artificial perturbations, or that
would be actually impossible due to some external conditions (e.g. extreme
weather conditions on sea).

To tackle the inverse problem, a solid mathematical model of these waves
is needed so that its solutions (surface elevation) could be related to abstract
notions such as traveling directions and amplitudes of waves. Since soliton
interactions seem to be rather robust phenomena in (the theory of) water
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waves, in the following waves are associated with solitons and for a model
equation a member from the family of KdV type equations is assumed.

In Publication I, the inverse problem of wave crests is solved for two
wave interactions modeled by two-soliton solutions. Two typical interaction
patterns are shown in Figure I.11. These plots show important quantities,
defining the geometry of two-wave interaction patterns, to be the interaction
angle α12 and the phase shifts δ1,2 of the solitons. The inverse problem is
solved by relating the interaction patterns with the phase pattern sets of two-
soliton solutions as illustrated in Figure I.12. A phase pattern set is completely
determined by a phase shift parameter ∆12 that depends on amplitudes. In
particular, for the KP case we have

∆12 = − ln
ρ2 − (µ1 − µ2)

2

ρ2 − (µ1 + µ2)2
, (30)

where µ2
1,2/2 are soliton amplitudes and ρ = 2 tan α12/2. In fact, mainly

because the phase shifts depend on the amplitudes of waves, it is possible
to solve this inverse problem. The final equation, given by Eq. (I.26), has
two distinct solutions, as shown in Figure I.13, that correspond to the two
interaction types with negative and positive phase shifts, respectively. As a
result, Publication I concludes that, for a specified phase shift, the solution

of the inverse problem is unique.
Publication II studies the sensitivity of the “photographic” measure-

ment method, introduced in Publication I, to conclude about the practical
applicability of the method. For that specific solutions are constructed and
analyzed against possible errors in phase shift and interaction angle measure-
ments. In particular, solutions for the cases with small interaction angle,
moderate phase shifts, and/or symmetric interactions are found. The main
conclusions from Publication II are the following. First, the method is most
sensitive to errors in measuring the interaction angle, especially, if the angle
is small. And finally, the method of calculating the heights of the waves from
a “photographic” record is applicable if the positions of the wave crests can
be well defined from interaction patterns (e.g. if the crests are long enough)
and the interaction angle and the phase shifts can be determined accurately.

5 Discussion

Below some open problems and extensions to the subject of this thesis are
discussed.

• In Section 2.1.3, the interaction of unidirectional solitons was considered
only with the example of the two-soliton solution. The corresponding
multi-soliton interactions are, technically, the degenerated cases of the
multi-directional soliton interactions that are explained in Section 3 in
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full, and therefore not repeated earlier. Although, multi-soliton interac-
tions have a different interpretation in the unidirectional case. Basically,
the notion of interaction patterns needs to be replaced by the notion of
world paths of solitons.

• In this thesis only solitons of “solitary type” were considered. It is a
known fact that KdV type equations have also solutions of “cnoidal
type”. The corresponding multi-soliton solutions can be expressed in
terms of the Riemann theta function. These can be derived using ex-
actly the same approach as presented in this thesis for solitary type
multi-soliton solutions. The results of Hammack et al. [1989] indicate
that also for cnoidal type multi-soliton solutions the concept of an in-
teraction soliton could be introduced and exploited for constructing the
corresponding interaction patterns. However, it is currently not clear
how to construct the corresponding phase pattern sets that must be
now a g-periodic lattice in the space of phase variables. Clarification of
this problem is left for future research.

• In this thesis soliton solutions of only KdV type equations were con-
sidered. Similar analysis could be developed also for other classes of
bi-linearizable equations because the analysis here used only the very
basic properties of soliton interactions that are common also for solu-
tions of those other classes of equations. Adjustments to the current
analysis are required because the functional forms of soliton solutions
are different for different classes of equations.

• In this thesis the existence of a unique solution to the inverse problem
of wave crests was proved, but only for two-soliton interactions of the
KP equation. However, initial considerations show that this result could
be extended also for multi-soliton interactions, in spite of the fact that
then the interaction patterns are nonstationary.

These considerations are based on the fact that the KP g-soliton solu-
tion is defined by 2g number of independent parameters, and to deter-
mine these from the single interaction picture, there must exist the same
number of independent relations between the analytically given g-soliton
solution and the corresponding interaction pattern. Indeed, this set of
equations exists and is composed as follows. The first g number of rela-
tions are given by g number of traveling directions that are measured as
relative angles between the soliton wave crests far from the interaction
region and the x-axis. The rest g relations are defined as g number of
total phase shifts that each soliton experiences if to follow its crest line
from one end to another. Note that the listed quantities, the interac-
tion angles and the total phase shifts, can be measured from interaction
pictures and, most importantly, these are invariant in time although the
interaction patterns are nonstationary.
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However, practical applicability of such a posed solution of the inverse
problem for multi-soliton solutions is questionable because in order to
measure all those invariants, a relatively large observation area is needed.

• An interesting application of the analysis of soliton interactions would
be the modeling of freak wave phenomena in a deterministic way. The
freak wave phenomena have been observed in open sea where very high
amplitude waves, more than two times the significant wave height, occur
by some, still unsolved, reasons. These phenomena have received a great
interest nowadays due to devastating consequences if ships meet such
extreme waves.

The idea of modeling deterministic freak waves with soliton interaction is
based on the fact that the amplitudes of interaction solitons can be larger
than the linear superposition of single waves would predict. So, imagine,
if one generates (in laboratory environment) a group of relatively small
amplitude solitary waves, traveling possibly in different directions, and in
such a way that at some space-time point an interaction soliton occurs
that has remarkably high amplitude, then the interactions between a
ship model and such a high amplitude wave could be tested. Using the
technique presented in this thesis, it would be possible to predict the
space-time points of such “freak interaction solitons”, and moreover, to
provide initial conditions for wave generators to generate wave fields with
the freak wave phenomena.

Since freak wave phenomena are observed in a deep sea, then possibly
a suitable model equation, that also supports soliton solutions, is the
Benjamin-Ono equation. Therefore, it is important to extend the present
analysis also for other classes of equations to describe the corresponding
multi-soliton interactions in a deterministic way.

6 Summary

In this thesis, a novel approach for analyzing and describing multi-soliton
interaction is presented. This approach consists of the following steps and
implications:

• Multi-soliton solutions are constructed in the most general form for the
KdV type equations using Hirota bilinear formalism. This construction
is possible because such solutions have the same functional form.

• Multi-soliton solutions are analyzed in canonical phase variables. In
this way the most important properties of such solutions are revealed.
Actual multi-soliton solutions are the restrictions of multi-soliton solu-
tions in phase variables to the image of the real space-time space in
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the space of phase variables. After finding the restriction, the appear-
ance of multi-soliton solutions becomes seemingly very complex, but the
building blocks of this complexity are now explicitly known.

• All possible interaction scenarios are found by analyzing the multi-soliton
solutions without assuming any particular governing equation. After the
analysis, taking some KdV type equation to be a model, it is concluded
that only those interaction scenarios are realized that are defined on a
certain manifold in the parameter space (of wave matrix and phase shift
matrix). This manifold is defined by the Hirota conditions of the given
KdV type equation. These Hirota conditions include also the dispersion
relations and the relations for phase shift coefficients.

As a result of the chosen approach, the analysis of multi-soliton solutions
resulted in a novel decomposition. According to this decomposition, a multi-
soliton solution is a linear superposition of solitons and all possible interaction
solitons. An interaction soliton is defined to be the connecting wave form
between pairwisely interacting solitons (of any kind) and their shifted coun-
terparts.

For visualization of soliton interactions, a geometrical representation of
interaction patterns is introduced. The process consists of constructing the
phase and real pattern sets that represent supporting regions of multi-soliton
solutions in phase and real variables, respectively. The real patterns sets,
representing actual interaction patterns, are, in general, nonstationary and
seemingly complex. The visualization process is useful and efficient only due to
the recognition that the phase pattern sets can be constructed algorithmically
for an arbitrary number solitons. According to this novel idea, the phase
pattern set is a set of ridges of a certain (g + 1)-dimensional polyhedron,
defined by phase shift matrix, that is projected to the g-dimensional space of
phase variables. Then the real pattern set is obtained by finding an intersection
between the phase pattern set and a G-dimensional hyperplane (G = 1, 2 is
the number of the real space dimensions) and by mapping the result to the
real space. As the time parameter is increased, this G-dimensional hyperplane
is shifted in the space of phase variables and that results in nonstationary
interaction patterns in the real space.

All new concepts and results described above are illustrated for two-soliton
interactions. In particular, the interaction of two unidirectional solitons of the
KdV-Sawada-Kotera equation was demonstrated to illustrate the nature of an
interaction soliton in one space dimension. Multi-directional soliton interac-
tions are demonstrated using the KP equation as a practical example model.
The corresponding two- and three-soliton interactions are described in de-
tail. Also an example of five-soliton interactions is considered to illustrate the
usefulness of the interaction soliton concept to describe general multi-soliton
interactions. It is important to remember that the description of soliton inter-
action, introduced in this thesis, is simply applicable for all KdV type equa-
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tions. Nevertheless, a particular application may need different interpretations
depending (i) on the dimension of the real space, (ii) on the assumptions made
in deriving the governing equation, and (iii) on the physical background of the
wave phenomenon, in general.

As an application of the introduced soliton interaction analysis, the inverse
problem of wave crests is introduced. This problem is about predicting wave
parameters (most importantly, the amplitudes) from the single snapshot of
interaction patterns of solitons. It is proved that for two oblique interacting KP
solitons the inverse problem has a unique solution. In addition, the sensitivity
of the inverse problem to measurement errors is analyzed and conclusions for
practical applicability of the method are drawn.

In conclusion, the main goal of this thesis, to find an answer and a detailed
description about what happens during the simultaneous interaction of an
arbitrary number of solitons, is achieved with the crucial aid of the concept of
an interaction soliton.
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