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Abstract. The paper addresses a new “inverse” problem
for reconstructing the amplitudes of 2D surface waves
from observation of the wave patterns (formed by
wave crests). These patterns will depend on the am-
plitudes because of nonlinear effects. We show that
the inverse problem can be solved when the waves are
modelled by an equation that supports soliton solu-
tions. Specifically, the explicit solution to the inverse
problem is derived for two interacting solitons of the
KP (Kadomtsev-Petviashvili) equation. As a prereq-
uisite, the “direct” problem of two-soliton solutions
is investigated, presented in such a way that gener-
alizations to an arbitrary number of solitons can be
done. In this investigation we give a new meaning
to the concept of interaction soliton that makes it
easier to write down the two-soliton solution and to
describe the soliton interactions.
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Figure 1: Interaction of five waves modeled by solitons (abstract case, gen-
erated from the analytical formula of a five-soliton solution given by Hirota’s
bilinear formalism).

1 Introduction

The surface of a layer of fluid in motion can show a variety of continuously
changing “patterns” formed by wave crests that diminish or increase in height,
disappear, propagate, collide with other crests, etc. The translation from
visual appearance to actual wave heights is not as easy as it may seem. To
illustrate this, consider Figure 1 which is an animated snapshot of evolving
surface waves where wave patterns are formed by wave crests. Points on a crest
will not be, in general, points of maximum height, but rather saddle points:
transverse (more or less perpendicular) to the crest they have maximal height,
but along the crest, the height may be increasing, decreasing, or stationary.
This makes it difficult, even when an explicit formula for a complicated surface
elevation is given, to identify the collection of points that form a wave crest.

The motivation for the research presented in this and a successive paper
found its origin in the paper of Hammack et al. [1], and in practical studies in
hydrodynamic laboratories where waves in large basins are generated to test
ships. The paper of Hammack et al. [2] shows photographs (and computer
graphics) of regular wave patterns in a laboratory. The experiment was de-
signed to verify that wave patterns of a genus 2 soliton interaction of the KP
(Kadomtsev-Petviashvili) equation could actually be produced, giving practi-
cal confirmation of the validity of the KP equation to model the interaction
of long waves of small but finite amplitude that travel in slightly different di-
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rections. Assuming the KP, or any other equation, to be an accurate model,
the question arises whether a unique solution can be found that matches the
geometry of observed wave patterns, so without information of the actual wave
heights. If so, then this solution would produce the wave heights from a photo-
graphic picture of the wave pattern, which would be useful for hydrodynamic
laboratories where often only (a very limited number of) point measurements
are available for rather complicated multi-directional wave patterns that arise,
for instance, from diffraction at a ship. In this and a subsequent paper we will
study this inverse problem: from the geometry of the wave pattern to a specific
solution of the model equation.

In order to tackle the inverse problem, first the direct problem has to be
solved, which means to find all the possible wave patterns of the solutions
of the model equation. Even when the most simple situation is considered
(no winds, no currents, incompressible fluid without surface tension, etc.),
the free surface equations are well known but too complicated for a direct
investigation of the wave patterns. Therefore, we will take an alternative
approach, supported by the observation that “soliton” interactions seem to be
rather robust phenomena in (the theory of) water waves. Hence, as a first step,
we will associate wave crests with solitons. There are various possibilities to
choose from equations that produce solitons; keeping some flexibility, we shall
consider the direct and inverse problem for the large class of so-called KdV
(Korteweg-de Vries) type of equations. This is a well defined class of equations
in one or two (or more) space variables for which solitons and their interactions
can be studied analytically; this class has been identified by Grammaticos et al.
[3].

For the study of soliton interactions, Hirota’s formalism [4] turns out to
be most suited and produces well-structured expressions for soliton solutions
of arbitrary genus g (the number of pure solitons). The detailed analysis
is carried out in this paper in two steps along the following lines. First we
describe wave patterns in a precise and algorithmic way in the (g dimensional)
space of phase variables. Then a mapping to real spatial-temporal variables
is performed to obtain an observable evolution of the free surface. In order to
restrict the analysis to essentials, we investigate in this paper solitons of genus
2, leaving the general case to a next paper. However, we use a self-contained
simple notation that supports the understanding of the general expressions for
genus g.

As an important aspect of our analysis, we will describe a two-soliton solu-
tion as a sum U = S1 + S2 + S12, in which S1, S2 represent two pure solitons,
while S12 will be an interaction soliton; this interaction soliton plays a fun-
damental role in analyzing the interaction. It should be observed that this
decomposition is different from the “eigenvalue and eigenfunction decomposi-
tion” introduced by Gardner et al. [5] (GGKM) in the context of the inverse
scattering theory. (See also Yoneyama [6] for the interpretation, Hodnett and
Moloney [7] for the equivalent representation of the GGKM decomposition).
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The proposed decomposition is also different from the “decomposition of the
multi-soliton as a linear superposition of accelerating solitary waves and inter-
action terms”, as proposed by Bryan and Stuart [8]: in our case, the number of
terms is 2g−1 instead of 2g, and there is no need for the notion of acceleration.

A final remark concerns many of the studies on the interaction of solitons
that are modelled by the classical KdV equation. This model, however, has
significant limitations. For example, Hirota and Ito [9] have pointed out that
in the case of the Sawada-Kotera equation, the interaction of two 1D soli-
tons emits and absorbs, under certain conditions, a third — interaction —
soliton. We found that this is actually a universal phenomenon, especially
when solitons in higher dimensions than one are considered. The reason that
one cannot observe this phenomenon in the classical KdV case can be under-
stood by realising that, in order to reveal the third soliton, the phase shift
of the two interacting solitons should be rather large, which would imply the
KdV solitons to be nearly equal. In the study of LeVeque [10] devoted to
this phenomenon, for example, the third soliton is not recognized because its
amplitude vanishes when the phase shift is increased.

The organization of this paper is as follows. In Section 2 we briefly recall
some results about the KdV-type equations and Hirota’s bilinear formalism,
and then present in Section 3 the notation and some auxiliary results that will
simplify the analysis. In Section 4 we analyze the two-soliton solution in phase
variables where the new perspectives to understand soliton interactions are in-
troduced: the concept of the interaction soliton and the specific decomposition
of the two-soliton solution in Section 4.1, and a geometric representation of
the soliton interaction in Section 4.2. Then, in Section 5, the description in
phase variables is transformed to real spatial-temporal variables. The actual
inverse problem is solved in Section 6 where an explicit solution algorithm is
given for solving the KP equation.

2 KdV-type equations and Hirota’s bilinear formal-

ism

Let us consider a nonlinear partial differential equation

K(u, ux, uy, ut, . . .) = 0 (1)

where subscripts denote partial derivation of the function u = u(x, y, t), and
introduce a change of dependent variables, say [3]

u = 2
∂2

∂x2
ln θ, (2)

which results in an equation for the function θ = θ(x, y, t):

G(θ, θx, θy, θt, . . .) = 0. (3)
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We have to specify KdV-type equations in more detail compared with [3, 11].
Here follows our definition for the KdV-type equations:

Definition 1. Equation (1) is said to be a KdV-type equation iff there exists
a polynomial (Hirota polynomial) P = P (µ, ν, ω) with the following properties:

1. P (0, 0, 0) = 0, P (−µ,−ν,−ω) = P (µ, ν, ω);

2. all nontrivial solutions of Hirota bilinear form

P (Dx, Dy, Dt)θ · θ = 0 (4)

are the solutions to Eq. (3) (and then, through (2), also the solutions to
(1)).

Here symbols Dx, Dy, Dt denote Hirota derivatives, acting on a pair of
functions (f, g) as follows (we denote x = (x, y)T )

(

Dn
xDm

y Dk
t f · g

)

(x, t) ≡

(∂x − ∂x′)n(∂y − ∂y′)m(∂t − ∂t′)
kf(x, t)g(x′, t′)

∣

∣

∣

(x′,t′)=(x,t)
.

In this paper we illustrate our theory using the KP equation in normalized
variables [12]:

(ut + 6uux + uxxx)x + 3uyy = 0. (5)

The KP equation is KdV-type equation with the change of variables (2) and
the corresponding Hirota polynomial is P (µ, ν, ω) = µω + µ4 + 3ν2.

When the Hirota bilinear form (4) is found for the initial equation (1), spe-
cial solutions like soliton solutions can be easily obtained from the observation
that the eigenproblem of Hirota’s operator P̃ = P (Dx, Dy, Dt), that is,

P̃ f · g = λfg, (6)

has the following solution

(f, g) = (eµx+νy+ωt, eµ′x+ν′y+ω′t),

λ = P (µ − µ′, ν − ν ′, ω − ω′),
(7)

where µ, µ′, . . . ∈ R. So, if the solution of (4) is looked at as a certain polyno-
mial of exponential functions then by using (6) and (7), one obtains a system
of algebraic equations for the parameters µ, ν, etc. For example, a two-soliton
solution is found to be

θ = 1 + eµ1x+ν1y+ω1t + eµ2x+ν2y+ω2t + A12e
µ1x+ν1y+ω1t+µ2x+ν2y+ω2t,
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where the parameters µi, νi, ωi, i = 1, 2, must satisfy the dispersion relations
P (µi, νi, ωi) = 0; and the coefficient A12 is found as a solution of the algebraic
equations:

A12 = −P (µ1 − µ2, ν1 − ν2, ω1 − ω2)

P (µ1 + µ2, ν1 + ν2, ω1 + ω2)
. (8)

Remark: When the genus (number of solitons) is larger than two, there
will be additional (Hirota) conditions which will be dealt with in a successive
paper.

3 Notation and auxiliary results

The core of this study is formed by the analysis of the functional form (2)
with a theta-function generating soliton solutions. In this section we intro-
duce appropriate notation and present some auxiliary results needed for the
consistent analysis.

First, x = (x, y)T and ϕ = (ϕ1, . . . , ϕg)
T denote 2-vector and g-vector of

real space and phase variables, respectively. Functions defined on the space
of real spatial-temporal variables and of phase variables are denoted by lower
and upper case symbols, respectively: θ = θ(x, t), u = u(x, t) and Θ = Θ(ϕ),
U = U(ϕ), for example.

Second, real and phase variables are related:

ϕ(x, t) = µx + νy + ωt + ϕ0, (9)

where µ,ν,ω,ϕ0 are g-vectors. We also write ϕ = Kx+ωt+ϕ0, where wave
matrix K contains the vectors µ,ν as column vectors. The row vectors of K

are wave vectors kT
i = (µi, νi) so that we have ϕi = kT

ix+ωit+ϕ0i, i = 1, . . . , g.
Third, the functions of real and phase variables are related: θ(x, t) =

Θ(ϕ(x, t)), u(x, t) = U(ϕ(x, t)).
Fourth, for functions (denoted by U and only) indices are used to indicate

the number of arguments. For example, Un is a function of n variables. If
n = g, this index is not shown so that U(ϕ) ≡ Ug(ϕ1, . . . , ϕg). The reason for
this convention is that in the following U represents a soliton solution and the
index determines its genus, especially if the soliton solution is obtained as a
result of some limiting process on the soliton solution of higher genus, say g.

Finally, the change of variables (2) motivates to introduce an operator L:

L = 2

(

µ1
∂

∂ϕ1
+ . . . + µg

∂

∂ϕg

)2

ln . (10)

Then U(ϕ) = L[Θ(ϕ)] and the following properties hold:

1. L is gauge invariant (follows from (13) and L[er
T
ϕ] = 0):

L[er
T
ϕΘ] = L[Θ], ∀r ∈ R

g. (11)

If Θ′ = er
T
ϕΘ then we say that theta-functions Θ′ and Θ are equivalent.
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2. Operators L and limϕi→±∞ commute in the space of all finite polynomi-
als of exponential functions (see Appendix A):

lim
ϕi→±∞

L[Θ(ϕ)] = L

[

lim
ϕi→±∞

Θ(ϕ)

]

(12)

if Θ(ϕ) =
∑

m∈I⊂Zg Amem
T
ϕ and |I| < ∞. Note that (12) makes sense

only if limϕi→±∞ Θ(ϕ) exists and is nonzero. Otherwise, one should first
apply the gauge invariance of L before using the formula.

3. We have
L[Θ1Θ2] = L[Θ1] + L[Θ2]. (13)

4. If Θ = 1 + eϕi then we have an one-soliton solution in phase variables:

U1(ϕi) = L [1 + eϕi ] =
µ2

i

2
sech2 ϕi

2
. (14)

In general, the function Θ = Θ(ϕ) is a certain polynomial of exponential

functions em
T
ϕ that is found by solving the corresponding bilinear form (4) of

Eq. (1) (see Section 2).

4 Two-soliton solution in phase variables

In this Section we present a detailed study of the two-soliton solution in phase
variables, which is written in the form U(ϕ1, ϕ2) = L[Θ(ϕ1, ϕ2)], where Θ is
the following theta-function:

Θ(ϕ1, ϕ2) = 1 + eϕ1 + eϕ2 + A12e
ϕ1+ϕ2 . (15)

We assume A12 > 0 because we are not interested in singular cases.
The behavior of the two-soliton solution as the phase variables ϕ1, ϕ2

are changed from −∞ to +∞ is described by the following equations (see
Appendix B, (28) and (29))

lim
ϕ1→−∞

U(ϕ1, ϕ2) = U1(ϕ2), lim
ϕ1→+∞

U(ϕ1, ϕ2) = U1(ϕ2 + lnA12), (16)

lim
ϕ2→−∞

U(ϕ1, ϕ2) = U1(ϕ1), lim
ϕ2→+∞

U(ϕ1, ϕ2) = U1(ϕ1 + lnA12), (17)

that is, in these limit processes the two solitons (represented here by U1)
undergo a phase shift ∆12 = − lnA12. Note that if A12 < 1, the value of the
phase shift ∆12 is positive while for A12 > 1 it is negative. The amplitudes
of the two solitons are 1

2µ2
1 and 1

2µ2
2, respectively. Figure 2 illustrates the

function U(ϕ1, ϕ2) with positive and negative phase shift, respectively.
For different values of the coefficient A12 two special cases can be distin-

guished.
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ϕ1

ϕ2

ϕ1

ϕ2

Figure 2: Two-soliton solutions with positive (0 < A12 < 1, left plot) and
negative (A12 > 1, right plot) phase shifts.

ϕ1

ϕ2

Figure 3: From the interaction of solitons a resonance soliton may be formed.

Case A12 = 0: The two-soliton solution represents a resonance of two solitons.
Here, different from (16) and (17), the limit processes ϕ1, ϕ2 → +∞ give
zeros. But the limit process ϕ1 + ϕ2 → +∞ with ϕ1−ϕ2 constant, gives
an one-soliton solution (see (30)):

lim
ϕ1+ϕ2→+∞
|ϕ1−ϕ2|<∞

U(ϕ1, ϕ2) = U1(ϕ1 − ϕ2).

The corresponding soliton is called a resonance soliton. Note that from
A12 = 0 (see (8)) the dispersion relation P (µ1 − µ2, ν1 − ν2, ω1 − ω2) =
0 follows for the resonance soliton. So, the use of notion “soliton” is
justified. The amplitude of the resonance soliton is 1

2(µ1−µ2)
2. Figure 3

illustrates the two-soliton solution in phase variables with the resonance
soliton. This case can be interpreted as a two-soliton solution with an
infinite phase shift: ∆12 = +∞.
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ϕ1

ϕ2

ϕ1

ϕ2

Figure 4: Two-soliton solutions with large positive (left plot) and large nega-
tive (right plot) phase shifts. The interaction solitons are well visible.

Case A12 = +∞ The two-soliton solution is trivial. That is, we have (see (31))

lim
A12→+∞

U(ϕ1, ϕ2) = 0.

This result can be interpreted as follows. During the given limit process
the phase shift is negative and approaches minus infinity: ∆12 → −∞.
As a result, the solitons move away from our field of vision, if we sit at
the origin of the space of phase variables (c.f. Fig. 4, right plot).

4.1 Interaction soliton and the decomposition of a two-soliton
solution

The structure of the two soliton interaction clears up when we consider cases
near to the limiting cases A12 = 0 and A12 = +∞. Figure 4 contains plots of
the two-soliton solutions corresponding to the cases 0 < A12 � 1 and A12 � 1.
These plots show that during the interaction a soliton-like profile forms that
we call an interaction soliton.

Below we give a more precise definition of the interaction soliton. For that
we introduce the following theta-function

Θ′(ϕ1, ϕ2) = cosh
ϕ1 − ϕ2

2
+

√

A12 cosh
ϕ1 + ϕ2 + lnA12

2
,

that is equivalent with (15) (see (32)). Using this Θ′, one can derive the
following expression for the two-soliton solution in phase variables:

U(ϕ1, ϕ2) =

(

√

A12

(

µ2
1 cosh(ϕ2 + ln

√

A12) + µ2
2 cosh(ϕ1 + ln

√

A12)
)

+
(µ1 − µ2)

2 + A12(µ1 + µ2)
2

2

)

1

Θ′2 .
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ϕ1

ϕ2

ϕ1

ϕ2

Figure 5: Functions S1(ϕ1, ϕ2) and S2(ϕ1, ϕ2) corresponding to the first and
second pure soliton, respectively.

ϕ1

ϕ2

ϕ1

ϕ2

Figure 6: Left plot: A function S12(ϕ1, ϕ2) corresponding to the interaction
soliton. Right plot: Linear superposition of the two pure solitons S1, S2 and
the interaction soliton S12 gives the two-soliton solution.

This suggests the following decomposition:

U(ϕ1, ϕ2) = S1(ϕ1, ϕ2) + S2(ϕ1, ϕ2) + S12(ϕ1, ϕ2) (18)

where the constituent functions are given by

S1(ϕ1, ϕ2) =

√
A12µ

2
1 cosh(ϕ2 + ln

√
A12)

Θ′2 ,

S2(ϕ1, ϕ2) =

√
A12µ

2
2 cosh(ϕ1 + ln

√
A12)

Θ′2 ,

S12(ϕ1, ϕ2) =
(µ1 − µ2)

2 + A12(µ1 + µ2)
2

2Θ′2 .
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µ1|ρ|

µ2

|ρ|

A 12
=

0

A 12
=

0

A
12 = ∓∞

A12 > 1
0 < A12 < 1

0 < A12 < 1

A12 < 0

A12 = ρ2−(µ1−µ2)
2

ρ2−(µ1+µ2)2

ρ = ν1

µ1

− ν2

µ2

A12 = 1

A
1
2

=
1

Figure 7: “Map” of soliton types for the KP equation.

The plots of these functions (with A12 < 1) are shown in Figs. 5 and 6;
so that S1, S2, and S12 correspond to two pure solitons and the interaction
soliton, respectively. They also satisfy the following properties:

lim
ϕ2→−∞

S1(ϕ1, ϕ2) = U1(ϕ1), lim
ϕ2→+∞

S1(ϕ1, ϕ2) = U1(ϕ1 + lnA12),

lim
ϕ1→−∞

S2(ϕ1, ϕ2) = U1(ϕ2), lim
ϕ1→+∞

S2(ϕ1, ϕ2) = U1(ϕ2 + lnA12),

lim
ϕi→±∞

Si(ϕ1, ϕ2) = 0, lim
ϕi→±∞

S12(ϕ1, ϕ2) = 0,

where i = 1, 2, which justify stating that the two-soliton solution U is a linear
superposition of the two pure solitons S1, S2 and the interaction soliton S12.

The amplitude of the interaction soliton is defined as a value of the function
S12 at the center of the interaction region: S12(

1
2∆12,

1
2∆12). It depends on

the coefficient A12 as follows: if A12 is changed from zero to +∞, then the
amplitude of the interaction soliton varies monotonically from 1

2(µ1 − µ2)
2 to

1
2(µ1 + µ2)

2.
As for example, Figure 7 illustrates how the coefficient A12 depends on the

wave parameters µ1 > 0, µ2 > 0, ν1, ν2 in the KP equation case. For nonzero
interaction angle (represented by ρ), the interactions of two KP solitons may
have positive and negative phase shifts (if A12 > 1 and A12 < 1, respectively).
Resonance soliton forms on the line denoted by A12 = 0. The interaction is
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ϕ1

ϕ2

−∆12

−∆12

ϕ1

ϕ2

∆12

∆12

Figure 8: Phase patterns (bold lines) of the two-soliton solution with negative
and positive phase shift, respectively.

singular in regions with A12 < 0. In regions, where A12 is close to zero or very
large, the interaction soliton is well visible.

4.2 Geometric representation of soliton interaction

We introduce a simplified description for the interaction process of two solitons.
Namely, we describe the geometry of the interaction picture by the two pairs
of parallel line slices connected with a diagonal line slice as shown in Fig. 8.
One set of parallel line slices describes the position of one soliton and its
shifted counterpart in an approximate way; and the diagonal line slice shows
the position of the interaction soliton. We call the whole set of these line
elements a phase pattern set and denote it by PU .

Note that the phase pattern set PU of the two-soliton solution is consistent
with the decomposition introduced in Section 4.1. The two pairs of parallel
line slices show approximately the positions of the “crests” of the pure solitons
S1 and S2, respectively. The diagonal line slice corresponds to the interaction
term S12 in the same sense.
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5 Two-soliton solution in real variables

In this Section we complete the direct problem by transferring the results
obtained for the two-soliton solution in phase variables to the ones in real
spatial-temporal variables. For that we use the relation u(x, t) = U(ϕ(x, t))
and the particular form of the mapping ϕ(x, t) given in (9).

With the phase pattern set PU of the two-soliton solution U = U(ϕ) (see
Section 4.2) the corresponding function u = u(x, t) has a real pattern set Pu(t),
defined by

Pu(t) = {x|Kx + ωt + ϕ0 ∈ PU}. (19)

The direct problem is solved if we manage to construct the real pattern set
Pu(t) for the function u = u(x, t) for any time moment. In the general case
this is not trivial since then the dimensions of the spaces of real spatial and
phase variables (the dimensions are 2 and g, respectively) can be different,
especially for g being large.

In the following we assume g = 2 that corresponds to the evolution of two
solitons in two spatial dimensions. Without loss of generality, we also assume
ϕ0 = 0 and that the wave vectors k1, k2 are not collinear.

With these assumptions the wave matrix K defines an affine mapping
between the two-dimensional planes of real and phase variables: ϕ = Kx. The
definition of the real pattern set (19) is simplified to the following relation

PU = KPu(t) + ωt.

Since the mapping K : R
2 → R

2 is also bijective, we can write the expression
for the real pattern Pu(t) explicitly as follows

Pu(t) = K−1PU − wt, (20)

where w = K−1ω.
The first term in the formula (20) gives the real pattern at time t = 0.

For increasing time, this pattern is just shifted in the opposite direction of the
vector w: in the frame of reference moving with velocity vector w, the pattern
of the two-soliton solution is stationary.

Figures 9 and 10 illustrate the relation between the phase and real space
variables and the dynamics of the real pattern of the two-soliton solution.
Observe that the vectors µ and ν are the images of the coordinate vectors in
the real space. If time increases, these vectors are shifted in the direction of
the vector ω (in Figs. 9 and 10 the vectors µ,ν are plotted for time t = 0).

6 Inverse problem

The starting point for this Section is a wave pattern picture. Our aim is to
determine the parameters (most important, the amplitudes) of the waves seen
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µ

νtω

ϕ1

ϕ2

−∆12

PU

k1

k12

k2

−tw

x

y

Pu(0)
Pu(t)

Figure 9: The negative phase shift case: The geometric representation of the
two-soliton solution in phase variables (left) and the dynamics of the two-
soliton pattern in the real space (right).

µ

ν
tω

ϕ1

ϕ2

∆12

PU

k1

k12

k2

−tw

x

y

Pu(0)
Pu(t)

Figure 10: The positive phase shift case (see Fig. 9).

in this pattern picture. In this paper we limit our study to two waves in two
dimensions. These cases are modeled by two-soliton interactions. Below we
first overview the main steps in solving the inverse problem and then illustrate
the solution for the KP model.

Recall from Section 5 that the configuration of the wave pattern of the two-
soliton solution in phase variables is determined by one phase shift parameter
∆12 that can have either negative or positive values, in general. Figure 11
shows that the configuration of the corresponding wave pattern in the real
space is determined by three parameters. These are two shift parameters δ1, δ2
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α12

δ2

δ1

α12

δ2

δ1

Figure 11: Interaction patterns of the two-soliton solution corresponding to
the negative (upper figure) and positive (lower figure) phase shift cases.

that measure the shifts of the wave crests resulted from the interaction process,
and one parameter α12 measuring the relative angle between the wave crests.
So, three equations can be stated for relating these measured parameters with
wave parameters.

On the other hand, the two-soliton solution is determined by four parame-
ters: µ1, µ2, ν1, ν2. Consequently, at this point one equation is absent in order
to obtain a complete system of equations for four unknowns. This equation
results by specifying a concrete physical model, which is done below.

In general, solving the inverse problem of wave patterns modeled by multi-
soliton solution, consists of the following four main steps:

1. Measure the shifts of the wave crests and state the equations relating
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these measurements with the parameters in the wave vectors.

2. Measure the relative angles between the wave crests and state the cor-
responding equations.

3. Apply the assumptions of the physical model at hand in order to obtain
a complete set of equations.

4. Finally, solve the system of equations. In the case of multiple solutions,
choose the ones that make sense physically.

Note that in finding the equations for steps 1 and 2, where only distances
and angles are of importance, we can use a simplified version of equation (9):
ϕ = Kx + ϕ0. Moreover, since we only consider the case g = 2, we can take
ϕ0 = 0.

In the following we derive the system of equations of the inverse problem
for two KP waves.

Relations for the shifts of wave crests: Figure 12 illustrates how the wave
patterns with negative and positive phase shift (left figures) are mapped
with ϕ = Kx to the space of phase variables (right figures). In partic-
ular, vectors δ1, δ2, that characterize the shifts undergone by the two
waves, are mapped to vectors Kδi, i = 1, 2, in the space of phase vari-
ables. Note that one of the coordinates of the both vectors Kδ i, i = 1, 2,
must be equal to − |∆12|. So, if

δi = −δi
ki

|ki|
, i = 1, 2,

where ki are the wave vectors perpendicular to the wave crests, then we
get from (Kδi)i = kT

iδi = − |∆12| the following two equations

δi |ki| = |∆12| , i = 1, 2, (21)

which relates the measured wave shifts to the parameters in the wave
vectors.

Relations for relative angles: Since the vectors k1 and k2 are perpendicu-
lar to the wave crests, the relative angle between the wave crests is equal
to the angle between the wave vectors:

cos α12 =
kT

1k2

|k1| |k2|
. (22)

Completing the set of equations for the KP case: The KP equation is
assumed to describe the motion of waves traveling mainly in one direc-
tion, in the direction of x-axis for the given KP equation (5). So, it is
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Figure 12: Inverse relations between the real and phase pattern sets for the
negative (upper figure) and positive (lower figure) phase shift cases.

natural and with no restriction of generality, to put the x-axis in the
middle of the wave vectors k1 and k2, so that

0 <
ν1

µ1
= − ν2

µ2
< 1 (23)

with µ1 > 0, µ2 > 0. This equation together with equations (21) and (22)
form the complete system of equations for determining the four unknown
parameters µ1, µ2, ν1, ν2.

6.1 Solving the system for the KP model

For the KP equation the phase shift parameter of the two-soliton solution
reads (see Section 4)

∆12 = − ln
ρ2 − (µ1 − µ2)

2

ρ2 − (µ1 + µ2)2
, (24)
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ρ
2 /4

|∆12(µ1)|

Figure 13: Graphical representation of Eq. (25) shows the existence of two
nontrivial solutions. Here |∆12(µ1)| =r.h.s. of (25).

where, using (23), ρ = ν1

µ1
− ν2

µ2
= 2 ν1

µ1
. So, we have ν1 = 1

2ρµ1, ν2 = −1
2ρµ2,

and consequently, |ki| = µi

√

1 + ρ2/4, i = 1, 2. Equations (21) give now
δ1µ1 = δ2µ2 which is used in eliminating one of the parameters, say µ2 =
µ1δ1/δ2. Note also that ρ = 2ν1/µ1 = 2 tan 1

2α12 (this is the relation for the
relative angle). Taking into account all these relations, we obtain from (21)
and (24) an equation for one unknown parameter µ1:

µ1δ1

√

1 + ρ2/4 =

∣

∣

∣

∣

ln
δ2
2ρ

2 − (δ2 − δ1)
2µ2

1

δ2
2ρ

2 − (δ2 + δ1)2µ
2
1

∣

∣

∣

∣

. (25)

In general, Eq. (25) has three solutions: one trivial (µ1 = 0) and two
nontrivial (if to assume ρ 6= 0) as illustrated in Fig. 13. It shows graphs of
the l.h.s. and r.h.s. of Eq. (25). Clearly, the nontrivial solutions are always
separated. It turns out that the solution of (25) belonging to the interval
(0, δ2ρ/(δ1 + δ2)) corresponds to the negative phase shift case while the other
solution (µ1 > δ2ρ/ |δ2 − δ1|) corresponds to the positive phase shift case. So,
we have the following equations

µ1δ1

√

1 + ρ2/4 ± ln
δ2
2ρ

2 − (δ2 − δ1)
2µ2

1

δ2
2ρ

2 − (δ2 + δ1)2µ
2
1

= 0, (26)

where “+” corresponds to the positive phase shift case.
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In conclusion, for a specified phase shift, the solution of the inverse problem
is unique and is generated by the solution of Eq. (26).

For the practical applicability in the laboratory the sensitivity of the con-
structed solution on the measured parameters is of importance. In our next
paper this sensitivity will be investigated in detail (see [13]).

7 Discussion

In this paper we considered the inverse problem of finding the amplitudes of
interacting waves from the geometry of their interaction pattern, which is, for
example, observable from optical measurements. We showed that this problem
has a unique solution for the two wave interaction in the case the model is
the KP equation. The sensitivity of the solution for errors in parameters that
have to be determined from experiments has been investigated in detail but is
not presented here because of limitation of space (see [13]). Furthermore, our
approach has been general and can without modification be applied to solve
the inverse problem for waves described by other KdV-type equations.

The direct problem of constructing the wave pattern of interacting solitons
with known values of the parameters, demonstrated in this paper for two
solitons, can be extended to the interaction of more solitons, see [14, 15], and
will be the subject of a subsequent paper. However, at this moment it is
not clear if the inverse problem for more than two interacting solitons can be
solved, in particular when only a part of the interaction pattern is considered
(which would be the information from a photographic registration), or when
a time record of point measurements from such a part would be available.

The restriction of the present paper to consider solitons instead of periodic
wave trains (cnoidal waves), leads to new questions. Since most wave phenom-
ena in nature are, or appear to be, quasi-periodic, and since the KdV-type of
equations support quasi-periodic soliton solutions that can be expressed in
terms of the Riemann theta-functions, another challenge would be to solve
the direct and inverse problem for quasi-periodic waves. Again the situation
for two waves seems clear: Hammack et al. [2] have found that for two periodic
waves the interaction pattern is hexagonal, and so the direct problem has a
straightforward solution. However, when considering three or more interacting
periodic solitons, the direct problem, and even more so the inverse problem,
is much more difficult; the phase pattern needs to be determined and ways to
construct it in an algorithmic way have to be found.
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Appendix A Proof of the formula (12)

Let n ∈ Z
g, I ⊂ Z

g, and |I| < ∞. Then

Θ =
∑

m∈I

Amem
T
ϕ = e−n

T
ϕ

∑

m∈I

Ame(m+n)Tϕ = e−n
T
ϕΘ′

where Θ′ and Θ are equivalent because of the gauge invariance of L.
First, we consider the limit process ϕi → −∞. Here we choose index vector

n such that (i) (m + n)i > 0 for all m ∈ I and (ii) there exists at least one
m ∈ I such that (m + n)i = 0. This choice of n ensures that limϕi→−∞ Θ′

exists and is nonzero. Let us denote this limit by Θ′′ and find

Θ′′ = lim
ϕi→−∞

Θ′ = lim
ϕi→−∞

∑

m∈I

Ame(m+n)Tϕ =
∑

m∈I
(m+n)i=0

Ame(m+n)Tϕ.

The r.h.s. of (12) becomes now

L[Θ′′] = 2
Θ′′

xxΘ′′ − Θ′′
x
2

Θ′′2 (27)

where

Θ′′
x =

∑

m∈I
(m+n)i=0

Am(m + n)Tµe(m+n)Tϕ,

Θ′′
xx =

∑

m∈I
(m+n)i=0

Am((m + n)Tµ)2e(m+n)Tϕ.

Note that Θ′′ does not depend on ϕi but it is still correct to apply the operator
L (that includes partial derivatives with respect to ϕi) to it: the corresponding
terms in L[Θ′′] become just zeros.

Let us calculate the l.h.s. of (12) with theta-function Θ′. First

L[Θ′] = 2
Θ′

xxΘ′ − Θ′
x
2

Θ′2
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where

Θ′
x =

∑

m∈I

Am(m + n)Tµe(m+n)Tϕ,

Θ′
xx =

∑

m∈I

Am((m + n)Tµ)2e(m+n)Tϕ.

Since Θ′, Θ′
x, and Θ′

xx remain finite as ϕi → −∞ then the limit over L[Θ′] can
be taken separately over Θ′, Θ′

x, and Θ′
xx. The result is exactly L[Θ′′] in (27).

Similar arguments give formula (12) also for the limit process ϕi → +∞.
Here the index vector n is chosen such that (i) (m + n)i 6 0 for all m ∈ I
and (ii) ∃m ∈ I : (m + n)i = 0.

Appendix B Derivation of formulas

Equations (16) and (17) follow from

lim
ϕ1→−∞

U(ϕ1, ϕ2) = lim
ϕ1→−∞

L[Θ(ϕ1, ϕ2)]

= L

[

lim
ϕ1→−∞

(1 + eϕ1 + eϕ2 + A12e
ϕ1+ϕ2)

]

= L[1 + eϕ2 ] = U1(ϕ2),

(28)

lim
ϕ1→+∞

U(ϕ1, ϕ2) = lim
ϕ1→+∞

L
[

eϕ1(e−ϕ1 + 1 + eϕ2−ϕ1 + A12e
ϕ2)

]

= L

[

lim
ϕ1→+∞

(e−ϕ1 + 1 + eϕ2−ϕ1 + A12e
ϕ2)

]

= L[1 + A12e
ϕ2 ] = U1(ϕ2 + lnA12).

(29)

Note that we must use the gauge invariance (11) before we can apply
commutability property (12) of the operators L and lim. Analogously the
limits for ϕ2 → ±∞ are found.

For A12 = 0 we have

lim
ϕ1+ϕ2→+∞
|ϕ1−ϕ2|<∞

U(ϕ1, ϕ2)

= lim
ϕ1+ϕ2→+∞
|ϕ1−ϕ2|<∞

L
[

e
ϕ1+ϕ2

2 (e−
ϕ1+ϕ2

2 + e
ϕ1−ϕ2

2 + e−
ϕ1−ϕ2

2 )
]

= L



 lim
ϕ1+ϕ2→+∞
|ϕ1−ϕ2|<∞

(e−
ϕ1+ϕ2

2 + 2 cosh(ϕ1 − ϕ2))





= L[cosh(ϕ1 − ϕ2)] = U1(ϕ1 − ϕ2).

(30)
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For A12 → +∞ we have

lim
A12→+∞

U(ϕ1, ϕ2) = lim
A12→+∞

L
[

1 + eϕ1 + eϕ2 + A12e
ϕ1+ϕ2

]

= lim
A12→+∞

L
[

(1 + eϕ1 + eϕ2)/A12 + eϕ1+ϕ2
]

= L
[

eϕ1+ϕ2
]

= 0.

(31)

If Θ is defined by (15) then

L[Θ(ϕ1, ϕ2)] = L
[

e
ϕ1+ϕ2

2 (e−
ϕ1+ϕ2

2 + e
ϕ1−ϕ2

2 + e−
ϕ1−ϕ2

2 + A12e
ϕ1+ϕ2

2 )
]

= L

[

2 cosh
ϕ1 − ϕ2

2
+

√

A12(e
−ϕ1+ϕ2

2
−ln

√
A12 + e

ϕ1+ϕ2
2

+ln
√

A12)

]

= L

[

cosh
ϕ1 − ϕ2

2
+

√

A12 cosh
ϕ1 + ϕ2 + lnA12

2

]

.

(32)
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