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Abstract. In a previous paper [1] the inverse problem for
wave crests was introduced and a solution strategy
for two-wave interactions was given. Here these so-
lutions are actually constructed, in particular for the
cases with small interaction angle, moderate phase
shifts, and/or symmetric interactions. Two detailed
examples are presented and analyzed. The sensitivity
of the method is investigated, and conclusions about
the practical applicability are given.
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1 Introduction

The so-called “inverse” problem of multi-directional waves concerns the ques-
tion if from a (photographic) record of the wave pattern the interacting individ-
ual waves (wave heights, directions, etc) can be reconstructed. The motivation
to study this problem originates from the work of Hammack et al. [2] and prac-
tical questions from hydrodynamic laboratories where waves are generated to
test ships.

Since linear interactions do not disturb the interacting waves, nonlinear ef-
fects should be modelled and taken into account for well-possessedness of the
problem. In [1], it was shown that taking the KP (Kadomtsev-Petviashvili)
equation as a model, the inverse problem has a unique solution for two inter-
acting waves.
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In this paper we investigate how the solution can be constructed in specific
cases and study the sensitivity of the result on pattern-parameters that have to
be found from the measurements. A summary of the formulation and solution
of the inverse problem is presented in the following section. In Section 3
we consider approximate solutions of the inverse problem that can be used as
estimates when finding exact solutions with iterative methods; in several cases
the approximate solutions are good enough and no iteration is needed. Then
we illustrate the inverse problem with two examples. Finally, a detailed error
analysis is carried out.

2 The inverse problem for two waves

Consider wave patterns that arise from two-wave interaction of soliton-type.
Then the aim of the inverse problem is to find the heights of two waves using
only geometrical characteristics of the wave pattern. The most important
characteristics (pattern-parameters) are the interaction angle and the phase
shifts which result from the nonlinear interaction. In fact, mainly because the
phase shifts depend on the amplitudes of the waves, it is possible to solve this
problem.

Occurrence of phase shift is one of the basic features in soliton phenomena
and so it is natural to choose a model for the wave propagation which supports
solitons. In order to tackle the inverse problem, we have used a large class
of “soliton”-type of equations — the KdV-type of equations [3] — for which
soliton interactions can be studied using Hirota’s formalism [4]. For these
equations the interaction of an arbitrary number of solitons is possible but
in the following only two-soliton interaction will be considered. We will use
the KP model, that is a specific member of this family, to demonstrate our
method. The KP model is known to describe (small but finite amplitude,
long) surface waves travelling in shallow water (of constant depth) “mainly”
in one direction [2]. The KP equation (in normalized variables) reads

(ut + 6uux + uxxx)x + 3uyy = 0, (1)

where u = u(x, y, t) denotes the surface elevation and the direction of main
propagation of waves is taken the x-axis.

There are two types of two-soliton interactions: one with negative and one
with positive phase shift as shown in Figure 1, respectively. A picture of
the pattern shows that important quantities are the interaction angle α12 and
the phase shift δ1,2 of each wave. In order to find the amplitudes of these
waves uniquely, we need to know the type of the wave interaction, negative
or positive. This can be seen from the pattern if, as we shall do, define the
interaction angle to be acute. Then, negative shift occurs if the vertex (marked
with a dot) lies on the crest line, and positive when that is not the case.
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Figure 1: Interaction patterns of the two-soliton solution with negative (left)
and positive (right) phase shift; indicated are the pattern-parameters δ1,2

(phase shifts) and α12 (interaction angle).

The two-soliton solution of the KP equation can be written down explicitly.
It is a uniform translation of a fixed pattern in real space, that is given (at
t = 0) by the following formula

u(x, y, t = 0) = 2
∂2

∂x2
ln

(

cosh
ϕ1 − ϕ2

2
+

√

A12 cosh
ϕ1 + ϕ2 − ∆12

2

)

, (2)

where ϕ1 = µ1(x+ 1

2
ρy), ϕ2 = µ2(x− 1

2
ρy) are phase variables. The parameters

µ1,2 are directly related to the wave amplitudes a1,2 = 1

2
µ2

1,2, ρ is related to

the interaction angle α12 (ρ = 2 tan 1

2
α12), and a corresponding positive value

of A12 is required to define an actual solution: the phase shift parameter
∆12 = − lnA12 is negative for A12 > 1, and positive for 0 < A12 < 1. For the
KP two-soliton solution we have

A12 =
ρ2 − (µ1 − µ2)

2

ρ2 − (µ1 + µ2)2
. (3)

Figure 2 shows in phase variables the difference between soliton solutions
with negative and positive phase shifts, respectively. Figure 1 shows the cor-
responding soliton solutions in real variables (propagating in the vertical di-
rection).

A detailed analysis [1] shows that the following equations relate the pa-
rameters in the KP two-soliton solution to the pattern-parameters:

µ2 = µ1

δ1

δ2

, (4)

where µ1 has to be found from

µ1δ1

√

1 + ρ2/4 ± ln
δ2
2ρ

2 − (δ2 − δ1)
2µ2

1

δ2
2
ρ2 − (δ2 + δ1)2µ2

1

= 0, (5)
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Figure 2: Two-soliton solution with negative (left) and positive (right) phase shift
(in phase variables).
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Figure 3: Graphical representation of Eq. (5) shows the existence of two non-
trivial solutions. Here |∆12(µ1)| =the second term of (5).

where the minus-sign corresponds to negative phase shift. Figure 3 shows how
the solutions of the last equation can be found from the intersection points of
the relevant graphs. It shows that, in general, it has two nontrivial solutions:
the solution µ1 < δ2ρ/(δ2 + δ1) corresponds to the negative interaction type
and the other one to the positive interaction type.

These results show that the inverse problem can be solved and that the
amplitudes of the waves can be found uniquely for a specific interaction type.

In the rest of this paper we will analyze the dependence of the results on
the errors in the pattern-parameters in order to determine the sensitivity of
the method and its applicability in practice.
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Figure 4: Solutions of Eq. (5) for interactions with negative (left) and positive
(right) phase shift.

3 Special cases

Figure 4 illustrates the solutions of Eq. (5) for various sets of pattern-parameters.
Vertically the parameters µ1, µ2 are plotted against the interaction angle α12

of the waves, and the value of δ1/δ2 for δ2 = 5 and δ2 = 15. Recall that the
amplitudes of the two solitons are 1

2
µ2

1,
1

2
µ2

2, respectively.
In the following we discuss some special solutions of the inverse problem

that can be used to obtain estimates for the amplitudes of the waves if special
conditions hold. First, with no restriction of generality, we take δ1 = rδ2,
0 < r 6 1. Then Eq. (5), after taking the exponential and reordering the
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terms, reads
(

ρ2 − (1 − r)2µ2
1

ρ2 − (1 + r)2µ2
1

)±1

= e−µ1rδ2
√

1+ρ2/4. (6)

Small interaction angle (α12 → 0): If the interaction angle α12 is decreased
to zero, or equivalently, ρ → 0, the solution µ1 ∈ (0, δ2ρ/(δ2 +δ1)) (nega-
tive phase shift) becomes trivial: µ1 → 0 (see the left-hand plots in Fig. 4
for α12 → 0 or Fig. 3 for ρ → 0). Taking the Ansatz µ1 ∼ ρ2, the fol-
lowing approximate solution is found for the case with small interaction
angle and negative phase shift:

µ1 =
δ2

4
ρ2 + O(ρ4). (7)

For positive phase shift, Eq. (5) simplifies in the limit ρ → 0 to

µ1δ1 + 2 ln
|δ2 − δ1|
δ2 + δ1

= 0;

this gives an approximate solutions for small interaction angle:

µ1 =
2

δ1

ln
δ2 + δ1

|δ2 − δ1|
+ O(ρ2).

Moderate phase shifts (δ1, δ2 � 1 and ρ > 0): Note that the l.h.s. of Eq. (6)
does not depend on δ2. The limit process δ2 → ∞ gives the following
solutions

µ1 =
ρ

1 + r
, µ1 =

ρ

1 − r

for negative and positive phase shifts, respectively. So, for large phase
shifts we have the following approximate solutions:

µ1 ≈ δ2ρ

δ2 + δ1

, µ1 ≈ δ2ρ

|δ2 − δ1|
. (8)

However, because the r.h.s. of Eq. (6) decreases exponentially with re-
spect to the phase shift parameter, these formulas give good estimates
if phase shifts are moderate (as seen in the example below), and if the
interaction angle is not too small.

Graphically, these approximate solutions are the asymptotes in Fig. 3
(vertical dashed lines) and the corresponding curves are very steep if the
phase shifts are large (see also Fig. 5). Formula (8) explains also the
steeply rising solution curves in Fig. 4 as r → 1 for interactions with
positive phase shift.
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Table 1: Solving the inverse problem: data corresponding to the situation
shown in Fig. 1.
Phase shift: negative positive

Pattern-parameters
(measurements):

δ1 10.0 ±0.5 10.0 ±0.5

δ2 15.0 ±0.5 15.0 ±0.5

α12 (39.0 ±2.0)◦ (39.0 ±2.0)◦

Solution to the inverse
problem:

µ1 0.42 ±0.04 2.12 ±0.5

µ2 0.28 ±0.03 1.42 ±0.45

Wave amplitudes: a1 0.09 ±0.02 2.3 ±1.0

a2 0.040 ±0.0085 1.00 ±0.65

a12 0.20 ±0.065 0.25 ±0.055

Weights of relative errors
(see Sec. 5):

cδ1 0.38 2.00
cδ2 0.41 2.00
cα12

1.11 1.08

Symmetric interaction (δ1 → δ2 or r → 1): If the phase shifts of the two
solitons are equal then from δ1µ1 = δ2µ2 it follows that they must have
equal amplitudes: µ1 = µ2. But this is possible only if the phase
shift is negative (because A12 > 1 in (3)). Graphically, the asymp-
tote δ2ρ/ |δ2 − δ1| of the curve, that corresponds to positive phase shift,
shifts to infinity as δ1 → δ2 (see Fig. 3). Equation (5) for δ1 = δ2 remains
transcendental:

µ1δ2

√

1 + ρ2/4 ± ln
ρ2

ρ2 − 4µ2
1

= 0

and its solution exists only for negative phase shift (because ρ > 2µ1

must hold). For moderate phase shifts the solution is approximately
µ1 ≈ ρ/2 (see above) and for small interaction angle given by (7).

4 Specific examples

Table 1 illustrates two examples of the inverse problem for two wave inter-
actions with negative and positive phase shifts. The values of the pattern-
parameters δ1, δ2, and α12 correspond to the situation depicted in Fig. 1. Here
ai and a12 are the amplitudes of the two waves and the interaction soliton [1],
respectively:

ai = 1

2
µ2

i , a12 =
(µ1 − µ2)

2 + A12(µ1 + µ2)
2

2(1 +
√

A12)2
.

To show the effect of errors in pattern-parameters when the data is obtained
from a photographic recording, a choice for the relative errors of approximately
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Figure 5: “Graph” of Eq. (5) for δ1 = 10, δ2 = 15, and α12 = 39◦.

5% is taken (the accuracy of experimental measurements in Hammack et al.
[2] are between 3% and 10%, depending on the measured quantity).

Table 1 shows that the interaction with positive phase shift is more sensi-
tive to errors than when the phase shift is negative. For example, for negative
phase shift the relative error of the wave amplitudes is approximately 22%,
but when phase shift is positive, the error reaches 65%! (Hammack et al. [2]
found the corresponding errors to be from 26% to 33%). A detailed analysis
of these errors is carried out in the next section.

Figure 5 illustrates graphically the solutions of Eq. (5) for the examples
specified in the table. The figure shows that the solutions are close to the posi-
tions of the asymptotes. So, the given examples correspond to the interactions
with rather large phase shifts. The large relative errors in the positive phase
shift case follows from µ1 ∼ 1/ |δ2 − δ1|. This subtraction in the denominator
is responsible for the amplification of errors if the difference in phase shifts
δ1 − δ2 becomes small. This is also expressed in weights of relative errors (see
error analysis below): for positive phase shift these are much larger than for
negative phase shift (as seen in Table 1).

5 Error analysis

In this section we study the relative errors of results of the inverse problem
in more detail. Note that an error estimate for µ1 is sufficient, since then the
errors for the other quantities (that are determined by µ1) will follow from
this.

Let ∆δ1, ∆δ2, ∆α12 denote the absolute errors of the measured data δ1,

65



δ2, α12, respectively. Then the error estimate for µ1 is given by

|∆µ1| =

∣

∣

∣

∣

∂µ1

∂δ1

∣

∣

∣

∣

|∆δ1| +
∣

∣

∣

∣

∂µ1

∂δ2

∣

∣

∣

∣

|∆δ2| +
∣

∣

∣

∣

∂µ1

∂α12

∣

∣

∣

∣

|∆α12| , (9)

where the function µ1 = µ1(δ1, δ2, α12) is given implicitly by Eq. (5). For the
relative errors

∆rµ1 =
∆µ1

µ1

, ∆rδi =
∆δi

δi
, ∆rα12 =

∆α12

α12

Eq. (9) reads |∆rµ1| = cδ1 |∆rδ1| + cδ2 |∆rδ2| + cα12
|∆rα12|, where

cδ1 =

∣

∣

∣

∣

∂µ1

∂δ1

∣

∣

∣

∣

δ1

µ1

, cδ2 =

∣

∣

∣

∣

∂µ1

∂δ2

∣

∣

∣

∣

δ2

µ1

, cα12
=

∣

∣

∣

∣

∂µ1

∂α12

∣

∣

∣

∣

α12

µ1

(10)

denote weights of relative errors. These weights determine the sensitivity of the
solution of the inverse problem to the relative errors of the pattern-parameters
δ1, δ2, and α12.

Figure 6 shows the weights of relative errors for various sets of the pattern-
parameters (similar to Fig. 4). Vertically the weight factors cδ1 , cδ2 , cα12

are plotted against the interaction angle α12 and the ratio δ1/δ2 for various
specified values of δ2. We refer to the sum of weight factors cδ1 + cδ2 + cα12

as the total weight of relative errors. The following conclusions can be drawn
from these figures.

Negative phase shift Here the total weight of relative errors is bounded ap-
proximately by 3.0, which value is approached for very small interaction
angles. As the interaction angle increases, the total weight decreases to
the lowest possible value of 1.0 which appears for large phase shifts.

The relative difference in phase shifts δ1, δ2 (for fixed α12) plays a rather
small role since the total weight increases only slowly to the maximal
value which is obtained if the amplitudes of the both waves are the same
(δ1/δ2 = 1).

Considering the weights of relative errors separately, we conclude that
an accurate measurement of the interaction angle is important, while
errors in measuring the phase shifts play a secondary role, especially, if
the shifts are large.

Positive phase shift Here the total weight of relative errors is not bounded
anymore. It becomes very large when the amplitudes of the waves be-
come almost equal (as shown earlier, the interaction of equal amplitude
solitons can only exist with negative phase shift).

However, if the phase shifts are rather different, say δ1 < 0.5δ2, the
bound of the total weight of relative errors is small (a little above of the
minimal value of 1.0). And so, these cases are less sensitive than the
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Figure 6: Weights of relative errors for interactions with negative (left) and
positive (right) phase shift (see text).

corresponding cases with negative phase shift and smaller phase shift
values. As for negative phase shift, the accurate measurement of the
interaction angle is important, but for positive phase shift its importance
is taken over by the errors of phase shift measurements if they become
closer (δ1 → δ2).

6 Conclusions

In this paper we derived approximate solutions to the inverse problem for wave
crests and carried out a complete sensitivity analysis of this method.

As a result, we find that the method is most sensitive to errors in the
interaction angle, especially, if it is small. As the main source of errors we
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recognize the way how the crest-lines, that are used for measuring the pattern-
parameters, are drawn on the wave pattern picture. This is because the posi-
tions of wave crests are not well-defined as seen in Fig. 1. In a separate paper
[5] the reconstruction of crest-lines in spatial wave fields will be investigated
in detail.

In conclusion, the method of calculating the heights of the waves from a
“photographic” record is applicable if the positions of the waves crests can be
well defined from the wave pattern (if they are long enough, for instance) and
the pattern-parameters can be determined accurately.
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