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Abstract. To predict the wave parameters from the inter-
action patterns of waves (the inverse problem), the
corresponding direct problem needs to be solved. In
this paper interaction patterns of multi-soliton so-
lutions of KdV type equations are constructed. The
connection between the multi-soliton interaction pat-
terns and the decomposition of a multi-soliton solu-
tion into a linear superposition of solitons and in-
teraction solitons is demonstrated. All new con-
cepts are illustrated for three-soliton solutions of the
Kadomtshev-Petviashvili equation.
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1 Introduction

Consider water-air surface waves which form complicated wave patterns dur-
ing the propagation. In mathematical terms, a two-dimensional surface and its
perturbations that can propagate in different directions are considered. Our
ultimate goal is to predict the wave parameters (amplitudes, traveling direc-
tions, etc.) from the geometry of the interaction patterns formed by surface
waves — the inverse problem of wave crests.

In the following we associate wave crests with solitons. Solitons are found
to be rather robust phenomena (in the theory) of water waves. More impor-
tantly, using solitons as a model, we can actually tackle the inverse problem
that would be otherwise too complicated, if not impossible, to solve when using
even the simplest (no winds, incompressible fluid, etc.) free surface equations
of water waves.

This inverse problem of wave crests was first solved for two wave interac-
tions in [1, 2]. To tackle the inverse problem, the direct problem (i.e. con-
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structing wave interaction patterns from predefined wave parameters) needs
to be solved first. The interaction patterns are always stationary in the case
of two waves. That, however, is not true for more than two waves. Then the
interaction patterns are nonstationary, in general, and therefore much more
complicated to handle.

In this paper we will solve the direct problem of wave crests for an arbitrary
number of waves. As in [1], we assume that the dynamics of waves is governed
by some member in the class of KdV type equations (in Hirota sense) [3, 4].
The class of KdV type equations contains large number of nonlinear partial
differential equations that support soliton solutions. Multi-soliton solutions of
KdV type equations were constructed and analyzed in [5] using Hirota bilinear
formalism [6].

There have been other attempts to construct interaction pictures for more
than two solitons. See, for example, [7, 8] where authors describe the three-
soliton interactions in terms of the motion of two-soliton resonant interactions
(resonance triads). However, the authors recognize among other limitations
that this description is very much an idealization because at each interaction
point the condition for a resonant interaction is not met.

The organization of this paper is as follows. KdV type equations and their
multi-soliton solutions are introduced in the following Section 2. In Section 3
a phase pattern set of a multi-soliton solution is defined and a method for its
construction is introduced. Actual interaction patterns (real pattern sets) of
solitons are constructed in Section 4. All new concepts are illustrated for three-
soliton solutions of the Kadomtshev-Petviashvili equation. Finally, conclusions
are drawn in Section 5.

2 Multi-soliton solutions of KdV type equations

In this Section a brief overview of multi-soliton solutions of KdV type equations
is given. Detailed treatment can be found in [5].

Consider a (2+1)-dimensional KdV type equation for u(x), x = (x, y, t)T:

K[u] ≡ K(u, ux, uy, ut, . . .) = 0 (1)

that has related Hirota polynomials P = P (µ, ν, ω) and N = N(µ, ν, ω) such
that

P (Dx)θ · θ = 0 ⇒ K[θ−2N(Dx)θ · θ] = 0

holds for all nontrivial positive functions θ = θ(x), where Dx = (Dx, Dy, Dt)
T

is a vector of Hirota derivatives (Defs. 1–3 in [5]).

Notation (Index map κ). For α ∈ {0, 1}g a set κ(α) ∈ ℘({1, . . . , g}) is de-
fined such that (i) if αi = 1 then i ∈ κ(α) and (ii) |κ(α)| = αTα. For example,
κ((0, 1, 0, 1, 1)T) = {2, 4, 5}. We also write A{2,4,5} as A245, for example.
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Genus g soliton solution of the KdV type equation (1) reads u(x) = U(Kx)
(Theorem III.1 in [5]), where K = (µ,ν,ω), µ,ν,ω ∈ R

g, and

U(ϕ) = Θ−2N(DT
ϕK)Θ · Θ, (2)

Θ(ϕ) =
∑

α∈{0,1}g

Aκ(α)e
αTϕ, (3)

Aκ(α) =























1 if αTα < 2,

−P (ki − kj)/P (ki + kj) if κ(α) = {i, j},
∏

i,j∈κ(α)
i<j

Aij if αTα > 2,
(4)

where kT
i is the i-th row of a matrix K; DT

ϕK ≡ (KTDϕ)T with Dϕ =

(Dϕ1 , . . . , Dϕg
)T denoting Hirota derivatives with respect to phase variables

ϕ = (ϕ1, . . . , ϕg)
T. In addition the following conditions must hold:

dispersion relations: P (ki) = 0,

boundness conditions: P (ki + kj)P (ki − kj) 6 0,

Hirota conditions:
∑

α∈(β−{0,1}g)∩{0,1}g

Aκ(α)Aκ(β−α)P ((2α − β)TK) = 0,

where β ∈ {0, 1}g and βTβ > 2.

Notation (Excluding variables). For a n-sequence of symbols we use a
superscript rounded with parenthesis to denote a sequence of symbols that is a
subset of the n-sequence containing symbols with indices that are not listed in
the superscript and preserving the order. For example, (a, b, c, d)(1,3) = (b, d),
(ϕ1, ϕ2, ϕ3)

(2) = (ϕ1, ϕ3).

A multi-soliton solution U = U(ϕ) (in phase variables) is defined to have
the following property (Definition 5 in [5]): limϕi→±∞ U is a genus (g − 1)
soliton solution such that that

( lim
ϕi→+∞

U)(ϕ(i)) = ( lim
ϕi→−∞

U)(ϕ(i) −∆i
(i)), (5)

where ϕ(i) = (ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕg)
T, ∆ is a symmetric g × g-matrix of

phase variables ∆ij = − lnAij if i 6= j, and ∆ii = 0. The i-th column of ∆ is
denoted by ∆i.

A multi-soliton solution U = U(ϕ) can be decomposed into a superposition
of soliton and interaction soliton terms (Theorem IV.3 in [5]):

U =
∑

β∈{0,1}g

Sκ(β), (6)
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Figure 1: Phase pattern sets (bold lines) of two-soliton solutions with negative
and positive phase shifts, respectively. These illustrations correspond to two-
soliton solutions of the KP equation.

where

Sκ(β) =
1

2Θ′2

∑

α,α′∈{0,1}g

|α−α′|ew=β

√

Aκ(α)Aκ(α̃)Aκ(α′)Aκ(α̃′)N((α − α′)TK)

× cosh ((α − α̃′)Tϕ +
1

2
ln
Aκ(α)Aκ(α′)

Aκ(α̃)Aκ(α̃′)
), (7)

Θ′ =
1√
2

∑

α∈{0,1}T

√

Aκ(α)Aκ(α̃) cosh
(α − α̃)Tϕ + lnAκ(α)/Aκ(α̃)

2
,

|·|ew ≡ (|·1| , . . . , |·g|)T denotes the element-wise absolute value operation, and
α̃ ≡ i−α with i ∈ {1}g such that iTi = g. For multi-soliton solutions in real
variables, u = u(x), we write

u =
∑

β∈{0,1}g

sκ(β),

where sκ(β)(x) = Sκ(β)(Kx).

3 Phase pattern sets

In [1] we introduced a geometric representation of soliton interaction pictures.
In this simplified description, the so-called pattern set is defined to describe the
positions of solitons. For example, for a two-soliton solution in phase variables,
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Figure 2: Construction of the phase pattern sets (bold lines on the (ϕ1, ϕ2)-
plane) for two-soliton solutions with negative and positive phase shifts, respec-
tively. White arrows indicate the projection of polyhedron edges to the space
of phase variables.

U = U(ϕ1, ϕ2), the phase pattern set PU consists of two pairs of parallel line
slices and a connecting line segment as shown in Fig. 1. The parallel line
slices correspond to positions of soliton terms S1 and S2, respectively, and the
connecting line segment to the position of interaction soliton S12 [1].

In this section we construct phase pattern sets for multi-soliton solutions.
To get a better understanding of the method, we start with the two soliton
case and then extend it for the general multi-soliton case.

3.1 Construction of a phase pattern set for two-soliton solu-

tion

For two-soliton solutions, there are two types of interactions (with positive and
with negative phase shifts, respectively) that have different phase pattern sets
as shown in Fig. 1. In order to describe all possible phase pattern sets in an
unified manner (also for multi-soliton solutions), we introduce the following
construction. Namely, we extend the space of phase variables by defining
an auxiliary phase variable, ψ. In this extended space of phase variables
(ϕ1, ϕ2, ψ) we define a convex polyhedron such that the orthogonal projection
of its edges to the original space of phase variables does coincide with the
phase pattern set of the corresponding two-soliton solution. This construction
is illustrated in Fig. 2.
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3.2 Construction of a phase pattern set for multi-soliton solu-

tion

In the following we give a general definition for phase pattern sets and in-
troduce a method for their construction. First, we need to introduce some
auxiliary notations.

Notation. • For A ⊂ R
g, c ∈ R

g we define A+ c ≡ {a + c|a ∈ A}.

• For A ⊂ R
g, B ⊂ R

g−1, ϕ ∈ R
g, i = 1, . . . , g, we write

A|ϕi=−∞ = B

iff ∃c such that {ϕ(i)|ϕ ∈ A and ϕi = c′} = B holds for all c′ < c.

• Similarly, we write
A|ϕi=+∞ = B

iff ∃c such that {ϕ(i)|ϕ ∈ A and ϕi = c′} = B holds for all c′ > c.

Definition 1 (Phase pattern set). A set PU ⊂ R
g is called the phase

pattern set of a genus g soliton solution U = U(ϕ) with the phase shift matrix
∆ iff

1. If g = 1, then PU = {0}.

2. If g > 1, then the following conditions are satisfied for i = 1, . . . , g:

PU |ϕi=−∞ = PU(i) , (8)

PU |ϕi=+∞ = PU(i) + ∆i
(i), (9)

where PU(i) is the phase pattern set of a genus (g − 1) soliton solution
U (i) ≡ limϕi→−∞ U .

Theorem 3.1 (Construction of a phase pattern set). Let U = U(ϕ) be

a genus g soliton solution with the phase shift matrix ∆. Let H be a convex

polyhedron:

H =
{

(ϕ, ψ)|nTϕ + ψ + cn 6 0,n ∈ {−1, 1}g
}

, (10)

where

cn = c− 1

4
(i + n)T∆(i + n),

c ∈ R is arbitrary. Let R be a set of ridges of the polyhedron H:

R =
⋃

n,m∈{−1,1}g

n6=m

Rn,m, (11)
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|ρ12|

|ρ23|

Aij > 1 0 < Aij < 1

0 < Aij < 1

Aij < 0
A
ij = ∓∞

A ij
=

0

Aij = 1|ρij |

|ρij |

µi

µj

Aij =
ρij

2 − (µi − µj)
2

ρij
2 − (µi + µj)2

ρij =
νi

µi

− νj

µj

Figure 3: “Map” of genus 3 soliton types for the KP equation. The type is
defined by the signs of phase shifts ∆ij = − logAij . Shaded regions correspond
to bounded solutions. The case corresponds to ν1 = 0, ρ12 = 0.268, ρ13 =
−0.364.

where

Rn,m = H ∩
{

(ϕ, ψ)

∣

∣

∣

∣

nTϕ + ψ + cn = 0
mTϕ + ψ + cm = 0

}

. (12)

Then an orthogonal projection (ϕ, ψ) 7→ ϕ of R is a phase pattern set of U :

PU = R|ϕ . (13)

Proof. See Appendix A.

3.3 Phase pattern set of a three-soliton solution

In the following we illustrate the connection between phase pattern sets and
soliton solutions for the KP (Kadomtshev-Petviashvili) equation

(ut + 6uux + uxxx)x + 3uyy = 0,

that, as a member of the class of KdV type equations, has related Hirota
polynomials P = µω + µ4 + 3ν2 and N = µ2. In particular, we consider its
three-soliton solutions.

The boundness conditions A12,13,23 > 0 define regions in the space of µ-
parameters where KP three-soliton solutions are bounded as shown in Figure 3.
In addition, for different combinations of signs of the phase shift parameters
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∆23

Figure 4: Phase pattern set (grayed regions) of a three-soliton solution con-
structed according to Theorem 3.1. Only the center part of the pattern set
is shown, the grayed regions stretch to infinity. The case corresponds to
0 < ∆13 < ∆12 < ∆23.

∆ij = − logAij we distinguish four types of three-soliton solutions (cf. two
types of two-soliton solutions): the phase shifts are 1) all positive, 2) two
positive and one negative, 3) one positive and two negative, 4) all negative,
respectively.

The signs of the phase shift parameters ∆12,13,23 (of the KP case) define
also relative amplitudes of the interaction soliton terms S12,13,23: for ∆ij <
0 (∆ij > 0), the amplitude of Sij is larger (smaller) than the amplitudes
of soliton terms Si and Sj (cf. Fig. 1)[1]. The corresponding rule for the
interaction soliton term S123 is more complicated for solution types if at least
one of the phase shift parameters is positive. However, for ∆12,13,23 < 0, the
amplitude of S123 is largest compared to all other interaction terms.

Figure 4 demonstrates the phase pattern set PU of a KP three-soliton solu-
tion U with all phase shift parameters being positive. The set PU (shaded plane
slices) is obtained according to Theorem 3.1: in the 4-dimensional extended
space of phase variables (ϕ1, ϕ2, ϕ3, ψ) a polyhedron (10) is constructed; then
its ridges (11) are projected to the 3-dimensional space of phase variables
(ϕ1, ϕ2, ϕ3). As a result the phase pattern set PU is obtained. Phase pattern
sets for other types of three-soliton solutions are constructed in the same way
— more examples follow below.

Example 1. Figure 5 shows isosurface plot of a KP three-soliton solution U
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ϕ1

ϕ2

ϕ3

Figure 5: Isosurface plot of a KP three-soliton solution in phase variables.
The case corresponds to the point µ = (−0.3996ρ13, ρ12 − 0.4ρ13,−0.5994ρ13)
in Figure 3.

with ∆12 > 0 and ∆13,23 < 0. The corresponding phase pattern set is demon-
strated in the form of a wireframe in the same plot. Clearly, the phase pattern
set represents the supporting regions of the function U , or equivalently, the
positions of wave crests in phase variables.

Figure 6 shows isosurface plots of interaction terms S2,3,23,123. These plots
illustrate close connection between the parts of a phase pattern set PU and
the decomposition (6): each plane slice in PU represents a supporting region
of one of the interaction term in the decomposition.

Example 2. Figure 7 shows another example of a KP three-soliton solution
with ∆12,13 > 0 and ∆23 < 0. In this case the amplitude of the interaction
term S123 is almost zero. The “hole” in the isosurface plot illustrates just that.

4 Interaction patterns

In this section we complete the direct problem of wave crests by constructing
interaction patterns for multi-soliton solutions in real space-time variables.

To demonstrate the dynamics of interaction patterns, in the following we
write multi-soliton solutions of the KdV type equation (1) as u(x, t) = U(Kx+
ωt), where x = (x, y)T and K = (µ,ν). With this notation we associate the
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Figure 6: Isosurface plots of interaction terms S2, S3 (upper figures), S23, S123

(lower figures) of the KP three-soliton solution in phase variables. The iso-
surfaces correspond to half of the amplitude of the corresponding interaction
terms.

variable t as the time parameter.

Definition 2 (Real pattern set [1]). A set Pu(t) ⊂ R
2 is called the real

pattern set of a genus g soliton solution u(x, t) = U(Kx + ωt) iff

Pu(t) = {x ∈ R
2|Kx + ωt ∈ PU}, (14)

where PU is the phase pattern set of the corresponding genus g soliton solution
U = U(ϕ) in phase variables.

Propositon 4.1. If g > 2 and the columns of K are not collinear then the
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ϕ3

ϕ2

ϕ1

Figure 7: Isosurface plot of a KP three-soliton solution in phase variables. The
case corresponds to the point µ = (ρ12 −ρ13,−0.999ρ13, 0.999ρ12) in Figure 3.

real pattern set of a genus g soliton solution reads

Pu(t) = (KTK)−1KT(PU ∩ (KR
2 + ωt)) − wt, (15)

where w = (KTK)−1KTω.

Proof. Expression (14) is equivalent to

KPu(t) + ωt = PU ∩ (KR
2 + ωt). (16)

Due to the non-collinearity of K columns, there exists (KTK)−1. After mul-
tiplying the both sides of (16) with (KTK)−1KT, we obtain (15).

To interpret the real pattern set of a multi-soliton solution, we write it in
the following form

Pu(t) = (KTK)−1KT(PU ∩ (KR
2 + ω⊥t)) − wt, (17)

where ω⊥ = ω − Kw is perpendicular to the 2-dimensional hyperplane KR
2

in the g-dimensional space of phase variables: KTω⊥ = 0. Since the phase
pattern set PU represents the supporting regions of the given multi-soliton
solution in phase variables, the intersection PU ∩ (KR

2 + ω⊥t) defines the
representation of supporting regions of the multi-soliton in real variables after

102



mapping the intersection to the space of real variables with (KTK)−1KT. If
ω⊥ 6= 0, the image of the real space KR

2 is translated in the direction of ω⊥

in the space of phase variables as the time parameter t is increased. During
this translation, the intersection PU ∩ (KR

2 +ω⊥t) changes accordingly as the
set PU is fixed in the space of phase variables. So, the first term in (17) is
responsible for the nonstationarity of the real pattern set Pu(t). The second
term in the expression of Pu(t) defines just a translation of the interaction
pattern in the space of real variables. The special case ω⊥ = 0 corresponds to
a multi-soliton solution that is stationary regardless how large is the number
of solitons.

4.1 Real pattern set of a three-soliton solution

Figures 8 and 9 illustrate the construction of interaction patterns of a KP
three-soliton solution with all phase shift parameters being negative. Figure
9 shows two instances of the real pattern set Pu(t) for time moments t =
−150 and t = 0, respectively. They are found as the original regions of the
intersection PU ∩ (KR

2 + ωt) with respect to the mapping x 7→ Kx + ωt.
Figure 8 shows this for the time moment t = 0. As t is increased, the plane
KR

2 is translated in the opposite direction of the vector ω in the space of
phase variables. In this particular case, the plane KR

2 in Fig. 8 moves away
as observed by a reader. As a result, the real pattern set Pu(t) is nonstationary.

Because each plane slice of the phase pattern set PU represents one of the
interaction soliton terms S1,2,3,12,13,23,123 in the superposition (6), so does each
line slice of the real pattern set Pu(t) in the space of real variables. However,
not all interaction terms may be visible in the real space for all time. Only
those interaction solitons are visible that correspond to plane slices of PU that
have common points with the plane KR

2+ωt at the given time moment t. For
this reason there is no line slice corresponding to the interaction soliton term
s23 in Figure 9. In fact, as time parameter t is increased, the interaction soliton
term s123 disappears eventually and an interaction pattern forms instead with
three subpatterns of pairwise interactions between the three solitons. The
same happens for decreasing time parameter. In conclusion, the interaction
soliton s123 exists only finite amount of time. Interaction solitons s12,13,23

may disappear only for finite time period but they eventually reappear to
the interaction pattern. Solitons s1,2,3 are always present in the interaction
patterns.
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ϕ1

ϕ2

ϕ3

KR 2

Figure 8: The image of the real pattern set Pu(t = 0) (bold lines) is
the intersection of the plane KR

2 and the phase pattern set PU (wire-
frame). Density plot is shown for U |

KR2 . The case corresponds to the point
µ = (0.3996ρ12, 0.6ρ12,−ρ13 − 0.4ρ12) in Figure 3.

x

y

s1

s2

s3

s1

s2

s3

s12s13
s123

Figure 9: The real pattern set Pu(t = 0) (bold lines) is obtained by mapping
the intersection PU∩KR

2 in Figure 8 to the space of real variables. The density
plot corresponds to function u(x, y, t = 0). The real pattern set Pu(t = −150)
(lines) is shown to illustrate the nonstationarity of Pu(t).
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Figure 10: The real pattern set (white lines) of a five-soliton solution (abstract
case, corresponds to Fig. 1 in [1]). Labels are the indices of the soliton terms
of the corresponding decomposition.

4.2 Real pattern set of a five-soliton solution

Figure 10 illustrates a snapshot of an animated density plot of a five-soliton
solution and the corresponding instance of its real pattern set. The latter is
constructed according to the following procedure. First, a phase pattern set
PU is constructed according to Theorem 3.1 as a projection of the ridges of
a special 6-dimensional polyhedron to the 5-dimensional space of phase vari-
ables. Then, for a fixed time parameter t, an intersection of the set PU and
a 2-dimensional hyperplane KR

2 + ωt is found. Finally, this intersection is
mapped with (KTK)−1KT to the space of real variables resulting an instance
of a real pattern set Pu(t). As the time parameter t is increased, the hyper-
plane KR

2 + ωt shifts in the space of phase variables causing changes to the
intersection PU ∩ (KR

2 +ωt). These changes are expressed in the nonstation-
arity of the interaction patterns of multi-soliton solutions.

5 Conclusions

In this paper we constructed interaction patterns for multi-soliton solutions of
KdV type equations.

Although, the interaction patterns are, in general, nonstationary and look
complicated, their formation can be deterministically constructed for any time
moment. For that, we first considered multi-soliton solutions in phase vari-
ables in which these solutions have very regular structures. In particular, to
represent supporting regions of soliton solutions in phase variables, we defined
the so-called phase pattern set. Though, the phase pattern set is defined in a
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possibly high-dimensional space of phase variables, it can be algorithmically
constructed using the tools from the computational geometry. Namely, we
discovered that the phase pattern set of a multi-soliton solution is formed by
projecting the ridges of a special polyhedron in the extended space of phase
variables to the space of phase variables.

To represent actual interaction patterns, we defined the so-called real pat-
tern set that is, for a fixed time moment t, isomorphic to an intersection of
the phase pattern set and a certain two-dimensional hyperplane in the space
of phase variables. We showed that the nonstationarity of interaction patterns
is directly related to the movement of this hyperplane in the space of phase
variables as the time parameter t is varied.

In addition, we demonstrated close connection between the pattern sets
defined above and the decomposition of multi-soliton solutions into a super-
position of interaction solitons. In fact, each linear part of the phase (real)
pattern set represents the supporting region of one of the terms in the decom-
position in phase (real) variables. We also explained possible emergence and
absorption of interaction solitons in the space of real variables.

In conclusion, we solved the direct problem of wave crests for multi-soliton
solutions. These results will be used for solving the corresponding inverse
problem. Initial analysis shows that the inverse problem can be solved, in
principle, also for multi-soliton solutions. This is due to the fact that the
number of unknown parameters matches with the number measurable invari-
ants (phase shift and angle relations) of a multi-soliton solution. The details
will be reported in a successive paper.
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Appendix A Proof of Theorem 3.1

In the following we show that the phase pattern set, constructed according
to Theorem 3.1, satisfies Definition 1. It is straightforward to check that the
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claim (13) holds for g = 1. In the following we consider the case g > 1 (cf.
also Fig. 2).

(i) It is easy to check that

cn = cn(i) − 1

2
(i + n)T∆i(1 + ni)

holds for n ∈ {−1, 1}g , where cn(i) are the coefficients of a polyhedron
corresponding to a genus (g − 1) soliton solution U (i) = limϕi→−∞U .

(ii) Polyhedron H is upper bounded with respect to variable ψ:

max{ψ|(ϕ, ψ) ∈ H} < +∞. (18)

(iii) Equivalent representation of ridges Rn,m is

Rn,m = H ∩
{

(ϕ, ψ)

∣

∣

∣

∣

(n − m)Tϕ + cn − cm = 0
nTϕ + ψ + cn = 0

}

. (19)

(iv) Let i = 1, . . . , g be fixed. From (iii) follows that the set Rn,m∩{ϕi = C}
can be nonempty for C → ±∞ only if ni = mi. From (ii) follows that
Rn,m ∩ {ϕi = C} = ∅ whenever ni = mi = −1 and C → +∞, or
ni = mi = +1 and C → −∞. Let us denote

R−
i =

⋃

n6=m
ni=mi=−1

Rn,m, R+
i =

⋃

n6=m
ni=mi=+1

Rn,m. (20)

Ridges in R−
i and R+

i have nonempty intersections with the hyperplane
ϕi = C if C → −∞ and C → +∞, respectively.

(v) We have

R ∩ {ϕi = C} =

{

R−
i ∩ {ϕi = C} for C → −∞,

R+
i ∩ {ϕi = C} for C → +∞.

Consequently,

R|ϕ
∣

∣

∣

ϕi=−∞
≡ PU |ϕi=−∞ = R−

i

∣

∣

ϕ

∣

∣

∣

ϕi=−∞
, PU |ϕi=+∞ = R+

i

∣

∣

ϕ

∣

∣

∣

ϕi=+∞
.

(vi) If ni = mi = −1 then using (i), we have

Rn,m = H ∩
{

(ϕ, ψ)

∣

∣

∣

∣

∣

(n(i) − m(i))Tϕ(i) + cn(i) − cm(i) = 0

n(i)Tϕ(i) + ψ − ϕi + cn(i) = 0

}

,

that, for a fixed ϕi = C, has the form of the ridge Rn(i),m(i) of a polyhe-

dron corresponding to a genus (g−1) soliton solution U (i) = limϕi→−∞U .
Therefore, using (v) we have

PU |ϕi=−∞ = PU(i) .
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(vii) If ni = mi = +1 then using (i), we have

Rn,m = H∩
{

(ϕ, ψ)

∣

∣

∣

∣

∣

(n(i) − m(i))T(ϕ(i) −∆i
(i)) + cn(i) − cm(i) = 0

n(i)T(ϕ(i) −∆i
(i)) + ψ + ϕi + iT∆i + cn(i) = 0

}

,

that is exactly a shifted version of the previous case (vi). Consequently,
we have

PU |ϕi=+∞ = R+
i

∣

∣

ϕ

∣

∣

∣

ϕi=+∞
= R−

i

∣

∣

ϕ

∣

∣

∣

ϕi=−∞
+ ∆i

(i) = PU(i) + ∆i
(i).

References

[1] P. Peterson and E. van Groesen. A direct and inverse problem for wave
crests modelled by interactions of two solitons. Phys. D, 141:316–332,
2000.

[2] P. Peterson and E. van Groesen. Sensitivity of the inverse wave crest
problem. Wave Motion, 2001. (Accepted).

[3] J. Hietarinta. A search for bilinear equations passing Hirota’s three-
soliton condition. I. KdV-type bilinear equations. J. Math. Phys.,
28(8):1732–1742, 1987.

[4] B. Grammaticos, A. Ramani, and J. Hietarinta. A search for integrable
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