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Abstract

In this paper, propagation of axisymmetric deformation waves in circular cylin-

drical rods of compressible hyperelastic material is studied. Corresponding model

equation that describes propagation of waves of moderate wave-length takes into

account the coupling effect of the material nonlinearity and the geometric size of

the rod. The model equation is integrated numerically under sech2-type conditions

making use of discrete Fourier transform based pseudospectral method. Numerical

simulations are carried out over a wide range of material parameters. The analysis

of the time-space behaviour of solutions demonstrate that in some domains of space

of parameters single solitary wave solutions or trains of interacting solitons can be

emerged from the initial localised pulses.
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1 Introduction

Nonlinear axial-radial deformation waves in hyperelastic rods have been studied by many
authors (see, for example, Samsonov [1], Porubov and Samsonov [2], Cohen and Dai [3],
Dai and Huo [4], Dai and Fan [5]). These studies concentrated on weakly nonlinear long
waves and only smooth solutions were considered. However, there are situations when
the wave-length is only of moderate length. For these cases, it was argued in Dai [6]
and Dai and Huo [7] that it is necessary to take into account the coupling effect of the
material nonlinearity and the geometric size of the rod. With such a consideration, a new
type of nonlinear equation with nonlinear dispersion terms was derived in Dai [6] and
Dai and Huo [7] for a compressible Mooney-Rivlin material and a general compressible
hyperelastic material respectively. The equation takes the following form:
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uτ + σ1uuξ + σ2uξξτ + σ3(2uξuξξ + uuξξξ) = 0. (1.1)

Here the dimensionless independent variables ξ and τ correspond to the moving frame, u
is a quantity measuring the dimensionless deformation and σ1, σ2 and σ3 are related to the
material constants and the initial stretch of the rod. The last bracketed term represents
the coupling effect of the material nonlinearity and the geometric size. It turns out that
the parameter

γ =
3σ3

σ1σ2

(1.2)

plays certain important roles for the solutions of this equation. It was found in Dai and
Huo [7] that for γ in five different intervals, γ < 0, γ = 0, 0 < γ < 3, γ = 3 and
γ > 3, this equation admits different travelling-wave solutions. In particular, it has the
so-called non-smooth solitary shock wave (peakon or peaked solitary wave) and compacton
solutions (see Dai and Huo [6] and Dai et al [7]). Due to its interesting properties, this
equation has attracted a lot of attention recently. Constantin and Strauss [8] and Zhou
[9] studied the stability of its solitary wave solutions. In Yin [10], the Cauchy problem
was considered and it was shown that the equation has solutions that exist for indefinite
times as well as solutions which blow up in finite time. Coclite et al [11] established
existence of a strongly continuous semigroup of global weak solutions for any initial data
from H1(R). Its integrability was studied by Ivanov [12] and it was shown that only when
γ = 1 this equation is integrable. Despite that there are now many analytical studies on
this equation, it appears that no numerical study has been done yet. In this paper, some
initial-value problems of this equation are investigated numerically by a pseudospectral
method. As it has been shown theoretically (see Dai and Huo [7] and Yin [10]) that the
value of γ can influence the solutions greatly, here one purpose is to examine numerically
how this parameter influences the solutions of the initial-value problems. Of particular
interest is the mechanism by which it influences the appearance of solitary waves. Finally,
we point out that Camassa and Holm [13] have derived equation

ut + 2κux + 3uux − uxxt − 2uxuxx − uuxxx = 0 (1.3)

that describes shallow-water waves and is similar to equation (1.1). It is known that the
Camassa–Holm equation (1.3) have peakon solutions for κ = 0. However, the parameter
κ is proportional to the water depth and cannot be zero. Therefore such waves may not
arise in shallow water.

The remaining of this paper is arranged as follows. In Section 2 the problem under con-
sideration is stated and numerical method is introduced. Numerical results are discussed
in Section 3 and conclusions are drawn in Section 4.

2 Statement of the problem and numerical method

In the present paper the propagation of localised initial pulses in hyperelastic rods (gov-
erned by equation (1.1)) is simulated numerically. For this reason the model equation
(1.1) is integrated numerically under localised initial conditions

u(ξ, 0) = A sech2 (Bξ) . (2.1)

Here A is the amplitude and B is characterizing the width of the initial solitary pulse.
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For numerical integration the discrete Fourier transform (DFT) based pseudospectral
method (PsM) is used and therefore periodic boundary conditions

u(ξ, τ) = u(ξ + 2mlπ, τ), l = ±1,±2, . . . , m = 1, 2, 3, . . . (2.2)

are applied (2mπ is the length of the space period). In a nutshell, the idea of the PsM
is the following: space derivatives are found making use of DFT and for integration with
respect to time standard ODE solvers are used [14, 15].

For periodic function u = u(ξ, τ) (with space period 2π) the DFT is introduced as follows:

U(k, τ) = Fu =
N−1
∑

j=0

u(j∆ξ, τ) exp

(

−2πijk

N

)

, (2.3)

where N is the number of space-grid points, ∆ξ = 2π/N – space step, i – imaginary unit,
k = 0,±1,±2, . . . ,± (N/2 − 1) ,−N/2 and F denotes the DFT. Now partial derivatives
of u with respect to space coordinate x are

∂nu

∂ξn
= F−1 [(ik)nF(u)] , (2.4)

where F−1 denotes the inverse DFT. Partial derivatives with respect to space coordinate
are approximated by making use of formulae (2.4) thereby reducing a PDE to an ODE
and allowing for straightforward integration with an ODE solver.

The usual PsM algorithm is derived for ut = Φ(u, uξ, u2ξ, . . . , unξ) type equations. How-
ever, equation (1.1) includes a mixed partial derivative and therefore in the present case
one has to modify the standard PsM. First we rewrite the equation (1.1) in the form

(u + σ2uξξ)τ = −σ1uuξ − σ3 (2uξuξξ + uξξξ) (2.5)

and introduce a new variable
v = u + σ2uξξ. (2.6)

Making use of the DFT, the last expression can be rewritten in the form

v = F−1 [F (u)] + σ2F
−1

[

−k2F (u)
]

= F−1
[(

1 − σ2k
2
)

F (u)
]

. (2.7)

From the latter expression one can express the variable u and its space derivatives in
terms of the new variable v:

u = F−1

[

F (v)

1 − σ2k2

]

,
∂nu

∂n
= F−1

[

(ik)n F (v)

1 − σ2k2

]

. (2.8)

Finally, equation (2.5) can be rewritten in terms of variable v

vt = −σ1uuξ − σ3 (2uξuξξ + uξξξ) (2.9)

(variable u and all its space derivatives are calculated making use of formulae (2.8)).
Therefore equation (2.9) can be considered as an ODE with respect to the variable v and
could be integrated numerically making use of standard ODE solvers.

Goals of the current study are:
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• to find numerical solutions for the proposed problem over a wide range of material
parameters;

• to describe the time-space behaviour of the numerical solutions;

• to introduce different types of solutions;

• to examine the solitonic character of the solutions, i.e., to understand whether or
not the emerged solitary waves can propagate at constant shapes and speeds and
restore their amplitudes and speeds after interactions.

3 Numerical results and discussion

In the present Section two material models are considered for calculation of parameters
σ1, σ2 and σ3 for model equation (1.1). In the first case a compressible Mooney-Rivlin
material is considered [6] and the Helmholtz free-energy function has the following form
(see [16]):

Φ =
1

2
µ

(

1

2
+ β

)

(I1 − 3) +
1

2
µ

(

1

2
− β

)

(I2 − 3) +
1

2
µk (I3 − 1)− 1

2
µ

(

k +
3

2
− β

)

ln I3.

(3.1)
Here I1, I2 and I3 are the principal invariants of the left Cauchy-Green deformation tensor.
The elasticity parameter µ corresponds to the classical shear modulus, the dimensionless
material constant β represents second-order effects [17], and k is a parameter for measuring
the proportion of the two terms due to compressibility.

In the second case [7], the free-energy function is given in the form proposed by Hill [18]:

Φ =
3

∑

n=1

µnI(αn) + F (I3), I(αn) =
1

αn

(lαn

1 + lαn

2 + lαn

3 − 3) ,

F (I3) =
µ(1 − 2α

2α

[

I
−α/(1−2α)
3 − 1

]

, µ =
1

2

3
∑

i=1

αiµi.

(3.2)

Here li are the three principal stretches, I3 is the third principal invariant, µi, αi and α
are material constants (α is playing a role similar to that of the Poisson ratio in classical
theory).

3.1 First case

Firstly, numerical results are found for the parameters σ1, σ2 and σ3, which are found as
functions of µ > 0, −1

2
≤ β ≤ 1

2
, λ and k (parameters of compressible Mooney-Rivlin

material) according to [6]. Parameter λ characterises the initial state of the rod, λ < 1,
λ > 1, λ = 1 represent that the rod is uniformly stretched, uniformly compressed and
neutral, respectively. In current paper the uniformly stretched state (λ < 1) is studied.

When β = 1
2

(and from what follows σ3 = γ = 0, see [6, 16] for details), a compressible
Mooney-Rivlin material becomes the so-called compressible neo-Hookean material. In
this case equation (1.1) becomes

uτ + σ1uuξ + σ2uξξτ = 0. (3.3)
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Table 1: Values of parameters γ, σ1, σ2, σ3 and B against λ, β, and k for the first case

λ β k γ σ1 σ2 σ3 B Type
0.8 0.50 1 0 1.081341 -0.015790 0 3.979100 1
0.8 0.49 1 0.016336 1.093797 -0.016131 -9.6E-5 3.936818 1
0.8 0.45 1 0.079351 1.146069 -0.017490 -0.000530 3.780719 1
0.8 0.42 1 0.124262 1.187949 -0.018504 -0.000910 3.675717 transition
0.8 0.39 1 0.167255 1.232255 -0.019511 -0.001340 3.579605 2
0.8 0.25 1 0.345070 1.475625 -0.024097 -0.004090 3.220956 2
0.9 0.39 1 0.091713 1.857347 -0.035593 -0.002021 2.650237 1
0.9 0.37 100 0.091877 1.950172 -0.065842 -0.003932 1.948587 1

This equation is the far-field equation for finite-length and finite-amplitude waves in a
rod composed of a compressible neo-Hookean material and it is known as Benjamin-
Bona-Mahony (BBM) equation. The solitary-wave solution for (3.3) is given as

u = A sech2

[

1

2

1√−σ2

ξ − 1

6

σ1A√−σ2

τ + s0

]

, (3.4)

where s0 is a phase constant [6].

The aim of this subsection is to solve equation (1.1) numerically for |σ3| << 1 and to
use the analytical solution of the BBM equation as the initial condition, i.e., B in (2.1)
is considered to be given by expression (3.4):

B =
1

2

1√−σ2

. (3.5)

Remember, that for γ = σ3 = 0 the model equation (1.1) reduces to the BBM equation
(3.3). Numerical solutions are found for 0.5 < λ < 1, k = 1, µ = 1 (suggested by Dai [7])
and 1

4
< β < 1

2
. For these cases 0 < γ < 1 and |σ3| << 1. Calculations are carried out at

space period 2π over time interval 0 ≤ τ ≤ 500.

Two main solution types are detected.

• Type 1 – solitary wave with a small-amplitude oscillating structure, 0 < γ < 0.094.

• Type 2 – oscillating structure, γ > 0.165.

3.1.1 First solution type.

At first we consider values λ = 0.8 and β = 0.49. Corresponding values for σ1, σ2, σ3 and γ
are presented in Table 1. For the initial amplitude the value A = 0.1 is used. In Fig. 1 the
profile of initial pulse and wave profiles at time moments τ = 100 and τ = 500 are shown.
It can be seen, that the initial solitary wave slightly changes form in time, amplitude
rises a little and a certain small-amplitude oscillating structure forms behind the solitary
wave. The oscillations are quite small and do not affect the behaviour of the solitary wave
considerably. The time-slice plot in Fig. 2 gives a good overview of the solution behaviour
in time. One can say that the oscillating structure is quite localised in space and interacts
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with the solitary wave (of the other space period) after certain time intervals. Amplitude
curves in Fig. 3 clearly demonstrate that the solitary wave restores its height between
such interactions and that each interaction produces additional oscillations. In this sense
the solitary wave behaves like soliton.

When decreasing β and therefore increasing γ, the behaviour of the solution changes
remarkably. In Figs. 4–6 solution for β = 0.45 is shown. Single wave profiles in Fig. 4
show that the wave profile narrows and heightens, at the same time stronger oscillations
appear, compared to case β = 0.49 in Fig. 1. Time-slice plot in Fig. 5 demonstrates
that the oscillating structure can be considered localised only before it interacts first
time with the solitary wave. This interaction produces so strong additional oscillations
that the solitary wave and the oscillating structure are in permanent interaction, at least
for τ > 200. Furthermore, the oscillating structure cannot be considered as localised
entity anymore. The same circumstances are reflected in amplitude curves in Fig. 6.
The amplitude of the solitary wave has nearly constant value only in the beginning of
the interaction interval between τ ≈ 50 and τ ≈ 125, i.e., until the first interaction takes
place. Later it oscillates about a certain level, because the solitary wave and the oscillating
structure are in permanent interaction. Our analysis shows that notwithstanding the
permanent interaction the solitary wave travels at constant speed. Comparing time-slice
plots in Figs. 5 and 2 one can conclude, that for β = 0.45 the solitary wave travels faster
than for β = 0.49.

For negative amplitude A = −0.1 the behaviour of the solution is slightly different. In
Figs. 7–9 solution for β = 0.45 and A = −0.1 is shown. In Fig. 7 single wave profiles
are given. The initial profile lowers and widens when oscillating structure is generated.
The wave moves in the negative direction of the ξ-axis (cf. Figs. 5 and 8) and the speed
is smaller for negative A (apparently due to the wider and lower shape of the solution).
The first hump of the appearing oscillating structure is created on the positive side of the
u-axis as it did for positive A (cf. Figs. 4 and 7). The oscillating structure becomes more
relevant and as it moves in the opposite direction, it affects the amplitude of the solitary
wave faster, so the amplitude starts to oscillate earlier than in case of A > 0 (cf. Figs. 6
and 9).

3.1.2 Second solution type

By decreasing β (γ increases, see Table 1), the behaviour of the solution changes. Here,
solutions for A > 0 are discussed for β = 0.39 and λ = 0.8 (Table 1). This solution type
can be detected if the parameter γ exceeds approximately value 0.165. The oscillating
structure dominates, initial wave profile looses its form quickly and no solitary waves
can be detected (see Fig. 10 where some wave profiles are presented). In Figs. 11 and 12
a typical time-slice plot and wave profile maxima against time for this type of solution
are shown. The amplitude of the initial pulse decreases and the solution becomes an
oscillating structure. By decreasing parameter β parameter σ3 increases and the fourth
term in equation (1.1) becomes more relevant, solution for smaller β looses its regular
behaviour and becomes more and more chaotic. This can be observed by comparing
solutions for β = 0.39 in Figs. 10–12 and for β = 0.25 in Figs. 13–15
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3.1.3 Discussion

For 0.094 < γ < 0.165, the numerical calculations brake down. This is the domain, where
the transition from Type 1 to Type 2 is taking place. Before braking, the wave profile
becomes very steep, as seen in Fig. 16.

Both types of solutions are for cases where γ > 0. For the fixed parameters µ = 1 and
k = 1 no small negative γ appear. When negative γ is found, parameter σ2 has to be very
small and due to the condition (3.5), the initial wave becomes too narrow for computations
(with current space period, 2π). As the goal is to solve model equation with parameter γ
slightly differing from zero, solutions for negative γ are not studied in this section.

The influence of the parameter k on the character of the solution is very weak. For
instance for k = 1 and k = 100 the solutions are of the same type for fixed values of γ.
As an example wave profiles for k = 1 and k = 100 with almost equal values of γ (see
Table 1) are shown in Fig. 17 for τ = 0 and τ = 100.

For amplitudes of the initial pulse A > 0.1 the speed of the solitary wave and critical
value (that defines the domain where the first solution type is realised) for parameter γ
increase. In other words, for A > 0.1 the first solution type is attained in wider domain
of parameter γ and emerged solitary waves propagate faster to the right.
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Figure 1: Single profiles over two space periods for λ = 0.8, β = 0.49, A = 0.1
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Figure 2: Time-slice plot over two space periods for λ = 0.8, β = 0.49, A = 0.1;
0 ≤ τ ≤ 500
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Figure 3: Wave profile maxima against time for λ = 0.8, β = 0.49, A = 0.1
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Figure 4: Single profiles over two space periods for λ = 0.8, β = 0.45, A = 0.1

 

Figure 5: Time-slice plot over two space periods for λ = 0.8, β = 0.45, A = 0.1;
0 ≤ τ ≤ 500
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Figure 6: Wave profile maxima against time for λ = 0.8, β = 0.45, A = 0.1
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Figure 7: Single profiles over two space periods for λ = 0.8, β = 0.45, A = −0.1
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Figure 8: Time-slice plot over two space periods for λ = 0.8, β = 0.45, A = −0.1;
0 ≤ τ ≤ 500. Wave profiles have been inversed (−u is considered instead of u for trans-
parency).

0 50 100 150 200 250 300 350 400 450 500

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time, τ

W
av

ep
ro

fil
e 

m
ax

im
a,

 u
m

ax

Figure 9: Maxima of −u against time for λ = 0.8, β = 0.45, A = −0.1 (−u is considered
instead of u for transparency).
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Figure 10: Single profiles over two space periods for λ = 0.8, β = 0.39, A = 0.1

 

Figure 11: Time-slice plot over two space periods for λ = 0.8, β = 0.39, A = 0.1;
0 ≤ τ ≤ 100
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Figure 12: Wave profile maxima against time for λ = 0.8, β = 0.39, A = 0.1
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Figure 13: Single profiles over two space periods for λ = 0.8, β = 0.25, A = 0.1
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Figure 14: Time-slice plot over two space periods for λ = 0.8, β = 0.25A = 0.1;
0 ≤ τ ≤ 500
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Figure 15: Wave profile maxima against time for λ = 0.8, β = 0.25, A = 0.1
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Figure 16: Single profiles over two space periods for λ = 0.8, β = 0.42, A = 0.1
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Figure 17: Single profiles over two space periods for λ = 0.9, β = 0.39, k = 1, A = 0.1 vs
λ = 0.8, β = 0.37, k = 100, A = 0.1
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3.2 Second case

In the second case, numerical results are found for values of parameters σ1, σ2 and σ3

given in paper [7]. The values discussed in the current paper are presented in Table 2.
The values for σ2 are relatively small compared to values in Subsection 3.1 (see Table 1).
In current subsection arbitrary values in the ranges 0.1 ≤ A ≤ 1.5 and 0.5 ≤ B ≤ 3 are
considered for parameters of the initial pulse (2.1). Calculations are carried out at space
period 40π and over time interval 0 ≤ τ ≤ 1500.

In case of γ > 0 no solitary wave solutions appear. The profile becomes very steep and
something like a high-frequency harmonic oscillation is generated (see Fig. 18). Ampli-
tudes decrease to a certain level and stay near it (Figs. 19 and 20).

In case of γ < 0 as typical type of solution, trains of solitons are detected. An example
for γ = −1.6460 is shown in Figs. 21–23. The initial wave, with parameters A = 0.1 and
B = 0.5, falls apart into a train of solitary waves with different height and amplitude,
as one can see in Fig. 21. Time-slice plot in Fig. 22 demonstrates the behaviour of the
solution in time, for τ = 1500 the train consists of six solitary waves. One can see, that
the speed of the waves in the train stays constant in time and higher waves travel faster
than lower ones. Two emerging waves have higher amplitudes, than the initial solitary
wave, and other ones lower, but the amplitudes stay constant in time (see Fig. 23).

When increasing B, the number of solitons in the train decreases and eventually, in
the limit case only weak oscillations accompany the single solitary wave (in Fig. 24, the
profiles are shown for B = 3). Fig. 25 shows the evolution of the single solitary wave
solution in time. From wave maxima (Fig. 26) it can be seen that the amplitude stays
constant. The weak oscillations after τ = 500, are the result of interactions with the
appearing oscillating structure (the tail). For smaller values of B the higher solitons in
the train are higher than the initial wave. In case of bigger values of B (when only one
solitary wave emerges) the amplitude of the propagating solitary wave is lower than that
of the initial wave. Such a phenomenon is called selection — the shape of the initial
wave is modified in a way to be more appropriate to the actual solution of the equation.
In other words, selection means that during propagation the amplitude and velocity of
an initial solitary wave tend to the finite values prescribed by the equation coefficients
(see [19, 20, 21, 22] for details). By further increasing of B, the initial wave becomes so
narrow, that computational algorithm fails.

For greater values of |γ|, for example for γ = −4.8910 the behaviour of the solution is
similar — train of solitons evolve (Figs. 27–29). Here again it can be seen from wave
profile maxima against time in Fig. 29, that the amplitudes reach a certain value and
then stay practically constant. For greater |γ| the number of solitons is smaller (from

Table 2: Values of parameters γ, σ1, σ2 and σ3 for the second case

γ σ1 σ2 σ3

3.4174 0.7957 -0.0032 -0.0029
-1.6460 -0.7205 -0.0026 -0.0010
-4.8910 -0.3302 -0.0030 -0.0016
-29.4760 -0.0650 -0.0030 -0.0019
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Figs. 21 and 27 it can be seen that for τ = 1500 the number of solitons in the train is six
and three, accordingly). In general (for all the sets of parameters given in [7]) it can be
concluded, that the number of solitons in the train is determined by σ2 — by decreasing
the absolute value |σ2|, the number of solitons increases. From model equation (1.1) it
can be seen, that σ2 controls the strength of the dispersion. Therefore, as in case of
the celebrated KdV equation, for weaker dispersion the number of emerging solitons is
higher. At the same time, the speeds of emerged solitary waves are depending on σ1 —
when the value of |σ1| is increased, the propagation speed of the highest solitons increases
(cf. Figs. 22 and 28). As σ1 is the coefficient of the nonlinearity in equation (1.1), one
can conclude that the stronger the nonlinearity the faster the highest solitons propagate.

The amplitude A of the initial pulse also plays an important role in the behaviour of the
solution. For higher initial pulses the train of solitons emerges faster and with greater
number of solitons (see Figs. 30–32). In Fig. 30 the profile is given for τ = 600 when the
train of solitons has already been formed, i.e. just before interactions between solitons
from neighbour space periods start to take place. From time-slice plot in Fig. 31 and wave
profile maxima against time in Fig. 32 the time-space behaviour of the solution can be
observed. The interactions are practically elastic, the amplitude of higher waves decreases
and the amplitude of lower waves increases during the interactions. After interactions the
amplitudes change back to the values they had before interactions.
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Figure 18: Single profiles over two space periods for γ = 3.4174, A = 0.1, B = 0.5
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Figure 19: Time-slice plot over two space periods for γ = 3.4174, A = 0.1, B = 0.5;
0 ≤ τ ≤ 1500
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Figure 20: Wave profile maxima against time for γ = 3.4174, A = 0.1, B = 0.5

18



0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Space, ξ

W
av

e 
am

pl
itu

de
, u

τ=0
τ=1480

Figure 21: Single profiles over two space periods for γ = −1.6460, A = 0.1, B = 0.5

 

Figure 22: Time-slice plot over two space periods for γ = −1.6460, A = 0.1, B = 0.5;
0 ≤ τ ≤ 1500
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Figure 23: Wave profile maxima against time for γ = −1.6460, A = 0.1, B = 0.5
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Figure 24: Single profiles over two space periods for γ = −1.6460, A = 0.1, B = 3
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Figure 25: Time-slice plot over two space periods for γ = −1.6460, A = 0.1, B = 3;
0 ≤ τ ≤ 1500
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Figure 26: Wave profile maxima against time for γ = −1.6460, A = 0.1, B = 3
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Figure 27: Single profiles over two space periods for γ = −4.8910, A = 0.1, B = 0.5

Figure 28: Time-slice plot over two space periods for γ = −4.8910, A = 0.1, B = 0.5;
0 ≤ τ ≤ 1500
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Figure 29: Wave profile maxima against time for γ = −4.8910, A = 0.1, B = 0.5
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Figure 30: Single profiles over two space periods for γ = −4.8910, A = 1, B = 0.5
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Figure 31: Time-slice plot over two space periods for γ = −4.8910, A = 1, B = 0.5;
0 ≤ τ ≤ 1500
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Figure 32: Wave profile maxima against time for γ = −4.8910, A = 1, B = 0.5
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4 Conclusions

In the present paper equation (1.1) is applied for numerical simulation of propagation of
deformation waves in a compressible hyperelastic rod. Numerical experiments are carried
out for two cases. In the first case: (i) material parameters σi, i = 1, 2, 3 are calculated
according to paper [6]; (ii) |σ3| << 1 and 0 < γ < 1 are considered; and (iii) the analytical
solution of BBM equation — (2.1) with (3.5) — is used for the initial condition for the
equation (1.1). In the second case: (i) values for material parameters σi, i = 1, 2, 3 are
taken from paper [7]; (ii) parameter γ is not restricted to be 0 < γ < 1; and (iii) arbitrary
values of A and B is used for initial condition (2.1).

Main results:

• In the first case two main solution types are detected. The type is defined by values
of parameter γ and the initial pulse parameters A and B. For initial amplitude
A = 0.1 solitary wave (with small amplitude oscillating structure) is found to emerge
for 0 < γ < 0.094. For A > 0.1 solitary waves emerge in wider domain of parameter
γ > 0.

• In the second case different solution types are detected for γ < 0 and for γ > 0.
For γ > 0 the character of solution is solitonic — train of solitons emerges from the
initial solitary wave.

• Dai and Huo [7] studied the existence of travelling wave solutions for equation (1.1).
Different solution types were found for γ < 0, 0 < γ < 3 and γ > 3. However, in
numerical results no difference appeared, whether γ was bigger or smaller than 3
and only difference between positive and negative γ can be observed. By Dai and
Huo [7], solitary wave solution can exist when conditions

γ < 0, 0 < A < (1 − 3/γ)V, (4.1)

0 < γ < 3, 0 < A <
1

2
(3/γ − 1)V, (4.2)

γ > 3, −1

2
(1 + 3/γ)V < A < 0, (4.3)

are satisfied. However, in numerical experiments solitary waves emerge notwith-
standing whether or not the conditions (4.1)–(4.3) are satisfied.

It should be noted that in Dai and Huo [7] ”exact” travelling-wave solutions (which
include the single-solitary-wave solution without an oscillatory tail attached with
it) in an infinite domain were studied. It also should be pointed out that multi-
solitary waves are not ”exactly” travelling waves as different solitary waves travel
with different speeds. In the present work, numerical studies are carried out in a
bounded domain with periodic conditions. When the numerical solutions of initial-
value problems give solitary-wave type profiles, they are either in the form of a
solitary wave with some oscillatory parts (although the amplitudes could be very
small) or in the form of multi-solitary waves. Since in both cases they are not the
”exact” travelling waves, the present results do not contradict with those findings
in Dai and Huo [7]. Rather, the numerical solutions once again reveal that the
parameter γ can greatly influence the solutions, which is in agreement with those
results in Dai and Huo [7].
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