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Abstract. Wave propagation in microstructured media is essentially influenced by nonlinear
and dispersive effects. The simplest model governing these effects results in the Korteweg-de
Vries (KdV) equation. In the present paper a KdV-type evolution equation, including the
third- and fifth order dispersive and the fourth order nonlinear terms, is used for modelli ng the
wave propagation in microstructured solids like martensitic-austenitic alloys. The model
equation is solved numerically under localised initial conditions. Possible solution types are
defined and discussed. It is shown that the relatively small solitary waves decay in time.
However, if the amplitude exceeds a certain criti cal value then such a solitary wave can
propagate with nearly a constant speed, amplitude and consequently the energy. Unlike the
KdV solitons, interaction of such solitary waves is not perfectly elastic — after the interaction
their speed and amplitude are altered by a small extent.
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1. Introduction

Wave propagation in microstructured media is essentially influenced by nonlinear and
dispersive effects. The simplest model governing these two effects results in the celebrated
KdV equation

0=++ xxxxt duuuu . (1)

However, studies of microstructured materials have shown that higher-order dispersive effects
together with higher-order nonlinear effects can give rise to dramatic changes in the behaviour
of emerging waves. In the present paper a KdV-like evolution equation, including the third-
and the fifth order dispersive and the fourth order nonlinear terms,

[ ] 0)( =+++ xxxxxxxxxt buduuPu (2)

is used for modelling the 1D longitudinal wave propagation in microstructured solids. Here u
is the excitation, t  the time coordinate, x  the space coordinate, d  and b  the third- and the
fifth-order dispersion parameters, respectively and elastic potential

)
42

()(
42 uu

uP +−= , (3)

introduces the quartic nonlinearity. The sources of higher order effects can be dislocations in
the crystal structure of martensitic-austenitic shape-memory alloys (Maugin 1993, Maugin
and Christov 1997).
The character of dispersion depends on the signs of parameters d  and b . For 0<db  one has
normal dispersion, however for 0>db  the dispersion is normal for some wavenumbers and
anomalous for others (Salupere et al. 2001). In the present paper the normal dispersion case

0>d  and 0<b  is considered.
In Section 2 the problem is stated and in Section 3 the numerical method is described shortly.
Results are presented and discussed in Section 4 and concluding remarks are given in Section
5. Tables and figures are presented in Sections 6 and 7, respectively.

2. Statement of the problem

The proposed model equation is solved numerically under localised initial conditions

,hsec)0,( 2

∆
= x

Axu (4)

where A  is the amplitude and

A

d12=∆ (5)

the width of the initial solitary wave (Zabusky and Kruskal 1965). In fact, the proposed
localised initial excitation (4) corresponds to the analytical solution of the KdV equation (1).
In our case the model equation (2) and the initial excitation (4) are related through the
dispersion parameter d .
Logarithmic dispersion parameters

dd l log−=  and )log( bbl −−= (6)
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are used instead of d  and b  for analysis herein after. Note that dispersion parameters have
opposite sign in the present case, i.e. the normal dispersion case is studied here. In order to
demonstrate the qualitative difference of dispersive terms in 0<b  and 0>b  cases quantities

)0,(3 xdu x  and )0,(5 xbu x  that correspond to the initial excitation (4) are presented in Figs. 1

and 2.
Boundary conditions are considered to be periodic, i.e.

,...2,1        ),,4(),( ±±=+= ntnxutxu π , (7)
because the pseudospectral method (described shortly in next Section) is applied for
numerical integration of the problem (2)–(4). In order to separate localised initial waves the
length of the space period in (7) was taken π4 .
Goals of the current study are

(i) to find numerical solutions for the proposed problem over wide range of
logarithmic dispersion parameters ld  and lb ;

(ii ) to examine and describe the time-space behaviour of numerical solutions;
(iii ) to introduce solution types. Our particular interest is to examine whether or not

solitary waves (4) can propagate in media described by the equation (2) with
constant speed and amplitude. Furthermore, pilot study is carried out in order to
understand how such solitary waves interact in such a media. In the other words,
do the solitary waves (4) behave like solitons in media where the higher order
effects, governed by the equation (2), are of importance.

3. Numerical method

Based on previous experience the pseudospectral method (PsM) (Fornberg 1998, Salupere
1995, Salupere 1997) is used for numerical integration of the model equation (2) under
localised initial conditions (4) and periodic boundary conditions (7), i.e., for the numerical
simulation of wave propagation in media described by the KdV-like evolution equation (2).
Results are analysed using discrete spectral characteristics (Salupere et al. 1996).

The pseudospectral method was first proposed by Kreiss and Oliger (1972) in the following
form. Let the initial condition u(x,0) be given on the interval 2π. The space grid is formed by
n points with

n
x

π2=∆ . (8)

The discrete Fourier transform (DFT) is defined by

∑
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and the inverse discrete Fourier transform (IDFT) by

∑== −
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where i is the imaginary unit and

ω = 0, ±1, ±2,…, ± )1
2

( −n
, 

2

n− . (11)



5

In expressions (9) and (10) F denotes the Fourier transform and 1F−  the inverse Fourier
transform. Fast Fourier Transform (FFT) algorithm is applied to find the Fourier transform
(Bracewell 1972). Space derivatives are then given by

),F(F 1 ωi
x

u −=
∂
∂
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∂
∂

.

In time, the finite difference leap-frog (LF) scheme was proposed to use by Kreiss and Oliger
(1972). For example, the KdV-like equation (2) with quartic potential (3) leads to the
following straightforward pseudospectral approximation

)F(F2)F(F2)F(F)(2),(),( 513113 uitbuitduiuutttxuttxu ωωω −−− ∆−∆+−∆−∆−=∆+ .(13)
The LF scheme has a disadvantage. Namely, one has to use very small time step to get stable
results. Furthermore, there are not proper criterions for choosing suitable (in the sense of
stabili ty of the numerical scheme) size for the time step. Runge-Kutta type methods are found
to be more stable than LF scheme. Hence, the step-size controlli ng Runge-Kutta-Fehlberg
(RKF) algorithm is used in numerical experiments below (Salupere 1997).

For future analysis spectral amplitudes are defined as:

,
),(2

)(
N

tU
tS

ω
ω =  

2
,...,1

N=ω . (14)

The variable ),( tU ω  is given by the DFT expression (9). These spectral characteristics carry
additional information about the internal structure of waves. This information is related to the
existence of local and global minima and maxima in time dependence of spectral curves.

4. Numerical results and discussion

The problem (2)–(4) is solved numerically over the range of the dispersion parameters
4.28.0 ≤≤ ld  and 8.42.1 ≤≤ lb (15)

in order to examine different properties of the solutions. The length of the integration interval
and the time-step for saving of results, ft and t∆  respectively, were chosen according to the

nature of solutions. The number of space-grid points was varied ( 51225612864 , , , n = )
accordingly to the behaviour of densities

∫∫ ==
ππ 4

0

2
2

4

0

1 , dxuCudxC (16)

of the first two conservation laws. In the other words, the number of space-grid points was
kept as low as possible and the criterion was that relative error for density 2C  must be less
than 005.0 .
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4.1. Solution types

By making use of numerical results one can detect that the type of the solution depends on the
value of the amplitude A  essentially. Generally speaking one can find three different solution
types. Two of those types can be detected for all values of dispersion parameters ld  and lb  in

the considered domain (15), whereas one solution type was detected only in a certain sub
domain, i.e., only for few values of dispersion parameters.

4.1.1. First type

The first solution type can be described as a chaotic spread of initial energy, i.e., the localised
initial excitation falls apart into a chaotic train of waves (Figs. 3-5).

• One cannot detect any regularity neither in the time-space behaviour of wave-profile
characteristics (time dependences of wave-profile minima and maxima and their
trajectories nor in time dependences of spectral amplitudes (Figs. 6-8)).

• This phenomenon (the formation of the chaotic wave-train) can be explained as a
shortage of initial energy to form a single wave profile, which can propagate in the
considered media with constant speed and shape, i.e., conserving its initial energy.

4.1.2. Second type

The second solution type can be detected if the initial wave amplitude A  exceeds a certain
value ),(1 ll bdA . In this case a wave-train having periodic behaviour in time emerges.

• Periodicity can be detected in the time-space behaviour of wave-profile characteristics
as well as in time dependences of spectral amplitudes (Figs. 9-12).

• One can detect that wave profiles are stretched to the positive as well as to the
negative direction. For certain time intervals positive and for another time intervals
negative solitary waves can be detected. (see Figs. 13 and 14).

• Furthermore, these solitary waves have solitonic behaviour — they restore their shape
and speed throughout interactions.

• By making use of time dependences of spectral amplitudes one can detect the
recurrence and super-recurrence phenomena, i.e., after a certain time interval Rt  the
initial (spectral) state is almost restored (see Figs. 11 and 12). If the k-th recurrence is
better than the first, then the k-th recurrence is called the super-recurrence like in the
case of the KdV equation (Goda 1977, Abe and Abe 1979).

• Common feature for the first and the second type of the solutions is that negative
solitary wave can be seen during time frame where first spectral amplitude has the
steepest slope (see Fig 15).
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4.1.3. Third type

If the initial wave amplitude has values over a certain critical value ),( ll bdA∗  then the initial

excitation propagates with minimal disturbances, i.e., its speed, amplitude and consequently
the energy changes by a small extent only during the propagation. Lower and upper limit, lA
and uA  respectively, for the critical amplitude ),( ll bdA∗  are presented against logarithmic

dispersion parameters ld  and lb  in Table 1. If the amplitude of the initial solitary wave
lAA =  then the solution is of the first or the second type. However, if uAA =  then the one

has the third type of solution. The difference between lower and the upper
limit 01.0=− lu AA , i.e., the critical amplitude is determined with the accuracy 0.01. Notice,
that the determination of such critical amplitude was one of the main goals of the present
study.

• The higher the amplitude (for fixed values of ld  and lb ) of the initial wave the higher

its speed (Figs. 16-19 and Tables 2-7).

• Besides the solitary wave (propagating to the right) left propagating (relatively) small
amplitude oscillating wave-train forms. For all considered pairs of logarithmic
dispersion parameters ld  and lb  there exist the initial solitary wave amplitude bestA

where the amplitude of the oscillating wave-train is the smallest for this particular set
of dispersion parameters (Figs. 20-21). It is convenient to use spectral amplitudes in
order to estimate the alteration of the solitary wave during the propagation. The
maximum deviation of k -th spectral amplitude is defined as minmax kkS SS

k
−=∆  where

)( maxmax tSS k
t

k =  and )( minmin tSS k
t

k =  are the maximum and the minimum value of

the k -th spectral amplitude over the considered time interval. It is clear that  0>∆
kS

and the smaller the deviation 
kS∆  the smaller are the mutations of the solitary wave

during the propagation. In Table 8 the smallest value of the deviation 
1S∆  and

corresponding initial wave amplitude bestA  are presented against logarithmic

dispersion parameters ld  and lb . In some cases ),( ll
u

best bdAA =  (for example the

case dl=0.8 and bl=4.8; dl=1.2 and bl=3.6), however in some cases ),( ll
u

best bdAA >
(for example in the case dl=2.4 and bl=4.0). The higher the value of the initial wave
amplitude in the domain bestAA >  the higher the value of 

kS∆  and the more distinctive

the left propagating wave-train.

• The amplitude of the solitary wave oscillates by a small extent during the propagation.
In some cases the solitary wave amplitude oscillates near the initial amplitude A ,
however in some cases at first the amplitude rises (or falls) during a short time interval
and then starts to oscillate around a certain value higher (or lower) than the initial
amplitude A  (see Figs. 22-25).

• It is complicated to establish direct relations between the time-space behaviour of the
solitary wave and time dependences of spectral amplitudes ),3,2,1( �=iSi  in the case

of the third solution type. In some cases different spectral amplitude curves intersect,
but in some cases they are separated, notwithstanding that in both cases a solitary
wave propagates at nearly constant speed and amplitude. However, common features
of time dependences of spectral amplitudes are (i) that the lower order spectral
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amplitudes dominate over that of the higher order and (ii ) (quasi)periodic behaviour
(see Figs. 26-27).

4.2. Discussion

In the considered domain of dispersion parameters (15) there exist sub domains where the
third order dispersive effects dominate over that of the fifth order and, vice versa, sub
domains where the fifth order dispersive effects dominate over that of the third order. We say
that fifth order dispersive effects are dominating over these of the third order if

10
)0,(max

)0,(max

3

5
>=

xdu

xbu
r

x
x

x
x

d , (17)

and vice versa, third order dispersive effects are dominating if

1.0
)0,(max

)0,(max

3

5
<=

xdu

xbu
r

x
x

x
x

d . (18)

The ratio dr  depends on the value of the amplitude of the initial wave A  as well as on

dispersion parameters d and b. In Fig. 28 the ratio dr  is presented against logarithmic

dispersion parameters ld  and lb  in the form of contour lines for values 6.1=A  and 8.2=A

(the criti cal amplitude 8.26.1 * << A  in numerical experiments, see Table 1). The presented
contour lines can be approximated by straight lines Ddb ll += 2 , where the constant D is

defined by parameters ld  and lb . For fixed values of *
ld  and *

lb  constant *** 2 ll dbD −= .

In Fig. 29 lower limits lA  (detected in numerical experiments) for criti cal amplitude *A  are
presented. One can conclude that along lines Ddb ll += 2  the value of lA  deviates by a small

extent 01.0±=∆ A . In other words, quantity ll db 2−  determines the value the lower limit lA

and therefore the value of the criti cal amplitude *A  as well .
In Fig. 30 the ratio dr  is presented against logarithmic dispersion parameters ld  and lb  for

lAA = . It is clear that for 71.2=A  the ratio 10>dr  and fifth order dispersive effects are

dominating and for 69.1≤A  the ratio 1.0<dr  and third order dispersive effects are

dominating. Our particular interest is paid to the case when neither third not fifth order
dispersive effects are dominating, i.e. the amplitude of the initial wave 71.269.1 << A . The
later is determined by values 6.128.0 <−<− ll db .

In addition to the results presented in Table 1 lover and upper limits, lA  and uA  respectively,
for criti cal amplitude *A  were found for four pairs of dispersion parameters outside of the
initial set of values. The results were in accordance with previous experiments —

1.78A1.77 * <<  for dl=0.8 and bl=2.4; 1.78A1.77 * <<  for dl=1.2 and bl=3.2;
03.2A2.02 * <<  for dl=1.2 and bl=2.4; 03.2A2.02 * <<  for dl=1.6 and bl=3.2.

In Fig. 31 values of the lower limit lA  are plotted against ll db 2− . Discrete values

correspond to numerical experiments and solid line to the eighth order polynomial
interpolation.

In the case of KdV equation the amplitude and speed of the solution are directly related:
3/ =cA . In the studied case, i.e. in the case of KdV435 equation, there doesn’ t exist such a
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fixed ratio. In  Tables 2–7 the location of solitary wave maximum Mx

( ),(max),( txutxu
x

M = ), displacement )0()()( MM xtxtx −=∆ , the average speed txc /∆=

and the ratio cA /  are presented against time for different values of ld , lb  and A. One can

only conclude that the higher the amplitude A the greater the solitary wave speed and the
smaller the ratio ./ cA

Computations were carried out for modelli ng interaction between two solitary waves in order
to test the solitonic character of the third type solutions. For simulation of interaction two
third-type of solutions having different amplitudes were chosen ( 73.21 =A , 90.22 =A for

dl=1.6, bl=2.8 and 08.21 =A , 12.22 =A for dl=2.4, bl=4.8). Due to the difference in solitary
waves’ amplitudes, solitary wave with higher amplitude (and speed, respectively) starts to
catch up solitary wave with lower amplitude (see Figs. 32 and 33). Analysis of numerical
results (solitary wave trajectories and amplitudes were traced) shows that the interaction of
these two solitary waves is close to the typical behaviour of solitons — both solitary waves
almost restore their speed and amplitude after interaction. However, a certain alteration of
solitary wave shape and speed (and therefore the energy) exists, so one can not name this kind
of interaction perfectly elastic.

5. Conclusions

In the present paper the propagation of bxa 2sech  type localised initial wave (KdV soliton) in
media characterised by higher order nonlinearity and higher order dispersion is studied. Main
attention is paid to the case when neither the third- nor the fifth order dispersive effects are
dominating. As main results the following can be drawn out:
• Three solution types are detected.
• In the case of the first type the initial solitary wave (4) is spread into a train of waves

having chaotic (irregular) space-time behaviour.
• In the case of the second type the initial solitary wave is destroyed as well . However, one

can clearly distinct positive and negative solitary waves in the formed wave-train now.
Furthermore, (quasi)periodic behaviour (including the recurrence and superrecurrence
phenomena) can be detected in time dependences of spectral amplitudes.

• If the amplitude A  exceeds a certain threshold ∗A  then the initial solitary wave (4) can
travel with a constant speed and without significant changes in its amplitude. This case is
referred as the third solution type.

• Numerical experiments with solitary waves having different amplitudes (and therefore
different speeds) demonstrate that their interaction is not perfectly elastic — there exist a
certain small transformation of energy and/or mass between interacting solitons. This
phenomenon causes the slower solitary wave move more slowly and the faster one even
faster.
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6. Tables

Table.1. Lower and upper limits ( lA - uA ) for the critical amplitude *A  depending on values
of dispersion parameters dl and bl.

bl

dl = 0.8 dl = 1.2 dl = 1.6 dl = 2.0 dl = 2.4

1.2 2.27-2.28
2.0 1.86-1.87 2.27-2.28
2.8 1.72-1.73 1.87-1.88 2.28-2.29
3.6 1.67-1.68 1.72-1.73 1.87-1.88 2.28-2.29
4.0 1.67-1.68 1.69-1.70 1.78-1.79 2.02-2.03 2.71-2.72
4.4 1.67-1.68 1.68-1.69 1.73-1.74 1.87-1.88 2.28-2.29
4.8 1.67-1.68 1.68-1.69 1.69-1.70 1.78-1.79 2.02-2.03

Table.2. Third solution type. Location of the solitary wave maximum Mx , corresponding
displacement x∆ , speed c, and amplitude-speed ratio cA /  against time t. Case dl=2.0 and
bl=4.0, A=2.03.

t
Mx x∆ c cA /

0 6.2382
10 7.7558 1.4726 0.1428 14.2157
20 9.0321 2.7489 0.1375 14.7636
30 10.2102 3.9270 0.1324 15.3323
40 11.3883 5.1051 0.1276 15.9091

Table.3. Third solution type. Location of the solitary wave maximum Mx , corresponding
displacement x∆ , speed c, and amplitude-speed ratio cA /  against time t. Case dl=2.0 and
bl=4.0, A=2.09.

t
Mx x∆ c cA /

0 6.2382
10 9.7193 3.4361 0.3436 6.0827
20 13.1554 6.8722 0.3436 6.0827
30 16.6897 10.4065 0.3469 6.0248
40 20.1258 13.8426 0.3461 6.0387
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Table.4. Third solution type. Location of the solitary wave maximum Mx , corresponding
displacement x∆ , speed c, and amplitude-speed ratio cA /  against time t. Case dl=1.6 and
bl=2.8, A=2.29.

t
Mx x∆ c cA /

0 6.2382
10 8.1485 1.8653 0.1865 12.2788
20 9.6211 3.3379 0.1669 13.7208
30 11.094 4.8106 0.1604 14.2768
40 12.468 6.1850 0.1546 14.8124

Table.5. Third solution type. Location of the solitary wave maximum Mx , corresponding
displacement x∆ , speed c, and amplitude-speed ratio cA /  against time t. Case dl=1.6 and
bl=2.8, A=2.34.

t
Mx x∆ c cA /

0 6.2382
10 9.6211 3.3379 0.3379 6.9251
20 12.9591 6.7209 0.3360 6.9643
30 16.1988 9.9606 0.3320 7.0482
40 19.6350 13.3968 0.3349 6.9872

Table.6. Third solution type. Location of the solitary wave maximum Mx , corresponding
displacement x∆ , speed c, and amplitude-speed ratio cA /  against time t. Case dl=0.8 and
bl=4.8, A=1.68.

t
Mx x∆ c cA /

0 6.2382
10 7.5595 1.2763 0.1276 13.1661
20 9.7193 3.4361 0.1718 9.7788
30 13.352 7.0686 0.2356 7.1307
40 15.315 9.0321 0.2258 7.4402

Table.7. Third solution type. Location of the solitary wave maximum Mx , corresponding
displacement x∆ , speed c, and amplitude-speed ratio cA /  against time t. Case dl=0.8 and
bl=4.8, A=1.71.

t
Mx x∆ c cA /

0 6.2382
10 9.1303 2.8921 0.2892 5.9129
20 14.3335 8.0953 0.4048 4.2243
30 16.7879 10.5497 0.3517 4.8621
40 21.1076 14.8694 0.3717 4.6005



12

Table.8. Smallest values of deviation 
kS∆  and corresponding amplitude A against dispersion

parameters dl and bl.

bl

dl = 0.8 dl = 1.2 dl = 1.6 dl = 2.0 dl = 2.4

1.2 0.0082
2.52

2.0 0.0131
1.89

0.0026
2.49

2.8 0.0598
1.73

0.0048
1.89

0.0028
2.48

3.6 0.0641
1.68

0.0329
1.73

0.0047
1.89

0.0007
2.48

4.0 0.1004
1.68

0.0724
1.70

0.0088
1.79

0.0005
2.09

0.0005
3.41

4.4 0.1128
1.68

0.0858
1.69

0.0371
1.74

0.0036
1.90

0.0006
2.47

4.8 0.1261
1.68

0.1054
1.69

0.0420
1.70

0.0044
1.79

0.00002
2.09
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7. Figures
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Fig. 1. Third- and fifth order dispersive terms of the initial wave profile, case dl=0.8, bl=2.0,
A=1.87 and b>0 ( bbl log−= ). Solid line corresponds to the third- and dashed line to fifth-

order term.

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

am
pl

itu
de

Fig. 2. Third- and fifth order dispersive terms of the initial wave profile, case dl=0.8, bl=2.0,
A=1.87 and b<0 ( )log( bbl −−= ). Solid line corresponds to the third- and dashed line to fifth-

order term.
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Fig. 3. First solution type. Propagation of initial excitation (4), amplitude A=1.5, dl=0.8 and
bl=2.0 and tf =300, n=128.

Fig. 4. First solution type. Propagation of initial excitation (4), amplitude A=1.25, dl=0.8 and
bl=4.8 and tf =300, n=128.
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Fig. 5. First solution type. Propagation of initial excitation (4), amplitude A=1.95, dl=2.0 and
bl=4.0 and tf =300, n=128.
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Fig. 6. First solution type. First three spectral amplitudes S1, S2 , S3 against time; case A=1.50,
dl=0.8 and bl=2.0 (solid line corresponds to S1, dashed line to S2  and dotted line to S3).
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Fig. 7. First solution type. First three spectral amplitudes S1, S2, S3 against time; case A=1.25,
dl=0.8 and bl=4.8 (solid line corresponds to S1, dashed line to S2 and dotted line to S3).
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Fig. 8. First solution type. First three spectral amplitudes S1, S2, S3 against time; case A=1.95,
dl=2.0 and bl=4.0 (solid line corresponds to S1, dashed line to S2 and dotted line to S3).
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Fig. 9. Second solution type. Propagation of initial excitation (4), amplitude A=1.75, dl=0.8
and bl=2.0 and tf =300, n=128.

Fig. 10. Second solution type. Propagation of initial excitation (4), amplitude A=1.66, dl=0.8
and bl=4.8 and tf =300, n=128.
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Fig. 11. Second solution type. First three spectral amplitudes S1, S2, S3 against time; case
A=1.75, dl=0.8 and bl=2.0 (solid line corresponds to S1, dashed line to S2 and dotted line to
S3).
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Fig. 12. Second solution type. First three spectral amplitudes S1, S2, S3 against time; case
A=1.66, dl=0.8 and bl=4.8 (solid line corresponds to S1, dashed line to S2 and dotted line to
S3).
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Fig. 13. Second solution type. Wave profiles of the solution, case dl=0.8, bl=2.0 and A=1.75.
Solid line corresponds to time moment t=0, dash-dotted line corresponds to time moment
t=45.6, dashed line corresponds to time moment t=90.2.
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Fig. 14. Second solution type. Wave profiles of the solution, case dl=0.8, bl=4.8 and A=1.66.
Solid line corresponds to time moment t=0, dashed line corresponds to time moment t=99.3,
dash-dotted line corresponds to time moment t=133.7 and dotted line corresponds to time
moment t=296.5.
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Fig. 15. Second solution type. First spectral amplitude 1S  and wave profiles of the solution,
case dl=0.8, bl=4.8 and A=1.65. Solid line corresponds to time moment t=41.6, dashed line
corresponds to time moment t=96.0 and dotted line corresponds to time moment t=157.

Fig. 16. Third solution type. Propagation of initial excitation (4), amplitude A=1.90, dl=0.8
and bl=2.0 and tf =300, n=128.
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Fig. 17. Third solution type. Propagation of initial excitation (4), amplitude A=1.70, dl=0.8
and bl=4.8 and tf =300, n=128.

Fig. 18. Third solution type. Propagation of initial excitation (4), amplitude A=2.03, dl=2.0
and bl=4.0 and tf =300, n=128.
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Fig. 19. Third solution type. Propagation of initial excitation (4), amplitude A=2.09, dl=2.0
and bl=4.0 and tf =300, n=128.
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Fig. 20. Third solution type. Wave profiles of the solution, case dl=2.0, bl=4.0 and A=2.03.
Solid line corresponds to time moment t=0, dotted line corresponds to time moment t=100
and dashed line corresponds to time moment t=200.
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Fig. 21. Third solution type. Wave profiles of the solution, case dl=2.0, bl=4.0 and A=2.09.
Solid line corresponds to time moment t=0, dotted line corresponds to time moment t=100
and dashed line corresponds to time moment t=250.
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Fig. 22. Third solution type. Maxima of the wave profiles of the solution against time, case
dl=0.8, bl=1.2 and A=3.0.
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Fig. 23. Third solution type. Maxima of the wave profiles of the solution against time, case
dl=2.0, bl=4.0 and A=2.03.
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Fig. 24. Third solution type. Maxima of the wave profiles of the solution against time, case
dl=2.0, bl=4.0 and A=2.09.
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Fig. 25. Third solution type. Maxima of the wave profiles of the solution against time, case
dl=2.0, bl=4.0 and A=2.20.
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Fig. 26. Third solution type. First three spectral amplitudes S1, S2, S3 against time; case
A=2.03, dl=2.0 and bl=4.0 (solid line corresponds to S1, dashed line to S2 and dotted line to
S3).
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Fig. 27. Third solution type. First three spectral amplitudes S1, S2, S3 against time; case
A=2.09, dl=2.0 and bl=4.0 (solid line corresponds to S1, dashed line to S2 and dotted line to
S3).
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Fig. 28. Ratio dr  against logarithmic dispersion parameters ld  and lb  for amplitudes 6.1=A

(solid line) and 8.2=A  (dashed line). Gridlines correspond to cells in Table 1.
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Fig. 31. Lower limit lA  for critical amplitude ∗A  against quantity ll db 2− .

Fig. 32. Interaction of two solitons, case dl=1.6, bl=2.8; 1A =2.73, 2A =2.90 and tf =300.
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Fig. 33. Interaction of two solitons, case dl=2.4, bl=4.8; 1A =2.08, 2A =2.12 and tf =300.
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