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Abstract. Wave propagation in microstructured media is essentially influenced by nonlinear
and dspersive effects. The smplest model governing these dfeds results in the Korteweg-de
Vries (KdV) equation. In the present paper a KdV-type evolution equation, including the
third- and fifth order dispersive and the fourth order norlinear terms, is used for modelli ng the
wave propagation in microstructured solids like martensitic-austenitic dloys. The model
equation is olved numericdly under locdised initial condtions. Possble solution types are
defined and dscussed. It is $iown that the relatively small solitary waves decay in time.
However, if the anplitude exceals a certain criticd value then such a solitary wave can
propagate with nearly a mnstant speed, amplitude and consequently the energy. Unlike the
KdV solitons, interadion d such solitary wavesis nat perfedly elastic — after the interaction
their speed and amplitude ae dtered by asmall extent.



1. Introduction

Wave propagation in microstructured media is essentially influenced by nonlinear and
dispersive effects. The simplest model governing these two effects results in the celebrated
KdV eguation

u, +uu, +du, =0. (1)
However, studies of microstructured materials have shown that higher-order dispersive effects
together with higher-order nonlinear effects can give rise to dramatic changes in the behaviour
of emerging waves. In the present paper a KdV-like evolution equation, including the third-
and the fifth order dispersive and the fourth order nonlinear terms,

u, +[P()], +du, +bu,,, =0 (2)

is used for modelling the 1D longitudinal wave propagation in microstructured solids. Here u
is the excitation, t the time coordinate, x the space coordinate, d and b the third- and the
fifth-order dispersion parameters, respectively and elastic potential

u? u*

PU)=(-—+), ®)
introduces the quartic nonlinearity. The sources of higher order effects can be dislocations in
the crystal structure of martensitic-austenitic shape-memory aloys (Maugin 1993, Maugin
and Christov 1997).

The character of dispersion depends on the signs of parameters d and b. For db <0 one has
normal dispersion, however for db >0 the dispersion is norma for some wavenumbers and
anomalous for others (Salupere et al. 2001). In the present paper the normal dispersion case
d >0 and b<0 isconsidered.

In Section 2 the problem is stated and in Section 3 the numerical method is described shortly.
Results are presented and discussed in Section 4 and concluding remarks are given in Section
5. Tables and figures are presented in Sections 6 and 7, respectively.

2. Statement of the problem

The proposed model equation is solved numerically under localised initial conditions
u(x,0) = Asechzg, (4)

_ 12d
A= e )

the width of the initial solitary wave (Zabusky and Kruskal 1965). In fact, the proposed
localised initial excitation (4) corresponds to the analytical solution of the KdV equation (1).
In our case the model equation (2) and the initial excitation (4) are related through the
dispersion parameterd .
Logarithmic dispersion parameters

d, =-logd and b, =-log(-b) (6)

where A isthe amplitude and



are used instead of d and b for analysis herein after. Note that dispersion parameters have
oppdasite sign in the present case, i.e. the normal dispersion case is gudied here. In order to
demonstrate the qualit ative difference of dispersivetermsin b <0 and b >0 cases quantities
du,, (x,0) and bu,, (x,0) that correspondto the initial excitation (4) are presented in Figs. 1

and 2.
Boundary conditions are considered to be periodic, i.e.

u(x,t) =u(x+4nr,t), n=x1+2,..., (7)
becaise the pseudospectral method (described shortly in next Sedion) is applied for
numericd integration d the problem (2)—(4). In order to separate locdised initial waves the
length of the space periodin (7) was taken4rt.

Goals of the arrent study are

(1) to find numericd solutions for the proposed problem over wide range of
logarithmic dispersion parameters d, and b ;

(i)  toexamine and describe the time-spacebehaviour of numerical solutions;

(i)  to introduce solution types. Our particular interest is to examine whether or not
solitary waves (4) can propagate in media described by the eguation (2) with
constant speed and amplitude. Furthermore, pilot study is carried ou in order to
understand howv such solitary waves interad in such a media. In the other words,
do the solitary waves (4) behave like solitons in media where the higher order
eff ects, governed by the eguation (2), are of importance

3. Numerical method

Based on previous experience the pseudospedral method (PsM) (Fornberg 1998, Salupere
1995, Salupere 1997 is used for numericd integration d the model equation (2) under
locdised initia condtions (4) and periodic bourdary condtions (7), i.e., for the numericd
simulation d wave propagation in media described by the KdV-like esolution equetion (2).
Results are analysed using dscrete spectral charaderistics (Salupere & a. 1996.

The pseudaspectra method was first proposed by Kreissand Oliger (1972 in the following
form. Let the initial condtion u(x,0) be given onthe interval 2t The space grid is formed by
n paints with

ax=2" ®)
n
The discrete Fourier transform (DFT) is defined by
n-1 ~2rijw
U(wt)=Fu= Zu(ij,t)e n 9)
E
and the inverse discrete Fourier transform (IDFT) by
2rijw
u(x,t) =FU = SU (w,t)e( n (10)
w
wherei istheimaginary unit and
w=0,+1,+2,.. +(2-1, -2 (12)
2 2



In expressons (9) and (10) F denctes the Fourier transform and F™* the inverse Fourier
transform. Fast Fourier Transform (FFT) algorithm is applied to find the Fourier transform
(Bracewell 1972. Space derivatives are then given by

ou

— =F (P,

™ (ioF)

2
ZT‘; = -F(w?Fu), (12
0"u

= F‘l[(i w)" Fu].

Xn
In time, the finite diff erence legp-frog (LF) scheme was propased to use by Kreissand Oliger
(1972. For example, the KdV-like equation (2) with quartic potential (3) leads to the
foll owing straightforward pseudaspedral approximation
u(x,t +At) = u(x,t - At) — 2At(u® — u)F (i wFu) + 2dAtF (i wFu) — 2bAtF (i w°Fu) .(13)
The LF scheme has a disadvantage. Namely, one has to use very small time step to get stable
results. Furthermore, there ae nat proper criterions for choasing suitable (in the sense of
stabili ty of the numerical scheme) size for the time step. Runge-Kutta type methods are found
to be more stable than LF scheme. Hence the step-size cntrolling Runge-Kutta-Fehlberg
(RKF) algorithm is used in numericd experiments below (Salupere 1997).

For future analysis gectral amplitudes are defined as:

s (=22 @Il w::,...,%. (14)

The variable U (w, t) is given by the DFT expresson (9). These spedra charaderistics cary

additional information abou the internal structure of waves. Thisinformationis related to the
existence of locd and global minima and maximain time dependence of spedral curves.

4. Numerical results and discussion

The problem (2)—(4) is lved numerically over the range of the dispersion parameters

08<d <24 and12<h <48 (15
in order to examine diff erent properties of the solutions. The length of the integration interval
and the time-step for saving of results, t, and At respectively, were daosen according to the

nature of solutions. The number of space-grid pdnts was varied (n=64,128 256, 512)
acordingly to the behaviour of densities

am am

C, = J'udx, C,= J'uzdx (16)
0 0

of the first two conservation laws. In the other words, the number of space-grid pants was
kept as low as possble and the aiterion was that relative eror for density C, must be less
than0.005.



4.1. Solution types

By making use of numericd results one can deted that the type of the solution depends onthe
value of the anplitude A esentially. Generally spe&ing one can find threedifferent solution

types. Two of thase types can be deteded for all values of dispersion parameters d, and b in

the mnsidered damain (15), whereas one solution type was deteded orly in a certain sub
domain, i.e., orly for few values of dispersion parameters.

4.1.1. First type

The first solution type can be described as a dhaotic spread dof initial energy, i.e., the localised
initial excitation fall s apart into a chaotic train of waves (Figs. 3-5).

One canna deted any regularity neither in the time-space behaviour of wave-profile
characteristics (time dependences of wave-profile minima and maxima and their
trajedories nor in time dependences of spedra amplitudes (Figs. 6-8)).

This phenomenon (the formation d the daotic wave-train) can be explained as a
shortage of initia energy to form a single wave profile, which can propagate in the
considered mediawith constant speed and shape, i.e., conserving itsinitial energy.

4.1.2. Second type

The second solution type can be detected if the initial wave anplitude A exceels a cetain
value A (d,,b). Inthis case awave-train having periodic behaviour in time anerges.

Periodicity can be deteded in the time-space behaviour of wave-profile daracteristics
aswell asin time dependences of spedral amplitudes (Figs. 9-12).

One can deted that wave profiles are stretched to the positive & well as to the
negative direction. For certain time intervals positive and for ancther time intervals
negative solitary waves can be detected. (seeFigs. 13 and 14).

Furthermore, these solitary waves have solitonic behaviour — they restore their shape
and spedd throughou interadions.

By making use of time dependences of spedral amplitudes one can deted the
reaurrence and super-reaurrence phenomena, i.e., after a certain time interval t, the
initial (spedral) state is aimost restored (see Figs. 11 and 12). If the k-th reaurrence is
better than the first, then the k-th reaurrence is cdled the super-recurrence like in the
case of the KdV equation (Goda 1977,Abe and Abe 1979.

Common fedure for the first and the second type of the solutions is that negative
solitary wave can be seen duing time frame where first spedral amplitude has the
stegoest slope (see Fig 15).



4.1.3. Third type

If the initial wave amplitude has values over a certain critical value A’(d,,ly) then theinitial
excitation propagates with minimal disturbances, i.e., its speed, amplitude and consequently
the energy changes by a small extent only during the propagation. Lower and upper limit, A
and A" respectively, for the critica amplitude A"(d,,b) are presented against logarithmic
dispersion parameters d, and b in Table 1. If the amplitude of the initial solitary wave
A=A’ then the solution is of the first or the second type. However, if A= A" then the one
has the third type of solution. The difference between lower and the upper
limit A" = A' =0.01, i.e., the critical amplitude is determined with the accuracy 0.01. Notice,
that the determination of such critical amplitude was one of the main goals of the present
study.

* The higher the amplitude (for fixed values of d, andb ) of the initial wave the higher

its speed (Figs. 16-19 and Tables 2-7).
* Besides the solitary wave (propagating to the right) left propagating (relatively) small

amplitude oscillating wave-train forms. For al considered pairs of logarithmic
dispersion parameters d, and by there exist the initial solitary wave amplitude A

where the amplitude of the oscillating wave-train is the smallest for this particular set
of dispersion parameters (Figs. 20-21). It is convenient to use spectral amplitudes in
order to estimate the alteration of the solitary wave during the propagation. The
maximum deviation of k -th spectral amplitude is defined as Ag =S, — S, Where

Sirex = max S(t)and S, = mtin S, (t) are the maximum and the minimum value of

the k -th spectral amplitude over the considered time interval. It is clear that A >0
and the smaller the deviation A the smaller are the mutations of the solitary wave
during the propagation. In Table 8 the smallest value of the deviation Ag and
corresponding initial wave amplitude A, are presented against logarithmic
dispersion parameters d, and b . In some cases A = A"(d,,b) (for example the
case di=0.8 and b=4.8; d=1.2 and b=3.6), however in some cases A > A"(d,,b)
(for example in the case d=2.4 and b=4.0). The higher the value of the initia wave
amplitude in the domain A> A, the higher the value of A¢ and the more distinctive
the left propagating wave-train.

* The amplitude of the solitary wave oscillates by a small extent during the propagation.
In some cases the solitary wave amplitude oscillates near the initial amplitude A,
however in some cases at first the amplitude rises (or falls) during a short time interval

and then starts to oscillate around a certain value higher (or lower) than the initial
amplitude A (see Figs. 22-25).

* Itiscomplicated to establish direct relations between the time-space behaviour of the
solitary wave and time dependences of spectral amplitudes S (i =1,2,3,...) in the case

of the third solution type. In some cases different spectral amplitude curves intersect,
but in some cases they are separated, notwithstanding that in both cases a solitary
wave propagates at nearly constant speed and amplitude. However, common features
of time dependences of spectral amplitudes are (i) that the lower order spectral



amplitudes dominate over that of the higher order and (ii) (quasi)periodic behaviour
(seeFigs. 26-27).

4.2. Discussion

In the cnsidered damain o dispersion parameters (15) there exist sub danains where the
third order dispersive dfects dominate over that of the fifth order and, vice versa, sub
domains where the fifth order dispersive eff ects dominate over that of the third order. We say
that fifth order dispersive dfeds are dominating over these of the third order if

maxbus, (x,0)|

e =— -~ 10, 1
“ maxdu,, (x,0)| a7
and vice versa, third order dispersive dfeds are dominating if
maxbus, (x,0)|

ry =————<0.1.
“ ma)du,, (x,0)
The ratio r, depends on the value of the amplitude of the initial wave A as well as on
dispersion parameters d and b. In Fig. 28 the ratio r, is presented against logarithmic
dispersion parameters d, and by in the form of contour lines for values A=1.6 and A=2.8

(the aiticd amplitude 1.6 < A° <2.8 in numericd experiments, see Table 1). The presented
contour lines can be gproximated by straight lines b =2d, + D, where the mnstant D is

defined by parameters d, and b . For fixed valuesof d,” and b~ constant D" =h" - 2d,".

In Fig. 29 lower limits A' (detected in numerical experiments) for criticd amplitude A" are
presented. One can conclude that along lines by =2d, + D thevalue of A' deviates by a small

extent AA=+0.01. In ather words, quantity by —2d, determines the value the lower limit A
and therefore the value of the aiticd amplitude A" aswell.

In Fig. 30 the ratio r, is presented against logarithmic dispersion parameters d, and by for
A=A'. It is clear that for A=2.71 the ratio r, >10 and fifth order dispersive dfeds are
dominating and for A<1.69 the ratio r, <0.1 and third oder dispersive dfects are

dominating. Our particular interest is paid to the cae when neither third na fifth order
dispersive dfeds are dominating, i.e. the anplitude of the initial wave 1.69< A< 2.71. The
later is determined by values —0.8<b —2d, <1.6.

In addition to the results presented in Table 1 lover and uper limits, A' and A" respedively,

for criticd amplitude A" were foundfor four pairs of dispersion parameters outside of the
initial set of values. The results were in accordance with previous experiments —

1.77<A" <1.78 for d=0.8 and b=2.4 1.77<A” <1.78 for d=1.2 and b=3.2
2.02< A" <203 ford=1.2andb=2.4, 2.02< A" <2.03 for d=1.6and b=3.2.
In Fig. 31 values of the lower limit A' are plotted against b —2d,. Discrete values

correspond to numericd experiments and solid line to the eghth order poynomial
interpolation.

In the cae of KdV equation the amplitude and speed o the solution are diredly related:
A/c=3. In the studied case, i.e. in the cae of KdV435 equation, there doesn’t exist such a



fixed ratio. In Tables 2-7 the locaion d solitay wave maximum X,
(u(xy ,t) = maxu(x,t)), displacement Ax(t) = x,, (t) — x,, (0), the average speed c=Ax/t

and the ratio A/c are presented against time for different values of d,, b and A. One can

only conclude that the higher the amplitude A the greater the solitary wave speed and the
smaller theratio Alc.

Computations were arried ou for modelli ng interaction between two solitary wavesin order
to test the solitonic charader of the third type solutions. For simulation d interadion two
third-type of solutions having different amplitudes were dhosen (A =273, A, =2.90for
d=1.6,b=2.8and A =2.08, A, =2.12for d=2.4,b=4.8). Due to the difference in solitary
waves amplitudes, solitary wave with higher amplitude (and speed, respedively) starts to
cach up solitary wave with lower amplitude (see Figs. 32 and 33). Analysis of numerical
results (solitary wave trajedories and amplitudes were tracel) shows that the interadion d
these two solitary waves is close to the typicd behaviour of solitons — bath solitary waves
amost restore their speed and amplitude dter interadion. However, a certain alteration d
solitary wave shape and speed (and therefore the energy) exists, so ore can na name this kind
of interadion perfectly elastic.

5. Conclusions

In the present paper the propagation o asecH bx type locdised initial wave (KdV soliton) in
media charaderised by higher order nonlinearity and higher order dispersionis dudied. Main
attention is paid to the cae when neither the third- nor the fifth order dispersive dfeds are
dominating. As main results the following can be drawn ou:

* Threesolution types are detected.

* In the cae of the first type the initia solitary wave (4) is grea into a train o waves
having chaotic (irregular) space-time behaviour.

* Inthe cae of the secondtype the initial solitary wave is destroyed as well. However, ore
can clearly distinct positive and regative solitary waves in the formed wave-train now.
Furthermore, (quasi)periodic behaviour (including the reaurrence and superreaurrence
phenomena) can be deteded in time dependences of spedral amplitudes.

+ If the anplitude A exceals a aertain threshold A" then the initial solitary wave (4) can
travel with a constant speed and withou significant changes in its amplitude. This case is
referred as the third solution type.

*  Numericd experiments with solitary waves having different amplitudes (and therefore
different speeals) demonstrate that their interadion is not perfedly elastic — there eist a
cetain smal transformation d energy and/or mass between interacting solitons. This
phenomenon causes the slower solitary wave move more slowly and the faster one even
faster.



6. Tables

Table.1. Lower and upper limits (A' - A") for the critical amplitude A" depending on values

of dispersion parameters d, and by.

by

d| =0.8 d| =12 d| =1.6 d| =20 d| =24
12 |(2.27-2.28
2.0 ||1.86-1.87 2.27-2.28
28 ||1.72-1.73 1.87-1.88 2.28-2.29
3.6 ||1.67-1.68 1.72-1.73 1.87-1.88 2.28-2.29
40 |[1.67-1.68 1.69-1.70 1.78-1.79 2.02-2.03 2.71-2.72
44 |1.67-1.68 1.68-1.69 1.73-1.74 1.87-1.88 2.28-2.29
48 ||1.67-1.68 1.68-1.69 1.69-1.70 1.78-1.79 2.02-2.03

Table.2. Third solution type. Location of the solitary wave maximum x,,, corresponding
displacement Ax, speed c, and amplitude-speed ratio A/c against time t. Case d=2.0 and

b=4.0, A=2.03.
t Xy AX c Alc
0 |6.2382
10 |7.7558 |1.4726 |0.1428 |14.2157
20 [9.0321 |2.7489 |0.1375 |14.7636
30 |10.2102 |3.9270 |0.1324 |15.3323
40 |11.3883 |5.1051 |0.1276 |15.9091

Table.3. Third solution type. Location of the solitary wave maximum Xx,,, corresponding
displacement Ax, speed c, and amplitude-speed ratio A/c against time t. Case d=2.0 and

b=4.0, A=2.09.
t Xy AX c Alc
0 |6.2382
10 [9.7193 |3.4361 |0.3436 |6.0827
20 |13.1554 [6.8722 |0.3436 |6.0827
30 [16.6897 |10.4065 |0.3469 |6.0248
40 |20.1258 |13.8426 |0.3461 |6.0387

10



Table4. Third solution type. Location of the solitary wave maximum Xx,,, corresponding
displacement Ax, speed c, and amplitude-speed ratio A/c against time t. Case di=1.6 and
b=2.8, A=2.29.

t Xy AX Alc

0 ]6.2382
10 |8.1485
20 19.6211
30 |11.094
40 [12.468

12.2788
13.7208
14.2768
14.8124

0.1865
0.1669
0.1604
0.1546

1.8653
3.3379
4.8106
6.1850

Table.5. Third solution type. Location of the solitary wave maximum x,,, corresponding
displacement Ax, speed c, and amplitude-speed ratio A/c against time t. Case di=1.6 and
b=2.8, A=2.34.

t Xy AX C Alc

0 [6.2382

10 |9.6211 [3.3379 |0.3379 |6.9251
20 129591 |[6.7209 |0.3360 |6.9643
30 |16.1988 |9.9606 |0.3320 |7.0482
40 |19.6350 |13.3968 |0.3349 [6.9872

Table.6. Third solution type. Location of the solitary wave maximum Xx,,, corresponding
displacement Ax, speed c, and amplitude-speed ratio A/c against time t. Case d=0.8 and

b=4.8, A=1.68.

t

Xm

AX

Alc

0

6.2382

10

7.5595

1.2763

0.1276

13.1661

20

9.7193

3.4361

0.1718

9.7788

30

13.352

7.0686

0.2356

7.1307

40

15.315

9.0321

0.2258

7.4402

Table.7. Third solution type. Location of the solitary wave maximum x,,, corresponding
displacement Ax, speed c, and amplitude-speed ratio A/c against time t. Case d=0.8 and

b=4.8, A=1.71.
t Xy AX c Alc
0 |6.2382
10 |9.1303 |2.8921 |0.2892 |5.9129
20 |14.3335 |8.0953 |0.4048 |4.2243
30 [16.7879 |10.5497 |0.3517 |4.8621
40 |21.1076 |14.8694 |0.3717 |4.6005
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Table.8. Smallest values of deviation Ag and corresponding amplitude A against dispersion
parameters d, and b.

by
d| =0.8 d| =12 d| =1.6 d| =20 d| =24
1.2 |/ 0.0082
2.52
2.0 [/0.0131 0.0026
1.89 2.49
2.8 |0.0598 0.0048 0.0028
1.73 1.89 2.48
3.6 |/0.0641 0.0329 0.0047 0.0007
1.68 1.73 1.89 2.48
4.0 || 0.1004 0.0724 0.0088 0.0005 0.0005
1.68 1.70 1.79 2.09 3.41
4.4 |10.1128 0.0858 0.0371 0.0036 0.0006
1.68 1.69 1.74 1.90 2.47
4.8 || 0.1261 0.1054 0.0420 0.0044 0.00002
1.68 1.69 1.70 1.79 2.09

12



7. Figures
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Fig. 1. Third- and fifth order dispersive terms of the initial wave profile, case d=0.8, b=2.0,
A=1.87 and b>0 (b, =-logb). Solid line corresponds to the third- and dashed line to fifth-

order term.
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Fig. 2. Third- and fifth order dispersive terms of the initial wave profile, case d=0.8, b=2.0,
A=1.87 and b<0 (b, =-log(-b)). Solid line corresponds to the third- and dashed line to fifth-

order term.
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