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Abstract

KdV-type evolution equation, including the third- and the fifth order dispersive
and the fourth order nonlinear terms, is used for modelling the wave propagation in
microstructured solids like martensitic-austenitic alloys. The character of the dis-
persion depends on the signs of the third and the fifth order dispersion parameters.
In the present paper the model equation is solved numerically under localised initial
conditions in the case of mixed dispersion, i.e., the character of dispersion is normal
for some wavenumbers and anomalous for others. Two types of solution are defined
and discussed. Relatively small solitary waves result in irregular solution. However,
if the amplitude exceeds a certain threshold a solution having regular time-space
behaviour energes. The latter has tree sub-types: “plaited” solitons, two solitary
waves and single solitary wave. Depending on the value of the amplitude of the
initial pulse these sub-types can appear alone or in a certain sequence.
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order nonlinearity
PACS: 05.45.Yv

1 Introduction

Over the recent decade microstructured materials (polycrystalline solids, ce-
ramic composites, functionally graded materials, shape-memory alloys, etc.)
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have found wide application in many fields of contemporary engineering and
therefore the attention to such materials has been arisen enormously. It is well
known that (i) the wave propagation in microstructured media is influenced
by nonlinear and dispersive effects, and (ii) the simplest model describing the
wave propagation in nonlinear dispersive media is the celebrated Korteweg–de
Vries (KdV) equation

ut + [P (u)]x + du3x = 0, P (u) =
u2

2
. (1)

The KdV equation is able to take into account only the lowest order effects,
i.e., the quadratic nonlinearity and cubic dispersion while in microstructured
solids higher order nonlinear as well as higher order dispersive effects are of
importance [1–5]. Recent studies have shown that considering higher order
dispersive and nonlinear terms, dramatic changes result in behaviour of the
wave propagation (see for example [5] and references therein).

In the present paper the 1D longitudinal wave propagation in microstructured
solids is studied making use of higher order KdV-like evolution equation

ut + +[P (u)]x + du3x + bu5x = 0, P (u) = −
u2

2
+

u4

4
. (2)

In Eqs. (1) and (2) the independent variables t and x correspond usually to the
moving frame [2,3], u is the excitation, d and b the third- and the fifth-order
dispersion parameters, respectively and elastic potential P (u) introduces the
nonlinearity (quadratic for Eq. (1) and quartic for Eq. (2)). Because of the
orders of nonlinearity and dispersion, the model equation (2) is shortly referred
as KdV435 below. The sources of higher order effects can be dislocations in the
crystal structure of martensitic-austenitic shape-memory alloys [1,3,6]. For the
present model the character of dispersion depends on the signs of parameters d
and b. For db < 0 one has normal dispersion, however for db > 0 the dispersion
is normal for some wavenumbers and anomalous for others [7]. The latter is
refered below as a mixed dispersion case.

Equation (2) is nonintegrable and therefore analytical methods (inverse scat-
tering method for example) are not applicable for for detecting the properties
of the model. This is the case when numerical experiments are practically the
only way in order to analyse the behaviour of the model. In [7–9] model Eq.
(2) is solved numerically under harmonic initial conditions. It is shown that
in the cases of normal as well as mixed dispersion a train of interacting soli-
tons can emerge from the initial sine-wave. From the practical viewpoint the
case of localised initial conditions may be even more important than that of
the harmonic. In [10–12] the propagation of sech2-type localised pulses (KdV
solitons) is simulated numerically in the case of model (2). In these papers
the normal dispersion case with d > 0 and b < 0 is studied. The main result
of these studies is the following: if the amplitude of the initial wave exceeds
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a certain threshold, then such a solitary wave can propagate with nearly con-
stant speed and amplitude, i.e. conserve the energy. However, the pilot studies
have shown that interaction of solitary waves having different amplitudes and
therefore different speeds is not perfectly elastic. Due to a certain transfer of
energy and/or mass the faster solitary wave moves more faster and the slower
solitary wave even slower after interaction.

In the present paper the propagation of localised initial pulses is studied in the
the case of d > 0 and b > 0, i.e., in the mixed dispersion case. The problem is
stated in Section 2 and numerical method is shortly introduced in Section 3.
Results are presented and discussed in Section 4 while conclusion are drawn
in Section 5.

2 Statement of the problem

In order to simulate the 1D wave propagation in microstructured solids (char-
acterised by quartic nonlinearity and positive values of third- and fifth order
dispersion) the KdV-type Eq. (2), shortly the KdV435 equation, is integrated
numerically under localised initial conditions

u(x, 0) = A sech2 x

∆
, ∆ =

√

12d

A
. (3)

Here A is the amplitude and ∆ the width of the initial solitary pulse. In fact,
the proposed localised initial excitation is the analytical solution of the well-
known KdV equation (2) and is known as the KdV soliton [13]. In our case
the initial wave (3) is related to the model Eq. (2) through the third order
dispersion parameter d (neglecting the quartic nonlinearity and the fifth order
dispersion). Logarithmic dispersion parameters

dl = − log d and bl = − log(b) (4)

are used instead of d and b for the analysis herein after.

In order to apply the pseudo-spectral method for the numerical integration
the boundary conditions are considered to be periodic, i.e.,

u(x, t) = u(x + 2knπ, t), n = ±1,±2, . . . , k = 2, 4, 8, 16. (5)

Goals of our present study are the following:

• to find numerical solutions for the proposed model equation (2) over wide
range of dispersion parameters;
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• to describe the time-space behaviour of numerical solutions and establish
solution types;

• to examine whether initial localised wave (3) can propagate or not with
constant speed and amplitude in media where wave motion is governed by
the KdV435 equation (Eq. (2));

• to analyse the interaction of solitary waves in order to detect solitonic be-
haviour of the solution.

3 Numerical method

Our long experience in the field of numerical simulation of wave propagation
in microstructured media has shown that an efficient method for numerical
integrations is the pseudospectral method. The essence of this method is based
on discrete Fourier Transform (DFT) — space derivatives are found by making
use of DFT, for integration with respect to time standard ODE solvers are
used [14–17]. In the present study the Fastest Fourier Transform in the West
(FFTW) algorithm (for DFT) and implicit Adams solver are applied for this
purpose.

For analyses of numerical results discrete spectral analysis is used, i.e., in order
to characterise the space-time behaviour of the solution Fourier transform re-
lated spectral quantities are used [18]. If the discrete Fourier transform (DFT)
is defined by

U(ω, t) = Fu =
n−1
∑

j=0

u(j∆x, t)e(−2πijω

n
) (6)

where n is the number of space-grid points, ∆x the space step, i the imaginary
unit and ω = 0,±1,±2, . . . ,±n/2 − 1,−n/2, then spectral amplitudes

Sk(t) =
2 |U(k, t)|

N
, ω = 1, ...,

N

2
− 1. (7)

These spectral characteristics carry additional information about the internal
structure of waves. This information is related to the existence of local and
global minima and maxima in time dependence of spectral curves.
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4 Numerical results and discussion

4.1 General remarks

A large number of numerical simulations over wide range of dispersion para-
meters

0.8 < dl < 2.4, 2.0 < bl < 4.8 (8)

were carried out in order to detect the behaviour of the solutions of the pro-
posed model equation. The number of space-grid points was varied according
to the behaviour of density

C =

2π
∫

0

u2dx (9)

of the second conservation law. The target was to keep the relative error of
density C below 0.0001 and it was sufficient to consider only values n ≤ 128 in
the present case. Numerical integrations were carried out in the range 0 ≤ t ≤
tfinal until sufficient information for detecting solution behaviour was gathered
(usually tfinal = 100...30000). One has to notice that in the case of higher
values of the initial wave amplitude A the formation of the solution is faster
than in the case of small values of A. Therefore, longer numerical experiments
(tfinal = 5000...30000) were carried out in the case of smaller values of initial
wave amplitude (A = 0.001 . . . 0.1).

Based on the analysis of numerical results one can introduce two types of the
solution:

(1) A solution with irregular time-space behaviour (irregular solution) char-
acterised by chaotic spread of initial energy, i.e., the initial localised ex-
citation decays into irregular (chaotic) train of waves.

(2) A solution with regular time-space behaviour (regular solution). This
solution type has three sub-types:
(a) ,,plaited“ solitons;
(b) two solitary waves;
(c) single solitary wave.

All types and sub-types of the solution are discussed in detail in next subsec-
tions.

For fixed values of the dispersion parameters the behaviour of the solution
depends on the value of the initial wave amplitude A. A convenient criterion
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Fig. 1. Quantity log rd against log A for different values of parameter D = bl − 2dl.
Line (1) corresponds to the case D = −2.8 (dl = 2.4 and bl = 2.0), line (2) to
D = −2.0 (dl = 2.0 and bl = 2.0), line (3) to D = −1.2 (dl = 1.6 and bl = 2.0),
line (4) to D = −0.4 (dl = 1.2 and bl = 2.0), line (5) to D = 0.4 (dl = 0.8 and
bl = 2.0), line (6) to D = 1.2 (dl = 0.8 and bl = 2.8), line (7) to D = 2.0 (dl = 0.8
and bl = 3.6), and line (8) to D = 2.8 (dl = 0.8 and bl = 4.4).

for determining different solution types is the ratio

rd =
maxx |bu5x(x, 0)|

maxx |du3x(x, 0)|
(10)

where maxx |bu5x(x, 0)| represents the maximum of the fifth order term and
maxx |du3x(x, 0)| the maximum of the third order term for the initial wave.
The value of the ratio rd depends on the value of the initial amplitude A as
well as on the values of dispersion parameters d and b. For the fixed value of
the amplitude A the ratio rd is constant along straight lines

bl = 2dl + D (11)

For fixed values d = d∗ and b = b∗, i.e., for a certain value D∗ = b∗l − 2d∗

l the
quantity log rd depends linearly on the log A. One can detect that the higher
the amplitude of the initial wave A the higher the radio rd, i.e., the increase in
initial amplitude A increases also the contribution of the fifth order term in the
proposed model equation. In Fig. 1 corresponding parallel straight lines are
presented for different values of the parameter D in the range of 0.1 ≤ rd ≤ 10
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and 10−3 ≤ A ≤ 103. Note that the log− log scale is used and therefore these
lines represent linear dependence between log rd and log A. On the other hand,
numerical experiments demonstrate that for fixed value D∗, i.e., along the line
b∗l = 2d∗

l + D∗ the properties of the solution are the same. Therefore it is
sufficient to examine the nature of the solution in the case of one pair of
dispersion parameters to detect the behaviour of the solution for the whole
set of dispersion parameters, described by the same constant D.

According to numerical simulations one can conclude that changes in solutions’
behaviour are taking place in the case rd ≈ 1, i.e., in the domain where the
third- and the fifth-order dispersive terms have nearly equal contribution.
Therefore for fixed value of D the most interesting solutions correspond to
values of amplitude A that results in rd ≈ 1. From the viewpoint of numerical
simulation it is reasonable to keep the initial amplitude in the range 0.01 . . . 1.
Therefore we consider two cases of dispersion parameters in the present paper:
(i) dl = 1.6 and bl = 2.0 (D = −1.2), and (ii) dl = 1.2 and bl = 2.0 (D = −0.4).

4.2 First solution type: solutions with irregular behaviour

In the case of solutions with irregular behaviour, the initial solitary wave falls
apart into a train of waves having irregular time-space behaviour. Namely, in
course of time, the amplitude of the initial solitary wave starts to decrease
and numbers of small amplitude waves appear. The number of waves depends
on the value of the initial wave amplitude A. The smaller the value of A the
smaller number of waves is evolving from the initial excitation (see Fig. 2 and
3). However, in case of high values of initial wave amplitude, the number of
waves in the evolving wave-train can be rather high (see Figs. 2 and 4). Due
to irregular behaviour one cannot find any regularity in behaviour of spectral
amplitudes (Fig. 5). The phenomenon, covered by the first solution type,
can be described as shortage of the initial energy to form a solitary wave(s),
which can propagate with constant shape and speed, i.e. conserving the initial
energy. In the case of the irregular solution, the third order dispersive term is
dominating over the fifth order term, i.e. value of ratio rd < 1.
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Fig. 2. Irregular solution. Single wave profiles in the case of dl = 1.2, bl = 2.0 and
A = 0.11. Solid line corresponds to the initial wave profile at t = 0, dashed line to
time moment t = 184 and dotted line to t = 344, respectively.
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Fig. 3. Irregular solution. Single wave profiles in the case of dl = 1.6, bl = 2.0 and
A = 0.03. Solid line corresponds to the initial wave profile at t = 0, dashed line to
time moment t = 184 and dotted line to t = 4034, respectively.
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Fig. 4. Irregular solution. Time-slice plot over two space periods for dl = 1.2,
bl = 2.0, A = 0.11 and 0 < t < 220.
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Fig. 5. Irregular solution. First three spectral amplitudes for dl = 1.2, bl = 2.0 and
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line to the third spectral amplitude, respectively.
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Table 1
Values of the critical amplitude A∗ and corresponding value of the ratio rd for two
different values of the constant D = bl − 2dl.

D Critical amplitude A∗ Ratio rd

-0.4 0.37 0.9907

-1.2 0.063 1.0643

4.3 Second solution type: solutions with regular behaviour

In the case of the second type of the solution a regularly behaving wave-
structure forms – one or two solitary wave(s) and an oscillating tail evolve
from the initial excitation. It is interesting to notice that transition from the
first solution type to the second is quite fast. For example, in the case of
dl = 1.2 and bl = 2.0 the difference between two type of the solutions (in
terms of initial wave amplitudes) is only ∆A = 0.01. Table 1 presents the
critical values of initial amplitude A∗ and corresponding values of the ratio
of rd against d. The critical amplitude A∗ is the lowest value of amplitude
of the initial excitation (detected in our numerical experiments) that results
the regular solution. As one can notice, the value of the ratio rd is very close
to 1, i.e., the third and fifth order terms have equal contribution into the
proposed model at critical amplitude. Here it is important to notice that ratio
rd corresponds to the initial wave profile (t=0).

Three different sub-types of the regular solution — (a) “plaited” solitons,
(b) two solitary waves, and (c) a single solitary wave — were introduced in
Subsection 4.1. For fixed values of parameters dl, bl and A these three sub-
types can appear alone or in a certain sequence. This issue is discussed in detail
in Subsection 4.4 — at first properties of sub-types are discussed separately.

4.3.1 “Plaited” solitons

In the case of “plaited” solitons a pair of solitary waves and an oscillating tail
evolves from the initial excitation. These two solitary waves interact (i) with
each other, and (ii) have the oscillating tail. Furthermore, these solitary waves
form a plaited solitary entity propagating with constant group velocity. On can
call these solitary waves solitons, because they propagate with constant speed,
and restore their amplitude after interacting with each other (see Figs. 6–13).
Once evolved from the initial excitation, these solitons continue to interact
with each other regularly (Figs. 8, 10–13). By our interpretation these inter-
actions take place due to the oscillating tail – two large waves are ,,travelling“
over the tail. However, once formed, there is no remarcable energy exchange
between “plaited” structure and small-amplitude oscillating tail anymore and
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the “plaited” structure can exist over long time intervals.
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Fig. 6. “Plaited” solitons. Single wave profiles in the case of dl = 1.6, bl = 2.0 and
A = 0.063. Solid line corresponds to initial wave profile at t = 0, dashed line to time
moment t = 1205 and dash-dotted line to t = 3629, respectively.
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Fig. 7. “Plaited” solitons. Time-slice plot over two space periods in the case of
dl = 1.6, bl = 2.0, A = 0.063 and 0 < t < 5000.
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Fig. 8. “Plaited” solitons. Pseudocolor plot over two space periods in the case of
dl = 1.6, bl = 2.0, A = 0.063 and 0 < t < 5000.
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Fig. 9. “Plaited” solitons. Time-slice plot over two space periods in the case of
dl = 1.2, bl = 2.0, A = 0.37 and 0 < t < 800.
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Fig. 10. “Plaited” solitons. Pseudocolor plot over two space periods in the case of
dl = 1.2, bl = 2.0, A = 0.37 and 0 < t < 800.
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Fig. 11. “Plaited” solitons. Pseudocolor plot over two space periods in the case of
dl = 1.2, bl = 2.0, A = 0.37 and 800 < t < 5000.
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Fig. 12. “Plaited” solitons. Waveprofile maxima and minimum against time in the
case of dl = 1.6, bl = 2.0 and A = 0.063.
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Fig. 13. “Plaited” solitons. Waveprofile maxima and minimum against time in the
case of dl = 1.2, bl = 2.0 and A = 0.37.
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4.3.2 Two solitary waves

In the present case two solitary waves travelling with different speeds evolve
from the initial excitation. Due to different speeds these solitary waves can
interact with each other (a solitary wave with higher speed overruns a solitary
wave with lower speed). Their interaction is not elastic (amplitude of the
higher solitary wave increases whereas amplitude of the lower solitary wave
decreases) – therefore one can not call them solitons (see Figs. 14–18).
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Fig. 14. Two solitary waves. Single wave profiles in the case of dl = 1.2, bl = 2.0
and A = 0.71. Solid line corresponds to initial wave profile at t=0, dashed line to
time moment t = 333 and dash-dotted line to t = 2984, respectively.
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Fig. 15. Two solitary waves. Time-slice plot over two space periods in the case of
dl = 1.2, bl = 2.0, A = 0.71 and 0 < t < 1000.

19



Fig. 16. Two solitary waves. Pseudocolor plot over two space periods in the case of
dl = 1.2, bl = 2.0, A = 0.71 and 0 < t < 1000.
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Fig. 17. Two solitary waves. Pseudocolor plot over two space periods in the case of
dl = 1.2, bl = 2.0, A = 0.71 and 1000 < t < 5000.
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Fig. 18. Two solitary waves. Waveprofile maxima and minimum against time in the
case of dl = 1.2, bl = 2.0 and A = 0.71.
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4.3.3 Single solitary wave

In the case of sub-type (c) one solitary wave together with an oscillating tail
forms from the initial excitation. This single solitary wave travels throughout
all integration period (Fig. 19) with a constant speed. The amplitude of the
travelling solitary wave is oscillating around a level slightly lower than ampli-
tude of the initial excitation (Figs. 20 and 21), because some of the energy
of the initial pulse is transfered into the oscillating tail and the solitary wave
and the tail are in the permanent interaction. The speed of the propagating
wave depends on the value of the amplitude of the initial wave — the higher
the amplitude A, the faster the solitary wave is going to the left.

Fig. 19. Single solitary wave. Time-slice plot over two space periods in the case of
dl = 1.6, bl = 2.8, A = 1.25 and 0 < t < 300.
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Fig. 20. Single solitary wave. Single wave profiles in the case of dl = 1.6, bl = 2.8
and A = 1.25. Solid line corresponds to initial wave profile at t = 0, dashed line to
time moment t = 10.5 and dotted line to t = 261.9, respectively.
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Fig. 21. Single solitary wave. Waveprofile maxima and minimum against time in the
case ofdl = 1.6, bl = 2.8 and A = 1.25.
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4.4 Discussion

According to results of numerical simulations over wide range of amplitude
A of the initial wave one can conclude that in the case of regular solution
all three sub-types (“plaited” solitons, two solitary waves and single solitary
wave) can be observed within one solution. In the other words, depending on
the value of the amplitude A sub-types (a)–(c) can evolve in a certain order
and therefore can be considered as different stages of the solution.

The process can be described in the following way (see Figs. 22–25 and Table
2). Once there is enough energy available in the initial excitation (amplitude
of the initial wave exceeds a certain threshold for particular set of dispersion
parameters), a plaited wave structure of two solitary waves and a tail forms,
i.e., in the case of the first stage two close solitons form from the initial ex-
citation. This sub-type of the solution can last for a long time (see Table 2).
However, at some point one of the solitons (with lower amplitude) separates
from the “colleague”, i.e., suddenly there is a change in energy balance and
one of these starts to propagate on its own. After the separation the higher
soliton continues to travel to the left with speed close to the group speed of the
plaited stucture while the lower one slows down. This stage corresponds to the
sub-type (b) (two solitary waves). Due to different speeds separated solitary
waves begin to interact. These interctions are not elastic (see Subsection 4.3.2)
and therefore each such interaction decreases the the amplitude of the slower
solitary wave until one can not distinguish the latter from the oscillating tail.
This solution stage corresponds to the sub-type (c) (single solitary wave).

However, increasing the amplitude A, and consequently the energy, of the ini-
tial excitation makes the period of the time for the “plaited” solitons solution
shorter. If the initial amplitude exceeds the next threshold one can not ob-
serv the “plaited” solitons for the first stage and two solitary waves forms
from the initial excitation. Still, this is followed by one solitary wave (Figs.
26–28). Further increase in initial energy makes the two solitary wave solution
to disappear as well, and only one solitary wave remains (Table 2).

One can examine the behaviour of the regular solution in Table 2 where dura-
tions of different solution stages are presented against the amplitude A. Note,
that these durations are approximate, i.e., notation ,,500+“ means that the
change from one sub-type to another is taking place between t=500 and t=750,
etc. One has to mention that the process described above is not regular. For
example, in some cases one can detect situations where the period of time for
“plaited” solitons is increased, despite the fact that amplitude of initial wave
was increased (see Table 2). One has to mention that there exists always an
oscillating tail. This is formed already during formation process and consumes
some of the energy from the initial excitation.
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Table 2
Duration of different solution stages against the amplitude of the initial pulse A in
the case of dl = 1.2 and bl = 2.0. Note that meaning of TTE is ,,till the end“ (in
the present case until the end of numerical simulation at t = 5000).

Amplitude of
the initial
excitation

Solutions
with irregular
behaviour

Solutions with regular behaviour

Chaotic spread
of energy

Plaited soli-
tons

Two solitary
waves

One solitary
wave

0.34 TTE

0.36 TTE

0.37 TTE

0.39 500- TTE

0.41 1000- TTE

0.43 1500- TTE

0.45 1500- TTE

0.47 500+ TTE

0.49 500+ TTE

0.51 500 TTE

0.53 500- 2500 TTE

0.55 500 1500 TTE

0.57 1000- 3500 TTE

0.59 500+ 3500- TTE

0.61 250 2000 TTE

0.63 150 2000 TTE

0.65 100- 1000+ TTE

0.67 4000- TTE

0.69 1500 TTE

0.71 3000+ TTE
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Fig. 22. Time-slice plot over two space periods in the case of dl = 1.2, bl = 2.0,
A = 0.57 and 0 < t < 2500.
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Fig. 23. Maxima of the solution, case dl = 1.2, bl = 2.0 and A = 0.57.
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Fig. 24. Pseudocolor plot over two space periods in the case of dl = 1.2, bl = 2.0,
A = 0.57 and 0 < t < 2500.
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Fig. 25. Pseudocolor plot over two space periods in the case of dl = 1.2, bl = 2.0,
A = 0.57 and 2500 < t < 5000.
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Fig. 26. Maxima of the solution, case dl = 1.2, bl = 2.0 and A = 0.90.
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Fig. 27. Pseudocolor plot over two space periods in the case of dl = 1.2, bl = 2.0,
A = 0.90 and 0 < t < 2500.
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Fig. 28. Pseudocolor plot over two space periods in the case of dl = 1.2, bl = 2.0,
A = 0.90 and 2500 < t < 5000.
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5 Conclusions

In this paper we studied the propagation of a sech2 bx type localised pulses,
i.e., KdV solitons, in media characterised by higher order dispersive and higher
order nonlinear effects. In [10] we used the same initial conditions in the case of
normal dispersion — now the mixed dispersion case is under the consideration.
In this sense the present paper can be considered as the second part of the
paper [10] . Based on a large number of numerical experiments the following
can be concluded:

• Two solution types were detected — solutions with irregular and regular
behaviour.

• The first type, i.e., the irregular solution emerges in the case of small ini-
tial amplitude (small initial energy). This results in weak co-operation be-
tween dispersive and nonlinear effects and stable solitary wave(s) can not
be formed.

• The second type, i.e., the regular solution can have three sub-types:

(a) “plaited” solitons,

(b) two solitary waves,

(c) one solitary wave.

• Generally, the sub-type (a) is not stable — after a certain time interval it is
changed to sub-type (b). Only in very few cases the “plaited” solitons lives
until the end of simulation.

• In the case of sub-type (b) sequential nonelastic interactions take place and
the whole process ends up in one solitary wave (sub-type (c)).

• The latter one was found in our numerical experiments to be stable, i.e., a
single solitary wave can propagate with (nearly) constant speed and ampli-
tude over long time intervals.

• The first type was found to be changed to the second type for rd ≈ 1.
Therefore the main attention was paid to the domain in dispersion parame-
ters plane where neither the third nor the fifth order dispersive effects are
dominating.

By our opinion, the “plaited” solitons are the most interesting solution type.
Porubov [5] describes the similar solitonic structures in the case of extended
KdV equation and calls them two-humps and multi-humps. For example the
two-humps localised structure is described to look like as a permanent in-
teraction of two solitary waves (solitons): the higher surpasses the lower and
becomes the lower and all the process is repeated. Our “plaited” solitons can
be described in the same way. Porubov (see [5] pp. 22–25) found that such
solitonic structures emerge due to the cubic nonlinear (of type u2ux) and
nonlinear dispersive (of type uu3x) terms as a certain limit case. The model
equation (2) does not include such terms. But again, the “plaited” solitons
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can be considered as a limit case of the two soliton solution when two closed
amplitude solitary waves emerge from an initial localised wave.

There are still many open questions. For example how do two single solitary
waves interact or how the single solitary wave and “plaited” solitons inter-
act. Corresponding analysis is in progress and results will be published in
forthcoming papers.
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