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Abstract

Wave propagation in dilatant granular materials is studied by making use of a hier-
archical Korteweg–de Vries type evolution equation. The model equation is solved
numerically under sech2-type initial conditions. The behavior of the solution is de-
scribed and analysed over a wide range of material parameters (two dispersion
parameters and one microstructure parameter). Five solution types are defined and
discussed. The solitonic character of the solution is discussed for all solution types.
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1 Introduction

Many physical and technological applications deal with nonlinear wave prop-
agation in continuous media with microstructure. Granular materials could
be an example of such microstructured materials [1–3]. The flow behavior of
a granular material is usually considered to be similar to the fluid behavior
except that its response depends on the distribution of the volume fraction in
the reference placement. The introduction of the volume fraction of the grains
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as an independent kinematical variable, in order to describe the local deforma-
tions of the grains themselves, requires an additional balance equation for the
microinertia [3]. In dynamics the most important scale factor is an averaged
diameter of a grain that must be related to the wavelength of the excitation
(i.e. propagating wave). A physically consistent derivation of the governing
mathematical model of dilatant granular materials is given by Giovine and
Oliveri [1]. In one-dimensional setting the governing equation is

∂u

∂t
+ u

∂u

∂x
+ α1

∂3u

∂x3
+ β

∂2

∂x2

(

∂u
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∂3u
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)

= 0 (1)

where α1, α2 are dispersion parameters and β is a parameter involving the ratio
of the grain size and the wavelength. Equation (1) consists of two Korteweg–de
Vries (KdV) operators: the first describes the motion in the macrostructure
and the second (in the brackets) — the motion in the microstructure. Equa-
tion (1) is clearly hierarchical in the Whitham’s sense — if parameter β is
small then the influence of the microstructure can be neglected and the wave
”feels” only macrostructure [4]. If, however, parameter β is large, then only
the influence of the microstructure “is felt” by the wave. Due to that kind of
hierarchy the equation (1) could by called as a hierarchical Korteweg–de Vries
(HKdV) equation.

In course of time different authors have given different definitions of solitons.
Remoissenet [5] brings to light three concepts. The first definition is related to
the first documented observation of solitary water wave by John Scott Russell:

• A solitary wave, as discovered by Scott Russell, is is a localised wave that
propagates along one space direction only, with undeformed shape.

The second definition is quite mathematical and is related to integrable sys-
tems, i.e. to idealised conditions:

• A soliton, as discovered numerically by Zabusky and Kruskal, is a large
amplitude coherent pulse or very stable solitary wave, the exact solution of
a wave equation, whose shape and speed are not altered by a collision with
other solitary waves.

For physicists, who study the real world, the keyword soliton has weaker mean-
ing. For them the third definition which highlights the importance of a par-
ticular type of energy propagation is presented.

• Solitons are localised finite energy states which are fundamentally nonlinear
objects and so cannot reached by perturbation theory from any linear state.

2



In the present study the soliton concept given by Drazin [6,7] and Zabusky [8]
is used. By Drazin [6,7]:

• The term soliton is associated with any solution of a nonlinear equation or
system which (i) represents a wave of permanent form; (ii) is localised, so
that it decays or approaches a constant at infinity; (iii) can interact strongly
with other solitons and retain its identity.

By Zabusky [8]:

• A Soliton is defined as a localised or solitary entity that propagates at
a uniform speed and preserves its structure (or shape) and speed in an
interaction with another such solitary entity.

Therefore, solitary wave can be called soliton if it propagates at constant speed
and shape and restores its speed and shape after interactions. Interactions of
such a type are used to call elastic interactions.

The present paper is dedicated to numerical simulation of propagation of lo-
calised initial perturbations. Special attention is paid to the solitonic character
of solutions. In Section 2 the problem is stated and in Section 3 the numerical
method is described. Solution types are defined in Section 4 and in Sections
5–9 different properties of solutions are discussed in details while conclusions
are drawn in Section 10.

2 Statement of the problem

In the present paper propagation of solitary waves in dilatant granular mate-
rials is studied making of use the HKdV Eq. (1). For this reason the model
Eq. (1) is integrated numerically under localised initial and periodic boundary
conditions

u(x, 0) = A sech2
x

δ
, δ =

√

12α1

A
,

u(x + 16kπ, t) = u(x, t), k = ±1,±2,±3, . . .

(2)

where A is the amplitude and δ the width of the initial pulse. It is clear that
the latter is the analytical solution of KdV equation that corresponds to the
first KdV operator in Eq. (1) [9].

The goals of the present paper are:

(i) to find numerical solutions for the proposed problem (1), (2) over wide
range of material parameters (dispersion parameters α1 and α2 and mi-
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crostructure parameter β);
(ii) to characterise the time–space behaviour of solutions and to define solu-

tion types;
(iii) to characterise solutions in terms of spectral characteristics (spectral den-

sities and time averaged spectral densities);
(iv) to analyse results over 3 dimensional domain of material parameters α1,

α2 and β;
(v) to estimate the influence of the amplitude of the initial solitary wave on

the character of the solution.

3 Numerical method

For numerical integration of the HKdV equation the pseudospectral method
(PsM) [10–13] is applied. In a nutshell, the idea of the PsM is to approxi-
mate space derivatives by a certain global method — reducing thereby partial
differential equation to ordinary differential equation (ODE) — and to ap-
ply a certain ODE solver for integration with respect to the time variable. In
the present paper space derivatives are found making use the discrete Fourier
transform (DFT),

U(k, t) = Fu =
n−1
∑

j=0

u(j∆x, t) exp

(

−
2πijk

n

)

, (3)

where n is the number of space-grid points, ∆x = 2π/n space step, i imaginary
unit, k = 0,±1,±2, . . . ,± (n/2 − 1) ,−n/2 and F denotes the DFT. The usual
PsM algorithm (derived for ut = Φ(u, ux, u2x, . . . , unx) type equations) needs
to be modified due to the existence of the mixed partial derivative in the
HKdV equation (1).

At first the HKdV equation is rewritten in the form

(u + βu2x)t + (u + 3βu2x) ux + (α1 + βu) u3x + βα2u5x = 0 (4)

and a variable

v = u + βu2x (5)

is introduced. Making use the Fourier transform the last expression can be
rewritten in the form

v = F−1 [F (u)] + βF−1
[

−k2F (u)
]

= F−1
[(

1 − βk2
)

F (u)
]

(6)

where F−1 denotes the inverse Fourier transform. From expression (6) the
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variable u can be explicit in the form

u = F−1

[

F (v)

1 − βk2

]

. (7)

Now the space derivatives of u can be expressed in the terms of v

∂nu

∂xn
= F−1

[

(ik)n F (v)

1 − βk2

]

. (8)

Finally, equation (6) can be rewritten in the terms of variable v

vt = −(u + 3βu2x)ux − (α1 + βu) u3x − α2βu5x. (9)

In equation (9) the variable u and all its space derivatives could be expressed
in terms of v accordingly to expressions (5), (7) and (8). Therefore equation
(9) can be considered as an ODE with respect to the variable v and could be
integrated numerically making use standard ODE solvers.

Calculations are carried out using SciPy package [14]: for DFT the FFTW
[15] library and for ODE solver the F2PY [16] generated Python interface to
ODEPACK Fortran code [17] is used.

3.1 Stability and accuracy of solutions

The question about the stability and the accuracy of solutions certainly arises
with any numerical computation. The studied HKdV equation (1) can be
rewritten in the form of first conservation law

(u + βu2x)t +

[

u2

2
+ α1u2x + β(

u2

2
+ α2u2x)2x

]

x

= 0 (10)

with conserved density

C1 (t) =

2π
∫

0

(u + βu2x) dx (11)

and in the form on second conservation law

{

1
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}

x

= 0
(12)
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with conserved density

C2 (t) =

2π
∫

0

(

1

2
α1u

2 + β
[

(ux)
2 + uu2x

]

)

dx. (13)

In order to estimate the accuracy of computations numerical experiments were
carried out with number of space-grid points n = 512, 1024, 2048, 4096. The
behavior of the conserved density was traced and final wave-profiles u (x, tf ),
i.e. the wave-profiles at the end of the integration interval t = tf , were com-
pared. It was found that final wave-profiles for n ≥ 1024 practically coincide
and therefore in numerical experiments below the number of space-grid points
n = 1024 is used.

In all cases, discussed below, the relative error of the conserved density C1 (t)
is less than 10−7. The relative error for C2 (t) is less than 10−7 in most cases,
however for some sets of parameters when relatively sharp wave profiles emerge
with relative error C2 can have values of order 10−2.

6



4 Solution types

The HKdV equation (1) is integrated numerically under initial- and boundary
conditions (2) for 0 < α1 < 1, 0 < α2 < 1 and β = 111.11, 11.111, 1.111, 0.111,
0.0111. The number of space grid points n = 1024 and the length of the time
interval tf = 100. Based on the analysis of numerical experiments one can
introduce five solution types:

(1) Single KdV soliton
(2) KdV soliton ensemble
(3) KdV soliton ensemble with weak tail
(4) Soliton with strong tail
(5) Solitary wave with tail and wave packet

At first, in Subsections 4.1–4.5 all solution types are introduced and described
in terms of time–slice and pseudocolor plots. In order to comprehend time–
slice and pseudocolor plots adequately, one has to remember that: (i) periodic
boundary conditions are applied for numerical integration and (ii) all wave
profiles are plotted over two space periods. Different properties of solutions,
their dependencies on material parameters and on the amplitude of the initial
pulse are described and discussed in details in Sections 5–10.

4.1 The first solution type: Single KdV soliton

The first solution type is a single KdV soliton, i.e., just a single KdV soliton
emerges over time. This solution appears in all cases, where both dispersion
parameters α1 and α2 have equal values. The different values for initial am-
plitude A or microstructure parameter β do not change this behavior. As the
equation (1) consist of two KdV equations that are tight through the second
derivative and as the initial condition is the analytical solution of KdV equa-
tion then the result is quite predictable. In Figs. 1–4 two different cases for
equal parameters α1 and α2 are presented.

The solution could be defined to be soliton as the initial condition is the
analytical solution of the KdV equation.
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Fig. 1. Single KdV soliton. Time–slice plot over two space periods for α1 = 0.07,
α2 = 0.07, β = 11.111, n = 1024, tf = 100, A = 4.

Fig. 2. Single KdV soliton. Pseudocolor plot over two space periods for α1 = 0.07,
α2 = 0.07, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 3. Single KdV soliton. Time–slice plot over two space periods for α1 = 0.01,
α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.

Fig. 4. Single KdV soliton. Pseudocolor plot over two space periods for α1 = 0.01,
α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.
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4.2 The second solution type: KdV soliton ensemble

In case of the second solution type a train of KdV solitons emerge. The num-
ber of generated solitons depends on the values of macrostructure dispersion
parameter α1 and microstructure dispersion parameter α2. If α2 is fixed and
α1 increases, then the number of solitons in the KdV ensemble increases. If
α1 is fixed and α2 increases then the number of solitons decreases up to the
limit value 1 (see Sections 5 and 7 for details). In Figs. 5–8 two different cases
for this solution type are presented. In Figs. 5–6 (α1 = 0.03 and α2 = 0.01)
one has two interacting solitons, but in Figs. 7–8 (α1 = 0.4 and α2 = 0.01)
the number of solitons is eight. The number of solitons in the soliton ensem-
ble decreases if α1 is fixed and α2 increases or increases if α2 is fixed and α1

increases.

The solution type is soliton ensemble as the KdV solitons restore their shape
and speed after the interaction.
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Fig. 5. KdV soliton ensemble. Time–slice plot over two space periods for α1 = 0.03,
α2 = 0.01, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 6. KdV soliton ensemble. Pseudocolor plot over two space periods for α1 = 0.03,
α2 = 0.01, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 7. KdV soliton ensemble. Time–slice plot over two space periods for α1 = 0.4,
α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.
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Fig. 8. KdV soliton ensemble. Pseudocolor plot over two space periods for α1 = 0.4,
α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.
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4.3 The third solution type: KdV soliton ensemble with weak tail

In case of the third solution type a train of KdV solitons and a weak tail
emerge. The number of KdV solitons in the ensemble depends on dispersion
parameters α1 and α2 by the same rule as in the case of the second type — if
α2 is fixed and α1 increases, then the number of solitons in the KdV ensemble
increases and vice versa. The weakness of the tail is expressed thought the
fact that the tail does not influence the behaviour of the KdV ensemble es-
sentially, i.e. here the behaviour of the KdV ensemble is similar to that of the
second solution type. In Figs. 9–14 two different cases for this solution type
are presented.

The solution type is soliton ensemble as the solitons in the train interact with
each other and restore their shape and speed after the interactions. In this
case the amplitude of the higher (in case when one has two solitons in the
train) or highest (in case when the number of solitons in the train is higher
than two) KdV soliton always increases compared to the initial amplitude A.
Such a behaviour is typical for the KdV equation — if a train of solitons (and
a tail) emerge from initial localised pulse, then the amplitude of the highest
soliton in the train is always higher than the amplitude of the initial pulse [7].

Formation of the solution and elastic interactions between solitons can be
traced in Figs. 9 and 11 for α1 = 0.07, α2 = 0.03, β = 11.111 and in Figs. 12
and 14 for α1 = 0.4, α2 = 0.1, β = 111.11. The shape and the size of tail is
clearly visible in Figs. 10 and 13.
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Fig. 9. KdV soliton ensemble with weak tail. Time–slice plot over two space periods
for α1 = 0.07, α2 = 0.03, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 10. KdV soliton ensemble with weak tail. Single wave-profiles at t = 1, t = 20,
t = 40, t = 60 over two space periods for α1 = 0.07, α2 = 0.03, β = 11.111,
n = 1024, tf = 100, A = 4.

Fig. 11. KdV soliton ensemble with weak tail. Pseudocolor plot over two space
periods for α1 = 0.07, α2 = 0.03, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 12. KdV soliton ensemble with weak tail. Time–slice plot over two space periods
for α1 = 0.4, α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 4.
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Fig. 13. KdV soliton ensemble with weak tail. Single wave-profiles at t = 1, t = 20,
t = 40, t = 60 over two space periods for α1 = 0.4, α2 = 0.1, β = 111.11, n = 1024,
tf = 100, A = 4.
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Fig. 14. KdV soliton ensemble with weak tail. Pseudocolor plot over two space
periods for α1 = 0.4, α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 4.
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4.4 The fourth solution type: Soliton with strong tail

In case of the fourth solution type single soliton and a strong tail emerge. The
number of generated oscillations in the tail depends on values of macrostruc-
ture dispersion parameter α1 and microstructure dispersion parameter α2.

The behaviour of the solution is strongly influenced by the tail — the am-
plitude of the soliton is lower than the initial amplitude and the other KdV
solitons are suppressed. Such a phenomenon is called selection in [18].

In Figs. 15–20 two different cases for this solution type are presented. In Figs.
15, 17, 18 and 20 formation of the solution and interaction between the KdV
soliton and the tail is presented. The size and the shape of the tail can be
estimated in Figs. 16 and 19.

co
nv

 s
ec

h2
t p

y 
a1

=
0.

03
 a

2=
0.

09
 b

=
11

.1
11

 n
=

10
24

 tf
=

10
0 

np
i2

=
8 

A
A

=
4.

m
at

 d
at

e:
26

−
M

ar
−

20
06

Fig. 15. Soliton with strong tail. Time–slice plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 16. Soliton with strong tail. Single wave-profiles at t = 1, t = 20, t = 40, t = 60
over two space periods for α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, A = 4.

Fig. 17. Soliton with strong tail. Pseudocolor plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 18. Soliton with strong tail. Time–slice plot over two space periods for α1 = 0.4,
α2 = 0.7, β = 111.11, n = 1024, tf = 100, A = 4.

co
nv

 s
ec

h2
t p

y 
a1

=
0.

4 
a2

=
0.

7 
b=

11
1.

11
 n

=
10

24
 tf

=
10

0 
np

i2
=

8 
A

A
=

4.
m

at
 d

at
e:

08
−

A
pr

−
20

06

Fig. 19. Soliton with strong tail. Single wave-profiles at t = 1, t = 20, t = 40, t = 60
over two space periods for α1 = 0.4, α2 = 0.7, β = 111.11, n = 1024, A = 4.
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Fig. 20. Soliton with strong tail. Pseudocolor plot over two space periods for
α1 = 0.4, α2 = 0.7, β = 111.11, n = 1024, tf = 100, A = 4.
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4.5 The fifth solution type: Solitary wave with tail and wave packet

In case of the fifth solution type one solitary wave, a tail and wave packet(s)
emerge simultaneously. Similar situation is described by Christov and Velarde
in [19]. The wave packet is formed by several higher harmonics that are ampli-
fied (see Section 9 for details). This phenomenon could be described similarly
to sum of two or more harmonic waves having nearly equal frequencies. The
envelope of the packet can propagate to the left or to the right and at much
higher speed than that of the solitary wave or high frequency waves that form
the packet. The solution is stable, i.e., all three components of the solution
are conserved over long time intervals. As a rule three different interactions
take place in the present case: (i) solitary wave — tail; (ii) solitary wave —
wave packet; (iii) tail — wave packet. Furthermore, in some cases two or more
wave packets that propagate at different speeds emerge and therefore inter-
actions between wave packets can take place. Like in the case of the fourth
solution type a selection phenomenon [18] takes place and the amplitude of
the propagating solitary wave is lower than the amplitude of the initial wave.
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Fig. 21. Solitary wave with tail and wave packet. Time–slice plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 22. Solitary wave with tail and wave packet. Single wave-profiles at t = 1,
t = 20, t = 40, t = 60 over two space periods for α1 = 0.05, α2 = 0.07, β = 0.0111,
n = 1024, A = 4.

Fig. 23. Solitary wave with tail and wave packet. Pseudocolor plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 24. Solitary wave with tail and wave packet. Time–slice plot over two space
periods for α1 = 0.07, α2 = 0.11, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 25. Solitary wave with tail and wave packet. Single wave-profiles at t = 1,
t = 20, t = 40, t = 60 over two space periods for α1 = 0.07, α2 = 0.11, β = 0.0111,
n = 1024, A = 4.
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Fig. 26. Solitary wave with tail and wave packet. Pseudocolor plot over two space
periods for α1 = 0.07, α2 = 0.11, β = 0.0111, n = 1024, tf = 100, A = 4.
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4.6 Limit cases

There are some limit cases: (i) Fig. 27 demonstrates the case where the number
of KdV solitons is very high and probably the second KdV ensemble forms.
(ii) Fig. 28 demonstrates the case where the solitary wave disappears.
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Fig. 27. KdV soliton ensemble. Single wave-profiles at t = 1, t = 5, t = 10, t = 15,
t = 20, t = 30, t = 40, t = 50, t = 60, t = 70 over two space periods for α1 = 2.2,
α2 = 0.01, β = 11.111, n = 1024, tf = 500, A = 4.
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Fig. 28. Solitary wave with tail and packet. Single wave-profiles at t = 1, t = 5,
t = 10, t = 15, t = 20, t = 30, t = 40, t = 50, t = 60, t = 70 over two space periods
for α1 = 0.01, α2 = 0.05, β = 0.0111, n = 1024, tf = 100, A = 4.
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5 Solution types in the dispersion parameter plane

In Figs. 29–33 solution types are presented against the dispersion parameters
α1 and α2. Figures are given for different values of microstructure parameter
β.

The first solution type appears in case of α1 = α2 for all values of the mi-
crostructure parameter β. The second and the third solution type appears for
α1 > α2 in case of β = 111.11 and β = 11.111 (Figs. 29 and 30). The fourth
solution type appears for α1 < α2 in case of β = 111.11 and β = 11.111 (Figs.
29 and 30) and for α1 > α2 in case of β = 0.0111 (Fig. 33). The fifth solution
type can be realised for α1 > α2 and for α1 < α2 in case of β = 1.111 and
β = 0.111 (Figs. 31 and 32) and for α1 < α2 in case of β = 0.0111 (Fig. 33).
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Fig. 29. Solution types in case of β = 111.11, labels: 1-Single KdV soliton, 2-KdV
soliton ensemble, 3-KdV soliton ensemble with weak tail, 4-soliton with strong tail,
5-solitary wave with tail and wave packet.

26



0.01 0.03 0.05 0.07

0.01

0.03

0.05

0.07

0.09

←1

←4

←4

←4

←4

←2

←1

←4

←4

←4

←3

←3

←1

←4

←4

←3

←3

←3

←1

Macrostructure dispersion parameter α
1

M
ic

ro
st

ru
ct

ur
e 

di
sp

er
si

on
 p

ar
am

et
er

 α
2

Solution types

Fig. 30. Solution types in case of β = 11.111, n = 1024, tf = 100, A = 4, labels:
1-Single KdV soliton, 2-KdV soliton ensemble, 3-KdV soliton ensemble with weak
tail, 4-soliton with strong tail, 5-solitary wave with tail and wave packet.
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Fig. 31. Solution types in case of β = 1.111, n = 1024, tf = 100, A = 4, labels:
1-Single KdV soliton, 2-KdV soliton ensemble, 3-KdV soliton ensemble with weak
tail, 4-soliton with strong tail, 5-solitary wave with tail and wave packet.
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Fig. 32. Solution types in case of β = 0.1111, n = 1024, tf = 100, A = 4, labels:
1-Single KdV soliton, 2-KdV soliton ensemble, 3-KdV soliton ensemble with weak
tail, 4-soliton with strong tail, 5-solitary wave with tail and wave packet.
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Fig. 33. Solution types in case of β = 0.0111, n = 1024, tf = 100, A = 4, labels:
1-Single KdV soliton, 2-KdV soliton ensemble, 3-KdV soliton ensemble with weak
tail, 4-soliton with strong tail, 5-solitary wave with tail and wave packet.
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6 The behavior of amplitudes of solitons against solution types

In this section the behavior of amplitudes of solitons against solution types is
analysed.

In case of the first solution type, i.e., single KdV soliton, the KdV soliton
propagates with constant amplitude, see Figs. 34 and 35.

In case of the second solution type, i.e., KdV soliton ensemble, the amplitudes
of the higher KdV solitons increase compared with initial amplitude. The
elastic interactions of KdV solitons are clearly visible, see Figs. 36 and 37. The
number of solitons could be clearly seen from Fig. 36 as there are 2 solitons
and in Fig. 37 as there are 8 solitons. See the corresponding time–slice plots
in Figs. 5–8.

In case of the third solution type, i.e., KdV soliton with weak tail, the am-
plitude of the highest KdV soliton increases compared with initial amplitude.
The interactions of KdV solitons are visible but additionally the maxima that
correspond to the tail are visible near zero level of amplitude, in Figs. 38–39.
See the corresponding time–slice plots in Figs. 9–14. The tail causes small
variations in the amplitude curves, but does not change the main character of
the KdV soliton ensemble – the interactions between the KdV solitons remain
(almost) elastic.

In case of the fourth solution type, i.e., KdV soliton with strong tail, the
amplitude of the KdV soliton decreases compared with the initial amplitude.
In case of the fourth solution type there is always only one (KdV) soliton,
which amplitude oscillates about a certain constant level, see Figs. 40–41. See
the corresponding time–slice plots Figs. 15–20.

In case of the fifth solution type, i.e., solitary wave with tail and wave packet,
the amplitude of the solitary wave strongly oscillates around a certain constant
level, that is lower than the amplitude of the initial pulse, see Figs. 42–43. See
the corresponding time–slice plots in Figs. 21–26.

In Figs. 44–48 the amplitude changes are presented against α1 and α2: (i) cases
where the amplitude decreases are marked as d, (ii) cases where the amplitude
increases are marked as u and (iii) cases where the amplitude remains on the
initial level are marked as o. If the macrostructure dispersion parameter α1

and macrostructure parameter α2 have equal values then amplitude does not
change. If α1 < α2 then amplitude always decreases for all considered values
of β. If α1 > α2 then amplitude increases for β ≥ 1.111 and decreases for
β ≤ 0.111.
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Fig. 34. Single KdV soliton. Soliton amplitude against time in case of α1 = 0.07,
α2 = 0.07, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 35. Single KdV soliton. Soliton amplitude against time in case of α1 = 0.01,
α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.
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Fig. 36. KdV soliton ensemble. Amplitudes of the wave-profile maxima against time
in case of α1 = 0.03, α2 = 0.01, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 37. KdV soliton ensemble. Amplitudes of the wave-profile maxima against time
in case of α1 = 0.4, α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.
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Fig. 38. KdV soliton ensemble with weak tail. Amplitudes of the wave-profile max-
ima against time in case of α1 = 0.07, α2 = 0.03, β = 11.111, n = 1024, tf = 100,
A = 4.
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Fig. 39. KdV soliton ensemble with weak tail. Amplitudes of the wave-profile max-
ima against time in case of α1 = 0.4, α2 = 0.1, β = 111.11, n = 1024, tf = 100,
A = 4.
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Fig. 40. Soliton with strong tail. Amplitudes of the wave-profile maxima against
time in case of α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 41. Soliton with strong tail. Amplitudes of the wave-profile maxima against
time in case of α1 = 0.4, α2 = 0.7, β = 111.11, n = 1024, tf = 100, A = 4.
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Fig. 42. Solitary wave with tail and wave packet. Amplitudes of the wave-profile
maxima against time in case of α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024,
tf = 100, A = 4.
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Fig. 43. Solitary wave with tail and wave packet. Amplitudes of the wave-profile
maxima against time in case of α1 = 0.07, α2 = 0.11, β = 0.0111, n = 1024,
tf = 100, A = 4.
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Fig. 44. Amplitude behavior compared to initial amplitude in case of β = 111.11,
n = 1024, tf = 100, A = 4, labels: d - down, u - up, o - no change.
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Fig. 45. Amplitude behavior compared to initial amplitude in case of β = 11.111,
n = 1024, tf = 100, A = 4, labels: d - down, u - up, o - no change.
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Fig. 46. Amplitude behavior compared to initial amplitude in case of β = 1.111,
n = 1024, tf = 100, A = 4, labels: d - down, u - up, o - no change.
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Fig. 47. Amplitude behavior compared to initial amplitude in case of β = 0.1111,
n = 1024, tf = 100, A = 4, labels: d - down, u - up, o - no change.
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Fig. 48. Amplitude behavior compared to initial amplitude in case of β = 0.0111,
n = 1024, tf = 100, A = 4, labels: d - down, u - up, o - no change.
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7 Number of KdV solitons

In Figs. 49–53 the number of solitons are presented against the dispersion
parameters α1 and α2 for different values of microstructure parameter β.

In case of α1 ≤ α2 there is always only one soliton. In case of β ≥ 1.111 and
α1 > α2 the number of solitons in the KdV ensemble increases step by step, if
α1 increases and α2 is fixed or if α2 decreases and α1 is fixed, see Figs. 49–51.

For β ≤ 0.1111 the number of solitons is one for α1 > α2, see Figs. 52–53.
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Fig. 49. No of KdV solitons in case of β = 111.11, n = 1024, tf = 100, A = 4.
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Fig. 50. No of KdV solitons in case of β = 11.111, n = 1024, tf = 100, A = 4.
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Fig. 51. No of KdV solitons in case of β = 1.111, n = 1024, tf = 100, A = 4.
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Fig. 52. No of KdV solitons in case of β = 0.1111, n = 1024, tf = 100, A = 4.
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Fig. 53. No of KdV solitons in case of β = 0.0111, n = 1024, tf = 100, A = 4.
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8 The influence of initial amplitude

In this section the influence of the initial amplitude on the solutions behavior
is described and analysed. In Figs. 54–86 different solutions with different
values of parameters α1, α2, β and A are presented.

In case of the first solution type the increase of initial amplitude from A = 1
to A = 10 causes the increase in the propagation speed of the KdV soliton.
The essence of the solution remains the same for all three values of amplitude
A. See the corresponding pseudocolor plots in Figs. 54–56.

Fig. 54. Pseudocolor plot over two space periods for α1 = 0.05, α2 = 0.05, β = 1.111,
n = 1024, tf = 100, A = 1
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Fig. 55. Pseudocolor plot over two space periods for α1 = 0.05, α2 = 0.05, β = 1.111,
n = 1024, tf = 100, A = 5

Fig. 56. Pseudocolor plot over two space periods for α1 = 0.05, α2 = 0.05, β = 1.111,
n = 1024, tf = 100, A = 10
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In case of the second solution type the increase of the initial amplitude from
A = 1 to A = 10 causes the increase of the propagation speed of solitons in
the KdV soliton ensemble but the number of solitons does not change. See
corresponding pseudocolor plots in Figs. 57, 59, 61 and amplitude curves in
Figs. 58, 60, 62.

Fig. 57. KdV soliton ensemble. Pseudocolor plot over two space periods for α1 = 1,
α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 1.
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Fig. 58. KdV soliton ensemble. Amplitudes of the wave-profile maxima against time
in case of α1 = 1, α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 1.
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Fig. 59. KdV soliton ensemble. Pseudocolor plot over two space periods for α1 = 1,
α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 5.
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Fig. 60. KdV soliton ensemble. Amplitudes of the wave-profile maxima against time
in case of α1 = 1, α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 5.
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Fig. 61. KdV soliton ensemble. Pseudocolor plot over two space periods for α1 = 1,
α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 10.
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Fig. 62. KdV soliton ensemble. Amplitudes of the wave-profile maxima against time
in case of α1 = 1, α2 = 0.1, β = 111.11, n = 1024, tf = 100, A = 10.
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In case of the third solution type the increase of the initial amplitude causes
the increase of propagation speed of KdV solitons. The essence of the solution
remains the same for all values of amplitude A = 1, 5, 10, 15. The amplitude of
the weak tail increases if the initial amplitude increases but it does not alter
the solution type. See the corresponding pseudocolor plots in Figs. 63, 65, 67,
69 and the amplitude curves in Figs. 64, 66, 68, 70.

Fig. 63. KdV soliton ensemble with weak tail. Pseudocolor plot over two space
periods for α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100, A = 1.
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Fig. 64. KdV soliton ensemble with weak tail. Amplitudes of the wave-profile max-
ima against time in case of α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100,
A = 1.

Fig. 65. KdV soliton ensemble with weak tail. Pseudocolor plot over two space
periods for α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100, A = 5.
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Fig. 66. KdV soliton ensemble with weak tail. Amplitudes of the wave-profile max-
ima against time in case of α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100,
A = 5.

Fig. 67. KdV soliton ensemble with weak tail. Pseudocolor plot over two space
periods for α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100, A = 10.
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Fig. 68. KdV soliton ensemble with weak tail. Amplitudes of the wave-profile max-
ima against time in case of α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100,
A = 10.

Fig. 69. KdV soliton ensemble with weak tail. Pseudocolor plot over two space
periods for α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100, A = 15
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Fig. 70. KdV soliton ensemble with weak tail. Amplitudes of the wave-profile max-
ima against time in case of α1 = 0.1, α2 = 0.05, β = 111.11, n = 1024, tf = 100,
A = 15.
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In case of the fourth solution type the increase of the initial amplitude from
A = 1 to A = 15 causes the increase of the propagation speed of the soliton
similarly to the third solution type. See the corresponding pseudocolor plots
in Figs. 71, 73, 75, 77 and the amplitude curves in Figs. 72, 74, 76, 78.

Fig. 71. Soliton with strong tail. Pseudocolor plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 1.
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Fig. 72. Soliton with strong tail. Amplitudes of the wave-profile maxima against
time in case of α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 1.
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Fig. 73. Soliton with strong tail. Pseudocolor plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 5.
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Fig. 74. Soliton with strong tail. Amplitudes of the wave-profile maxima against
time in case of α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 5.
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Fig. 75. Soliton with strong tail. Pseudocolor plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 10.
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Fig. 76. Soliton with strong tail. Amplitudes of the wave-profile maxima against
time in case of α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 10.
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Fig. 77. Soliton with strong tail. Pseudocolor plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 15.
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Fig. 78. KdV soliton with strong tail. Amplitudes of the wave-profile maxima against
time in case of α1 = 0.03, α2 = 0.09, β = 11.111, n = 1024, tf = 100, A = 15.
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In case of the fifth solution type the increase of initial amplitude from A = 1
to A = 15 causes more complex changes than in previous cases — propagation
speed of the solitary wave as well as the shape of its trajectory is altered, see
Figs. 23, 42, 79–86. However, the solution type does not changes.

Fig. 79. Solitary wave with tail and wave packet. Pseudocolor plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 1.
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Fig. 80. Solitary wave with tail and wave packet. Amplitudes of the wave-profile
maxima against time in case of α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024,
tf = 100, A = 1.
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Fig. 81. Solitary wave with tail and wave packet. Pseudocolor plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 5.
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Fig. 82. Solitary wave with tail and wave packet. Amplitudes of the wave-profile
maxima against time in case of α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024,
tf = 100, A = 5.
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Fig. 83. Solitary wave with tail and wave packet. Pseudocolor plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 10.
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Fig. 84. Solitary wave with tail and wave packet. Amplitudes of the wave-profile
maxima against time in case of α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024,
tf = 100, A = 10.
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Fig. 85. Solitary wave with tail and wave packet. Pseudocolor plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 15.
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Fig. 86. Solitary wave with tail and wave packet. Amplitudes of the wave-profile
maxima against time in case of α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024,
tf = 100, A = 15.
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The Table 1 summaries the increase of the propagation speed of the (highest)
solitary wave in case of increased value of initial amplitude. In all cases the
speed of the (highest) solitary wave increases if initial amplitude increases.

Table 1
The speed of the highest (KdV) soliton against the initial amplitude A and solution
types.

Type A = 1 A = 5 A = 10 α1 α2 β

1 0.33 1.65 3.26 0.05 0.05 1.111

2 0.58 2.65 5.13 1 0.1 111.11

3 0.41 2.01 3.99 0.1 0.05 111.11

4 0.23 1.03 2.04 0.03 0.09 11.111

5 0.31 1.17 2.17 0.1 0.05 0.1111

59



9 Wave packet phenomenon and spectral quantities

In the present section the fifth solution type and wave packet phenomenon
are discussed in terms of spectral quantities. For this reason spectral densi-
ties and time averaged normalised spectral densities are defined. The idea of
applying time averaged normalised spectral densities comes from [20] where
”time average energies of single modes” are used in order to discuss the energy
equipartition in systems of FPU type.

If U (k, t) is the DFT of function u(x, t), defined by expression (3), then spec-
tral densities

S(k, t) =
4 (U (k, t))2

n2
, k = 1, ...,

n

2
− 1,

S(k, t) =
2 (U (k, t))2

n2
, k =

n

2
.

(14)

For each value of t one can define the sum of spectral densities

Ssum(t) =
n/2
∑

k=1

S(k, t), (15)

normalised spectral densities

Snorm(k, t) =
S(k, t)

Ssum(t)
· 100% (16)

and time averaged normalised spectral densities (TANSD)

Sa(k, t) =

∫ t
0
Snorm(k, t)dt

t
. (17)

We have discrete values of spectral densities S and Snorm at discrete time
moments ti, i.e. we have S(k, ti) and Snorm(k, ti). Therefore at t = ti

Sa(k, ti) =

∑i
m=1

Snorm(k, tm)

i
. (18)

TANSD (18) reflect the contribution of the k-th spectral density (or ampli-
tude) over the time interval [0, ti]. Compared with spectral densities (or am-
plitudes) TANSD curves give more clear understanding about domination of
certain harmonics.

In case of first four solution types there does not exist dominating spectral
densities. For example, in Fig. 87 time averaged spectral densities are plotted
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for the third solution type (KdV soliton ensemble with weak tail, see cor-
responding time–slice plot in Fig. 7). One can see that at t = 100 all time
averaged spectral densities have values below 2.
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Fig. 87. KdV soliton ensemble with weak tail. Time averaged normalised spectral
densities in case of α1 = 0.4, α2 = 0.01, β = 111.11, n = 1024, tf = 100, A = 4.

In case of the fifth solution type — solitary wave with tail and wave packet —
the behaviour of TANSD is completely different. In Fig. 88 corresponding time-
slice plot is presented for α1 = 0.05, α2 = 0.09, β = 0.0111. TANSD in Fig.
89 demonstrate that Sa(60, 100) > 40, Sa(61, 100) ≈ 12.5, Sa(59, 100) ≈ 11,
Sa(62, 100) ≈ 2.5 and other TANSD have values less than 2 at t = 100, i.e.,
59th–62nd spectral densities are amplified and dominate over the others in
time interval [0,100]. In Fig. 90 spectral densities are plotted against time for
the same case. It is clear that TANSD Sa (compared with spectral densities
S) give more clear picture on the contribution of different harmonics.

Two other examples are presented in Figs. 91–94. For α1 = 0.01, α2 = 0.005,
β = 0.0111 (Figs. 91 and 92) there are two groups of amplified harmonics —
82nd and 83rd form the first one and 90th–92nd the second. For α1 = 0.05,
α2 = 0.11, β = 0.0111 (Figs. 93 and 94) 54th–58th harmonics are amplified
and dominate over the others. Throughout our numerical experiments only
relatively high number harmonics were amplified.

61



co
nv

 s
ec

h2
t p

y 
a1

=
0.

05
 a

2=
0.

09
 b

=
0.

01
11

 n
=

10
24

 tf
=

10
0 

np
i2

=
8 

A
A

=
4.

m
at

 d
at

e:
09

−
A

pr
−

20
06

Fig. 88. Solitary wave with tail and wave packet. Time–slice plot over two space
periods for α1 = 0.05, α2 = 0.09, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 89. Solitary wave with tail and wave packet. Time averaged normalised spectral
densities in case of α1 = 0.05, α2 = 0.09, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 90. Solitary wave with tail and wave packet. The 59,60,61, 62 harmonics are
amplified. Spectral densities in case of α1 = 0.05, α2 = 0.09, β = 0.0111, n = 1024,
tf = 100, A = 4.
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Fig. 91. Solitary wave with tail and wave packet. Time–slice plot over two space
periods for α1 = 0.01, α2 = 0.005, β = 0.0111, n = 1024, tf = 100, A = 4
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Fig. 92. Solitary wave with tail and wave packet. Time averaged normalised spectral
densities in case of α1 = 0.01, α2 = 0.005, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 93. Solitary wave with tail and wave packet. Time–slice plot over two space
periods for α1 = 0.05, α2 = 0.11, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 94. Solitary wave with tail and wave packet. Time averaged normalised spectral
densities in case of α1 = 0.05, α2 = 0.11, β = 0.0111, n = 1024, tf = 100, A = 4.

It is clear that wave packets are formed by amplified harmonics and the Sa

having the highest value determines the number of maxima (oscillations) in a
certain wave profile. Similar situations are described in many textbooks (see
[21] for example) in order to explain group velocity and dispersion phenomena
— sum of harmonic waves having nearly equal frequencies presents a wave
packet.

In the limit case only one spectral density is amplified and ”envelope waves”
(typical for wave packets) form only in the beginning of integration interval.
For t = tf ensemble of (nearly) equal amplitude of (small) solitary waves (EA
ensemble for short) is formed between KdV solitons. EA ensemble was found
to form in few cases only and two examples are presented here. For α1 = 0.05,
α2 = 0.07, β = 0.0111 (Figs. 95–97) the 67th harmonic and for α1 = 0.07,
α2 = 0.11, β = 0.0111 (Figs. 98–100) the 63rd harmonic dominates. The
number of the dominating harmonic reflects the number of solitary waves in
the EA ensemble, i.e. if the 67th is dominating then there is 67 solitary waves
in the EA ensemble. Typical EA ensembles can be found in Figs. 95 and 98 at
t = tf . Figs. 96, 97, 99 and 100 demonstrate again that time averaged spectral
densities Sa (compared with spectral densities S) give more clear picture on
the contribution of different harmonics.
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Fig. 95. Solitary wave with tail and wave packet, limite case: KdV soliton with tail
and EA ensemble. Time–slice plot over two space periods for α1 = 0.05, α2 = 0.07,
β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 96. Solitary wave with tail and wave packet, limite case: KdV soliton with tail
and EA ensemble. Time averaged normalised spectral densities in case of α1 = 0.05,
α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 97. Solitary wave with tail and wave packet, limite case: KdV soliton with tail
and EA ensemble. The 67th harmonic is amplified. Spectral densities in case of
α1 = 0.05, α2 = 0.07, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 98. Solitary wave with tail and wave packet, limite case: KdV soliton with tail
and EA ensemble. Time–slice plot over two space periods for α1 = 0.07, α2 = 0.11,
β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 99. Solitary wave with tail and wave packet, limite case: KdV soliton with tail
and EA ensemble. Time averaged normalised spectral densities in case of α1 = 0.07,
α2 = 0.11, β = 0.0111, n = 1024, tf = 100, A = 4.
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Fig. 100. Solitary wave with tail and wave packet, limite case: KdV soliton with
tail and EA ensemble. The 63rd harmonic is amplified. Spectral densities in case of
α1 = 0.07, α2 = 0.11, β = 0.0111, n = 1024, tf = 100, A = 4.
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10 Conclusions

In the present paper propagation of solitary waves in dilatant granular ma-
terials is studied. HKdV Eq. (1) is integrated numerically under sech2 type
localised initial conditions and time-space behaviour of solutions is analysed
over wide range of dispersion parameters α1, α2, and microstructure parameter
β.

The main results of the current study are:

(1) Depending on the character of solutions five solution types are defined:
• Single KdV soliton;
• KdV soliton ensemble;
• KdV soliton ensemble with weak tail;
• Soliton with strong tail;
• Solitary wave with tail and wave packet.

(2) The solitonic character of the solution is discussed for all solution types.
• First solution type — soliton — the initial solitary wave which is the

analytical solution of the KdV equation propagates at constant speed
and amplitude.

• Second solution type — soliton — KdV solitons conserve their shape
and speed throughout interactions with other KdV solitons.

• Third solution type — soliton — solitary waves restore their speed and
shape after interactions, i.e., their behaviour is very close to that of the
KdV solitons and therefore the train of solitary waves is called KdV
soliton ensemble.

• Fourth solution type — soliton like behaviour — the single soliton (al-
most) conserves its shape and speed throughout interactions with the
strong tail.

• Fifth solution type — soliton like behaviour — the solitary wave con-
serves its shape and speed throughout interactions with the wave packet
and the tail.

(3) In case of the fourth and the fifth solution type the name KdV soliton
for the solitary wave is quite conditional because no interactions between
solitary waves take place. However, the single solitary wave interacts with
the tail and wave packets and conserves its speed and shape through such
interactions.

(4) The essence of the fifth solution type is analysed in terms of time averaged
spectral densities. It has been shown that wave packets are generated by
several amplified higher order harmonics that dominate over the lower
order harmonics. In the limit case only one amplified harmonic exist and
an EA ensemble emerges instead of wave packet(s).

(5) Dependencies between solution types and material parameters are estab-
lished (see Figs. 29–33). It has been shown that dispersion parameters
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have strong influence on character of the solution — small changes in
values of parameters may cause the change of the solution type.

(6) Behaviour of amplitudes of (KdV) solitons against solution types is analysed
(see Figs. 29–33 and 44–48).

(7) Dependencies between the number of KdV solitons against material pa-
rameters is established (see Figs. 49–53).

(8) The influence of the amplitude of the initial solitary wave on the char-
acter of the solution is analysed. It has been shown that the higher the
amplitude of the initial solitary wave the higher the speed of the KdV
solitons. However, the essence of the solution type remains the same.

The most interesting phenomenon here is related to the fifth solution type,
i.e., to the simultaneous emergence of the solitary wave, the tail and the wave
packet. The long-time behaviour of this phenomenon needs further exam-
ination. Corresponding numerical simulations and detail analysis is in the
progress.
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