

Figure 2.1 Curvilinear coordinate lines and surfaces

2.2 Curvilinear Coordinates, Base Vectors, and Metric Tensor

The position of point A in Figure 2.1 is given by the vector

$$\boldsymbol{r} = x_i \hat{\boldsymbol{i}}_i, \tag{2.1}$$

where x_i are rectangular coordinates and \hat{i}_i are unit vectors as shown.

Let θ^i denote arbitrary curvilinear coordinates. We assume the existence of equations which express the variables x_i in terms of θ^i and vice versa; that is,

$$x_i = x_i(\theta^1, \theta^2, \theta^3), \qquad \theta^i = \theta^i(x_1, x_2, x_3).$$
 (2.2), (2.3)

Also, we assume that these have derivatives of any order required in the subsequent analysis.

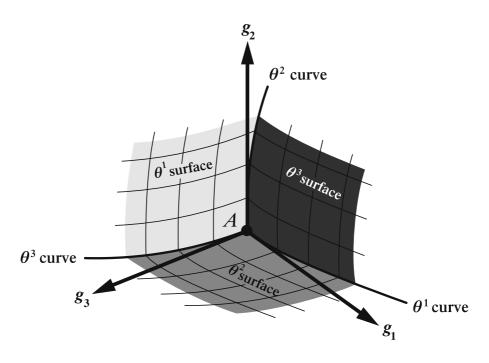


Figure 2.2 Network of coordinate curves and surfaces

Suppose that $x_i = x_i(a^1, a^2, a^3)$ are the rectangular coordinates of point A in Figure 2.1. Then $x_i(\theta^1, a^2, a^3)$ are the parametric equations of a curve through A; it is the θ^1 curve of Figure 2.1. Likewise, the θ^2 and θ^3 curves through point A correspond to fixed values of the other two variables. The equations $x_i = x_i(\theta^1, \theta^2, a^3)$ are parametric equations of a surface, the θ^3 surface shown shaded in Figure 2.1. Similarly, the θ^1 and θ^2 surfaces correspond to $\theta^1 = a^1$ and $\theta^2 = a^2$. At each point of the space there is a network of curves and surfaces (see Figure 2.2) corresponding to the transformation of equations (2.2) and (2.3).

By means of (2.2) and (2.3), the position vector \boldsymbol{r} can be expressed in alternative forms:

$$\mathbf{r} = \mathbf{r}(x_1, x_2, x_3) = \mathbf{r}(\theta^1, \theta^2, \theta^3).$$
 (2.4)

A differential change $d\theta^i$ is accompanied by a change $d\mathbf{r}_i$ tangent to the θ^i line; a change in θ^1 only causes the increment $d\mathbf{r}_1$ illustrated in Figure 2.1. It follows that the vector

$$\boldsymbol{g}_{i} \equiv \frac{\partial \boldsymbol{r}}{\partial \theta^{i}} = \frac{\partial x_{j}}{\partial \theta^{i}} \hat{\boldsymbol{i}}_{j}$$
(2.5)

is tangent to the θ^i curve. The tangent vector \boldsymbol{g}_i is sometimes called a *base vector*.

© 2003 by CRC Press LLC



Figure 2.3 Tangent and normal base vectors

Let us define another triad of vectors g^i such that

$$\boldsymbol{g}^i \cdot \boldsymbol{g}_j \equiv \delta^i_j. \tag{2.6}$$

The vector \mathbf{g}^i is often called a *reciprocal* base vector. Since the vectors \mathbf{g}_i are tangent to the coordinate curves, equation (2.6) means that the vectors \mathbf{g}^i are normal to the coordinate surfaces. This is illustrated in Figure 2.3. We will call the triad \mathbf{g}_i tangent base vectors and the triad \mathbf{g}^i normal base vectors. In general they are not unit vectors.

The triad g^i can be expressed as a linear combination of the triad g_i , and vice versa. To this end we define coefficients g^{ij} and g_{ij} such that

$$\boldsymbol{g}_i \equiv g_{ij} \boldsymbol{g}^j, \qquad \boldsymbol{g}^i \equiv g^{ij} \boldsymbol{g}_j.$$
 (2.7), (2.8)

From equations (2.6) to (2.8), it follows that

$$g_{ij} = g_{ji} = \boldsymbol{g}_i \cdot \boldsymbol{g}_j, \qquad g^{ij} = g^{ji} = \boldsymbol{g}^i \cdot \boldsymbol{g}^j, \qquad (2.9), (2.10)$$

$$g^{im}g_{jm} = \delta^i_j. \tag{2.11}$$

The linear equations (2.11) can be solved to express g^{ij} in terms of g_{ij} , as follows:

$$g^{ij} = \frac{\text{cofactor of element } g_{ij} \text{ in matrix } [g_{ij}]}{|g_{ij}|}.$$
 (2.12)