

Figure 2.1 Curvilinear coordinate lines and surfaces

2.2 Curvilinear Coordinates, Base Vectors, and Metric Tensor

The position of point A in Figure 2.1 is given by the vector

$$
\begin{equation*}
\boldsymbol{r}=x_{i} \hat{\boldsymbol{\imath}}_{i} \tag{2.1}
\end{equation*}
$$

where x_{i} are rectangular coordinates and $\hat{\boldsymbol{\imath}}_{i}$ are unit vectors as shown.
Let θ^{i} denote arbitrary curvilinear coordinates. We assume the existence of equations which express the variables x_{i} in terms of θ^{i} and vice versa; that is,

$$
\begin{equation*}
x_{i}=x_{i}\left(\theta^{1}, \theta^{2}, \theta^{3}\right), \quad \theta^{i}=\theta^{i}\left(x_{1}, x_{2}, x_{3}\right) . \tag{2.2}
\end{equation*}
$$

Also, we assume that these have derivatives of any order required in the subsequent analysis.

Figure 2.2 Network of coordinate curves and surfaces

Suppose that $x_{i}=x_{i}\left(a^{1}, a^{2}, a^{3}\right)$ are the rectangular coordinates of point A in Figure 2.1. Then $x_{i}\left(\theta^{1}, a^{2}, a^{3}\right)$ are the parametric equations of a curve through A; it is the θ^{1} curve of Figure 2.1. Likewise, the θ^{2} and θ^{3} curves through point A correspond to fixed values of the other two variables. The equations $x_{i}=x_{i}\left(\theta^{1}, \theta^{2}, a^{3}\right)$ are parametric equations of a surface, the θ^{3} surface shown shaded in Figure 2.1. Similarly, the θ^{1} and θ^{2} surfaces correspond to $\theta^{1}=a^{1}$ and $\theta^{2}=a^{2}$. At each point of the space there is a network of curves and surfaces (see Figure 2.2) corresponding to the transformation of equations (2.2) and (2.3).

By means of (2.2) and (2.3), the position vector \boldsymbol{r} can be expressed in alternative forms:

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}\left(x_{1}, x_{2}, x_{3}\right)=\boldsymbol{r}\left(\theta^{1}, \theta^{2}, \theta^{3}\right) \tag{2.4}
\end{equation*}
$$

A differential change $d \theta^{i}$ is accompanied by a change $d \boldsymbol{r}_{i}$ tangent to the θ^{i} line; a change in θ^{1} only causes the increment $d \boldsymbol{r}_{1}$ illustrated in Figure 2.1. It follows that the vector

$$
\begin{equation*}
\boldsymbol{g}_{i} \equiv \frac{\partial \boldsymbol{r}}{\partial \theta^{i}}=\frac{\partial x_{j}}{\partial \theta^{i}} \hat{\boldsymbol{\imath}}_{j} \tag{2.5}
\end{equation*}
$$

is tangent to the θ^{i} curve. The tangent vector \boldsymbol{g}_{i} is sometimes called a base vector.

Figure 2.3 Tangent and normal base vectors

Let us define another triad of vectors \boldsymbol{g}^{i} such that

$$
\begin{equation*}
\boldsymbol{g}^{i} \cdot \boldsymbol{g}_{j} \equiv \delta_{j}^{i} \tag{2.6}
\end{equation*}
$$

The vector \boldsymbol{g}^{i} is often called a reciprocal base vector. Since the vectors \boldsymbol{g}_{i} are tangent to the coordinate curves, equation (2.6) means that the vectors \boldsymbol{g}^{i} are normal to the coordinate surfaces. This is illustrated in Figure 2.3. We will call the triad \boldsymbol{g}_{i} tangent base vectors and the triad \boldsymbol{g}^{i} normal base vectors. In general they are not unit vectors.

The triad \boldsymbol{g}^{i} can be expressed as a linear combination of the triad \boldsymbol{g}_{i}, and vice versa. To this end we define coefficients $g^{i j}$ and $g_{i j}$ such that

$$
\begin{equation*}
\boldsymbol{g}_{i} \equiv g_{i j} \boldsymbol{g}^{j}, \quad \boldsymbol{g}^{i} \equiv g^{i j} \boldsymbol{g}_{j} . \tag{2.7}
\end{equation*}
$$

From equations (2.6) to (2.8), it follows that

$$
\begin{gather*}
g_{i j}=g_{j i}=\boldsymbol{g}_{i} \cdot \boldsymbol{g}_{j}, \quad g^{i j}=g^{j i}=\boldsymbol{g}^{i} \cdot \boldsymbol{g}^{j} \tag{2.9}\\
g^{i m} g_{j m}=\delta_{j}^{i} \tag{2.11}
\end{gather*}
$$

The linear equations (2.11) can be solved to express $g^{i j}$ in terms of $g_{i j}$, as follows:

$$
\begin{equation*}
g^{i j}=\frac{\text { cofactor of element } g_{i j} \text { in matrix }\left[g_{i j}\right]}{\left|g_{i j}\right|} . \tag{2.12}
\end{equation*}
$$

