A short note on totally periodic configurations

March 20, 2013
Updated: March 21, 2013

Suppose $c: \mathbb{Z}^{d} \rightarrow S$ is totally periodic. This means that there are d linearly independent vectors \vec{r}_{i} with integer coordinates such that $c\left(\vec{v}+\vec{r}_{i}\right)=c(\vec{v})$ for every $\vec{v} \in \mathbb{Z}^{d}$ and every $i \in\{1, \ldots, d\}$.

Consider the matrix A whose i-th column is the vector \vec{r}_{i} : that is, $A_{j, i}$ is the j-th coordinate of \vec{r}_{i} according to the base $\left\{\vec{e}_{1}, \ldots, \vec{e}_{d}\right\}$. Then A^{-1} is the matrix whose i-th column contains the coordinates of the vector \vec{e}_{i}, expressed as a linear combination of the elements of the base $\left\{\vec{r}_{1}, \ldots, \vec{r}_{d}\right\}$: that is, $\vec{e}_{i}=$ $A_{1, i}^{-1} \vec{r}_{1}+\ldots+A_{d, i}^{-1} \vec{r}_{d}$.

But A is a matrix with integer components: then A^{-1} is a matrix with rational components, as its elements are determinants of matrices with integers components (the minors of A) divided by an integer value (the determinant of $A)$. If n is such that the components of $n A^{-1}$ are all integers (for example, n is a multiple of all the denominators in the writings of the elements of A^{-1} as irreducible fractions) then c is $n \vec{e}_{i}$-periodic for every $i \in\{1, \ldots, d\}$.

For example, consider a situation where the basic period is a von Neumann neighborhood. The configuration c in Figure 1 is \vec{r}-periodic for $\vec{r}=\vec{r}_{1}=(2,1)$ and for $\vec{r}=\vec{r}_{2}=(-1,2)$: these vectors are linearly independent, as the matrix $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$ whose i-th column is \vec{r}_{i} has determinant $2 \cdot 2-(-1) \cdot 1=5$. The inverse matrix of A is $A^{-1}=\frac{1}{5}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$: thus, $\vec{e}_{1}=\frac{2}{5} \vec{r}_{1}-\frac{1}{5} \vec{r}_{2}$ and $\vec{e}_{2}=\frac{1}{5} \vec{r}_{1}+\frac{2}{5} \vec{r}_{2}$. Then c is \vec{r}-periodic also for $\vec{r}=(5,0)=2 \vec{r}_{1}-\vec{r}_{2}$ and for $\vec{r}=(0,5)=\vec{r}_{1}+2 \vec{r}_{2}$.

Figure 1: An example of a periodic configuration whose basic period is not a square.

