ITT8040 — Cellular Automata Lecture 3

Silvio Capobianco

Institute of Cybernetics at TUT

March 27, 2013

æ

< ≣ >

A ■

Silvio Capobianco

A *d*-dimensional pattern over S is a pair p = (D, G) where:

- $D \subseteq Z^d$ is the domain, and
- $g: D \rightarrow S$.

For $\vec{r} \in \mathbb{Z}^d$ we put

$$\tau_{\vec{r}}(p) = (D + \vec{r}, g \circ \tau_{-\vec{r}})$$

- ∢ ≣ ▶

æ

 $p_1=({\it D}_1,g_1)$ is a subpattern of $p_2=({\it D}_2,g_2)$ if

•
$$D_1 \subseteq D_2$$
, and

•
$$g_2|_{D_1} = g_1.$$

Let (S, d, N, f) be a cellular automaton with global transition function G.

- Let $D, D' \subseteq \mathbb{Z}^d$ such that $N(D') \subseteq D$.
- ▶ We define a function $G^{(D \to D')} : S^D \to S^{D'}$ as follows: If p = (D, G) then $G^{(D \to D')}(p) = (D', g')$ where

$$g'(\vec{n}) = f\left(g(\vec{n} + \vec{n}_1), \dots, g(\vec{n} + \vec{n}_m)\right) \quad \forall \vec{n} \in D'$$

白 ト イヨト イヨト

Observe that this is the same as doing the following:

- 1. First, extend $g: D \to S$ to some $c: \mathbb{Z}^d \to S$.
- 2. Next, compute G(c).
- 3. Finally, set $g' = G(c)|_{D'}$.

Call orphan a pattern that has no preimage.

Let A = (S, d, N, f) be a cellular automaton. The following are equivalent:

- 1. A has a Garden-of-Eden configuration.
- 2. A has an orphan pattern.

Proof: By compactness of $S^{\mathbb{Z}^d}$ and continuity of the global function G.

Let (S, d, N, f) be a cellular automaton with global transition function G.

- Let D, D' be finite subsets of \mathbb{Z}^d be such that $N(D') \subseteq D$.
- ► We say that the CA is *D'*-balanced if for every pattern p' = (D', g'),

$$\left| \left(G^{(D \to D')} \right)^{-1} (p') \right| = |S|^{|D| - |D'|}$$

▶ We say that the CA is balanced if it is D'-balanced for every finite $D' \subseteq \mathbb{Z}^d$.

Note: A balanced CA is surjective.

The balancedness theorem (Maruoka and Kimura, 1976)

- ► Let (*S*, *d*, *N*, *f*) be a surjective cellular automaton with global transition function *G*.
- Let D, D' be finite subsets of \mathbb{Z}^d such that $N(D') \subseteq D$.
- ▶ Then, for every *d*-dimensional pattern p' = (D', g') over *S*,

$$\left| \left(G^{(D \to D')} \right)^{-1} (p') \right| = |S|^{|D| - |D'|},$$

that is, there are exactly $|S|^{|D|-|D'|}$ patterns p=(D,g) such that $G^{(D\to D')}(p)=p'.$

Shortly:

a surjective CA is balanced

It is not restrictive to only consider hypercubic supports.

- Suppose p' has $t \neq |S|^{|D|-|D'|}$ preimages.
- ► Take E, E' hypercubes with $D \subseteq E, D' \subseteq E'$, and $N(E') \subseteq E$.
- Exactly $|S|^{|E'|-|D'|}$ patterns on E' have p' as subpattern.
- ► If the CA was E'-balanced, then each of those would have exactly |S|^{|E|-|E'|} preimages.
- ▶ But those patterns have $t \cdot |S|^{|E|-|D|}$ possible preimages by $G^{(E \to E')}$: thus,

$$|S|^{|E'|-|D'|} \cdot |S|^{|E|-|E'|} = t \cdot |S|^{|E|-|D|}$$

向下 イヨト イヨト

• This is impossible, at it implies $t = |S|^{|D|-|D'|}$.

Moore's inequality: Let d, n, s, r be positive integers. For every k large enough,

$$\left(s^{n^d}-1
ight)^{k^d} < s^{(kn-2r)^d}$$

Suppose now the CA is not balanced. We set:

- ► *D* a hypercube of side *n*,
- ▶ D' a hypercube of side n 2r with $N \subseteq \{-r, ..., r\}^d$, and
- p' = (D', g') a pattern with $t < |S|^{|D|-|D'|}$ preimages.

Then $|D| = n^d$ and $|D'| = (n-2r)^d \dots$

Let now D_k be a hypercube of side kn, and D'_k the hypercube of side kn - 2r centered in its middle.

- ► D_k is made of k^d hypercubes of side *n*. D'_k is a hypercube of side kn 2r.
- ► There are |S|^{|D'_k|-k^d·|D'|} patterns over D'_k that coincide with p' in correspondence of the centers of the k^d hypercubes above.
- Then there are at most t^{k^d} preimages for such patterns: but

$$t^{k^{d}} \leq \left(|S|^{|D|-|D'|}-1\right)^{k^{d}} \leq |S|^{-k^{d}|D'|} \left(|S|^{|D|}-1\right)^{k^{d}}$$

- 4 回 2 - 4 □ 2 - 4 □

▶ By Moore's inequality with s = |S|, t^{k^d} < |S|^{|D'_k|-k^d|D'|} for k large enough. For such k, some patterns on D'_k are orphans.

Pre-injectivity

Two configurations $c, e \in S^{\mathbb{Z}^d}$ are asymptotic if the set $\Delta(c, e) = \{ \vec{n} \in \mathbb{Z}^d \mid c(\vec{n}) \neq e(\vec{n}) \}$

is finite.

A cellular automaton with global function G is pre-injective if $G(c) \neq G(e)$ whenever c and e are different and asymptotic. Shortly:

a cellular automaton is pre-injective if it cannot correct finitely many errors in finite time

This is actually the same as saying that the CA is injective in

$$\operatorname{asymp}(c) = \{e \in S^{\mathbb{Z}^d} \mid |\Delta(c, e)| < \infty\}$$

where c is any given configuration. In particular:

if G has a quiescent state, then G is pre-injective if and only if G_F is injective

Theorem (Myhill, 1962)

If a CA has a Garden-of-Eden configuration, then it is not pre-injective.

∢ ≣⇒

Let (S, d, N, f) be a non-surjective CA with global function G. Suppose $N = \{-r, ..., r\}^d$.

- Fix $q \in S$ and set $t = f(q, \ldots, q)$.
- Let p be a GoE pattern. Pad p with t to form a side-n hypercube.
- Let C be a side-kn hypercube and C' the side-(kn 2r) hypercube centered in the middle of C.
- ► Let $K = \{c \in S^{\mathbb{Z}^d} \mid c(\vec{n}) = q \forall \vec{n} \notin C'\}$. Then $|K| = |S|^{(kn-2r)^d}$. Also, if $c \in K$ then $(G(c))(\vec{n}) = t$ for every $\vec{n} \notin C$.
- But there are at most $(|S|^{n^d} 1)^{k^d}$ possible choices for G(c).

個人 くほん くほん しほ

- If G_F is injective then G is surjective.
- ▶ If *G* is injective then *G* is surjective.
- If G is injective then G_F is surjective.

Theorem (Moore, 1962)

If a CA is not pre-injective, then it has a Garden-of-Eden configuration.

Let (S, d, N, f) have $N = \{-r/2, \ldots, r/2\}^d$ and global function G. Let $c_1, c_2 : \mathbb{Z}^d \to S$ be asymptotic. Suppose $G(c_1) = G(c_2)$.

- Let D' be an hypercube of side n − 2r so large that
 Δ(c₁, c₂) ⊆ D'. Let D be the hypercube of side n with same center as D'. Call p_i = (D, c_i|_D).
- ► Then in any configuration c, any copy of p₁ can be replaced by a copy of p₂ and vice versa, without affecting G(c).
- ► Let now D_k have side kn, and let D'_k be the side-(kn 2r) hypercube with same center as D_k .
- Then there are at most $(|S|^{n^d} 1)^{k^d}$ available preimages for $|S|^{(kn-2r)^d}$ patterns.

個 と く き と く き と … き