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Turing machines

A (deterministic) Turing machine is specified by:

I a finite set of states Q;

I three special states qI , qA, qR ∈ Q called the initial, accepting,
and rejecting state;

I a finite tape alphabet Γ ;

I a finite input alphabet Σ ⊂ Γ ;

I a blank tape symbol b ∈ Γ \ Σ; and

I a transition function δ : Q × Γ → Q × Γ × {−1,+1}.

The transition function specifies the behavior of a read-write head
on a bi-infinite tape, in the following way:

if you are in current state and read current symbol,
then take next state, write next symbol, and move by one block

We require δ(qA, γ) = (qA, γ,+1) and δ(qR , γ) = (qR , γ,+1).
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Turing machines (cont.)

An instantaneous description of a configuration of a Turing
machine is a triple (q, i , t) ∈ Q × Z× ΓZ where:

I q is the current state

I i is the current position of the head

I t is the global state of the tape

The next configuration (q ′, i ′, t ′) is defined straightforwardly:

if δ(q, t(i)) = (q ′, γ, x)
then i ′ = i + x , t ′(i) = γ, t ′(j) = t(j) for i 6= j

If tw is the tape with w in positions 1 to |w | and blank elsewhere,
then the machine accepts w if (qI , 1, tw ) →∗ (qA, i , t).
It rejects w if either (qI , 1, tw ) →∗ (qR , i , t) or never halts.
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Turing machines as a formal model of semi-algorithms

We say that a Turing machine T and a semi-algorithm S are
equivalent if they recognize the same language, that is, for every
input x :

I T accepts x if and only if S returns “yes” on x ; and

I T rejects x if and only if S returns “no” on x or does not halt
on x .

Then there is an algorithm that, given an arbitrary Turing machine
T , constructs an equivalent semi-algorithm S .

Theorem: There exists an algorithm that, given an arbitrary
semi-algorithm S , constructs an equivalent Turing machine T .
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Turing’s halting problem

Consider the following problem:

I given an arbitrary Turing machine T ,

I determine whether or not T halts on the empty tape.

Theorem:
Turing’s halting problem is semi-decidable but not decidable.

I Given A and w , construct the semi-algorithm:

B(u) = A(w)

I Construct a Turing machine T equivalent to B.

I Then T halts on the empty tape if and only if A halts on w .

I This is a reduction of semi-algorithm halting to Turing’s
halting problem.
As the former is undecidable, so is the latter.
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The seeded tiling problem

Consider the following problem:

I given a finite tile set T = (T ,N,R) and a special seed tile
s ∈ T ,

I determine whether or not T admits a valid tiling t such that
t(0, 0) = s

The complement of this problem is semi-decidable:

I for every n ≥ 1:

I if every tiling of n × n squares containing s is not valid then
return “no”
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The seeded tiling problem is undecidable

Let T be a Turing machine.
Consider the tile set from Figures 27 and 28.

I Tiles from Figure 27 represent ongoing computations.

I Tiles from Figure 28 represent initial empty conditions
(including a special “start” tile) and a blank.

Then the following can be seen:

the tile set admits a valid tiling with the “start” tile as seed
if and only if

the Turing machine does not halt from the empty tape

This is a reduction of Turing’s halting problem to (the complement
of) the seeded tiling problem.
As the former is undecidable, so is the latter.
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The finite tiling problem

Consider the following problem:

I given a finite tile set T = (T ,N,R) and a special blank tile
B ∈ T such that (B, . . . ,B) ∈ R,

I determine whether or not T admits a finite nontrivial valid
tiling t

This problem is semi-decidable:

I for every n ≥ 1:

I if there is a valid non-trivial tiling of an n × n square with
blank border then return “yes”
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The finite tiling problem is undecidable

Let T be a Turing machine.
Consider the tile set from Figures 27 and 29.

I Tiles from Figure 27 represent ongoing computations.

I Tiles from Figure 29 represent space-time bounds of the
computation, plus a blank.

Then the following can be seen:

the tile set admits a valid finite nontrivial tiling
if and only if

the Turing machine halts on the empty tape

This is a reduction of Turing’s halting problem to the finite tiling
problem.
As the former is undecidable, so is the latter.
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The tiling problem

Consider the following problem:

I given a finite tile set T = (T ,N,R),

I determine whether or not T admits a valid tiling t

Theorem: (Berger, 1966)
The tiling problem is undecidable, even for Wang tiles.

Recall that the complement of the tiling problem is semi-decidable.
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Two more undecidable problems

The NW-deterministic tiling problem:

I given a NW-deterministic tile set T = (T ,N,R),

I determine whether or not T admits a valid tiling t

is undecidable: its complement is semi-decidable.

The periodic tiling problem:

I given a tile set T = (T ,N,R),

I determine whether or not T admits a valid periodic tiling t

is semi-decidable: its complement is not semi-decidable.
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Nilpotent cellular automata

A cellular automaton A = (S , d ,N, f ) with quiescent state q and
global function G is nilpotent if every configuration ultimately
evolves into the quiescent configuration.

This is the same as satisfiying the following condition:
There exists n ≥ 1 such that the n-th iteration Gn sends every
configuration into the quiescent configuration.

I Let c be a rich configuration containing every possible pattern.

I Then Gn makes every configuration quiescent if and only if it
makes q quiescent.

Nilpotency is thus semi-decidable.
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Nilpotency of 2D cellular automata is undecidable

Let T be a finite set of Wang tiles.

I Set S = T t {q}.

I Let f leave the middle tile unchanged if the tiling is correct,
and turn it to q otherwise.

I This CA is nilpotent if and only if T does not admit a valid
tiling.

We have reduced the tiling problem to (non-)nilpotency of 2D CA.
As the former is undecidable, so is the latter.
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Nilpotency of 1D cellular automata is undecidable

Let T be a NW-deterministic finite set of Wang tiles.

I Set S = T t {q} and

f (x , y) =

 z if
y

x z
is a match ,

q otherwise .

I This CA is nilpotent if and only if T does not admit a valid
tiling.

We have reduced the NW-deterministic tiling problem to
(non-)nilpotency of 1D CA.
As the former is undecidable, so is the latter.
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Reversibility of 2D cellular automata is undecidable

Let T be a finite tile set.
Let D be a finite tile set with the plane filling property.

I Let S = T × D × {0, 1}.
I Define the local update rule as follows:

I if both tiling components are valid then XOR the bit
component with that of the follower;

I otherwise do nothing

I The resulting CA is reversible if and only if T does not admit
a valid tiling.

This reduces the tiling problem to 2D CA (non-)reversibility.
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