ITT8040 — Cellular Automata Lecture 8

Silvio Capobianco

Institute of Cybernetics at TUT

April 29, 2013

æ

- < ∃ >

- Nilpotency.
- Surjectivity in dimension 2 (or greater).
- Reversibility in dimension 2 (or greater).

How can we ensure reversibility in CA?

A lattice gas cellular automaton (LGCA) is a CA (S, d, N, f) where:

- ► The set of states S = S₁ × ... × S_m has as many channels as the elements of N = {n₁,..., n_m}.
- ▶ The global evolution function is a sequence of two steps:
 - 1. Propagation: each track S_i is shifted by \vec{n}_i ;
 - 2. Interaction:

a transformation $\pi: S \to S$ is performed.

Hardy, de Pazzis and Pomeau

- Square grid, four directions.
- Particle moving along channels between nodes of the grid.
- Propagation: to nearest neighbor.
- Interaction:
 - If exactly two particles arrive from opposite directions, then they bounce at a right angle.
 - In all other cases, the particles go straight ahead.

HPP has several problems, which make it unsuited as a gas model:

- Lattice directions are privileged.
- Horizontal momentum is preserved along horizontal lines.
 Such conservation law does not hold for real gasses.
- Frisch, Hasslacher and and Pomeau
 - Triangular grid, six directions.
 - Particle moving along channels between nodes of the grid.
 - Propagation: to nearest neighbor.
 - Interaction:
 - If exactly two particles arrive from opposite directions, then they bounce by 60 degrees at a random direction.
 - If three particles arrive by 120 degrees from each other, then they bounce away.

・日本 ・ モン・ ・ モン

In all other cases, the particles go straight ahead.

・ロト・(四)・(日)・(日)・(日)・

The following are equivalent:

- 1. The LGCA is reversible.
- 2. The global function of the LGCA interaction phase is bijective.
- 3. The local function of the LGCA interaction phase is a permutation.

As a side effect:

if a LGCA is not injective, then it is not surjective either

- A partitioned cellular automaton is a CA (S, d, N, f) where:
 - ► The set of states S = S₁ × ... × S_m has as many tracks as the elements of N = {n
 ₁,...,n
 _m}.
 - ► The global evolution function is a sequence of two steps:
 - 1. first, each track S_i is shifted by \vec{n}_i ;
 - 2. next, a permutation $\pi: S \to S$ is performed;

that is, G is a composition of partial shifts and a point-based permutation.

Theorem

There exists an algorithm that, given in input an arbitrary Turing machine, returns a reversible one-dimensional partitioned cellular automaton that simulates the Turing machine in real time.

Corollary

There exists a reversible 1D PCA and a subset F of its states for which the following problem is r.e.-complete:

given a finite configuration c, determine whether it ultimately evolves into a configuration which has some of its states in F. Reversibility means that no information is erased.

• We need a "garbage track" to take care of previous states. Let the Turing machine $M = (Q, q_I, q_A, q_R, \Gamma, \Sigma, \delta)$ be given. Set $S = S_1 \times S_2 \times S_3 \times S_4$ with:

- $S_1 = \Gamma$.
- $\blacktriangleright S_2 = Q \sqcup \{0\}.$
- $\triangleright \ S_3 = Q \sqcup \{0\}.$

Until now, the construction is the same as for the non-reversible case, except that we use two tracks to encode motion of the read-write head.

 $\triangleright \ S_4 = (Q \times \Gamma \times \{-1, +1\}) \sqcup \{0\}.$

This is the "garbage track", which will be moved two slots per time unit, so that it does not interfere with the computation.

個人 くほん くほん しほ

Simulating TM by RPCA: the local function

Set $N = \{0, -1, +1, +2\}$.

- Track 1 does not move.
- Track 2 is shifted one position to the left.
- Track 3 is shifted one position to the right.
- Track 4 is shifted two positions to the right.

Define $\pi: S \to S$ as a permutation that fulfills the conditions:

• if
$$\delta(q, a) = (q', a', -1)$$

then $(a, q, 0, 0) \mapsto (a', q', 0, (q, a, -1))$
and $(a, 0, q, 0) \mapsto (a', q', 0, (q, a, +1));$

• if
$$\delta(q, a) = (q', a', +1)$$

then $(a, q, 0, 0) \mapsto (a', 0, q', (q, a, -1))$
and $(a, 0, q, 0) \mapsto (a', 0, q', (q, a, +1));$

• $(a, 0, 0, g) \mapsto (a, 0, 0, g)$ whatever g is.

Kari, 1996

- No additional state
- Proved in dimension 1 and 2
- Conjectured for higher dimension

Durand-Lose, 1999

- Additional state
- Worsk in arbitrary dimension

Let (S, 1, N, f) be a one-dimensional CA. The *m*-block presentation of the CA is determined by the block merging function

$$B_m: S^{\mathbb{Z}} \to (S^m) \to \mathbb{Z}$$
 such that $B_m(c)(i) = c_{[mi,mi+m-1]}$

and the block splitting function

 $B_m^{-1}:(S^m)\to\mathbb{Z}\to S^{\mathbb{Z}}$ such that $B_m^{-1}(e)(i)=e(\lfloor i/m
floor)(i \mod m)$

so that the global function of the m-th higher block presentation is

$$B_m \circ G \circ B_m^{-1}$$

(本間) (本語) (本語) (語)

A similar idea works in higher dimension.

Reversible 1D CA as PCA: construction

Let G be the global function of a reversible 1D CA. Suppose G and G^{-1} are both defined by a radius-r neighborhood. Set n = 3r. Define the set of right stairs:

$$\mathcal{R} = \{(c_{[0,2r-1]}, G(c)_{[-r,r-1]}) \mid c \in S^{\mathbb{Z}}\} \subseteq^{2r} \times S^{2r}$$

and the set of left stairs:

$$\mathcal{L} = \{(\mathcal{G}(c)_{[0,2r-1]}, c_{[-r,r-1]}) \mid c \in S^{\mathbb{Z}}\} \subseteq S^{2r} \times S^{2r}$$

The function $\varphi: \mathcal{S}^{6r} \to \mathcal{R} \times \mathcal{L}$ defined by

$$\phi(c_0,\ldots,c_{6r-1}) = ((c_{[4r,6r-1]},G(c)_{[3r,5r-1]}),(G(c)_{[r,3r-1]},c_{[0,2r-1]}))$$

is a bijection, and so is $\psi:\mathcal{R}\times\mathcal{L}\to S^{6r}$ defined by

$$\psi((c_{[4r,6r-1]}, G(c)_{[3r,5r-1]}), (G(c)_{[r,3r-1]}, c_{[0,2r-1]})) = G(c)_{[0,6r-1]}$$

Consider the radius-1/2 PCA with set of states $\mathcal{R}\times\mathcal{L}$ and permutation function

 $\pi=\psi\circ\varphi$

Such a PCA is isomorphic to the 6*r*-block presentation of $G \circ \sigma^{3r}$.