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Block cellular automata

A block cellular automaton with block sides m1, . . . ,md is
composed of two phases:

1. a translation, and

2. a block transformation b : Sm → Sm, where m = m1 · · ·md .

The global update is performed as follows:

1. The space is partitioned into hypercubic blocks of sides
m1, . . . ,md .

2. The transformation b is applied to each block.

3. The translation is performed.
(This step corresponds to a change in the origin of the
partitioning.)
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Reversibility of block CA

As it is the case with LGCA and partitioned CA, there are only two
kinds of block CA:

1. reversible block CA, if b is a permutation;

2. non-surjective, non-injective block CA otherwise.
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Subadditivity

A function f : {1, 2, . . .} → R is subadditive if for every n,m > 0

f (n +m) ≤ f (n) + f (m)

Lemma (Fekete)
If f is a subadditive function, then

lim
n→∞ f (n)

n
= inf

n≥1

f (n)

n
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Variety

Let A be a one-dimensional CA.
Call Out(n) be the number of possible states of the interval∏d

i=1{1, . . . , n} after an application of A’s global function.
The variety of A is the function

V (n) = log|S |Out(n)

Exactly one of the following happens:

1. A is surjective and V (n) = n for every n.

2. A is non-surjective and for every k > 0 there exists nk such
that V (n) < n − k for every n > nk .
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Representing non-surjective 1D CA as block CA

Theorem (Toffoli, Capobianco and Mentrasti, 2008)
Every non-surjective 1D CA can be rewritten as a two-layer block
CA.

I Let m be the neighborhood range.

I Suppose n is so large that V (n) < n −m.

I Consider blocks of size n +m.

I Let the first block operation compress the output of the n
leftmost sites into n −m values, and leave the m rightmost
unchanged.

I Shift by m units to the left.

I Let the second block operation decompress the n rightmost
values and use them to compute the next state of the m
leftmost sites.

I Shift by m units to the right.
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Second-order cellular automata

A second-order cellular automaton is a CA (S , d ,N, f ) where
f : Sm × S , that is, where the equation of the orbits has the form:

ct+1(~n) = f (ct(~n + ~n1), . . . , c
t(~n + ~nm); c

t−1(~n))

The next configuration is thus determined by both the current and
the previous ones. The global function of a second-order CA has
thus the type:

G : SZd × SZd → SZd

and the equation of the second-order dynamics is:

ct+1 = G (ct ; ct−1)
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Reversibility for second-order CA

A second-order CA is reversible if there exists a second-order CA
whose global function H satisfies the reverse-time equation, that is,

∀ct , ct−1 ∈ SZd
: ct+1 = G (ct ; ct−1) ⇒ ct−1 = H(ct ; ct+1)

For a second-order CA with local update rule f and global function
G , the following are equivalent:

1. The second-order CA is reversible.

2. For every k ∈ SZd
the function c 7→ G (k , c) is a permutation.

3. For every k ∈ Sm the function s 7→ f (k , s) is a permutation.
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Conserved quantities

Suppose we are given a function

µ : S → R

which assigns to each state a numeric value.

1. How do we extend µ to a function over configurations?

2. How we do this so that we can speak about conservation?
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First approach: finite configurations

Suppose there is a quiescent state q.

I It is not restrictive to suppose that µ(q) = 0.
Otherwise, replace µ with µ̃(s) = µ(s) − µ(q).

I For every q-finite configuration c define

µ̂F (c) =
∑
~n∈Zd

µ(c(~n))
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Second approach: totally periodic configurations

Suppose c is totally periodic.

I Suppose that c is determined by its value on a d-hypercube D.
This, as we know, is not restrictive.

I Define

µ̂P(c) =
1

|D |

∑
~n∈D

µ(c(~n))

Silvio Capobianco



Conserved quantities

Theorem.
Let G be a CA global function with quiescent state q
For any µ : S → R such that µ(q) = 0 the following hold.

1. For every q-finite configuration c , µ̂F (G (c)) = µ̂F (c).

2. For every totally periodic configuration c , µ̂P(G (c)) = µ̂P(c).

In this case, µ̂ is a conserved quantity for the CA.
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Equivalence of the two formulations

Suppose µ̂F (G (c)) = µ̂F (c) for every c : Zd → S .
Let p : Zd → S be periodic.

I Fix k > 0 so that p is determined by its value on a hypercube
of side k .

I For j > 0 construct a q-finite configuration c that concides
with p on a hypercube of side jk: then µ̂F (c) = (jk)d µ̂P(p)

I G (c) and G (p) may only differ on a “hypercubic annulus” of
radii jk + 2r and jk − 2r , where r is the radius of the CA: thus,∣∣∣µ̂F (G (c)) − (jk)d µ̂P(G (p))

∣∣∣ ≤ 2m·
(
(jk + 2r)d − (jk − 2r)d

)
I But µ̂F (G (c)) = µ̂F (c) = (jk)d µ̂P(p). Thus,

|µ̂P(p) − µ̂P(G (p))| ≤ O(jd−1)

(jk)d
,

which is only possible if µ̂P(p) = µ̂P(G (p)).
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The Hattori-Takesue criterion

Let G be the global function of a CA with quiescent state q. Let
µ : S → R such that µ(q) = 0.
The following are equivalent.

1. µ̂ is conserved.

2. For every two finite configurations c1, c2 which differ in a
single point,

µ̂(c1) − µ̂(c2) = µ̂(G (c1)) − µ̂(G (c2))

Silvio Capobianco



Rewriting the Hattori-Takesue conditions

I As µ̂ is clearly translation invariant, we may replace
µ̂(c1) − µ̂(c2) with µ(c1(~0)) − µ(c2(~0)).

I If c1 and c2 only differ at ~0, then G (c1) and G (c2) can only
differ on those cells that have ~0 as a neighbor. Thus,

µ̂(G (c1)) − µ̂(G (c2)) =
∑
~n∈A

(µ(G (c1)(~n)) − µ(G (c2)(~n))) ,

where A = −N = {−~ni | i = 1, . . . ,m}.

I It is thus possible to decide whether or not µ̂ is conserved, by
considering all the pairs of patterns over

−N + N = {~nj − ~ni | i , j = 1, . . . ,m}

which only differ in ~0.
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