ITT8040 Cellular Automata Solutions to Assignment 1

Exercise 2

Let $c \in S^{\mathbb{Z}^{d}}$ be a configuration.

(a) Prove that there exists a sequence of finite configurations that converges to c.

It is surely possible to reason as in the proof of Proposition 4 from the notes. Let $\mathbb{Z}^{d}=\left\{\vec{r}_{1}, \vec{r}_{2}, \ldots,\right\}$ be an enumeration of the elements of \mathbb{Z}^{d} : fix $q \in S$, and define $c_{n}(\vec{r})$ as $c(\vec{r})$ if $\vec{r}=\vec{r}_{i}$ for some $i \leq n$, and q otherwise. Then each c_{n} is q-finite and $\lim _{n \rightarrow \infty} c_{n}=c$.

Alternatively, let $M_{n}=\left\{\vec{r} \in \mathbb{Z}^{d}| | r_{i} \mid \leq n \forall i \leq d\right\}$ the Moore neighborhood of radius n : then M_{n} is a d-hypercube of side $2 n+1$ centered in $\overrightarrow{0}$, and for every $\vec{r} \in \mathbb{Z}^{d}$ there exists $n_{\vec{r}}$ such that $\vec{r} \in M_{n}$ for every $n \geq n_{\vec{r}}$. Let thus $c_{n}(\vec{r})$ be equal to $c(\vec{r})$ if $\vec{r} \in M_{n}$, and to q otherwise: again, c_{n} is q-finite and $\lim _{n \rightarrow \infty} c_{n}=c$.

(b) Prove that there exists a sequence of totally periodic configurations that converges to c.

The second technique from the solution of the previous part fits our current need perfectly: construct c_{n} so that it is $(2 n+1) \vec{e}_{i}$-periodic for every $i \leq d$ (\vec{e}_{i} being the i-th vector of the standard base of \mathbb{Z}^{d}, the vector whose i-th coordinate is 1 and others are 0) and coincides with c on M_{n}.

Observe that, in general, the period varies at each step: this is to be expected, as it is easily shown that, if \vec{r} is fixed, then the limit of any converging subsequences of \vec{r}-periodic configurations is \vec{r}-periodic.

