ITT8040 Cellular Automata Solutions to Assignment 2

Exercise 1

There are at least two ways to solve this exercise. One is as follows: consider a sequence $\left\{i_{k}\right\}_{k \geq 1}$ such that $c=\lim _{k \rightarrow \infty} c_{i_{k}}$ exists. Then, consider an increasing sequence $\left\{k_{n}\right\}_{n \geq 1}$ such that $e=\lim _{n \rightarrow \infty} e_{i_{k_{n}}}$ exists. For $i_{n}=i_{k_{n}}$ we have $\lim _{n \rightarrow \infty} c_{i_{n}}=c$ and $\lim _{n \rightarrow \infty} e_{i_{n}}=e$.

Another way goes as follows. For $i \geq 1$ define $\eta_{i}: \mathbb{Z}^{d} \rightarrow S \times S$ as $\eta_{i}(\vec{n})=$ $\left(c_{i}(\vec{n}), e_{i}(\vec{n})\right)$ for every $\vec{n} \in \mathbb{Z}^{d}$. By Proposition 4, there exists an increasing sequence $\left\{i_{n}\right\}_{n \geq 1}$ such that $\eta=\lim _{n \rightarrow \infty} \eta_{i_{n}}$ exists. Define then $c, e: \mathbb{Z}^{d} \rightarrow S$ by $\eta(\vec{n})=(c(\vec{n}), e(\vec{n}))$ for every $\vec{n} \in \mathbb{Z}^{d}$: it can be seen that $\lim _{n \rightarrow \infty} c_{i_{n}}=c$ and $\lim _{n \rightarrow \infty} e_{i_{n}}=e$.

Exercise 2

The pattern 10101 can be seen to be an orphan, by the following argument:
Let f be the local update rule. We have $f(010)=f(100)=f(101)=1$ and $f(000)=f(001)=f(011)=f(110)=f(111)=0$. So, the middle 1 can only come from 010,100 , or 101. However, it cannot come from 100 or 101: otherwise, the first 0 in 10101 would need to come from 110, which contradicts such 0 having a 1 on its left ad $f(011)=f(111)=0$. But the middle 1 cannot come from 010 either, as $f(100)=f(101)=1$, so the digit on its right should be 1 instead of 0 .

Exercise 4

As G commutes with translations, being able to evaluate $G(c)$ in \vec{n} for arbitrary $c \in S^{\mathbb{Z}^{d}}$ and $\vec{n} \in \mathbb{Z}^{d}$, is the same as being able to evaluate $G(c)$ in $\overrightarrow{0}$ for arbitrary $c \in S^{\mathbb{Z}^{d}}:$

$$
G(c)(\vec{n})=\left(\tau_{\vec{n}} \circ G\right)(c)(\overrightarrow{0})=G\left(\tau_{\vec{n}} \circ c\right)(\overrightarrow{0}) .
$$

Let us follow the hint and try to adapt the proof of Proposition 7. Let us suppose, for the sake of contradiction, that G is not the global function of a cellular automaton: this is the same as saying that there is no neighborhood $N=$ $\left\{\vec{n}_{1}, \ldots, \vec{n}_{m}\right\}$ and m-ary function $f: S^{m} \rightarrow S$ such that, for every configuration
$c \in S^{\mathbb{Z}^{d}}$, the value $G(c)(\overrightarrow{0})$ coincides with the value $f\left(c\left(\vec{n}_{1}\right), \ldots, c\left(\vec{n}_{m}\right)\right)$. This, in turn, is the same as saying that, for every $i \geq 1$, there exist two configurations $c_{i}, e_{i}: \mathbb{Z}^{d} \rightarrow S$ such that c_{i} and e_{i} coincide on M_{i}, the Moore neighborhood of radius i, but $G\left(c_{i}\right)(\overrightarrow{0}) \neq G\left(e_{i}\right)(\overrightarrow{0})$.

Now, according to the solution to Exercise 1, there exist an increasing sequence $\left\{i_{k}\right\}_{k \geq 1}$ such that $c=\lim _{k \rightarrow \infty} c_{i_{k}}$ and $e=\lim _{k \rightarrow \infty} e_{i_{k}}$ both exist. Then we must have $c=e$: in fact, for every $\vec{n} \in \mathbb{Z}^{d}$ there exists $j \geq 1$ such that $\vec{n} \in M_{i}$ for every $i \geq j$, so also $c_{i_{k}}(\vec{n})=e_{i_{k}}(\vec{n})$ for every $k \geq 1$ large enough, and consequently $c(\vec{n})=e(\vec{n})$ by definition of c and e. By continuity, $\lim _{k \rightarrow \infty} G\left(c_{i_{k}}\right)=G(c)=G(e)=\lim _{k \rightarrow \infty} G\left(e_{i_{k}}\right)$: which is impossible, because $G\left(c_{i_{k}}\right)$ and $G\left(e_{i_{k}}\right)$ always differ in $\overrightarrow{0}$.

