ITT8040 Cellular Automata Assignment 2

March 20, 2013

Read pages 16–21 of Prof. Kari's notes.

- 1. Prove the statement from the proof of Proposition 7 on page 19 of the notes: if c_i and e_i are sequences in $S^{\mathbb{Z}^d}$, then there exists a strictly increasing sequence $\{i_n\}_{n\geq 0}$ in \mathbb{N} such that c_{i_n} and e_{i_n} both converge.
- 2. Find an orphan pattern for elementary cellular automaton rule 52.
- 3. (Ungraded) Experiment with the SIMP/STEP software. The web page http://www.cs.ioc.ee/~silvio/simp.html contains instuction for download and installation.
- 4. (Bonus) Prove Hedlund's theorem: if a function $G: S^{\mathbb{Z}^d} \to S^{\mathbb{Z}^d}$ is continuous (in the sense that $\lim_{n\to\infty} G(c_n) = G(c)$ whenever $\lim_{n\to\infty} c_n = c$) and commutes with every translation $\tau_{\vec{r}}$, then it is the global transition function of a cellular automaton. *Hint:* Adapt the proof of Proposition 7.

Soft deadline: March 27, 2013 Hard deadline: April 3, 2013