ITT8040 Cellular Automata Solutions to Assignment 3

Exercise 1

Let G be the global transition function of the Game of Life. The periodic configuration c such that $c(i, j)=1$ if and only if j is a multiple of 3 , is such that all cells in $G(c)$ are alive.

Exercise 2

The elementary cellular automaton rule 126 sends every three-bit string to 1 , except 000 and 111, which are mapped into 0 instead. An idea is thus to find different combinations of the six strings that contain both 0 and 1 , so that their image is the same. By trial and error, we find that both 00101100 and 00110100 are mapped into 111111 . It is then easy to see that $\ldots 0001011000 \ldots$ and $\ldots 0001101000 \ldots$ are distinct finite configurations with the same image.

Exercise 3

We must prove that, for every choice of the integers $s, n, d, r>0$ and every integer k large enough,

$$
\left(s^{n^{d}}-1\right)^{k^{d}}<s^{(k n-2 r)^{d}} .
$$

If $s=1$, then the left-hand side is 0 and the right-hand side is 1 whatever k is, and there is nothing to prove. If $s>1$, then the logarithm in base s is a strictly increasing function, and Moore's inequality is equivalent to

$$
k^{d} \log _{s}\left(s^{n^{d}}-1\right)<(k n-2 r)^{d}:
$$

by dividing both sides by k^{d}, this is equivalent to

$$
\log _{s}\left(s^{n^{d}}-1\right)<\left(n-\frac{2 r}{k}\right)^{d}
$$

which is true for k large enough as the left-hand side is a constant strictly smaller than n^{d} while the right-hand side converges to n^{d} for $k \rightarrow \infty$.

Exercise 4

Let (S, d, N, f) be a non-surjective cellular automaton: we want to construct a configuration c that has uncountably many preimages. It is not restrictive to suppose $N=M_{r}$, the Moore neighborhood of radius r.

Fix $q \in S$: by the Garden-of-Eden theorem, there exist two distinct q-finite configurations e_{1}, e_{2} with the same image h. Let k be so large that $e_{1}(\vec{n})=$ $e_{2}(\vec{n})=q$ for every $\vec{n} \notin M_{k}$, the Moore neighborhood of radius k : if $f(q, \ldots, q)=$ t, then $h(\vec{n})=t$ for every $\vec{n} \notin M_{k+r}$. Let then $c: \mathbb{Z}^{d} \rightarrow S$ be the periodic configuration defined as follows:

- $c(\vec{n})=h(\vec{n})$ for $\vec{n} \in M_{k+r}$;
- $c\left(\vec{n}+m \cdot(2(k+r)+1) \vec{e}_{i}\right)=c(\vec{n})$ for every $\vec{n} \in M_{k+r}, m \in \mathbb{Z}$, and $1 \leq i \leq d ;$

Let $u_{i}: M_{k+r} \rightarrow S$ be the restriction of e_{i} to M_{k+r} : then $u_{1} \neq u_{2}$ by construction. Let e be a configuration such that, if each coordinate of \vec{n} is an integer multiple of $2(k+r)+1$, then e coincides with (a suitable translate of) either u_{1} or u_{2} on the hypercube of side $2(k+r)+1$ centered in \vec{n} : there are uncountably many such configurations, and each of them is mapped into c.

