ITT8040 Cellular Automata Solutions to Assignment 4

Exercise 1

To prove that G_{F} is surjective, let c be a finite configuration and let $a<b$ be integers so that all the cells \vec{n} such that $c(\vec{n}) \neq(0,0)$ are inside the interval $\{a, \ldots, b\}$. Define $e: \mathbb{Z} \rightarrow\{0,1\} \times\{0,1\}$ by setting $e(\vec{n})=c(\vec{n})$ for every \vec{n} such that either $\vec{n} \notin\{a, \ldots, b\}$ or $(c(\vec{n}))_{1}=0$, and $e(\vec{n})=\left((c(\vec{n}))_{0}\right.$ xor $\left.(c(\vec{n}+1))_{0}, 1\right)$ if $(c(\overrightarrow{(n})))_{1}=1$: it is then straightforward to check that e is finite and $G_{F}(e)=c$.

To prove that G_{P} is not injective, let $c_{0}(\vec{n})=(0,1)$ and $c_{1}(\vec{n})=(1,1)$ for evert $\vec{n} \in \mathbb{Z}$: then c_{0} and c_{1} are both periodic, and $G\left(c_{0}\right)=G\left(c_{1}\right)=c_{0}$.

Exercise 3

It is sufficient to prove the following: for every $n \in \mathbb{Z}$ there exist $k_{1}, k_{2} \in \mathbb{Z}$ such that $k_{1} \geq n, k_{2} \geq k_{1}+m$, and for every $i \in\{0, \ldots, m-2\}$ both $c\left(k_{1}+i\right)=$ $c\left(k_{2}+i\right)$ and $e\left(k_{1}+i\right)=e\left(k_{2}+i\right)$.

Let S be the set of states such that $c, e: \mathbb{Z} \rightarrow S$. For $j \geq 0$ consider the segments $I_{n, j}=\{n+j m, \ldots, n+(j+1) m-1\}$. Define the sequence $\eta: \mathbb{N} \rightarrow S^{2 m}$ as

$$
\begin{aligned}
\eta(j) & =(c(n+j m), \ldots, c(n+(j+1) m-1), e(n+j m), \ldots, e(n+(j+1) m-1)) \\
& =\left(\left.c\right|_{I_{n, j}},\left.e\right|_{I_{n, j}}\right)
\end{aligned}
$$

As η maps an infinite set into a finite one, there must exist a $2 m$-tuple $t \in S^{2 m}$ and an increasing sequence $\left\{j_{r}\right\}_{r \geq 0}$ such that $\eta\left(j_{r}\right)=t$ for every $r \geq 0$. By construction,
$t=\left(c\left(n+j_{r} m\right), \ldots, c\left(n+\left(j_{r}+1\right) m-1\right), e\left(n+j_{r} m\right), \ldots, e\left(n+\left(j_{r}+1\right) m-1\right)\right):$
we may then set $k_{1}=j_{0}$ and $k_{2}=j_{1}$.

Exercise 4

The labeled de Bruijn graph of elementary CA 174 is:

Consequently, the reduced pair graph is:

By examining both graphs it can be seen that . . $001000 \ldots$ and $001100 \ldots$ have the same image ...0110...

