
Cellular Automata
Jarkko Kari
Spring 2011

University of Turku

1 Preliminaries

1.1 Introduction

A cellular automaton is a discrete dynamical system that consists of a regular network
of finite state automata (cells) that change their states depending on the states of their
neighbors, according to a local update rule. All cells change their state simultaneously,
using the same update rule. The process is repeated at discrete time steps. It turns out that
amazingly simple update rules may produce extremely complex dynamics when applied in
this fashion. A well known example is the Game-of-life by John Conway. Cellular automata
are

• discrete in both space and time,

• homogeneous in space and time (same update rule at all cells at all times),

• local in their interactions.

Many processes in nature are governed by local and homogeneous underlying rules, which
makes them amenable to modeling and simulation using cellular automata. For example,
fluid dynamics can be modeled by moving point particles in a regular lattice, and the local
update rule is designed to simulate particle collisions. Some of the most extensively inves-
tigated concepts in cellular automata theory such as reversibility and conservation laws are
motivated by physics.

Cellular automata are also mathematical models for massively parallel computation. Sim-
ple update rules can make the cellular automaton computationally universal, that is, capable
of performing arbitrary computation tasks. Above mentioned Game-of-life is a good exam-
ple. This point of view raises interesting questions concerning the computational aspects of
cellular automata.

A combination of the two viewpoints above (computational universality and modeling
natural processes) have made cellular automata a useful theoretical tool in the study of
computation in nature and the physical aspects and physical limits of computation.

These notes cover the basic theory of cellular automata. The most extensively used math-
ematical tool is topology. It namely turns out to be a very natural and fruitful approach to
consider cellular automata as continuous functions on a compact metric space. This makes
cellular automata theory part of the field of topological dynamics, or more specifically, sym-
bolic dynamics. Since only elementary topology is needed, no prior mathematics courses in
topology are required: the notes contain a review of all the topology and symbolic dynamics
that is needed.

Another tool that we use is the theory of computation and computability. We are often
interested in algorithmic questions related to cellular automata, and in many cases these
questions turn out to be undecidable. A short review of computation theory, including
universality and (un)decidability is included to help students who have no familiarity with
this topic.

1

We start the notes with basic definitions and several examples of interesting cellular au-
tomata. We then continue with classical results related to injectivity and surjectivity. Chap-
ters that follow (not necessarily in this order) discuss linear (additive) cellular automata,
reversibility, limit sets, classifications of cellular automata, universality, conservation laws in
cellular automata, topological dynamics of cellular automata, algorithmic questions, etc.

1.2 First example: Game-of-life

We start with a well-known example, Game-of-life, invented by John Conway in 1970. It is
a cellular automaton that consists of an infinite grid of square cells — like an infinite graph
paper — where each square is colored white or black. The color is called the state of the
cell. We say that a black cell is alive while a white cell is not. A coloring of the entire grid
is called a configuration of Game-of-life.

There is a simple local update rule according to which the cells change their states. The
new state of a cell only depends on the current states of the cell itself and its eight nearest
neighbors:

• A living cell stays alive if and only if there are exactly two or three living cells among
the eight surrounding cells. Fewer than two living neighbors causes death by isolation,
more than three living neighbors by overcrowding.

• A non-living cell becomes alive if it has precisely three living neighbors — each organism
has three parents!

All cells use the same update rule, and all cells change their states simultaneously. This
changes the coloring of the grid, i.e. the configuration changes into a new one. The process
is then repeated over and over again, which creates a time evolution of the system. Figure 1
shows an example of five consecutive generations of cells.

- - - -

Figure 1: Five steps of a time evolution in Conway’s Game-of-life.

Game-of-life is remarkable because the local update rule is extremely simple, but the long-
time behavior of configurations is unpredictable. In the following the term ”finite pattern”
refers to a configuration in which the number of living cells is finite. Conway showed that it
is undecidable if a given finite pattern eventually dies completely out. In other words, there
is no (and never will be any as its existence is a logical contradiction) a computer program

2

that takes as input a finite pattern and always correctly determines if the input pattern
eventually dies out.

Over the years Game-of-life enthusiasts have compiled a vast library of patterns with
various behaviors. The following terminology is used for various categories of objects:

• still life: a fixed point pattern. The update rule keeps each cell unchanged. The
simplest non-empty still life is the block, a two-by-two block of living cells. Another
still life is shown in Figure 2(a).

• oscillator : temporally periodic pattern. The update rule may change the pattern but
after some number of steps the original pattern reappears in the same location and
orientation. Still life is a special type of oscillator. The smallest oscillator is the blinker
consisting of three living cells in a line. Another oscillator with period two is shown in
Figure 2(b).

• spaceship: a pattern that after some number of steps reappears, possibly in a different
location of the grid. A particular spaceship called glider is shown in Figure 2(c). An
oscillator is a stationary spaceship that does not move.

• gun: a finite pattern that — like an oscillator — periodically returns back to the
initial state, but in addition, emits spaceships. A glider gun emitting gliders is shown
in Figure 2(d).

Objects from different categories emerge when Game-of-life is started in a random initial
configuration. During the evolution the objects interact with each other through collisions
with gliders and other moving structures. Collisions create new objects which in turn par-
ticipate in interactions, leading to extraordinary complexity.

1.3 Basic Definitions

This chapter introduces the most basic definitions and notations. Throughout these notes,
abbreviation CA refers to cellular automata (plural) or cellular automaton (singular).

Let d be a positive integer. A d-dimensional cellular space is Zd. Elements of Zd are
called cells. Let S be a finite state set. Elements of S are called states. A configuration of a
d-dimensional CA with state set S is a function

c : Zd −→ S

that assigns a state to each cell. The state of cell ~n ∈ Zd is c(~n). A configuration should be
understood as an instantaneous description, or a snapshot, of all the states in the system of
cells at some moment of time. Most frequently we consider one- and two-dimensional spaces,
in which cases the cells form a line indexed by Z or an infinite checker board indexed by Z2,
respectively.

3

(a) (b)

(c)

(d)

Figure 2: Sample Game of Life objects: (a) still life, (b) oscillator, (c) glider, (d) glider gun.

We adapt the common mathematical notation that the set of functions from set A into
set B is denoted by BA. So the set of all configurations is SZ

d
. In the one-dimensional case

d = 1 the set of configurations is SZ, the set of functions Z −→ S.
A d-dimensional neighborhood vector (of size m) is a tuple

N = (~n1, ~n2, . . . , ~nm) (1)

where each ~ni ∈ Zd and ~ni 6= ~nj for all i 6= j. The elements ~ni specify the relative locations
of the neighbors of each cell: Cell ~n ∈ Zd has m neighbors ~n + ~ni for i = 1, 2, . . . , m.

The local update rule (or the local rule, the update rule, or simply the rule) of a CA with
state set S and size m neighborhood is a function

f : Sm −→ S

that specifies the new state of each cell based on the old states of its neighbors. If the
neighbors of a cell have states s1, s2, . . . , sm then the new state of the cell is f(s1, s2, . . . , sm).

4

In cellular automata all cells use the same rule, and the rule is applied at all cells simulta-
neously. This causes a global change in the configuration: Configuration c is changed into
configuration c′ where for all ~n ∈ Zd

c′(~n) = f [c(~n + ~n1), c(~n + ~n2), . . . , c(~n + ~nm)]. (2)

The transformation c 7→ c′ is the global transition function of the CA. It is a function

G : SZ
d −→ SZ

d

.

Function G is our main object of study. Typically, function G is iterated, i.e. applied
repeatedly, which produces a time evolution

c 7→ G(c) 7→ G2(c) 7→ G3(c) 7→ . . .

of the system. Here c is the initial configuration of the evolution, and the sequence

orb(c) = c, G(c), G2(c), G3(c), . . .

is the orbit of c. Time refers to the number of applications of G performed: Each application
of G takes one time step, so Gt(c) is the configuration at time t, for all t = 0, 1, 2,

Sometimes we also consider two-way infinite orbits, i.e. sequences

. . . , c−2, c−1, c0, c1, c2, . . .

of configurations where G(ci) = ci+1 for all i ∈ Z. Here time t flows through all integers and
there is no initial configuration.

In summary: To specify a CA one needs to specify the following items (some of which may
be clear from the context):

• the dimension d ∈ Z+,

• the finite state set S,

• the neighborhood vector N = (~n1, ~n2, . . . , ~nm), and

• the local update rule f : Sm −→ S.

We therefore formally define the corresponding CA to be the 4-tuple A = (d, S, N, f). The
global transition function determined by these items according to (2) will be denoted by
G[A], or simply by G when the CA A is clear from the context. Any function G that is the
transition function of some CA is called a CA function.

We usually identify a CA function G with the CA that determines it in the sense that
we talk about cellular automaton G. Strictly speaking, however, the same function G is
determined by different cellular automata (4-tuples). We say that two CA A and B are
equivalent if G[A] = G[B]. Clearly equivalent CA have the same dimension d and state

5

set S but they may differ in their neighborhood vectors. However, we see in the following
section that there is a unique equivalent CA whose neighborhood vector is minimal in the
sense that it is included in the neighborhoods of all equivalent CA. Other equivalent CA can
only have additional ”dummy” neighbors that have no influence on the next state.

Example 1. (xor) Let d = 1, S = {0, 1}, N = (0, 1) and f : {0, 1}2 −→ {0, 1} be

f(a, b) = a + b (mod 2).

The cells form a line, indexed by Z. Each cell changes its state by adding the state of its
right neighbor to its own old state modulo 2. This is known as the ”exclusive or” (xor) logic
operation.

Consider, for example, the initial configuration c0 where c0(0) = 1 and c0(i) = 0 for
all i 6= 0, i.e. a single cell is in state 1. Then c1 = G(c0) has c1(0) = c1(−1) = 1 and
c2(i) = 0 for all i 6= −1, 0. Continuing likewise, we get the time evolution c2 = G(c1),
c3 = G(c2) etc. Figure 3 shows a diagram where we have drawn configurations as horizontal
rows of states and depicted values 0 and 1 by white and black squares as we’ll typically do
in our examples. The topmost row shows the initial configuration c0, and the following rows
represent consecutive elements of the orbit orb(c0). Time increases downwards.

?

Time

Figure 3: The space-time diagram of the xor CA of Example 1 starting from an initial
configuration with a single cell in state 1.

¤

A space-time diagram is a pictorial representation of an orbit, similar to the one shown in
Example 1 above. In the case of one-dimensional CA configurations are drawn as horizontal
lines of colors, each state represented by its own color. Configuration G(c) is drawn under c,
so time flows downwards. The topmost row represents the initial configuration. The space-
time diagram of the orbit of c hence fills the lower half plane. In contrast, the space-time
diagrams associated with two-way infinite orbits fill the whole plane since there is no initial
time.

6

More generally, a space-time diagram of a d-dimensional CA is a (d + 1)-dimensional
graph where d dimensions represent space and the additional dimension is used for time.
Time gets values in N or Z depending on whether the diagram is for an orbit with an initial
configuration or for a two-way infinite orbit.

Following terminology is used: A configuration c is

• a fixed point of G if G(c) = c.

• (temporally) periodic if Gt(c) = c for some t ∈ Z+. Any t satisfying Gt(c) = c is called
a period of c and the smallest such t is the least period of c.

• eventually fixed if there is n ∈ N such that Gn+1(c) = Gn(c), that is, Gn(c) is a fixed
point for some n.

• eventually (temporally) periodic if there is n ∈ N and t ∈ Z+ such that Gn+t(c) = Gn(c),
that is, Gn(c) is periodic for some n.

Analogous terminology is used for orbits. A one- or two-way infinite orbit is a fixed
point orbit if all configurations it contains are fixed points (i.e. the orbit consists of copies
of the same fixed point configuration). It is periodic if it only contains temporally periodic
configurations, it is eventually fixed if it contains some fixed point configuration and it
is eventually periodic if it contains a temporally periodic configuration. See Figure 4 for
illustrations of these concepts on two-way infinite orbits. The figure shows parts of phase
spaces of some CA. A phase space is the infinite directed graph whose vertices are the
configurations and from each configuration c there is exactly one outgoing edge leading to
G(c). Note that the phase space has uncountably many vertices, so we always show just a
small portion of it, e.g. to plot some orbits as in Figure 4.

(a) (b) (c) (d)

Figure 4: (a) a fixed point, (b) a periodic orbit, (c) an eventually fixed orbit and (d) an
eventually periodic orbit.

As a final observation of this section we state the following simple fact:

Proposition 1 If G and H are CA functions, so is their composition G ◦H. ¤

7

1.4 Neighborhoods

Let N = (~n1, ~n2, . . . , ~nm) be a d-dimensional neighborhood vector. For any ~n ∈ Zd we denote

N(~n) = (~n + ~n1, ~n + ~n2, . . . , ~n + ~nm),

and for any K ⊆ Zd we denote

N(K) = {~n + ~ni | ~n ∈ K and i = 1, 2, . . . , m }.

In other words, N(~n) is the ordered sequence of the neighbors of cell ~n, while N(K) is
the unordered set of neighbors of cells in K. In particular, N({~n}) is the unordered set
of neighbors of cell ~n. Clearly N = N(~0), and N({~0}) is the unordered set that contains
the elements of the neighborhood vector N . The order of the elements in N is essentially
irrelevant: it only matters as the order in which the m input values are given in the local
rule f : Sm −→ S. So when specifying a CA it is enough to give the unordered version
N({~0}) of N , as long as we make the role of different neighbors clear in the description of
the local rule.

In two-dimensional spaces the von Neumann- and the Moore- neighborhoods shown in
Figure 5 are often used. Game-of-life has the Moore-neighborhood. We generalize the
Moore-neighborhood and call the d-dimensional neighborhood Md

r consisting of all

(k1, k2, . . . , kd) ∈ Zd where |ki| ≤ r for all i = 1, 2, . . . , d

the radius-r neighborhood. It contains (2r + 1)d elements. We also generalize the von
Neumann -neighborhood and call the d-dimensional neighborhood V d

r consisting of

(k1, k2, . . . , kd) ∈ Zd where
d∑

i=1

|ki| ≤ r

the radius-r von Neumann -neighborhood. The classical von Neumann and Moore neighbor-
hoods of Figure 5 are then V 2

1 and M2
1 . Note that in the one-dimensional case V 1

r = M1
r .

(a) (b)

c c

Figure 5: The (a) von Neumann and (b) Moore neighbors of cell c.

8

The following, small neighborhoods will be sometimes used: The radius-1
2

neighborhood
consists of all (k1, k2, . . . , kd) ∈ Zd where each ki ∈ {0, 1}, and the radius-1

2
von Neumann

-neighborhood consists of all (k1, k2, . . . , kd) ∈ Zd where at most one ki is 1 and all others
are 0. In the one-dimensional case these both consist of the cell and its immediate right
neighbor. The xor CA of Example 1 has the radius-1

2
neighborhood.

Consider a CA with neighborhood vector N = (~n1, ~n2, . . . , ~nm) and local rule f : Sm −→
S. We call ~nj a dummy neighbor if f(s1, . . . , sm) = f(t1, . . . , tm) whenever si = ti for all
i 6= j. This means that the the j’th neighbor of a cell has no effect on the next state of that
cell, and hence ~nj can be removed from the neighborhood vector. We obtain an equivalent
CA with m − 1 neighbors. Let us say a CA has minimal neighborhood if it has no dummy
neighbors. By removing all dummy neighbors from any CA we obtain an equivalent CA that
has minimal neighborhood. This minimal neighborhood CA is unique:

Proposition 2 If A and B are equivalent CA and have minimal neighborhoods then A = B
(up to reordering the neighbors in the neighborhood vector).

Proof. It is enough to show that the neighborhood vectors of A and B contain the same
elements. Let ~n be an arbitrary element of the neighborhood vector of A, that is, cell ~n is a
neighbor of cell ~0 in A. Because A has no dummy neighbors there exist two configurations
c and e such that c(~n) 6= e(~n), c(~k) = e(~k) for all ~k 6= ~n and c′(~0) 6= e′(~0) where we have
denoted c′ = G(c) and e′ = G(e) and G is the global transition function of A. Since A and
B are equivalent, G is also the transition function of B. This means that ~n has to be a
neighbor of ~0 also in B, as otherwise we would have c′(~0) = e′(~0).

In the same way, every neighbor in B is also a neighbor in A. ¤

1.5 Elementary CA

Elementary CA are one-dimensional cellular automata with two states and radius-1 neigh-
borhood: d = 1, S = {0, 1}, N = (−1, 0, 1) and f : S3 −→ S. They differ from each other
only in the choice of the local rule f . There are 256 elementary CA because the number of
different local rules S3 −→ S is 28 = 256. Note, however, that some of the 256 elementary
rules are identical up to renaming the states or reversing right and left, so the number of
essentially different elementary rules is smaller, only 88.

Elementary rules were extensively studied and empirically classified by S.Wolfram in the
1980’s. He introduced a naming scheme that has since become standard: Each elementary
rule is specified by an eight bit sequence

f(111) f(110) f(101) f(100) f(011) f(010) f(001) f(000)

where f is the local update rule of the CA. The bit sequence is the binary expansion of an
integer in the interval 0 . . . 255, called the Wolfram number of the CA.

9

Example 2. The 8 bit binary expansion of the decimal number 102 is 01100110 so the
elementary CA with Wolfram number 102 has the local update rule

f(111) = 0, f(110) = 1, f(101) = 1, f(100) = 0,
f(011) = 0, f(010) = 1, f(001) = 1, f(000) = 0,

This CA is equivalent to the xor CA of Example 1. ¤

Example 3.(rule 110) The 8 bit binary expansion of the decimal number 110 is 01101110
so the elementary CA with Wolfram number 110 has the local update rule

f(111) = 0, f(110) = 1, f(101) = 1, f(100) = 0,
f(011) = 1, f(010) = 1, f(001) = 1, f(000) = 0,

This CA has become known since it was recently proved to be computationally universal.
The cover page of these notes contains a snapshot of the space-time diagram of rule 110
started from a random initial configuration. ¤

Wolfram’s numbering scheme is easily generalized to larger neighborhoods and state sets.
One-dimensional, radius-r CA with k states is identified by a number that contains k2r+1

base-k digits.
S.Wolfram experimented in the 80’s with elementary CA, and based on empirical obser-

vations of their behavior on random initial configurations he classified them into four classes.
These are known as Wolfram classes of CA. The definitions are not mathematically rigor-
ous, and more precise classifications (which we’ll discuss later) have since been proposed.
Wolfram defined the classes as follows:

(W1) Almost all initial configurations lead to the same uniform fixed point configuration,

(W2) Almost all initial configurations lead to a periodically repeating configuration,

(W3) Almost all initial configurations lead to essentially random looking behavior,

(W4) Localized structures with complex interactions emerge.

Figure 6 shows examples of typical space-time diagrams in each class. Wolfram conjectured
that class (W4) cellular automata are computationally universal. In addition to rule 110
also elementary CA 54 is in class (W4).

1.6 Finite configurations

Let s ∈ S be an arbitrary state. The s-support of configuration c ∈ SZ
d

is the set

supps(c) = {~n ∈ Zd | c(~n) 6= s}

10

(class 1: rule 160) (class 2: rule 108)

(class 3: rule 126) (class 4: rule 110)

Figure 6: Space-time diagrams of sample cellular automata from each of the four Wolfram
classes.

of cells not in state s. Configuration c is called s-finite if supps(c) is a finite set, that is, all
but a finite number of cells are in state s. Let us denote

Fs(d, S) = {c ∈ SZ
d | c is s-finite }.

Note that Fs(d, S) is countably infinite while SZ
d

is uncountable.
Sometimes one state q ∈ Q is identified as the quiescent state of the CA. The quiescent

state q must satisfy
f(q, q, . . . , q) = q,

that is, a cell whose neighbors are all quiescent becomes quiescent. If a quiescent state q is
identified and fixed then the q-support of c is called simply the support of c and denoted
by supp(c). Moreover, q-finite configurations are called simply finite, and the set of finite
configurations in SZ

d
is denoted by F(d, S), or simply by F when d and S are clear from

the context. The configuration in which every cell is in state q is called the quiescent
configuration.

11

Clearly, if c is s-finite then G(c) is t-finite where t = f(s, s . . . , s). In particular, in the
presence of quiescent state q, finite configurations are mapped into finite configurations. In
this case we denote by

GF : F −→ F
the restriction of G on finite configurations.

In Example 1 (xor CA), we can name state 0 quiescent, in which case the space-time
diagram in Figure 3 depicts a time-evolution according to GF . In Game-of-life (Section 1.2)
the white square (no life) is taken as the quiescent state.

1.7 Periodic configurations

Let ~r ∈ Zd. Assuming a fixed and known state set S, the translation τ~r determined by ~r
is the global transition function of the CA whose neighborhood contains only ~r and whose
local rule is the identity function. In other words,

τ~r : SZ
d −→ SZ

d

maps c 7→ c′ where c′(~n) = c(~n + ~r) for all ~n ∈ SZ
d
. It is obvious that for all ~r, ~s ∈ Zd and

k ∈ Z we have
τ~r ◦ τ~s = τ~r+~s, and

τ k
~r = τk~r.

(3)

For each dimension i = 1, 2, . . . , d we call the translation by one cell down in dimension
i a shift and denote it by σi. More precisely, if we denote the i’th coordinate unit vector

~ei = (0, . . . , 0, 1, 0, . . . 0),

then σi = τ~ei
. It follows from (3) that every translation is a composition of shifts. In the

one-dimensional case the only shift σ1 is called the left shift and we denote it simply by σ.
The following proposition states an elementary but important property of cellular au-

tomata, based on the fact that all cells use the same local update rule:

Proposition 3 Let G be an arbitrary CA function and τ a translation. Functions G and τ
commute, i.e., G ◦ τ = τ ◦G:

SZ
d G - SZ

d

SZ
d

τ

?
G - SZ

d

τ

?

12

Proof. Let τ be the translation determined by ~r ∈ Zd, and let G be the transition function
of CA A = (d, S, N, f) where N is as in (1). For arbitrary c ∈ SZ

d
and ~n ∈ Zd we have

τ(G(c))(~n) = G(c)(~n + ~r)

= f [c(~n + ~r + ~n1), c(~n + ~r + ~n2), . . . , c(~n + ~r + ~nm)]

= f [τ(c)(~n + ~n1), τ(c)(~n + ~n2), . . . , τ(c)(~n + ~nm)]

= G(τ(c))(~n),

so τ(G(c)) = G(τ(c)) and, furthermore, G ◦ τ = τ ◦G. ¤

A configuration c ∈ SZ
d

is called ~r-periodic if

c(~n) = c(~n + ~r) for all ~n ∈ Zd.

Another way to say this is c = τ~r(c), i.e., c is invariant under the translation by ~r. A
configuration is called spatially periodic if it is ~r-periodic for some ~r 6= ~0.

A d-dimensional configuration is totally periodic if it is ~ri-periodic for some linearly
independent ~r1, ~r2, . . . , ~rd ∈ Zd. It follows easily that a totally periodic configuration is
σk

i -periodic for some k ∈ Z+ and all i = 1, 2, . . . , d. In other words, a totally periodic
configuration consists of a hypercubic pattern(D, p) that is repeated periodically in each of
the d-dimensions of the space. Let us denote by P(d, S) the set of totally periodic elements
of SZ

d
, or if d and S are clear from the context we may simply denote P instead of P(d, S).

Set P is countably infinite.
In the one-dimensional case there is no difference between spatial periodicity and total

periodicity. In two- and higher dimensional spaces there is a difference. Figure 7(a) shows a
two-dimensional configuration (infinite horizontal stripe) that is ~e1-periodic but not totally
periodic. Figure 7(b) shows a totally periodic configuration (infinite checker board).

(a) (b)

Figure 7: (a) A spatially periodic configuration that is not totally periodic, and (b) a totally
periodic configuration.

Let G be a CA function and suppose configuration c is ~r-periodic. According to Propo-
sition 3

τ~r(G(c)) = G(τ~r(c)) = G(c)

13

so also G(c) is ~r-periodic. In particular, if c is totally periodic then also G(c) is totally
periodic. We denote by

GP : P −→ P
the restriction of G on totally periodic configurations.

Finite configurations and periodic configurations are used in effective simulations of cel-
lular automata on computers. Periodic configurations are often referred to as the periodic
boundary conditions on a finite cellular array. For example, in the case d = 2 this is equiva-
lent to running the CA on a torus that is obtained by ”gluing” together the opposite sides
of a rectangle. One should, however, keep in mind that the behavior of a CA can be quite
different on finite, periodic and general configurations, so experiments done with periodic
boundary conditions may sometimes be misleading.

One final remark: Periodicity of a configuration defined in this section refers to spatial
periodicity. This should not be confused with temporal periodicity of a configuration defined
at the end of Section 1.3, that is, the property that the configuration repeats itself under
the CA evolution.

1.8 Compactness principle

Topology plays an important role in the theory of cellular automata. The configuration space
SZ

d
can be given a compact topology under which all CA functions G are continuous. We

delay the detailed discussion of this. Instead we prove two statements that capture essential
features of the topological approach.

Consider an infinite sequence c1, c2, . . . of configurations, each ci ∈ SZ
d
. We say that the

sequence converges and c ∈ SZ
d

is its limit if for every ~n ∈ Zd there exists some k ∈ Z+ such
that ci(~n) = c(~n) for all i ≥ k. In other words: if we look at an arbitrary cell and browse
through a converging sequence c1, c2, . . . then from some moment on we always see the same
state. It is obvious that if a limit exists it is unique, and we denote this limit by

lim
i→∞

ci.

A subsequence of c1, c2, . . . is another sequence ci1 , ci2 , . . . where i1 < i2 < A sub-
sequence is hence obtained by picking infinitely many elements of the sequence, preserving
their relative order. Obviously every subsequence of a converging sequence also converges
and has the same limit.

The first proposition states the compactness of the configuration space:

Proposition 4 Every sequence of configurations has a converging subsequence.

Proof. Let c1, c2, . . . be an arbitrary sequence, ci ∈ SZ
d
. Let ~r1, ~r2, . . . be an enumeration of

elements of Zd. Let us choose indices i0 < i1 < i2 < i3 < . . . recursively as follows: i0 ∈ Z+

is arbitrary. Suppose then that ik−1 has been chosen and we want to choose ik for k ≥ 1.
We choose ik to be the smallest integer that satisfies the following three conditions:

14

(1k) ik > ik−1,

(2k) cik(~rj) = cik−1
(~rj) for all j = 1, 2, . . . k − 1.

(3k) There exist infinitely many indices i such that ci(~rj) = cik(~rj) for all j = 1, 2, . . . k.

Numbers ik that satisfy (1k)–(3k) always exist for the following reasons: Because condition
(3k−1) was satisfied when ik−1 was chosen, we have infinitely many choices of ik that satisfy
(2k). Set Sk is finite so there is a finite number of combinations of states that can appear in
cells ~r1, . . . , ~rk. Consequently, among the infinitely many indices ik that satisfy (2k) there are
infinitely many choices that also satisfy (3k). Some of them hence satisfy all requirements
(1k)–(3k).

It follows from properties (2k) that ci1 , ci2 , . . . converges: For an arbitrary ~rk ∈ Zd all cij

for j ≥ k have the same state in cell ~rk. ¤

Note: The proof is essentially the same as the proof of weak Kőnig’s lemma which states
that an infinite binary tree contains an infinite path. The proof did not require the axiom
of choice. (The same result could also be briefly proved using Tychonoff’s theorem, but that
is equivalent to the axiom of choice.)

Our next proposition states a continuity property of CA functions:

Proposition 5 Let G be a CA function and c1, c2, . . . a converging sequence of configura-
tions. Then also the sequence G(c1), G(c2), . . . converges and

lim
i→∞

G(ci) = G(c)

where
c = lim

i→∞
ci.

Proof. Let G be the transition function of A = (d, S, N, f) where N is as in (1). Let ~n ∈ Zd

be arbitrary. Because c = limi→∞ ci we have that for every j = 1, 2, . . . , m there exists
kj ∈ Z+ such that

ci(~n + ~nj) = c(~n + ~nj) for all i ≥ kj.

Let k = max{k1, k2, . . . , km}. Then if i ≥ k we have

G(ci)(~n) = f [ci(~n + ~n1), ci(~n + ~n2), . . . , ci(~n + ~nm)]

= f [c(~n + ~n1), c(~n + ~n2), . . . , c(~n + ~nm)]

= G(c)(~n).

Because ~n ∈ Zd was arbitrary, we have that G(c1), G(c2), . . . converges to G(c). ¤

15

2 Injectivity and surjectivity properties

2.1 Basic facts

Let g : A −→ B be a function. Recall the following notation and terminology: For any
K ⊆ A we denote the image of K by

g(K) = {g(k) | k ∈ K},

and for any L ⊆ B we denote the pre-image of L by

g−1(L) = {a ∈ A | g(a) ∈ L}.

For b ∈ B the set
g−1(b) = {a ∈ A | g(a) = b}

is the set of pre-images of element b. Function g : A −→ B is called

• injective or one-to-one if every element of B has at most one pre-image:

|g−1(b)| ≤ 1 for all b ∈ B,

• surjective or onto if every element of B has at least one pre-image:

|g−1(b)| ≥ 1 for all b ∈ B,

• bijective if it is both injective and surjective, that is, every element of B has exactly
one pre-image:

|g−1(b)| = 1 for all b ∈ B,

A CA is called injective, surjective or bijective if its transition function G is injective,
surjective or bijective, respectively. In this section we investigate these properties and their
relation to injectivity, surjectivity and bijectivity of the restricted functions GF and GP . In
particular, the goal is to prove the implications shown in Figure 8 for one-dimensional CA
and in Figure 9 for two- and higher dimensional CA.

We can make the following initial observations:

Proposition 6 For any CA function G holds:

(a) If G is injective then also GF and GP are injective.

(b) If GF or GP is surjective then also G is surjective.

(c) If GP is injective then GP is surjective.

16

G injective G injective

G surjective

G surjectiveG injective G surjective

P

F

F P

Figure 8: Implications between injectivity and surjectivity properties in one-dimensional
CA.

Proof. (a) is obvious from the definition of injectivity. For (b), suppose that every finite
configuration has a (finite) pre-image. Let c ∈ SZ

d
be an arbitrary configuration. In the

following we use the compactness property to show that c has a pre-image.
There exists a sequence of finite configurations c1, c2, . . . that converges to c. Such con-

figurations one obtains, for example, by taking an enumeration ~r1, ~r2, . . . of elements of Zd,
and defining for every i, j ∈ Z+

ci(~rj) =

{
c(~rj), if j ≤ i,

q, if j > i,

where q is the quiescent state.
Finite configurations have pre-images, so for every i ∈ Z+ there exists a configuration ei

such that G(ei) = ci. According to Proposition 4, the sequence e1, e2, . . . has a converging
subsequence ei1 , ei2 , Let e be the limit of the subsequence. By Proposition 5 the sequence

G(ei1), G(ei2), . . . = ci1 , ci2 , . . .

converges to G(e). On the other hand,

lim
j→∞

cij = lim
i→∞

ci = c

so we have c = G(e).
The proof of (b) for GP is analogous.
Consider then claim (c). Let c be a totally periodic configuration. It means that there

are positive integers k1, k2, . . . , kd such that

σki
i (c) = c, for all i = 1, 2, . . . , d. (4)

17

G injective

G surjective

G surjectiveG injective

F

F

G injectiveP

G surjectiveP

?

?

?

Figure 9: Implications between injectivity and surjectivity properties in two- and higher
dimensional CA.

Let us denote byK the set of configurations that satisfy (4) for the fixed numbers k1, k2, . . . , kd.
Set K is finite (containing |S|k1k2...kd elements), K ⊆ P , and by Proposition 3 we have
G(K) ⊆ K. If GP is injective, so is G restricted to K. It follows then from the finiteness of
K that G(K) = K. It means that every element of K, including c, has a periodic pre-image.
We have shown that GP is surjective.

¤

2.2 Reversible CA

A cellular automaton function G is called reversible if it is bijective and the inverse function
G−1 is also a CA function. A cellular automaton A is called reversible if its global transition
function G is reversible. Then the CA computing G−1 is called the inverse automaton of A,
and we denote it by A−1. We know from Proposition 2 that the inverse automaton is unique
up to adding dummy neighbors and ordering of the neighbors. The inverse of A retraces the
orbits of A backwards in time.

Example 4. Let d = 1, S = {1, 2, 3}, N = (0, 1), and the value f(a, b) is given by the
following table:

@
@
b

a 1 2 3

1

2

3

1 1 2

2 2 1

3 3 3

18

(States 1 and 2 get swapped if the right neighbor is 3.) This CA G is reversible. In fact, it
is its own inverse, that is, G2 = id . Notice how the inverse rule gives c(n) based on G(c)(n)
and G(c)(n + 1) even though c(n) does not influence G(c)(n + 1) in any way in the forward
direction. ¤

Every reversible CA has to be bijective by definition. The following proposition shows
that the converse is also true. Note that this is not obvious: one could expect that in some
bijective CA a cell might need to look at cells arbitrarily far away in order to determine its
previous state. That, however, never happens:

Proposition 7 Every bijective CA is reversible.

Proof. Suppose CA function G is bijective but not reversible. Let ~r1, ~r2, . . . be an enumeration
of elements of Zd. For every i ∈ Z+ there exist configurations ci and ei such that

ci(~0) 6= ei(~0), and (5)

G(ci)(~rj) = G(ei)(~rj), for all j ≤ i. (6)

Namely, if such ci and ei did not exist then G(c)(~r1), . . . , G(c)(~ri) would uniquely determine
c(~0) in every configuration c. Then a CA with neighborhood {~r1, . . . , ~ri} would define a CA
function H satisfying G ◦ H = id , the identity function. Since G is bijective, this would
mean that H = G−1, contradicting the initial hypotheses that G is not reversible.

A parallel version (homework assignment) of Proposition 4 implies that there exist indices
i1 < i2 < i3 < . . . such that subsequences

ci1 , ci2 , . . .
ei1 , ei2 , . . .

both converge. Let
c = lim

j→∞
cij ,

e = lim
j→∞

eij

be their limits. According to (5) we have cij(~0) 6= eij(~0) for every j, so c(~0) 6= e(~0). This
means that c 6= e.

On the other hand, it follows from the continuity property (Proposition 5) that sequences

G(ci1), G(ci2), . . .
G(ei1), G(ei2), . . .

converge, and
lim
j→∞

G(cij) = G(c),

lim
j→∞

G(eij) = G(e).

19

But it follows from (6) that the limits must be same, so G(c) = G(e), which contradicts the
bijectivity of G.

¤

2.3 Balance in surjective CA

A configuration c is a Garden-of-Eden configuration if it has no pre-images, i.e. if G−1(c) is
empty. A CA has Garden-of-Eden configurations if and only if the CA is not surjective.

Example 5. Consider the elementary CA number 110 from Example 3. Among eight
possible neighborhood patterns there are three that are mapped to state 0 and five that are
mapped to state 1. Let us demonstrate how this imbalance automatically implies that there
are Garden-of-Eden configurations.

Let k be a positive integer, and consider a configuration c in which

c(3) = c(6) = . . . = c(3k) = 0.

See Figure 10 for an illustration. There are

22(k−1) = 4k−1

possible choices for the missing states between 0’s in c (shown as ”*” in Figure 10).

*

x x x x x x x x x x x x x x x

0 * 0 * * 0*c

e

0 * * 0 *

Figure 10: Illustration of the configuration c and its pre-image e in Example 5.

In a pre-image e of c the three state segments e(i−1), e(i), e(i+1) are mapped into state
0 by the local rule f , for every i = 1, 2, . . . , k. Since |f−1(0)| = 3 there are exactly 3k choices
of these segments.

If k is sufficiently large then 3k < 4k−1. This means that that some choice of c does not
have a corresponding pre-image e. Therefore the CA is not surjective.

Alternatively, one could show the non-surjectivity of rule 110 by directly verifying that
any configuration containing pattern 01010 is a Garden-of-Eden.

¤

In this section we generalize the previous example. We need first to define the concept
of a (finite) pattern. A pattern

p = (D, g)

20

is a partial configuration where D ⊆ Zd is the domain of p and g : D −→ S is a mapping
assigning a state to each cell in the domain. Pattern p is finite if D is a finite set. Note that
configurations are patterns whose domain is the entire space Zd. If τ is a translation of Zd

then τ(p) is the pattern p′ = (D′, g′) where D′ = τ(D) and g = τ ◦ g′. We then say that p
and p′ are translated copies of each other.

If p1 = (D1, g1) and p2 = (D2, g2) are two patterns we say that p1 is a subpattern of p2

if D1 ⊆ D2 and g1(~n) = g2(~n) for all ~n ∈ D1. We say that p2 contains a copy of p1 if some
translated copy of p1 is a subpattern of p2. Patterns p1 and p2 are disjoint if D1 ∩D2 = ∅.

Let G be CA function specified by CA A = (d, S,N, f), where N is given by (1). Let
p = (D, g) be a pattern, and let D′ ⊆ Zd a domain such that N(D′) ⊆ D, that is, all neighbors
of all cells of D′ are in D. An application of the local rule f on pattern p determines new
states for all cells in domain D′. We obtain a pattern p′ = (D′, g′) where for all ~n ∈ D′

g′(~n) = f [g(~n + ~n1), g(~n + ~n2), . . . , g(~n + ~nm)].

The mapping p 7→ p′ will be denoted by G(D→D′), or simply by G when the domains D
and D′ are clear from the context and there is no risk of confusion. Note that the global
transition function of the CA is G(Zd→Zd).

The following proposition generalizes Proposition 6(b). Also the proof is similar:

Proposition 8 If G is not surjective then there exists a finite pattern p = (D, g) such that
any configuration that contains pattern p is a Garden-of-Eden configuration.

Proof. Suppose the contrary: for every pattern p there is a configuration that has p as a
subpattern and has a pre-image. Let us show that an arbitrary configuration c ∈ SZ

d
has

then a pre-image.
Let ~r1, ~r2, . . . be an enumeration of elements of Zd, and for every j ∈ Z+ let us extract

the subpattern pj = (Dj, gj) of c where

Dj = {~r1, ~r2, . . . , ~rj},
gj(~ri) = c(~ri), for all i = 1, 2, . . . , j.

Let ej, cj ∈ SZ
d

be such that cj has subpattern pj and G(ej) = cj.
By compactness (Proposition 4) the sequence e1, e2, . . . has a converging subsequence

ei1 , ei2 , Let e be the limit of the subsequence. By continuity of G (Proposition 5) the
sequence

G(ei1), G(ei2), . . . = ci1 , ci2 , . . .

converges to G(e). On the other hand,

lim
j→∞

cij = lim
i→∞

ci = c

so we have c = G(e).
¤

The following lemma is a technical result that will be needed in this and the next section:

21

Lemma 9 For all d, n, s, r ∈ Z+ there exists k ∈ Z+ such that

(
snd − 1

)kd

< s(kn−2r)d

.

Proof. A homework assignment. ¤

The d-dimensional hypercube of size nd determined by corner (k1, k2, . . . , kd) ∈ Zd is the
finite domain

D = {(x1, x2, . . . , xd) ∈ Zd | ki ≤ xi < ki + n for all i = 1, 2, . . . , d }.

Patterns with hypercubic domains will be extensively used in proofs below. Now we are
ready to state and prove the balance property of surjective CA:

Proposition 10 Let A = (d, S, N, f) be a surjective CA, and let D,D′ ⊆ Zd be finite
domains such that N(D′) ⊆ D. Then for every pattern p′ = (D′, g′) the number of patterns
p = (D, g) such that

G(D→D′)(p) = p′

is s|D|−|D
′| where s = |S| is the number of states.

Proof. Suppose there exists p′ such that the number of pre-image patterns p in domain
D is t 6= s|D|−|D

′|. Let us first show that we can assume that the domains D and D′ are
hypercubes, with D′ centered inside D.

Let E, E ′ ⊆ Zd be arbitrary finite domains such that D ⊆ E, D′ ⊆ E ′ and N(E ′) ⊆ E. In
particular, for sufficiently large n and r we can choose E and E ′ to be cocentric hypercubes
of size nd and (n− 2r)d, respectively. There are s|E

′|−|D′| patterns in domain E ′ that have p′

as a subpattern (one can choose arbitrary states in the cells in E ′ \D′, a shaded region in
Figure 11), and they have t · s|E|−|D| pre-image patterns in domain E (obtained from the t
pre-images of p′ by choosing arbitrary states in the remaining cells in E \D, also shaded in
Figure 11). If each pattern in domain E ′ would have s|E|−|E

′| pre-images in domain E, we
would have

s|E
′|−|D′| · s|E|−|E′| = t · s|E|−|D|.

This implies t = s|D|−|D
′|, a contradiction. We conclude that there is a pattern in domain E ′

that has an ”imbalanced” number of pre-images in domain E.
In the following we hence assume that D and D′ are cocentric hypercubes of size nd and

(n − 2r)d, respectively. We also assume that the number t of pre-images of p′ = (D′, g′) in
domain D satisfies

t < s|D|−|D
′|.

Namely, the total number of patterns in domains D and D′ are s|D| and s|D
′|, respectively,

so if every pattern in domain D′ would have at least s|D|−|D
′| pre-images in domain D,

22

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������D E’

E

D’

Figure 11: Domains D, D′, E and E ′.

then every pattern would necessarily have exactly s|D|−|D
′| pre-images, contradicting the

assumption that p′ has an imbalanced number of pre-images.
The main part of the proof that follows is similar to Example 5. Let k ∈ Z+ be arbitrary.

Consider a domain C that is a hypercube of size (kn)d, partitioned into kd non-overlapping
hypercubes of size nd. See Figure 12 for an illustration. Let C ′ be the hypercube of size
(nk − 2r)d centered inside C. There are

s|C
′|−kd|D′|

patterns in domain C ′ such that each of the kd shaded domains in Figure 12 contain a copy
of pattern p′. All their pre-images in domain C contain in each of the size nd sub-hypercubes
one of the t pre-images of p′, hence there are

tk
d

possible pre-images. Let us show that if k is sufficiently large then

tk
d

< s|C
′|−kd|D′| (7)

which proves that there is a pattern p in domain C ′ without a pre-image in domain C. Then
any configuration that contains p is Garden-of-Eden.

We have
|D| = nd and
|C ′| = (kn− 2r)d,

so according to Lemma 9 there is k such that

(
s|D| − 1

)kd

< s|C
′|.

Then

tk
d ≤ (

s|D|−|D
′| − 1

)kd

≤ s−kd|D′| (s|D| − 1
)kd

< s|C
′|−kd|D′|,

23

n

n

n n n n

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

kn

r

kn

r

n

Figure 12: Illustration for the proofs of Propositions 10, 13 and 17.

which proves (7).
¤

Corollary 11 In surjective CA
|f−1(a)| = |S|m−1

for all a ∈ S, where m is the size of the neighborhood and

f−1(a) = {(s1, . . . , sm) | f(s1, . . . , sm) = a}.

Proof. Choose D′ = {~0} in the proposition. ¤

Example 6. The balance condition of the local rule in Corollary 11 is necessary but not
sufficient for surjectivity. Consider, for example, the elementary CA number 232. It is the
majority CA: f(a, b, c) = 1 if and only if a + b + c ≥ 2. Its rule table is balanced because
000, 001, 010, 100 map to 0 and 111, 110, 101, 011 map to 1.

However, the majority CA is not balanced on longer patterns and hence it is not surjec-
tive: Any pattern of length four that contains at most one state 1 is mapped to 00, so 00 has
at least 5 pre-images of length four. Balanceness would require this number of pre-images
to be 4.

¤

24

2.4 Garden-of-Eden -theorem

One of the oldest results in cellular automata theory is the so-called Garden-of-Eden -theorem
that states that there are Garden-of-Eden configurations if and only if there are different
finite configurations with the same image. In other words: G is surjective if and only if GF

is injective. The two directions of the statement were proved by E.F.Moore in 1962 and
J.Myhill in 1963.

A natural way to state the Garden-of-Eden -theorem without any reference to a quiescent
state is in terms of pre-injectivity. Configurations c1 and c2 are called asymptotic if the set

diff (c1, c2) = {~n ∈ Zd | c1(~n) 6= c2(~n) }

of positions where c1 and c2 differ is finite. Cellular automaton G is pre-injective if for
any asymptotic c1 and c2 holds c1 6= c2 =⇒ G(c1) 6= G(c2). Clearly all injective CA are
pre-injective.

The following proposition shows that for pre-injectivity it is enough that the CA is one-
to-one among c-asymptotic configurations, for any fixed configuration c. In particular – by
choosing as c any q-finite configuration – we see that pre-injectivity is equivalent to injectivity
of GF .

Proposition 12 Let c ∈ SZ
d

be arbitrary. Cellular automaton G is pre-injective if and only
if it is injective in the domain

asymp(c) = {e ∈ SZ
d | c and e are asymptotic }.

Proof. It is clear that pre-injectivity implies injectivity in domain asymp(c). For the converse
direction, suppose that G is injective in asymp(c), and let c1 and c2 be two asymptotic
configurations, c1 6= c2. Assume that we could have G(c1) = G(c2).

Let
A = diff (c1, c2) + N −N

where N ⊆ Zd is the set of the elements of the neighborhood vector. Clearly A is finite.
Consider the configurations e1 and e2 where ei(~n) = ci(~n) for all ~n ∈ A, and ei(~n) = c(~n)

for ~n 6∈ A. Because c1 6= c2 we also have e1 6= e2. But G(e1) = G(e2) because

• for ~n ∈ diff (c1, c2)−N we have G(e1)(~n) = G(c1)(~n) = G(c2)(~n) = G(e2)(~n), and

• for ~n 6∈ diff (c1, c2)−N , the configurations e1 and e2 are identical in the neighborhood
of cell ~n, and so G(e1)(~n) = G(e2)(~n).

Configurations e1 and e2 are asymptotic to c, which contradicts the injectivity of G in the
set asymp(c). ¤

Example 7. As in the previous section, we start by illustrating the proof of the Garden-
of-Eden -theorem using elementary rule 110. We know from Example 5 that rule 110 is not

25

surjective. In fact, finite pattern 01010 has no pre-image. Let us demonstrate that there
must exist different 0-finite configurations c and e such that G(c) = G(e).

Let k ∈ Z+ be arbitrary. Consider finite configurations c whose supports are included in
a fixed segment of length 5k − 2, see Figure 13. There are

25k−2 = 32k/4

such configurations. The support of G(c) is included in a segment of length 5k. Partition
this segment in k subsegments of length 5. We know that pattern 010101 cannot appear
anywhere in G(c), so there are at most 25 − 1 = 31 different patterns that can appear in
the length 5 subsegments. Hence there are at most 31k possible configurations G(c). For all
sufficiently large values of k we have

32k/4 > 31k

so there must be two finite configurations with the same image, and G is not pre-injective.

5k

* * * * * * * * * * * * * * *

000 0 0 0

0 000

x x x xxxc

G(c)

Figure 13: Illustration of Example 7.

¤

Proposition 13 If G is not surjective then G is not pre-injective.

Proof. Suppose G is not surjective and let q ∈ S be arbitrary. We show that there are two
different q-finite configurations c1 and c2 such that G(c1) = G(c2). Let f(q, q, . . . q) = t, and
let s = |S| be the number of states. Choose r ∈ Z+ sufficiently big so that a radius-r CA
defines G.

By Proposition 8 there exists a finite pattern p such that any configuration that contains
p is Garden-of-Eden. We can pad p with copies of state t so that the domain of p becomes
a size nd hypercube.

Let k ∈ Z+ be arbitrary, and consider a size (kn)d hypercube C. Exactly as in the proof
of Proposition 10 we partition C into kd non-overlapping hypercubes of size nd, as illustrated
in Figure 12. Let C ′ be the hypercube of size (nk − 2r)d centered inside C. Let

K = {c ∈ SZ
d | suppq(c) ⊆ C ′ }

26

be the set of q-finite configurations whose non-q states are inside hypercube C ′. There are
s|C

′| elements in K.
The t-support of G(c) for every c ∈ K is inside C. Moreover, G(c) cannot contain pattern

p in any of the kd sub-hypercubes of size nd. It means that there are at most

(
snd − 1

)kd

possible configurations G(c). But according to Lemma 9 for some k

(
snd − 1

)kd

< s(kn−2r)d

= s|C
′| = |K|,

so there are c1, c2 ∈ K such that c1 6= c2 while G(c1) = G(c2). ¤

Corollary 14 If GF is injective then G is surjective. ¤

Corollary 15 Every injective CA is also surjective. Injectivity, bijectivity and reversibility
are equivalent concepts.

Proof. It follows directly from Proposition 13 that if G is not surjective then G is not injective,
either. Hence injectivity implies bijectivity, which in turn is equivalent to reversibility by
Proposition 7.

¤

Corollary 16 If G is injective then GF is surjective.

Proof. If G is injective then it is reversible by Corollary 15. If q is the quiescent state of G
then it is also quiescent in the inverse CA, that is, the local rule g of the inverse CA maps
g(q, q, . . . , q) = q. Hence, if c is a finite configuration, also e = G−1(c) is finite and G(e) = c,
so c has a finite pre-image. ¤

Next we turn to the other direction of the Garden-of-Eden -theorem. Again, we start
with a one-dimensional example that indicates the proof idea.

Example 8. Consider again rule 110. The 0-finite configurations

c1 = . . . 000011010000 . . .
c2 = . . . 000010110000 . . .

have the same image. Let us demonstrate how this implies that rule 110 is not surjective.
(Of course we already know this fact form the prior examples.)

Extract patterns p1 = 00110100 and p2 = 00101100 of length eight from c1 and c2, re-
spectively. Both patterns are mapped into the same pattern 111110 of length six. Moreover,

27

p1 and p2 have a boundary of width 2 on both sides where they are identical with each other.
Since rule 110 uses radius-1 neighborhood, one can replace in any configuration c pattern p1

by p2 or vice versa without affecting G(c).
Let k ∈ Z+, and consider a segment of 8k cells. It consists of k segments of length 8. Any

pattern of length 8k − 2 that has a pre-image of length 8k also has a pre-image where none
of the k subsegments of length 8 contains pattern p1. Namely, all such p1 can be replaced by
p2. This means that at most (28− 1)k = 255k patterns of length 8k− 2 can have pre-images.
On the other hand there are 28k−2 = 256k/4 such patterns, and for large values of k

256k/4 > 255k,

so some patterns do not have a pre-image. ¤

Proposition 17 If G is not pre-injective then G has Garden-of-Eden configurations.

Proof. Suppose c1 and c2 are asymptotic, c1 6= c2 but G(c1) = G(c2). Let r be sufficiently
large so that G is defined by a radius- r

2
cellular automaton. Choose n sufficiently large so

that there is a size (n− 2r)d hypercube D′ containing all cells where c1 and c2 differ, that is,

diff (c1, c2) ⊆ D′.

Let D be the size nd hypercube around D′ that is cocentric with D′, and let p1 = (D, g1)
and p2 = (D, g2) be the subpatterns of c1 and c2 with domain D, respectively.

In any configuration c that has subpattern p1 we can replace that subpattern p1 by p2

without affecting G(c). Indeed, those cells ~n whose neighborhood does not contain elements
of diff (c1, c2) do not see any change in their neighborhood. Those cells ~n whose neighborhood
contains elements of diff (c1, c2) are within distance r

2
of D′, so their neighborhood is entirely

inside D. Therefore
G(c)(~n) = G(c1)(~n) = G(c2)(~n) = G(c′)(~n)

where c′ is the configuration obtained from c by replacing subpattern p1 by p2.
As in the proofs of Propositions 10 and 13, let k ∈ Z+ and let C be a hypercube of size

(kn)d, consisting of kd non-overlapping sub-hypercubes of size nd. Let C ′ be the hypercube
of size (kn − 2r)d centered inside C, see Figure 12. If G is surjective then every pattern
with domain C ′ has a pre-image in domain C, and based on the discussion above, it has a
pre-image where none of the kd sub-hypercubes of size nd contains a copy of p1. But there
are only

(
s|D| − 1

)kd

=
(
snd − 1

)kd

such patterns in domain C, while there are

s(kn−2r)d

patterns in domain C ′. It follows from Lemma 9 that some pattern does not have a pre-image.
¤

28

Corollary 18 If G is surjective then GF is injective. ¤

Example 9. In Game-of-Life configurations c1 where all cells are dead and c2 that has
exactly one living cell have the same image. Hence Game-of-Life is not surjective. By
proposition 8 there are patterns p such that any configuration containing a copy of pattern
p is Garden-of-Eden. Such patterns are called orphans. Interestingly, no very small orphans
for Game-of-Life are known. Currently the smallest example has a domain of size 107, see
Figure 14.

Figure 14: Smallest known orphan in Game-of-Life (due to N.Beluchenko). White cells are
living.

2.5 One-dimensional case

In this section we concentrate on one-dimensional cellular automata. The balanceness of
surjective CA has the following interesting corollary that is valid in the one-dimensional case
only:

Proposition 19 For every one-dimensional surjective CA there is a constant n such that
every configuration has at most n pre-images.

Proof. Let G be a one-dimensional surjective CA function. Let r be sufficiently large so that
G is defined by a radius-r cellular automaton and let s = |S| be the number of states. In
the following we prove that every configuration has at most s2r different pre-images.

Suppose the contrary: there is a configuration c with s2r + 1 different pre-images

e1, e2, . . . , es2r+1.

For some sufficiently large number k > r, all pairs of pre-images ei and ej contain a difference
inside the interval

D = {−k,−k + 1, . . . , k − 1, k}.

29

In other words, for all i, j with 1 ≤ i < j ≤ s2r + 1 there is l ∈ D such that ei(l) 6= ej(l).
But this contradicts Proposition 10 since we now have a pattern with domain

D′ = {−k + r,−k + r + 1, . . . , k − r}

that has
s2r + 1 > s|D|−|D

′|

different pre-images in domain D. ¤

Corollary 20 Let G be a one-dimensional surjective CA function. If c ∈ SZ is not periodic
then G(c) is not periodic either. In particular, GP is surjective.

Proof. Suppose G(c) is periodic, so that σn(G(c)) = G(c) for some n ∈ Z+. Then for every
i ∈ Z

G(σin(c)) = σin(G(c)) = G(c),

so σin(c) is a pre-image of G(c). By Proposition 19 configuration G(c) has a finite number
of pre-images so

σi1n(c) = σi2n(c)

for some i1 < i2. But then c is periodic with period (i2− i1)n. It follows that all pre-images
of periodic configurations are periodic. ¤

Proposition 19 and Corollary 20 do not hold for two-dimensional surjective cellular au-
tomata as shown by the following example:

Example 10. Consider the two-dimensional xor CA with radius-1
2

neighborhood: d = 2,
S = {0, 1},

N = [(0, 0), (0, 1), (1, 0), (1, 1)]

and the local rule f : {0, 1}4 −→ {0, 1} is

f(a, b, c, d) =

{
0, if a + b + c + d is even,
1, if a + b + c + d is odd.

This CA is surjective: otherwise there would be two different finite configurations c, e ∈
{0, 1}Z2

with the same image G(c) = G(e), see Proposition 13. If (x, y) ∈ Z2 is a cell where
c(x, y) 6= e(x, y) then it follows from the local rule of the CA that c(x′, y′) 6= e(x′, y′) for
(x′, y′) = (x + 1, y), (x, y + 1) or (x + 1, y + 1). In any case x′ + y′ > x + y, which implies
that the set of cells where c and e differ cannot be a finite set.

Even though the CA is surjective the (totally periodic) quiescent configuration c0 in which
all cells are in state 0 has uncountably many pre-images. For example, any configuration c
that consists of horizontal stripes, i.e.

c(i, k) = c(j, k)

30

for all i, j, k ∈ Z, is a pre-image of c0. Many of these pre-images are not totally periodic.
However, the second part of Corollary 20 is not refuted by this example since GP is surjective.
It is not known whether the surjectivity of G always implies the surjectivity of GP in two-
and higher dimensional CA. ¤

The following proposition states a converse of Proposition 19. This statement is valid in
any dimension:

Proposition 21 If G is a non-surjective CA then there is a totally periodic configuration
c ∈ P that has infinitely (even uncountably) many pre-images.

Proof. Homework.

We can, in fact, be more specific about the structure of the pre-images in surjective
one-dimensional CA. Let us call two one-dimensional configurations c, e ∈ SZ positively
asymptotic (negatively asymptotic) if c(i) = e(i) for all sufficiently large (all sufficiently small,
respectively) i ∈ Z. Let us call c and e positively n-separated (negatively n-separated) if for all
sufficiently large (sufficiently small, respectively) i ∈ Z there is j ∈ {i, i+1, i+2, . . . , i+n−1}
such that c(j) 6= e(j). We say that c and e are positively separated (negatively separated)
if they are positively n-separated (negatively n-separated, respectively) for some n ∈ Z+.
Configurations c and e are totally n-separated if for all i ∈ Z there is j ∈ {i, i+1, i+2, . . . , i+
n−1} such that c(j) 6= e(j), and c and e are totally separated if they are totally n-separated
for some n. Clearly c and e are totally separated if and only if they are both positively and
negatively separated (but the separation parameter n may be different).

Also the following terminology related to one-dimensional neighborhoods will be used:
Number m is a neighborhood range of a CA function G if G is defined by a CA whose neigh-
borhood consists of m consecutive integers. In particular, a radius-1

2
CA has neighborhood

range 2, and a radius-r CA has range 2r + 1, for any r ∈ Z+.

Proposition 22 Let G be a one-dimensional surjective CA function with neighborhood range
m, and let c, e ∈ SZ be such that c 6= e and G(c) = G(e). Then exactly one of the following
three conditions is true:

(i) c and e are negatively asymptotic and positively (m− 1)-separated,

(ii) c and e are positively asymptotic and negatively (m− 1)-separated, or

(iii) c and e are both positively and negatively (m− 1)-separated.

Proof. Conditions (i)–(iii) are pairwise exclusive so it is enough to show that at least one of
them holds for c and e.

Let us first show that if c(n) 6= e(n) then there cannot be segments of length m−1 on both
sides of n where c and e agree. Suppose the contrary: there exist k1 < n and k2 > n such that
c(i) = e(i) for all i in the intervals k1−(m−1) < i ≤ k1 and k2 ≤ i < k2+(m−1). Then we can

31

replace in configuration c the states in cells k1 . . . k2 by the states of the corresponding cells
in configuration e without affecting G(c). This contradicts Proposition 17 since we obtain a
configuration c′ that only differs from c in a finite number of cells while G(c′) = G(c).

Now it easily follows that c and e must be either positively asymptotic or positively
(m − 1)-separated. Otherwise there would be a segment of length (m − 1) where c and e
agree, a position n to the right of this segment where c(n) 6= e(n), and another segment of
length (m− 1) to the right of n where c and e again agree.

A symmetric reasoning shows that c and e must be negatively asymptotic or negatively
(m − 1)-separated. Now it remains to notice that c and e cannot be both positively and
negatively asymptotic as then c and e would be in contradiction to Proposition 17.

¤

The following example shows that all conditions (i)–(iii) of the previous proposition are
indeed possible. It also shows that the surjectivity of G does not imply the surjectivity of
GF , which in turn does not imply the injectivity of G.

Example 11. Consider the one-dimensional CA with three states 0, 1, and 2 and the radius-
1
2

neighborhood, where the local rule is

f(a, b) =

2, if a = 2,
0, if a 6= 2 and a + b is even, and
1, if a 6= 2 and a + b is odd.

The rule keeps state 2 unchanged, while other states are changed as in the xor CA where
state 2 as the right neighbor behaves as 0. Notice that the local rule is left permutive: For
every fixed b the mapping a 7→ f(a, b) is a permutation of the state set S = {0, 1, 2}.

Let us first verify that the CA is surjective: Consider two configurations c and e that are
different but have the same image. Let n ∈ Z be any position where c(n) 6= e(n). Because
G(c)(n) = G(e)(n) it follows directly from the left permutativity of f that c(n + 1) 6=
e(n+1). This means that c(i) 6= e(i) for all i ≥ n, so according to Garden-of-Eden -theorem
(Proposition 13) the CA is surjective.

Configurations
. . . 000020000 . . .
. . . 000021111 . . .

are negatively asymptotic and positively 1-separated. Clearly they have the same image.
Configurations

. . . 00000000 . . .

. . . 11111111 . . .

are totally 1-separated and have the same image.
The examples above mean also that G is not injective. But it is surjective on finite

configurations if state 2 is taken as the quiescent state. Indeed: It follows from the surjec-
tivity that the CA is one-to-one on finite configurations. Since the 2-support of c and G(c)
are always identical, and since there are finitely many configurations with any given finite

32

support, it follows that every finite configuration has a pre-image with the same support.
Hence this example shows that the surjectivity of GF does not imply the injectivity of G.

On the other hand, if state 0 is taken as the quiescent state then GF is not surjective:
The configuration

. . . 000010000 . . .

with single state 1 has only non-finite pre-images. So we also see that the surjectivity of G
does not imply the surjectivity of GF . (The xor CA would have provided another example
of this.)

¤

Proposition 6, Corollaries 14, 16, 18 and 20, and the previous Example 11 contain all
results but one summarized in Figure 8. The last remaining implication is proved next:

Proposition 23 Let G be a one-dimensional CA function. If GP is injective then G is
injective.

Proof. Let m be a neighborhood range for G. Suppose G is not injective, so there are c, e ∈ SZ

such that c 6= e and G(c) = G(e). Since GP is injective it follows from Propositions 6 that
G is surjective. According to Proposition 22 c and e are positively or negatively (m − 1)-
separated. The two alternatives are symmetric, so let us assume without loss of generality
that c and e are positively (m− 1)-separated.

There are only finitely many different patterns of length m− 1 in c and e, so there exist
arbitrarily large positive numbers k1 and k2 such that, in both c and e, the patterns of length
m − 1 starting in positions k1 and k2 are identical. More precisely, there are k2 ≥ k1 + m
such that

c(k1 + i) = c(k2 + i) and e(k1 + i) = e(k2 + i) for all 0 ≤ i < m− 1.

Because c and e are positively (m− 1)-separated, we take k1 sufficiently large so that c(k1 +
i) 6= e(k1 + i) for some i in the interval 0 ≤ i < m− 1.

Consider the periodic configurations cp and ep that are invariant under the translation by
k2−k1 cells and agree with c and e, respectively, in cells k1, k1 +1, . . . k2−1. More precisely,
for k1 ≤ i < k2 and n ∈ Z

cp(i + n(k2 − k1)) = c(i) and ep(i + n(k2 − k1)) = e(i)

Then for every j ∈ Z there is some i in the interval k1 ≤ i < k2 such that the length m
segments in cp and ep starting in position j are the same as the length m segments in c
and e starting in position i, respectively. Because m is a neighborhood range for G and
G(c) = G(e) it follows that G(cp) = G(ep). On the other hand, cp 6= ep so that GP is not
injective. We reached a contradiction. ¤

33

2.6 De Bruijn -graphs

Let us continue with one-dimensional cellular automata. In this section we introduce a new
way to represent the local rule as a labeled directed graph. A directed (multi)graph has
a finite set V of vertices or nodes, and another finite set E of directed edges. Functions
t : E −→ V and h : E −→ V give the tail t(e) and the head h(e) of edge e ∈ E. We
say that edge e is from vertex t(e) into vertex h(e). This formalism allows multiple edges
between nodes. If t(e) = h(e) then edge e is called a loop. We often draw directed graphs
as diagrams where edges e ∈ E are drawn as arrows pointing from node t(e) into node h(e),
see e.g. Figure 15 for examples of such diagrams. Frequently we do not write in the diagram
the names of the edges and only show the corresponding arrows. The outdegree of vertex v
is the number of edges whose tail is v, and its indegree is the number of edges whose head
is v.

A path (of length k) is a sequence e1, e2, . . . , ek of edges where h(ei) = t(ei+1) for all
i = 1, 2, . . . , k − 1, that is, paths ”follow the arrows” in the diagram representation of the
graph. A two-way infinite path is a sequence p : Z −→ E such that for every i ∈ Z we have
h(p(i)) = t(p(i + 1)).

An (edge) labeled directed graph is a directed graph together with a labeling function
l : E −→ Σ which assigns each edge a symbol from a finite set Σ of labels. The label of
a finite or infinite path is the sequence of elements of Σ obtained by reading the labels of
its edges. For instance, in the two-way infinite case, the label of path p : Z −→ E is the
sequence lp ∈ ΣZ where lp(i) = l(p(i)) for all i ∈ Z.

Let m be a positive integer and let S be a finite set. The de Bruijn graph of width m
over alphabet S is the directed graph with

V = Sm−1,
E = Sm,

t(s1s2 . . . sm) = s1s2 . . . sm−1, and
h(s1s2 . . . sm) = s2s3 . . . sm.

In other words, there is an edge from node su to node ut for all s, t ∈ S and u ∈ Sm−2. This
overlap property means that for every c ∈ SZ there is a two-way infinite path p : Z −→ E
such that

p(i) = c(i)c(i + 1) . . . c(i + m− 1) for all i ∈ Z.

Path p is obtained by sliding a window of width m over c. The edges along p are the views
through the sliding window.

The correspondence c ↔ p is bijective: c is obtained from path p by reading the first
components of the edges along the path. Let us denote the configuration c that corresponds
to path p by cp.

Example 12. Figure 15(a) shows the de Bruijn graph of width m = 2 over three letter
alphabet S = {a, b, c}, while Figure 15(b) shows the de Bruijn graph of width m = 3 over
two letter alphabet S = {0, 1}. In general, the de Bruijn graph of width m over k symbols

34

cc

a

bc

aa

ab
ac ba

bb

bc
ca

cb
111

00 01

1110

000

001

010
011

100 101

110

(a) (b)

Figure 15: De Bruijn graphs of width (a) m = 2 over {a, b, c}, and (b) m = 3 over {0, 1}.

has km−1 vertices and km edges. The graph is balanced in the sense that each vertex has
indegree k and outdegree k. ¤

Let m be a neighborhood range of a one-dimensional cellular automaton function G,
which means that G is specified by a CA A whose neighborhood is a segment of m consecutive
integers and the local rule is a function f : Sm −→ S. The labeled de Bruijn graph associated
with A is the de Bruijn graph of width m over alphabet S in which each edge e ∈ Sm is
labeled by f(e) ∈ S. In other words, for all s1, s2, . . . , sm the graph has an edge labeled
by f(s1, s2, . . . , sm) from vertex s1s2 . . . sm−1 into vertex s2s3 . . . sm. This labeled graph is
called the de Bruijn representation of CA A. It contains full information about the local
rule of the CA. Note, however, that since the position of the CA neighborhood is not given,
CA functions G ◦ σk are represented by the same de Bruijn graph for all k ∈ Z. Fortunately
this is not a problem since we use the de Bruijn representations to study properties such as
injectivity and surjectivity that are not affected by translations.

Example 13. Figure 16 shows the labeled de Bruijn graph of rule 110. ¤

Two-way infinite paths p in the de Bruijn representations provide two elements of SZ:
We have cp, the sequence obtained by reading the first symbol of the names of the edges
along p, and we have fp, the sequence obtained by reading the labels of the edges. Because
the labels are the outputs of the local update rule of the CA, it is clear that fp is (possibly
translated) G(cp):

σk(fp) = G(cp) for some k ∈ Z.

The amount k of the translation depends on the positioning of the neighborhood in the CA:
The neighborhood is {k, k + 1, . . . , k + m− 1}.

Now we can interpret previously discussed CA properties in the de Bruijn representation:

35

1

00 01

1110

0

0

0
1

1

1

1

Figure 16: The de Bruijn representation of rule 110.

• The CA is injective if and only if different two-way infinite paths have always different
labels.

• The CA is surjective if and only if for every c ∈ SZ there is a path labeled by c. By
the Garden-of-Eden -theorem this is equivalent to saying that the graph does not have
a diamond : A diamond consists of two different finite paths with identical labels that
begin in the same vertex and end in the same vertex.

• An orphan is a word over alphabet S that is not a label of any path.

In the following we see how de Bruijn representations provide practical algorithms to deter-
mine if a given one-dimensional CA is injective or surjective. But let us first see how we
can find the orphans of a given non-surjective CA. As mentioned above an orphan is a word
that is not a label of any path. To find such a word we use the subset construction to make
a deterministic finite automaton that recognizes all orphans.

Let us first briefly review some concepts of automata theory. A labeled digraph is also
called a finite semiautomaton. Vertices are in this context called the states, the labels are
letters, and the edges are transitions. If we also specify two subsets I ⊆ V and F ⊆ V of
vertices we obtain a finite automaton. Elements of I and F are called initial and final states,
respectively. The automaton is used to accept words over the finite labeling alphabet Σ. A
word is a finite sequence of elements of Σ. Number of symbols in the sequence is the length
of the word. The word of length zero is the empty word, and we denote it by ε. The set of
all words is

Σ∗ =
∞⋃

k=0

Σk

where Σk is the set of words of length k. A set L ⊆ Σ∗ of words is called a language. Finite
automaton accepts a word w ∈ Σ∗ if there exists a path labeled by w that starts in some

36

initial state and ends in a final state. The language recognized by a finite automaton is the
set of all words that it accepts. Languages that are recognized by finite automata are called
regular. We call two finite automata equivalent if they recognize the same language.

Using the automata theoretic terminology we note that the orphans of a cellular automa-
ton are precisely the words that are not accepted by the automaton that we get from the de
Bruijn graph by making all states initial and final.

A finite automaton is called deterministic if there is only one initial state, and for each
state v ∈ V and letter a ∈ Σ there is at most one transition with label a from state v. Since
there is now only one possible continuation from every state with each letter, it is clear that
for every input word w ∈ Σ∗ there is at most one path that starts in the initial state. Word
w is accepted if and only if the last state of this path is a final state. A deterministic finite
automaton is complete if there is a (unique) transition from every state with every input
letter. It is easy to make any deterministic finite automaton complete by adding a new state
(which is not final) and making all missing transitions into this sink state. Clearly exactly
the same words are accepted as before.

The power set construction is a way to convert an arbitrary finite automaton into an
equivalent deterministic and complete automaton. The power set automaton has state set
2V , that is, all subsets of V are states. For any X ⊆ V and a ∈ Σ the transition from X
with input letter a is made into the state

{v ∈ V | for some x ∈ X there is an edge x → v with label a }.

One easily sees that in the power set automaton the last state of the path that starts at
state X ⊆ V and is labeled by word w consists of all those states v ∈ V such that there is a
path from some element of X into v labeled by w in the original automaton. In particular,
if we make I the initial state, and make every set X ⊆ V such that X ∩ F 6= ∅ a final state
of the power set automaton, then exactly the same words are accepted that were accepted
in the original automaton. Moreover, if we swap the final states so that we instead make a
state X ⊆ V final iff X ∩ F = ∅ then we have a deterministic automaton that accepts the
complement language.

Let us perform the subset construction on the de Bruijn representation of a CA, where all
states are considered initial and final. We obtain a complete deterministic finite automaton
that accepts the words that are not orphans. Its initial state is Sm−1 and all states except ∅
are final. Let’s swap the final states, which means that ∅ becomes the only final state. Then
we get an automaton that accepts exactly the orphans. We see:

Proposition 24 The set of all orphans of a one-dimensional CA is a regular language. ¤

Note: many states of the power set automaton may be unreachable from the initial state.
Such states can be removed from the automaton without affecting the language it recognizes.

Example 14. The power set automaton of the de Bruijn representation of rule 110 is shown
in Figure 17. The complete power set automaton contains 24 = 16 states, but eight of them
are not reachable from the initial state {00, 01, 10, 11}. In the construction of the power set

37

1

00
01
10
11

00
11

01
10 00 01

10
11

01
10
11

0

0

0

0

0

0
0

1

1

1

11

1 0,1

Figure 17: A deterministic automaton for the orphans in rule 110. State {00, 01, 10, 11} is
the initial state and state ∅ is the only final state.

automaton it is best to begin from the initial state Sm−1 and add new states as they are
reached. In this way only the reachable part ever gets constructed.

The label of the shortest path from the initial state {00, 01, 10, 11} to the final state ∅ is
01010. It is hence the shortest orphan of rule 110. The shortest path can always be found
using the breadth-first search in the graph. We can also make the observation that only
words containing the pattern 010 can be orphans in rule 110, so any configuration which
does not have isolated 1’s has a pre-image. ¤

Let us next move on to the problem of testing a one-dimensional CA function G for
injectivity and surjectivity. Both these questions boil down to the question of which con-
figurations have the same image under G. For this we use the following cartesian product
construction.

From the de Bruijn representation of a CA we form a pair graph whose vertex set is
V × V where V = Sm−1 is the vertex set of the de Bruijn representation. In the pair graph
there is an edge (with label a ∈ S) from (u1, u2) ∈ V ×V into (v1, v2) ∈ V ×V if and only if
in the de Bruijn graph there are edges with the same label a from u1 to v1 and from u2 to
v2. See Figure 18 for the pair graph of rule 110.

Any two-way infinite path p in the pair graph corresponds to two paths in the original de
Bruijn automaton, obtained by reading only the first or the second components of the pairs.
Both paths have the same edge labels, so they correspond to two configurations of the CA
with the same image. Let us denote these configurations by c1

p and c2
p. The correspondence

p ↔ (c1
p, c

2
p)

is a bijection between paths p and pairs of configurations that satisfy G(c1
p) = G(c2

p).
Let us denote by

∆ = {(u, u) | u ∈ V }

38

∆

00

00

01

01

01

01

10

10

10

1011

11

11

11

11

11

01
00

01
00

0
1

1

1

1

1

00
00

00
00

01
01

10
10

10
10

11
11

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1
1

1

1

1

1

0
0

1
1

1

1

Figure 18: The complete pair graph of rule 110.

the set of diagonal vertices. Notice that the induced subgraph with vertex set ∆ is an
isomorphic copy of the de Bruijn automaton. In particular, there is a path between any two
vertices in ∆, that is, it is strongly connected.

Any two-way infinite path p that only uses diagonal vertices has c1
p = c2

p, so it does not
provide two different configurations with the same image. Only paths that contain a vertex
outside of ∆ provide such configurations.

The following proposition states basic connections between the pair graph and the CA:

Proposition 25 A one-dimensional CA A is

(i) not injective if and only if its pair graph has a cycle that contains a node outside of ∆,

(ii) not surjective if and only the pair graph has a cycle that contains a node of ∆ and a
node outside of ∆.

Proof. (i) If A is not injective then there are two different spatially periodic configurations c
and e with the same image (Proposition 23). The path that corresponds to them in the pair
graph is a cycle that contains a node outside of ∆. Conversely, if the pair graph has such a
cycle then the corresponding configurations of the CA have the same image, i.e. the CA is
not injective.

39

(ii) Let q ∈ S be arbitrary. If A is not surjective then there are two different q-finite
configurations c and e with the same image. The corresponding path in the pair graph
consists of a loop inside ∆, followed by a cycle that goes outside of ∆ and returns to the
same loop inside ∆. Hence there is a cycle with nodes inside and outside of ∆. Conversely,
if such a cycle exists, then the de Bruijn automaton has a diamond and the CA is not
surjective. ¤

The size of the pair graph can be reduced by a factor of approximately two by observing
a symmetry in the pair graph: For all v, u ∈ V the states (u, v) and (v, u) are mirror images
of each other, and can be merged. Also, since ∆ is strongly connected and we are only
interested in cycles that contain elements outside of ∆, we can merge all states of ∆ into
a single vertex (which we name ∆). The resulting directed graph is called the reduced pair
graph. It follows from Proposition 25 that the CA is injective if and only if there is no cycle
in its reduced pair graph, and the CA is surjective if and only if there is no cycle through
node ∆. See Figure 19 for the reduced pair graph of rule 110. Standard depth-first algorithm
of the reduced graph can be used to determine both these conditions in time that is linear
in the size of the reduced pair graph.

∆10
00

10
11

00
11

01
10

11
01

01
00

0,1
1

1

1

1
1

111

0

0

Figure 19: The reduced pair graph of rule 110.

Example 15. Consider the pair graph of rule 110, shown in Figure 18. One immediately
sees from its cycles that the CA is not injective or surjective. The shortest path that begins
and ends in node (00, 00) and is not completely within ∆ has length 6. The corresponding
patterns (that have the same image 111110) are 00110100 and 00101100. They are the
shortest pair of distinct patterns that begin and end in 00, and have the same image. ¤

Notice that Proposition 22 has a natural interpretation in the pair graph: Two-way
infinite paths in the pair graph that

• after some time stay outside of ∆ correspond to positively (m− 1)-separated configu-
rations,

40

• before some time stay outside of ∆ correspond to negatively (m− 1)-separated config-
urations, and

• always stay outside of ∆ correspond to totally (m− 1)-separated configurations

with the same image under G.

2.7 Two-dimensional CA and tilings

Proposition 6 and Corollaries 14, 16 and 18 prove all positive implications in Figure 9. For
the negative implications that are common with the one-dimensional case we use the one-
dimensional CA of Example 11. The d-dimensional version of this CA uses neighborhood
{(0, 0, . . . , 0), (1, 0, 0, . . . , 0)} and the same local rule f . This means that the space consists
of independently operating one-dimensional CA along the first dimension. It was shown in
Example 11 that the one-dimensional version is surjective but not injective. The restriction
GF to finite configurations is surjective if 2 is taken as the quiescent state and not surjective
if 0 is taken as the quiescent state. In the one-dimensional case injectivity and surjectivity of
G are always equivalent to the injectivity and surjectivity, respectively, of GP , the restriction
of G to totally periodic configurations, so GP in this example is surjective but not injective.
Clearly the d-dimensional version has all these same properties, so this example provides all
the negative implications shown in Figure 9 except for one. To complete the picture we need
an example of a two-dimensional CA which is not reversible, while GP is injective. For such
an example, and for other forthcoming considerations on two-dimensional CA, we turn to
plane tilings.

Tilings are a topic of another course Tilings and Patterns, so we refer to that class for
more details and complete proofs of the results concerning tilings. However, we can easily
present here the relevant results (without proofs), and see how they can be applied on cellular
automata.

A tile set T = (T, N,R) consists of a finite set T whose elements are the tiles, a neigh-
borhood vector N defined analogously to (1) as a vector of m distinct elements of Z2, and
a local matching rule R ⊆ Tm which gives a relation specifying which tilings are considered
valid. Tilings are configurations t ∈ T Z

2
. A tiling is valid at cell ~n ∈ Z2 if and only if

[t(~n + ~n1), t(~n + ~n2), . . . , t(~n + ~nm)] ∈ R,

that is, the neighborhood of ~n contains a matching combination of tiles. Tiling t ∈ T Z
2

is
called valid if it is valid at at all positions ~n ∈ Z2, and we say that the tile set T then admits
tiling t. Let V (T) be the set of all valid tilings admitted by T .

There is an apparent similarity in the definitions of tile sets and two-dimensional cellular
automata. The only difference is that instead of a dynamic local rule f , tilings are based on
a static matching relation R.

A fundamental property of cellular automata is that they commute with translations.
The tiling counter part states the obvious fact that set V (T) is invariant under translations.
The second fundamental property is the continuity of CA functions. The tiling counter part

41

of this fact states that the set of valid tilings is closed, that is, the limit of a converging
sequence of valid tilings is also valid. Proofs are straightforward.

Proposition 26 Let T = (T, N, R) be a tile set.

(i) If t is a valid tiling and τ is a translation of the plane then τ ◦ t is a valid tiling.

(ii) Suppose t1, t2, . . . is a converging sequence where for every ~n ∈ Z2 there is k such that
ti is valid at cell ~n for all i ≥ k. Then limi→∞ ti is a valid tiling.

¤

A direct consequence of (ii) is that a tile set that can tile arbitrarily large squares, admits
a tiling of the whole space:

Corollary 27 Suppose T = (T, N, R) is a tile set such that for every finite D ⊆ Z2 there is
t ∈ T Z

2
that is valid at every ~n ∈ D. Then T admits a valid tiling of the plane.

Proof. Let ~r1, ~r2, . . . be an enumeration of elements of Z2, and for every j ∈ Z+ let

Dj = {~r1, ~r2, . . . , ~rj}.

The hypothesis of the corollary states that there is tj ∈ T Z
2

that is valid at every ~n ∈ Dj.
Let t be the limit of a converging subsequence of t1, t2, It follows from Proposition 26(ii)
that t is a valid tiling. ¤

A popular way to describe a tile set is to use Wang tiles. Wang tiles use the von Neumann
neighborhood. The tiles are viewed as unit squares whose edges are colored, and the local
matching rule is given in terms of these colors: A tiling is valid at cell ~n ∈ Z2 iff each of the
four edges of the tile in position ~n have the same color as the abutting edge in the adjacent
tile.

Example 16. Consider the two Wang-tiles A and B shown in Figure 20(a). Since all four
neighbors of tile A have to be copies of B, and vice versa, the only valid tilings are infinite
checkerboards where A’s and B’s alternate, as shown in Figure 20(b). ¤

Let ~r 6= ~0. A tiling t ∈ T Z
2

is called ~r-periodic if it is invariant under translation by ~r,
that is, if

t(~n) = t(~n + ~r) for all ~n ∈ Zd.

A tiling is totally periodic if it is periodic with respect to two linearly independent vectors.
A totally periodic tiling is always periodic with respect to σk

1 and σk
2 for some k > 0, where

σ1 and σ2 are the horizontal and vertical shifts by one cell. The tiling in Figure 20(b) is
totally periodic since it is invariant under σ2

1 and σ2
2.

The following proposition states the fact that if a tile set admits some periodic tiling
then it also admits a totally periodic tiling:

42

B

������
������
������

������
������
������

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

A

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

(a)

A

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

������
������
������
������������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
�������
�����
�����

�����
�����
�����

�����
�����
�����
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
����������
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

B

A

AB

A B

B

A B A B

A B A B

A

B A B A

BAB

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

(b)

Figure 20: (a) Two Wang-tiles, and (b) part of a valid tiling.

Proposition 28 If a tile set admits an ~r-periodic tiling for some ~r 6= ~0 then it also admits
a totally periodic tiling.

Proof. We can suppose that the tile set has radius-r neighborhood, for some r ∈ Z+. If not,
we can add dummy neighbors as in the case of cellular automata until the neighborhood has
this shape.

Let t ∈ T Z
2

be an ~r-periodic tiling, for some ~r = (a, b). Let us assume without loss of
generality that b 6= 0. The case a 6= 0 is symmetric. We can further suppose that b ≥ r
because tiling t is k~r -periodic for all integers k.

Consider rectangular regions whose widths and heights are w = 2(|a| + r) and h = b,
respectively. Let us partition the plane into such rectangular regions in a way that is invariant
under translations by ~r and by (w, 0), see Figure 21(a). Because also t is invariant under
translations by ~r the sub-patterns of t in these rectangles are repeated as indicated in the
figure. Since there are only a finite number of different sub-patterns with a fixed finite
domain, it follows that some pattern A must appear twice on the same horizontal strip. It
means that in tiling t there is an infinite strip S in the direction of ~r whose borders consist
of copies of A, see Figure 21(b).

Because the width of the rectangle is sufficiently large the neighborhood of the right (left)
half of each A in the strip S does not contain any cells to the left (right, respectively) of S.
Consequently, an everywhere valid totally periodic tiling can be formed by repeating strip
S horizontally as shown in Figure 21(c).

¤

An interesting fact is that there exist tile sets that only allow non-periodic tilings. A tile
set is called aperiodic if

(i) it admits some valid tilings, but

(ii) it does not admit any valid periodic tilings.

43

(a,b) A B C

A B C

A B C

A B C

(a)

A X A

A X A

A X A

A X A

(b)

A

r

r

>r

>r

X

X

X

X X

X

X

XA

A

A

A A

A

A A

A

A

(c)

Figure 21: Illustrations for the proof of Proposition 28: (a) Partitioning of the plane into
rectangles, (b) an infinite strip S in the direction of the period, and (c) a totally periodic
tiling.

It was believed for a long time that aperiodic tile sets do not exist. This belief was refuted
in 1966 by R.Berger who constructed a tile set that enforces non-periodicity. Note that valid
tilings that are not periodic are easy to construct — the difficulty lies in the fact that all
valid tilings must be non-periodic.

Proposition 29 There exist aperiodic sets of Wang tiles.

We skip the proof here. Aperiodic tile sets were constructed in the Tiling and Patterns
course. For example, the 14 Wang tiles in Figure 22 were shown there to form an aperiodic
set. In these tiles, rational numbers represent colors.

Aperiodic tile sets provide examples of cellular automata with unexpected properties:

44

1

-1 -1

2

1

-1 0

1

0

0 -1

1

1

0 0

2

2

-1
3 0

1

2

0 1
3

1

2

1
3

2
3

1

2

1
3

-1
3

2

2

2
3 0

2

1

0 -1
3

1

1

1
3 0

1

1

2
3

1
3

1

1

-1
3

1
3

0

1

0 2
3

0

Figure 22: An aperiodic set of 14 Wang tiles.

Example 17. Let T = (T, N, R) be an aperiodic set of Wang tiles. Consider the following
two-dimensional CA that uses the von Neumann neighborhood and whose state set is T ∪{q}
where q 6∈ T is the quiescent state. Each cell checks if the states in its neighborhood are
different from q and if they are, the cell checks whether the colors of its sides match with
the adjacent tiles. If all four sides match in color then the cell does not change its state. In
all other cases the state becomes q.

In this CA, every totally periodic configuration becomes eventually quiescent. This fol-
lows from the fact that after the first application of the CA on a totally periodic configuration
state q must appear since no valid periodic tiling exists. Once state q appears it starts spread-
ing. Since the configuration is totally periodic it is clear that q’s cover the whole plane after
a finite number of applications of the CA function.

On the other hand, any valid (non-periodic) tiling provides a fixed point. These, together
with the quiescent configuration, are the only fixed points, even the only temporally periodic
configurations.

Let us then modify this CA by introducing a new intermediate state p that becomes q in
one time step regardless of its neighbors. The local rule is modified so that a cell without a
tiling error changes its state to p, and in all other cases the state becomes q. This CA has the
property that the (totally periodic) configuration in which all states are equal to p has only
non-periodic pre-images. Note that such a situation cannot happen in the one-dimensional
case since any spatially periodic one-dimensional configuration that is not Garden-of-Eden
has a spatially periodic pre-image.

Yet a third variant is a CA where state p always becomes q and vice versa, while a cell
without a tiling error is unchanged. In all other cases the new state is q. This CA only has

45

non-periodic fixed points. This is again a property that no one-dimensional CA can have. ¤

It may seem that tiles and tilings are only useful in constructing two- and higher di-
mensional CA. This is however not the case. Also one-dimensional cellular automata can be
obtained from certain restricted types of tiles. We call a set T of Wang tiles NW-deterministic
if for all a, b ∈ T , a 6= b, either the upper edges of a and b or the left edges of a and b have
different colors. Then in every valid tiling each tile is uniquely determined by its left and
upper neighbor. We define analogously NE-, SW- and SE-deterministic tile sets.

The aperiodic tile set in Figure 22 is not NW-deterministic since there are two tiles with
labels 0 and 1 on their left and upper edges, respectively. However, there are aperiodic tile
sets that are NW-deterministic. For example, Amman’s aperiodic tile set from 1977 shown
in Figure 23 is easily verified NW- deterministic (and simultaneously also SE-deterministic!)
We skip the proof of its aperiodicity, see for example Grünbaum, Shephard: Tilings and
Patterns. One can show that there even exist aperiodic tile sets that are deterministic in all
four cornerwise directions (proof skipped):

Proposition 30 There is an aperiodic set of Wang tiles that is NW-, NE-, SW- and SE-
deterministic. ¤

4

2

1

1

2

3 4

3

4

4

4 6

6

5

5

3

3

2

5

2

4 5

1 2

3

3

1 1

6 4

1

6

2

3

4

3

6

4

3

6

3

4

5

4

3

5

4

3

4

4

2

5

2

3

2

5

1

1

6

1

3

2

6

1

Figure 23: Amman’s aperiodic NW- and SE-deterministic set of 16 Wang tiles.

Consider now a valid tiling of the plane by NW-deterministic tiles. Each tile is uniquely
determined by its left and upper neighbor. Then tiles on each diagonal in the NE-SW
direction locally determine the tiles on the next diagonal below it. If we interpret these
diagonals as configurations of a CA then there is a local rule such that valid tilings are
space-time diagrams of the CA, see Figure 24.

Example 18. Let T = (T, N, R) be the Amman’s aperidic tile set in Figure 23. Consider
the one-dimensional radius-1

2
CA whose state set is S = T ∪{q} where q 6∈ T is the quiescent

state. The local rule f : S2 −→ S is

f(x, y) =

{
z, if x, y, z ∈ T and they match as in Figure 24(a),
q, otherwise.

46

x

y

z

(a) (b)

Figure 24: NW-deterministic sets of Wang tiles: (a) there is at most one matching tile z
for any x and y, (b) diagonals of NW-deterministic tilings interpreted as configurations of
one-dimensional CA.

If c is a spatially periodic configuration then for some t ∈ Z+ configuration Gt(c) contains
state q, as otherwise a periodic tiling would exist. State q spreads to the left, so after a finite
number of steps all cells are in state q. All spatially periodic configurations hence evolve
into the quiescent configuration.

On the other hand, Amman’s tile set admits a valid (non-periodic) tiling. Diagonals of
the tiling provide configurations of a two-way infinite orbit in which no cell is in state q.
Clearly such orbits cannot be periodic. The only temporally periodic configuration is the
quiescent configuration, which is also a fixed point. ¤

A directed tile is a tile that is associated a follower vector ~f ∈ Z2. Let T = (T, N, R) be
a tile set, and let F : T −→ Z2 be a function that assigns tiles their follower vectors. We call
D = (T,N,R, F) a set of directed tiles. Let t ∈ T Z

2
. For every ~p ∈ Z2 we call ~p + F (t(~p))

the follower of ~p in t. In other words, the follower is the cell whose position relative to ~p is
given by the follower vector of the tile in cell ~p.

Sequence ~p1, ~p2, . . . , ~pk where all ~pi ∈ Z2 is a (finite) path in t if

~pi+1 = ~pi + F (t(~pi))

for all 1 ≤ i < k. In other words, a path is a sequence of cells such that the next cell is
always the follower of the previous cell. One-way infinite and two-way infinite paths are
defined analogously.

In our forthcoming considerations the follower of each tile is one of the four adjacent
positions:

F (a) ∈ {(±1, 0), (0,±1)} for all a ∈ T .

47

In this case the follower is indicated in drawings as a horizontal or vertical arrow over the
tile, see Figure 25 for an example. From now on we assume only such followers.

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

(a)

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
������
������
������
������

������
������
������
������������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
�������
�����
�����

�����
�����
�����

�����
�����
�����
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������
������
������

������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
����������
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

(b)

Figure 25: (a) Three directed Wang tiles, and (b) a path on a valid tiling.

A set of directed tiles is said to have the plane-filling property if it satisfies the following
two conditions:

(a) It admits a valid tiling of the plane, and

(b) For any configuration t ∈ T Z
2
, and for any one-way infinite path ~p1, ~p2, ~p3, . . . following

the arrows on t, if the tiling in t is valid at ~pi for all i = 1, 2, 3, . . ., then there are
arbitrarily large squares of cells such that all cells of the squares are on the path.

Intuitively the plane-filling property means that the simple device that moves over tiling t,
verifies the correctness of the tiling it its present location, and moves on to the neighbor
as indicated by the follower arrow in its present tile, necessarily eventually either finds a
tiling error or covers arbitrarily large squares. Note that the plane-filling property does not
assume that the tiling t is correct everywhere: as long as it is correct along a path the path
must snake through larger and larger squares.

There exist tile sets that satisfy the plane filling-filling property. The proof of this result
is also skipped:

Proposition 31 There exists a set of directed Wang tiles that has the plane-filling property.
¤

A proof for Proposition 31 constructs a set of Wang tiles such that the path that does
not find any tiling errors is forced to follow the well known Hilbert-curve shown in Figure 26.

A periodic tile set can not satisfy the plane filling property: Every path on a valid tiling
finds no tiling errors, but if the tiling is totally periodic then the path is also periodic, that
is, the same directions are repeated periodically. But then the path is either a cycle or
translation invariant, and hence it cannot contain all tiles of arbitrarily large squares.

48

Figure 26: Fractions of the plane-filling Hilbert curve through 4× 4 and 16× 16 squares.

Example 19. Let D = (T, N, R, F) be a directed tile set with the plane-filling property.
Let us construct a two-dimensional CA whose state set is S = T × {0, 1}, that uses the
von-Neumann neighborhood and has the following local rule. For each (a, b) ∈ S we call
a ∈ T the tile component and b ∈ {0, 1} the bit component of the state. The tile components
do not change. A cell checks if the tiling is valid at the cell. If the tiling is not valid then
the bit component is not changed either. If the tiling is valid then the new bit component is
b1 + b2 (mod 2) where b1 and b2 are the bit components of the cell and its follower.

This CA is not reversible. If namely c0, c1 ∈ SZ
2

are such that the tile components in c0

and c1 form the same valid tiling, and the bit components of all cells in c0 and c1 are equal
to 0 and 1, respectively, then both configurations c0 and c1 have the same image c0.

But the CA is injective on periodic configurations: Suppose c0 and c1 are two different
totally periodic configurations with the same image. Since the tile components are not
changed we see that the tile components in c0 and c1 must be identical. Hence there is a cell
~p1 such that c0 and c1 have different bits at cell ~p1. Since these bits become identical in the
next configuration, the tiling must be correct at ~p1 and c0 and c1 must have different bits
in the follower position ~p2. We repeat the reasoning and obtain a one-way infinite sequence
of positions ~p1, ~p2, ~p3, . . . such that each ~pi+1 is the follower of ~pi, and the tiling is correct at
each ~pi. Then, by the plane-filling property this path covers arbitrarily large squares. But
this is in contradiction with the fact that c0 and c1 are periodic. ¤

The previous example proved the last remaining negative implication in Figure 9.

49

3 Algorithmic aspects

Next we turn to algorithmic aspects of cellular automata. These are two-fold: On one side,
there are questions concerning cellular automata (e.g. is a given CA reversible? surjec-
tive?) that we want to find algorithms for. It turns out that many of these questions are
undecidable, that is, no algorithm exists. On the other hand, cellular automata themselves
are computation devices that can be used to solve algorithmic questions. We investigate
computational universality in cellular automata.

First we review some basic concepts of the theory of computability.

3.1 Algorithms, semi-algorithms and undecidability

Intuitively, an algorithm is a mechanical procedure, specified by a finite set of instructions, to
solve some well-defined computational problem. The problem has an input instance, and the
algorithm, after a finite number of processing steps, must return the answer to the problem
for the given instance. We focus on algorithms for decision problems. These are problems
where the answer for each instance is either ”yes” or ”no”. For example, the question
whether a given cellular automaton is reversible is a decision problem. An instance of this
problem is a cellular automaton, and the answer is ”yes” or ”no” depending on whether the
CA is reversible or not. We will call these positive and negative instances of the problem,
respectively.

Computer programming is common place. There is widespread acceptance that algo-
rithms are processes that can be implemented as programs in some standard programming
language, say for example, in C. So in the following discussion algorithms for decision prob-
lems will be understood as computer programs that take the instance of the problem as
input, and return answer ”yes” or ”no”. Rather than providing actual syntactically cor-
rect programs, algorithms will be described in plain English in sufficient details so that an
experienced programmer easily can implement the algorithm on a computer.

A semi-algorithm for a decision problem is an algorithm like process that correctly returns
value ”yes” for positive instances, but on negative instances the semi-algorithm does not
return any value, i.e. it runs for ever without ever halting. Since ”yes” is the only possible
output from a semi-algorithm we can simply state that the input instance is positive if and
only if the semi-algorithm halts. Notice that there is non-symmetry between the positive and
negative instances. So a semi-algorithm for reversibility of cellular automata is not a semi-
algorithm for non-reversibility. The decision problem obtained by swapping the negative and
positive instances is called the complement of the original problem.

If an algorithm exists for a decision problem then we say that the decision problem is
decidable. Otherwise it is undecidable. If a semi-algorithm exists then the problem is called
semi-decidable. Note the following obvious facts:

(i) If a problem is decidable then also the complement problem is decidable.

(ii) Every decidable problem is also semi-decidable.

50

(iii) If a problem and its complement are both semi-decidable then the problem is decidable.

For observation (iii) note that the two semi-algorithms for the problem and its complement
can be executed concurrently until one of them returns the answer.

Example 20. The decision problem

1D Reversibility
Instance: One-dimensional cellular automaton A
Problem: Is A reversible ?

is decidable. An algorithm based on the pair graph was described in Section 2.6. Also the
problem

1D Surjectivity
Instance: One-dimensional cellular automaton A
Problem: Is A surjective ?

was shown decidable by the pair graphs technique. The higher dimensional variants are more
complicated.

2D Reversibility
Instance: Two-dimensional cellular automaton A
Problem: Is A reversible ?

is semi-decidable: A semi-algorithm enumerates one-by-one all two-dimensional cellular au-
tomata X that have the same state set as A, and tests for each candidate whether X ◦ A
computes the identity function. If such an X is found then the semi-algorithm halts, indi-
cating that the input A is reversible, otherwise the process continues without ever halting.
Observe that one can effectively construct candidates X one-by-one, form the composition
X ◦ A and test for equivalence with the identity function.

Later we see that 2D Reversibility is undecidable, so no semi-algorithm exists for recog-
nizing non-reversible CA. The decision problem

2D Surjectivity
Instance: Two-dimensional cellular automaton A
Problem: Is A surjective ?

is not semi-decidable, but its complement is. A semi-algorithm for negative instances is
based on looking for an orphan: it enumerates all finite patterns p and checks for each p
whether it is an orphan or not. If an orphan is found then the process halts, indicating that
the instance is not a surjective CA. On surjective CA the search for an orphan continues
without ever halting. ¤

In practice, the input to a program is an encoding of an instance as a string. This is
clear in the programming context, since the input to the program will be keyed in from
a keyboard, or read in from a file. In any case, inside the computer, the input will be
represented as a sequence of bits, that is, as a word over the two letter alphabet {0, 1}.

51

Each decision problem can now be associated a language over the encoding alphabet: the
language contains all those words that are encodings of positive instances. Then solving the
decision problem is equivalent to determining if a given word belongs to the corresponding
language. Notice that there are actually three types of words: encodings of positive instances,
encodings of negative instances and those words that are not valid encodings of any instances.
In the following we always assume that the encoding is effective in the sense that there is an
algorithm to determine if a given word is a valid encoding. Also the way the instances are
encoded should be natural so that the decision problem is not solved or otherwise affected
by the encoding. (For example adding letter ”+” or ”-” in front of the word to indicate
whether it is an encoding of a positive or negative instance is not acceptable, since then the
decision problem must be solved already during the encoding process!) Actually all results
concerning the decidability of a decision problem are relative to the encoding used, but all
reasonable encodings are equivalent with each other in the sense that there are algorithms to
convert between the encodings, which means that the decidability/semi-decidability status
is unaffected by the choice of the encoding.

The decision problem whether a given word belongs to language L ⊆ Σ∗ is called the
membership problem of language L. Language L is called recursive if its membership problem
is decidable, and it is called recursively enumerable (or r.e. for short) if its membership
problem is semi-decidable. Clearly a decision problem is decidable (or semi-decidable) if and
only if the membership problem for the corresponding language is recursive (or recursively
enumerable, respectively).

The number of different algorithms and semi-algorithms is countable. Each algorithm can
namely be represented as a finite string (e.g. its source code in programming language C),
and the number of different strings over any alphabet is countable. This means that there are
only countably many recursive and recursively enumerable languages over any alphabet Σ.
On the other hand, there are uncountably many different languages L ⊆ Σ∗, which implies
that many languages are not recursive (or even recursively enumerable). Their membership
problem is not decidable (or semi-decidable), so we see that there are many undecidable
decision problems. This is not surprising, but what is more interesting is that we can prove
some individual problems undecidable, and that many of these undecidable problems are
quite natural and appear in many contexts.

To obtain our first undecidable decision problem we turn to (semi-)algorithms whose
input is a semi-algorithm A. This of course means that the input is an encoding of A as, say,
a binary string representing the source code for A in language C. To clarify the distinction
we’ll denote by 〈A〉 the encoding of A over the binary alphabet. An algorithm call to A with
input w will be denoted by A(w).

The decision problem that we first prove undecidable is the following:

Semi-algorithm halting
Instance: A semi-algorithm 〈A〉 and an input string w
Problem: Does A halt on input w ?

Proposition 32 The decision problem Semi-algorithm halting is undecidable.

52

Proof. Suppose the contrary: There is an algorithm Halt that solves problem Semi-algorithm
halting. In other words, for any binary strings 〈A〉 and w algorithm call Halt(〈A〉, w) returns
value ”yes” if A is a semi-algorithm that halts on input w, and Halt(〈A〉, w) returns value
”no” otherwise. Using Halt we can construct the following semi-algorithm:

Diag(〈A〉):
if Halt(〈A〉, 〈A〉) returns ’’no’’ then halt otherwise loop forever

The semi-algorithm Diag takes as input a binary string 〈A〉. Using an algorithm call to
Halt it determines whether the input is the encoding of a semi-algorithm A that halts with
input 〈A〉, i.e. on its own encoding. If Halt(〈A〉, 〈A〉) returns value ”no” then Diag(〈A〉)
halts and if Halt(〈A〉, 〈A〉) returns ”yes” then Diag(〈A〉) enters an infinite loop and never
halts.

Consider the algorithm call Halt(〈Diag〉, 〈Diag〉). If it returns ”yes” then Diag(〈Diag〉)
should halt. But following the definition of Diag this means that Halt(〈Diag〉, 〈Diag〉)
returned ”no” when Diag made that call, a contradiction.

On the other hand, if Halt(〈Diag〉, 〈Diag〉) returns ”no” then Diag(〈Diag〉) should not
halt. That happens if and only if Halt(〈Diag〉, 〈Diag〉) returns ”yes”, again a contradiction.
Both cases lead to a contradiction, so algorithm Halt does not exist. ¤

Note that Semi-algorithm halting is semi-decidable, so its complement problem is not. To
see the semi-decidability consider the semi-algorithm that on inputs 〈A〉 and w starts to
simulate A on input w step-by-step. Halting of this process correctly identifies the positive
instances of Semi-algorithm halting.

The proof of Proposition 32 (due to A.Turing) can be understood as a variant of the
diagonal argument that Cantor used to prove that certain sets are uncountable. Imagine
an infinite two-dimensional matrix M whose rows and columns are indexed by 〈A〉 for all
semi-algorithms A, and where

M [〈A〉, 〈B〉] =

{
0, if A does not halt on input 〈B〉,
1, if A halts on input 〈B〉.

Consider the diagonal elements M [〈A〉, 〈A〉] of the matrix. Reading the diagonal and swap-
ping each value 0 ↔ 1 creates a sequence that is different from every row of the matrix.
This means that there is no semi-algorithm enlisted that would halt on exactly those inputs
〈A〉 for which A does not halt on input 〈A〉. But such a semi-algorithm should exist if
Semi-algorithm halting is decidable.

Once we established the undecidability of Semi-algorithm halting we can use reductions
to obtain new undecidable problems.

Example 21. Let us prove that is undecidable whether a given semi-algorithm halts on
some input.

Sometimes halting
Instance: A semi-algorithm 〈A〉
Problem: Does A halt on some input w ?

53

Suppose there is an algorithm S that solves Sometimes halting. Let us describe an algorithm
Halt that then solves Semi-algorithm halting: Let 〈A〉 and w be arbitrary inputs to Halt.
First string 〈B〉 is created where B is a semi-algorithm that takes one input and works as
follows: B checks whether its input is equal to w. If it is not then it enters an infinite loop.
If the input is w then it starts A with input w. Clearly B halts with input w if A halts with
input w and it does not halt on any input if A does not halt on input w.

Note that this B can be effectively created for any given A and w, that is, there is an
algorithm that outputs 〈B〉 when it gets 〈A〉 and w as input.

Algorithm Halt next takes 〈B〉 that it created and gives it as input to the hypothetical
algorithm S. From the answer it can conclude whether A halts on w.

We have described algorithm Halt that solves problem Semi-algorithm halting. This is
in contraction to Proposition 32, which means that the hypothetical algorithm S does not
exist. ¤

The previous example illustrates the idea of Turing reductions : If we want to prove that
decision problem P is undecidable we describe an algorithm for some known undecidable
problem U that makes (possibly several) calls to a hypothetical algorithm for P . Since U is
previously known to be undecidable such algorithm cannot exist. Therefore the hypothetical
algorithm for P cannot exist either.

Example 21 shows actually a reduction of more restricted type: A many-one reduction is
an algorithm that modifies an arbitrary input u for a known undecidable problem U into an
equivalent instance p of decision problem P . By equivalent it is meant that p is a positive
instance of P if and only if u is a positive instance of U . The existence of such reductions
shows that P is undecidable, because otherwise the reduction and an algorithm for P would
solve U . Notice that many-one reductions are special types of Turing reductions where the
call to the hypothetical algorithm for P is done only once, as the last step.

Finally, reductions can be used also to show that some decision problem P is not even
semi-decidable. In this case one starts with a hypothetical semi-algorithm S for for P , and
shows that there is then a semi-algorithm for some problem U that is previously known not
to be semi-decidable. In case of Turing reductions this semi-algorithm is allowed to make
any number of calls to S, while in many-one reductions only one call is made at the end.

3.2 Turing machines

Turing machines are stripped down toy computers that are extremely simple in their defi-
nition and step-by-step operations, but nevertheless powerful enough to simulate arbitrary
algorithms. It is actually common to take them as the formal definition of an algorithm.
(In this course a different approach was taken and we rather defined algorithms in terms of
computer programs, since for most people it is easier to accept these as the proper model of
computation.)

There are two reasons for us to introduce Turing machines at this stage:

54

(i) We use reductions to establish new undecidability results. Direct reductions from de-
cision problems involving semi-algorithms into simple questions concerning tilings and
cellular automata are very laborious as they involve converting given semi-algorithms
into corresponding tile sets or CA. Reductions from simple devices such as Turing
machines are shorter and easier. So a good approach is to first prove one question
concerning Turing machines (the halting problem of Turing machines) undecidable,
and to make further reduction from this simple set-up.

(ii) We want to show that cellular automata can perform arbitrary computations. This
requires simulating arbitrary (semi-)algorithms on cellular automata. As in (i), it is
much easier to show how to simulate a simple device such as a Turing machine rather
than an algorithm given in terms of, say, a C-program.

A deterministic Turing machine is specified by the following items:

• A finite state set Q,

• initial, accepting and rejecting states q0, qa, qr ∈ Q, respectively, where qa and qr are
both called halting states and qa 6= qr,

• a finite tape alphabet Γ,

• an input alphabet Σ ⊂ Γ,

• a blank tape symbol b ∈ Γ \ Σ, and

• a transition function δ : Q × Γ −→ Q × Γ × {−1, 1}. For all γ ∈ Γ we must have
δ(qa, γ) = (qa, γ, 1) and δ(qr, γ) = (qr, γ, 1).

The machine consists of a tape and a control unit. The tape is a two-way infinite sequence
of cells, each capable of storing a letter from the tape alphabet Γ. The tape positions are
indexed by Z. The content of the tape at any given time is described by a function t ∈ ΓZ

where t(i) ∈ Γ is the symbol in cell i, for any i ∈ Z.
The control unit is a finite state automaton that moves on the tape and is able to read

the symbol at its present location on the tape. Triplets

(q, i, t) ∈ Q× Z× ΓZ

are instantaneous descriptions or the configurations of the Turing machine. They contain all
information about the present state of the machine: its state q, location i on the tape and
the content t of the tape. Configurations (q, i, t) where q = qa or q = qr are called accepting
and rejecting, respectively. In both cases we say that the Turing machine halts.

In one time step the Turing machine – depending on the state of the control unit and
the tape symbol in the cell it reads – changes the state, replaces the tape symbol by a new
one and moves one position to the left or right on the tape, as specified by the transition

55

function δ. More precisely, configuration (q, i, t) becomes (q′, i + d, t′) if δ(q, t(i)) = (q′, γ, d)
and t′(i) = γ and t′(j) = t(j) for all j 6= i. We denote this move by

(q, i, t) ` (q′, i + d, t′).

The reflexive, transitive closure of ` is denoted by `∗, that is,

(q, i, t) `∗ (q′, i′, t′)

if and only if (q′, i′, t′) can be reached from (q, i, t) by executing zero or more Turing machine
steps.

Turing machines are used to recognize languages over input alphabet Σ. For any w ∈ Σ∗

we denote by tw ∈ ΓZ the tape content where we have written word w in cells 1, 2, . . . , |w|
and all other cells contain the blank symbol b. The machine accepts word w if and only if

(q0, 1, tw) `∗ (qa, i, t)

for some i ∈ Z and t ∈ ΓZ, that is, the machine halts in the accepting state qa. Otherwise the
word is rejected. Note that rejection can happen in two different ways: Either the machine
halts in the rejecting state qr or it never halts. The set of accepted words is the language
L(M) ⊆ Σ∗ recognized by Turing machine M .

Example 22. Consider the following Turing machine:

• Q = {A,B, qa, qr} where A = q0 is the initial state and qa and qr are the accepting and
rejecting halting states.

• Γ = {0, 1} where 0 is the blank symbol and Σ = {1}.
• The transition function δ is as follows:

(A, 0) 7→ (B, 1, 1)
(A, 1) 7→ (B, 1,−1)
(B, 0) 7→ (A, 1,−1)
(B, 1) 7→ (qa, 1, 1)

(and qa and qr are halting.)

With the empty input word (=on the initially blank tape) the machine halts after six moves:

a

... 0 0 0 0 1 0 0 0 ...
B

... 0 0 0 0 1 1 0 0 ...
A

... 0 0 0 0 1 1 0 0 ...
B

... 0 0 0 1 1 1 0 0 ...
A

... 0 0 1 1 1 1 0 0 ...
B

A
... 0 0 0 0 0 0 0 0 ...

... 0 0 1 1 1 1 0 0 ...
q

56

This example is a two-state busy beaver over the two letter alphabet: It runs on the initially
blank tape for the longest possible time among all Turing machines that have two non-halting
states and two tape letters, and that halt on the initially blank tape.

The numbers of moves by the three and four state busy beavers over the two letter
alphabet are 21 and 107, respectively. The number of moves by five and six state busy
beavers are not known but they are at least 47176870 and 102879, respectively. ¤

It is easy to see that the language recognized by a Turing machine is recursively enumer-
able: For any Turing machine one can construct a semi-algorithm that simulates the Turing
machine step-by-step on any given input word until the word gets accepted. If the word is
not accepted then the semi-algorithm does not halt.

What is more complicated to see is that every recursively enumerable language is rec-
ognized by a Turing machine. This is based on the fact that Turing machines — despite
the simplicity of their individual moves — can simulate the computation steps of arbitrary
(semi-)algorithms. The proof of this fact is beyond the scope of the present notes:

Proposition 33 There is an algorithm that for any given (semi-)algorithm A whose input
is a word over alphabet Σ constructs a Turing machine M with the same input alphabet Σ
such that on every input w ∈ Σ∗

• if A returns ”yes” then M eventually enters its accepting state f ,

• if A returns ”no” then M eventually enters its rejecting state r, and

• if A does not halt then M does not halt either.

¤

From the proposition we directly get the following corollary:

Corollary 34 A language is recursively enumerable if and only if there is a Turing machine
that recognizes it. ¤

Consider then Turing machines that have the property that they halt on every input word.
Such Turing machines only recognize recursive languages since an algorithm can simulate
them. Also the converse is true, as implied by Proposition 33:

Corollary 35 A language is recursive if and only if it is recognized by a Turing machine
that halts on every input word. ¤

Note: It is customary in the field of theoretical computer science to take Turing machines as
the formal definition of (semi)algorithms. In this case the above corollaries are definitions,
and theorems can be stated to the effect that (semi)algorithms defined under other models
(C-programs, for example) are equivalent to Turing machines. We did the process in reverse:

57

(semi)algorithms were defined in terms of C-programs, and the Corollaries above tie them
to Turing machines.

Using Proposition 33 one can reduce decision problems concerning semi-algorithms into
analogous questions concerning Turing machines. For example, undecidability of Semi-
algorithm halting (Proposition 32) implies that it is undecidable if a given Turing machine
halts on a given input word. Undecidability of Sometimes halting (Example 21) implies that it
is undecidable if a given Turing machine halts on some input. The most elementary problem
concerning Turing machines asks whether a given Turing machine halts when it is started
on the blank tape:

TM halting on blank tape
Instance: A Turing machine M
Problem: Does M accept the empty input word ?

Proposition 36 The decision problem TM halting on blank tape is undecidable. More pre-
cisely, it is semi-decidable while the complement problem is not semi-decidable.

Proof. The semi-decidability follows from an effective step-by-step simulation of the Turing
machine until (if ever) it halts. To prove undecidability we reduce Semi-algorithm halting.
For any given semi-algorithm A and its input w we can effectively construct a semi-algorithm
B that totally ignores its input u and simply calls A with input w. Clearly this B halts
on all inputs (including the empty word) if A halts on input w and does not halt on any
input (including the empty word) if A does not halt on input w. Using Proposition 33 we
effectively construct a Turing machine M that is equivalent to B. Machine M hence halts
on the initially empty tape if and only if A halts on w. We have many-one reduced the
undecidable problem Semi-algorithm halting into TM halting on blank tape. ¤

Example 23. Consider the following busy beaver function BB : N × N −→ N where
BB(n,m) is the largest number t such that there is a Turing machine with n non-halting
states and m tape symbols that makes t moves on the blank tape and then halts. In
Example 22 we discussed this function and mentioned that BB(2, 2) = 6, BB(3, 2) = 21,
BB(4, 2) = 107, BB(5, 2) ≥ 47176870 and BB(6, 2) ≥ 102879. It follows from Proposition 36
that BB grows faster than any function that can be computed. Namely, if there would be an
algorithm A that outputs for any given n ∈ N and m ∈ N a value t such that BB(n,m) ≤ t
then this algorithm could be used to effectively solve TM halting on blank tape: For any given
Turing machine M we would namely obtain using algorithm A a number t such that if M
halts on the blank tape, it does so within t steps. Then it is an easy matter to make the
first t moves of M to see if it halts. It follows hence from Proposition 36 that algorithm A
cannot exist.

Such functions that grow faster than any computable function are associated with all
undecidable problems we encounter. ¤

58

3.3 Undecidability in tiles

In order to proof undecidability results for cellular automata it is convenient to take an
intermediate step and prove certain questions concerning Wang tilings undecidable. The
proofs are based on the fact that valid tilings can be forced to contain a complete simulation
of a given Turing machine. To any given Turing machine M we associate the Wang tiles
shown in Figure 27, and we call these tiles the machine tiles of M . Note that in the
illustrations, instead of colors, we use labeled arrows on the sides of the tiles. Two adjacent
tiles match if and only if an arrow head meets an arrow tail with the same label. Such
arrow representation can be converted into the usual coloring representation of Wang tiles
by assigning to each arrow direction and label a unique color.

(d)

q

a

qaa

a qa qa

a’ a’

q’ q’ q

a

qa

(a) (b) (c)

Figure 27: Machine tiles associated to a Turing machine.

The machine tiles of M contain the following tiles:

(i) For every tape letter a ∈ Γ a tape tile of Figure 27(a),

(ii) For every tape letter a ∈ Γ and non-halting state q ∈ Q \ {qa, qr} an action tile of
Figure 27(b) or (c). Tile (b) is used if

δ(q, a) = (q′, a′,−1)

and tile (c) is used if
δ(q, a) = (q′, a′, +1).

(iii) For every tape letter a ∈ Γ and non-halting state q ∈ Q \ {qa, qr} two merging tiles
shown in Figure 27(d).

The idea of the tiles is that a configuration of the Turing machine M is represented as a
row of tiles in such a way that the cell currently scanned by M is represented by an action
tile, its neighbor where the machine moves into has a merging tile and all other tiles on the
row are tape tiles. If this is a row of a valid tiling then it is clear that the rows above must
be similar representations of subsequent configurations in the Turing machine computation,
until the machine halts.

59

Let us begin with the seeded variant of the tiling problem. In this decision problem we
are given a finite set T of Wang tiles and one seed tile s ∈ T , and we ask whether there
exists a valid tiling of the plane where s appears at least once:

Tiling problem with the seed tile
Instance: A finite set T of Wang tiles and a seed tile s ∈ T
Problem: Does there exist a valid tiling t of the plane such that t(0, 0) = s ?

Proposition 37 The Tiling problem with the seed tile is undecidable. More precisely, it is
not semi-decidable while the complement problem is semi-decidable.

Proof. The semi-decidability of the complement problem follows from the following semi-
algorithm: For r = 1, 2, 3, . . . try all tilings of the radius r square around the origin to see if
there is a valid tiling of the square such that the origin contains the seed tile s. If for some
r such a tiling is not found then halt and report that there is no tiling containing the seed
tile.

Consider then the undecidability. We reduce the TM halting on blank tape, proved unde-
cidable in Proposition 36. For any given Turing machine M we construct the machine tiles
of Figure 27 as well as the four tiles shown in Figure 28. These are the blank tile and three
initialization tiles. They initialize all tape symbols to be equal to blank b, and the Turing
machine to be in the initial state q0. The second initialization tile is chosen as the seed tile
s.

0

(a) (b)

q bb b

Figure 28: (a) the blank tile, and (b) three initialization tiles.

Let us prove that a valid tiling containing a copy of the seed tile exists if and only if the
Turing machine M does not halt when started on the blank tape:

”⇐=”: Suppose that the Turing machine does not halt on the blank tape. Then a valid tiling
exists where one horizontal row is formed with the initialization tiles, all tiles below this row
are blank, and the rows above the initialization row contain consecutive configurations of
the Turing machine.

”=⇒”: Suppose that a valid tiling containing the middle initialization tile exists. The
seed tile forces its row to be formed from the initialization tiles, representing the initial

60

configuration of the Turing machine on the blank tape. The machine tiles force following
horizontal rows above the seed row to contain the consecutive configurations of the Turing
machine. There is no tile containing a halting state so the Turing machine does not halt —
otherwise a valid tiling could not be formed. ¤

In the following variant we are given a Wang tile set T and specify one tile B ∈ T as
the blank tile. The blank tile has all four sides colored by the same color. A finite tiling is
a tiling where only a finite number of tiles are non-blank. A finite tiling where all tiles are
blank is called trivial.

Finite tiling problem
Instance: A finite set T of Wang tiles and a blank tile B ∈ T
Problem: Does there exist a valid finite tiling that is not trivial ?

Proposition 38 The Finite tiling problem is undecidable. It is semi-decidable while its com-
plement is not semi-decidable.

Proof. For semi-decidability notice that we can try all valid tilings of larger and larger squares
until we find a tiling of a square where all tiles on the boundary are blank, while some interior
tile is different from the blank tile. If such a tiling is found then the semi-algorithm halts,
indicating that a valid, finite, non-trivial tiling exists.

To prove the undecidability we reduce the problem TM halting on blank tape. For any
given Turing machine M we construct the machine tiles of Figure 27 as well as the blank
tile, boundary tiles and the halting tiles shown in Figure 29.

The halting tiles of Figure 29(b) are constructed for all tape letters a ∈ Γ and both halting
states q = qa and q = qr. The purpose of the halting tiles is to erase the Turing machine
from the configuration once it halts. The lower border tiles of Figure 29(c) initialize the
configuration to consist of the blank tape symbol b and the initial state q0. The top border
tiles are made for every tape symbol a ∈ Γ. They allow the absorption of the configuration
as long as the Turing machine has been erased. The border tiles on the sides are labeled
with symbols L and R to identify the left and the right border of the computation area.

Let us prove that the tile set admits a valid, finite, non-trivial tiling if and only if the
Turing machine halts on the empty tape.

”⇐=”: Suppose that the Turing machine halts on the blank tape. Then a tiling exists where
the boundary tiles isolate a finite portion of the plane (a ”board”) for the simulation of the
Turing machine, the bottom tiles of the board initialize the Turing machine on the blank
tape, and inside the board the Turing machine is simulated until it halts. After halting only
tape tiles are used until they are absorbed by the topmost row of the board. If the board
is made sufficiently large the entire computation fits inside the board, so the tiling is valid.
All tiles outside the board are blank so the tiling is finite.

”=⇒”: Suppose then that a finite, non-trivial tiling exists. The only non-blank tiles with
blank bottom edge are the lower border tiles of Figure 29(c), so the tiling must contain a

61

q

q b
0 b

L

L

L

(b)(a)

bL R

R

R

Ra

(c)

a

q

a

a

a

Figure 29: (a) the blank tile, (b) halting tiles, and (c) border tiles.

lower border tile. Horizontal neighbors of lower border tiles are lower border tiles, so we see
that the only way to have a finite tiling is to have a contiguous lower border that ends at
both sides in a corner tile where the border turns upwards. The vertical borders must again
— due to the finiteness of the tiling — end at corners where the top border starts. All in all
we see that the boundary tiles are forced to form a rectangular board.

The lower boundary of the board initializes the Turing machine configuration on the
blank tape, and the rows above it are forced by the machine tiles to simulate consecutive
configurations of the Turing machine. Because the Turing machine state symbol is not
allowed to touch the side or the upper boundary of the board, the Turing machine must be
erased by a halting tile, i.e. the Turing machine must halt. ¤

The two tiling problem variants above have been fairly simple to prove undecidable
because we have been given the tools to force the initialization of the Turing machine in
valid tilings. The next problem is is more complicated:

Tiling problem
Instance: A finite set T of Wang tiles
Problem: Does there exist a valid tiling ?

The Tiling problem was proved undecidable by R.Berger in 1966, in the same piece of work
where the first aperiodic tile set was constructed. This is not coincidence: if aperiodic tile
sets would not exist then the Tiling problem would be decidable. One could namely try all
tilings of larger and larger squares until one of the following two conditions is satisfied:

• A square is found that cannot be tiled, or

62

• A tiling of a square is found where the top and the bottom colors match and left and
the right sides match.

The first condition happens if and only if no valid tiling of the plane exists, and the second
condition is satisfied if and only if a periodic tiling exists. If aperiodic tile sets did not
exist then one of the two conditions would always be satisfied, and this would provide then
an algorithm for the Tiling problem. But aperiodic tile sets fail to satisfy either of the two
conditions.

We state Berger’s result without a proof (it has been proven in the Tilings and Patterns
class). In fact, an even stronger variant will be used in the next section:

NW-deterministic tiling problem
Instance: A NW-deterministic set T of Wang tiles
Problem: Does there exist a valid tiling ?

Proposition 39 The NW-deterministic tiling problem is undecidable. More precisely, the
problem is not semi-decidable but its complement is semi-decidable. ¤
Finally, as the last variant of the tiling problem we state without a proof the undecidability
of the problem that asks whether a given tile set admits a periodic tiling:

Periodic tiling problem
Instance: A finite set T of Wang tiles
Problem: Does there exist a valid periodic tiling ?

Proposition 40 The Periodic tiling problem is undecidable. More precisely, the problem is
semi-decidable while its complement is not. ¤

3.4 Undecidable questions concerning cellular automata

Next we turn to our main topic and prove several questions concerning cellular automata
undecidable. The input instance to these decision problems include a cellular automaton.
The problems typically concern properties of its global function G. We usually state that
the instance of a problem is a CA function G, but one should keep in mind that, in fact, the
input instance is given in terms of the local rule that specifies G.

We start with a problem of deciding if a given CA function has trivial behavior. A CA
function G is called nilpotent if all configurations eventually lead to the quiescent configura-
tion. In fact, then there is a constant n ∈ Z+ such that Gn(c) is the quiescent configuration
for all c ∈ SZ

d
. To see this, consider a transitive configuration t ∈ SZ

d
that contains a

copy of every finite pattern as a subpattern, and choose n such that Gn(t) is the quiescent
configuration. It is easy to see that with this choice of n configuration Gn(c) is quiescent for
all c ∈ SZ

d
.

2D nilpotency
Instance: A two-dimensional cellular automaton G
Problem: Is G nilpotent ?

63

Proposition 41 Decision problem 2D nilpotency is undecidable. It is semi-decidable while
the complement is not semi-decidable.

Proof. For semi-decidability notice that, for n = 1, 2, 3 . . ., we can effectively construct a
cellular automaton whose global function is Gn and check whether the local rule of the CA
maps everything into the quiescent state. If that happens for some n then we halt and report
that the CA is nilpotent.

To prove undecidability we reduce the Tiling problem. For any given Wang tile set T we
construct a cellular automaton whose state set is S = T ∪ {q} and the local rule turns a cell
into state q except if the cell and its four neighbors are tiles that match in color, in which
case the state is not changed. (This same construction was already used in Example 17).
Let us prove that the CA is not nilpotent if and only if T admits a valid tiling.

”⇐=”: Suppose a valid tiling exists. This tiling, as a configuration of the CA, is a fixed
point so it never becomes quiescent. The CA is not nilpotent.

”=⇒”: Suppose no valid tiling exists. Then there is number n such that no valid tiling of
an n× n square exists. This means that after the first application of the CA, regardless of
the initial configuration, state q appears in every n × n square. Since state q spreads it is
clear that the configuration becomes eventually quiescent. Hence the CA is nilpotent. ¤

In fact, using the undecidability of the NW-deterministic tiling problem, we can prove that
the nilpotency problem is undecidable even for one-dimensional CA:

1D nilpotency
Instance: A one-dimensional cellular automaton G
Problem: Is G nilpotent ?

Proposition 42 Decision problem 1D nilpotency is undecidable. It is semi-decidable while
the complement is not semi-decidable.

Proof. Semi-decidability follows in the same way as in the two-dimensional case. To
prove undecidability we reduce the NW-deterministic tiling problem. Let T be a given NW-
deterministic tile set. We construct a one-dimensional CA whose state set is S = T ∪{q} and
the local rule turns a cell into state q except in the case that the cell and its right neighbor
are in states x, y ∈ T , respectively, and tile z ∈ T exists so that tiles x, y, z match as in
Figure 24(a). In this case z is the new state of the cell. This same construction was already
used in Example 18.

Let us prove that the CA is not nilpotent if and only if T admits a valid tiling.

”⇐=”: Suppose a valid tiling exists. If c ∈ T Z is a diagonal of this tiling then the configura-
tions Gn(c) in its orbit are subsequent diagonals of the same tiling, for all n = 1, 2, This
means that c never becomes quiescent, and the CA is not nilpotent.

64

”=⇒”: Suppose no valid tiling exists. Then there is number n such that no valid tiling of an
n×n square exists. This means that for every initial configuration c ∈ SZ the configuration
G2n(c) is quiescent: If it is not quiescent then a valid tiling of an n× n square can be read
from the space time diagram of configurations c,G(c), . . . , G2n(c). We conclude that the CA
is nilpotent. ¤

Consider then the problem of determining if a given two-dimensional CA is surjective. To
prove that this question is undecidable we reduce the Finite tiling problem. In the reduction
we need a particular set D of 23 Wang tiles shown in Figure 30. The topmost tile is called
blank. All other tiles have a unique incoming and outgoing arrow. In valid tilings arrows
and labels must match. The non-blank tiles are considered directed: the follower of a tile
is the neighbor directed to by the outgoing arrow on the tile. Since each non-blank tile has
exactly one incoming arrow, it is clear that if the tiling is valid at a tile then the tile is the
follower of exactly one of its four neighbors.

The tile at the center in Figure 30 where the dark and light thick horizontal lines meet is
called the cross. It has a special role in the forthcoming proof. A rectangular loop is a valid
tiling of a rectangle using tiles in D where the follower path forms a loop that visits every
tile of the rectangle, and the outside border of the rectangle is colored blank. See Figure 31
for an example of a rectangular loop through a rectangle of size 12× 7. (The edge labels are
not shown for the sake of clarity of the figure.) It is easy to see that a rectangular loop of
size 2n×m exist for all n ≥ 2 and m ≥ 3. Any tile in an even column in the interior of the
rectangle can be made to contain the unique cross of the rectangular loop.

The tile set D has a property that resembles the plane-filling property:

Lemma 43 Let t ∈ DZ2
be a tiling, and ~p1, ~p2, ~p3, . . . a path in t such that the tiling t is

valid at ~pi for all i = 1, 2, 3, If the path covers only a finite number of different cells then
the cells on the path form a rectangular loop.

Proof. Because the path only covers a finite number of different cells, the path must form a
cycle. A cycle must contain arrows in all four directions. In particular, an arrow to the left
must appear. Only the tiles at the bottom row of Figure 30 involve left arrows, so the path
must contain a horizontal segment of left arrows that ends in a lower left corner tile where
the path turns upwards and has label SW. From there on the label SW forces the path to
continue upwards (forming the left border of the rectangle) until it turns to the right, with
label A. In this vertical segment the label of the arrow must change from SW to NW, so
a unique horizontal dark thick line gets initiated. Label A forces the path to immediately
turn down. The path can only continue downwards until it eventually turns when the tile
below has label C. The only tile with label C on the top edge contains a left arrow, so the
tile must be next to the lower left corner tile.

Next the path has no other choice but to turn up and to continue upwards until it reaches
the top of the rectangle where label B on its left side forces it to turn right. Continuation
of the same reasoning shows that the path must continue up and down filling the rectangle
until at some point the downward path has labels NE. This label must be changed to SE at

65

A

SW

NW

NW

NW

NW

SW

SW

SW

NE

NE

SE

NE

NE

SE

SE

SE

A A B B A

C

C

C

Figure 30: Tiles used in the proof of the undecidability of 2D surjectivity.

a tile where a horizontal light thick line ends. At the bottom of the rectangle the path must
then turn leftwards to complete the cycle into a rectangular loop. The rectangle contains a
unique horizontal thick bar, and the bar has to switch color once from dark to light, so the
interior of the rectangle contains a unique cross. ¤

Now we are ready to prove the undecidability of 2D Surjectivity.

Proposition 44 The decision problem 2D Surjectivity is undecidable. It is not even semi-
decidable while the complement problem is semi-decidable.

Proof. The semi-decidability of non-surjectivity was already discussed in Example 20, so it
is enough to prove undecidability. We reduce the Finite tiling problem into 2D Surjectivity,

66

Figure 31: A rectangular loop of size 12× 7.

using the tile set D discussed above in Lemma 43. Let b and c be the blank and the cross of
set D. For any given tile set T with blank tile B we construct the following two-dimensional
cellular automaton. The state set S contains triplets

(d, t, x) ∈ D × T × {0, 1}
under the following constraints:

• If d = c then t 6= B, and

• if d = b or d is any tile containing label SW, SE, NW, NE, A, B or C, then t = B.

In other words, the cross must be associated with a non-blank tile in T while the blank of D
as well as all the tiles on the boundary of a rectangular loop are forced to be associated with
the blank tile of T . The triplet (b, B, 0) where both tile components are blank and the bit
is 0 is the quiescent state of the CA. The local rule is as follows: Let (d, t, x) be the current
state of a cell.

• If d = b then the state is not changed.

• If d 6= b then the cell verifies the validity of the tilings according to both D and T at
the cell. If either tile component has a tiling error then the state is not changed. If
both tilings are valid then the cell modifies its bit component by adding the bit of its
follower modulo 2.

67

Let us prove that this CA is not surjective if and only if T admits a valid, finite, non-trivial
tiling.

”⇐=”: Suppose a valid, finite, non-trivial tiling t ∈ T Z
2

exists. Consider a configuration of
the CA whose T -components form the valid tiling t and the D-components form a rectangular
loop whose interior covers all non-blank elements of t. Tiles outside the rectangle are all
blank and have bit 0. The cross can be positioned so that it is in the same cell as some
non-blank tile in t. In such a configuration both T and D tilings are everywhere valid. The
CA updates the bits of all tiles in the rectangular loop by performing modulo 2 addi tion
with their followers, while the bits outside the rectangle remain 0. We get two different
configurations that have the same image: In c0 all bits in the rectangle are equal to 0 while
in c1 they are all equal to 1. The local rule updates the bits so that G(c0) = G(c1) = c0.
Configurations c0 and c1 only differ in a finite number of cells, so it follows from the Garden-
of-Eden theorem (Proposition 17) that G is not surjective.

”=⇒”: Suppose then that the CA is not surjective. According to the Garden-of-Eden
theorem (Proposition 13) there are two different finite configurations c0 and c1 such that
G(c0) = G(c1). Since only bit components of states are changed, the tilings in c0 and
c1 according to D- and T -components of the states are identical. There is a cell ~p1 such
that c0 and c1 have different bits at cell ~p1. Since these bits become identical in the next
configuration, the D-tiling must be correct at ~p1 and c0 and c1 must have different bits in the
follower position ~p2. We repeat the reasoning and obtain an infinite sequence of positions
~p1, ~p2, ~p3, . . . such that each ~pi+1 is the follower of ~pi, and the D tiling is correct at each ~pi.
Moreover, c0 and c1 have different bits in each position ~pi. Because configurations c0 and c1

are finite we see that the path can only contain a finite number of distinct cells. It follows
then from Lemma 43 that the path must form a valid rectangular loop.

Also the tiling according to the T -components must be valid at each cell of the path.
Because of the constraints on the allowed triplets, the T -components on the boundary of the
rectangle are the blank B, while the cross in the interior contains a non-blank element of T .
Hence there is a valid tiling of a rectangle according to T that contains a non-blank tile and
has a blank boundary. This means that a finite, valid and non-trivial tiling is possible.

¤

Finally, consider the problem of determining if a given two-dimensional CA is reversible.
The proof of its undecidability is similar to the previous proof. Only, instead of the Finite
tiling problem we use the Tiling problem, and the special set D if directed tiles is replaced by
a tile set with the plane filling property.

Proposition 45 Decision problem 2D Reversibility is undecidable. It is semi-decidable while
the complement problem is not.

Proof. The semi-decidability was already shown in Example 20. Let us prove 2D Reversibility
undecidable by reducing the Tiling problem into it. In the reduction we use a set D of directed

68

tiles that has the plane filling property. The existence of such D was stated (without proof)
in Proposition 31.

Let T be a given set of Wang tiles that is an instance of the Tiling problem. One can
effectively construct a two-dimensional CA whose state set is

S = T ×D × {0, 1}

and the local rule updates the bit component of a cell as follows:

• If either the T - or the D-components contain a tiling error at the cell then the state
of the cell is not changed, but

• if the tilings according to both T - and D-components are valid at the cell then the bit
of the follower cell (according to the direction in the D-component) is added to the
present bit value modulo 2.

The tile components are not changed. Let us prove that this CA is not injective (and hence
not reversible) if and only if T admits a valid tiling.

”⇐=”: Suppose a valid tiling exists. Construct two configurations c0 and c1 where the T -
and D-components form the same valid tilings t ∈ T Z

2
and d ∈ DZ2

, respectively. In c0

all bits are 0 while in c1 they are all 1. Since the tilings are everywhere valid, every cell
performs modulo 2 addition of two bits, which means that every bit becomes 0. Hence
G(c0) = G(c1) = c0, and G is not injective.

”=⇒”: Suppose then that the CA is not injective. There are two different configurations c0

and c1 such that G(c0) = G(c1). Tile components are not modified by the CA so they are
identical in c0 and c1. There is a cell ~p1 such that c0 and c1 have different bits at cell ~p1.
Since these bits become identical in the next configuration, the D-tiling must be correct at
~p1 and c0 and c1 must have different bits in the follower position ~p2. We repeat the reasoning
and obtain an infinite sequence of positions ~p1, ~p2, ~p3, . . . such that each ~pi+1 is the follower
of ~pi, and the D tiling is correct at each ~pi. It follows from the plane filling property of
D that path ~p1, ~p2, ~p3, . . . covers arbitrarily large squares. Also the tiling according to the
T -components must be valid at each cell of the path. Hence tile set T admits valid tilings
of arbitrarily large squares, and therefore it admits a valid tiling of the entire plane.

¤

Note: The two-dimensional cellular automata that we constructed in the proofs of Propo-
sitions 41, 44 and 45 use the von Neumann neighborhood. So the decision problems 2D
Nilpotency, 2D Surjectivity and 2D Reversibility are undecidable even when the input instance
is restricted to CA with the von Neumann neighborhood.

The one-dimensional CA constructed in the proof of Proposition 42 has radius-1
2

neigh-
borhood. Also, the quiescent state q is spreading: Any cell whose neighborhood contains
state q turns to state q. So the decision problem 1D Nilpotency is undecidable among radius-1

2

CA that have a spreading state.

69

Another fact to observe is that all undecidability results of this section apply to d-
dimensional CA for any d ≥ 2, even though we only proved them in the case d = 2. Namely,
for any d > 2 a given two-dimensional CA A can be converted into a d-dimensional CA
consisting of a (d−2)-dimensional grid of independent two-dimensional layers, each of which
operates as A. This d-dimensional CA is nilpotent, surjective or reversible if and only if A
is nilpotent, surjective or reversible, respectively.

We finish this section by defining busy beaver -like, very rapidly growing functions asso-
ciated with the undecidable decision problems above.

Example 24. Let us define following functions n, s, r : Z+ −→ Z+: For every k ∈ Z+

• n(k) is the largest t such that there is a nilpotent, one-dimensional, radius-1
2

cellular
automaton G with k states, and a configuration c such that Gt(c) is not the quiescent
configuration.

• s(k) is largest t such that there is a non-surjective, two-dimensional CA that uses the
von Neumann neighborhood and has k states, such that there is no orphan pattern of
size t× t.

• r(k) is the largest t such that there is a reversible, two-dimensional CA G with k states
and the von Neumann neighborhood such that the inverse of G is not obtained using
the radius-t neighborhood.

Each of the functions is well defined since its value for any k is the maximum among a finite
number of positive integers. Yet no algorithm can compute an upper bound for any of the
functions. If some algorithm could produce for every given k a number t such that n(k) ≤ t,
s(k) ≤ t or r(k) ≤ t then this algorithm could be used to solve the decision problem 1D
Nilpotency, 2D Surjectivity or 2D Reversibility, respectively. In each case such value t would
namely provide a bound on the size of instances that the corresponding semi-algorithm needs
to check.

We conclude that there are nilpotent CA that have configurations that survive very long
time before becoming quiescent, there are non-surjective CA whose smallest orphan is very
large, and there are reversible CA whose inverse CA have very large neighborhoods. ¤

3.5 Computational universality

General purpose computers are computationally universal: they can simulate any semi-
algorithm if the semi-algorithm is encoded properly and is included as part of the input.
Note how important it is for us that computational universality is at all possible – otherwise
we would have to build a new computer for each computational task!

A recursively enumerable language L ⊆ Σ∗ is r.e.-complete if every recursively enumerable
language is many-one reducible to L. In other words, for every r.e. language K ⊆ ∆∗ there
exists an algorithm that takes as input an arbitrary word u ∈ ∆∗ and outputs a word v ∈ Σ∗

with the property that u ∈ K if and only if v ∈ L. In terms of decision problems, we call a

70

semi-decidable problem U r.e.-complete if for every semi-decidable problem P there exists an
algorithm that converts instances of P into equivalent instances of U , that is, positive and
negative instances of P get converted to positive and negative instances of U , respectively.

Semi-algorithms for r.e.-complete decision problems are called computationally universal.
This means that a semi-algorithm A is universal iff for every semi-algorithm B there exists
a conversion algorithm that converts an arbitrary input of B into an equivalent input of A.

Proposition 46 Decision problem Semi-algorithm halting is r.e.-complete.

Proof. Let P be an arbitrary semi-decidable decision problem. There is a semi-algorithm A
for P . An arbitrary instance w of P can be trivially converted into the equivalent instance
〈A〉, w of Semi-algorithm halting.

¤

Note that if an r.e.-complete decision problem P can be many-one reduced to a semi-
decidable decision problem Q, then Q is also r.e.-complete. This follows from the fact that
many-one reducibility ≤m is a transitive property: if R ≤m P and P ≤m Q then R ≤m Q.
Because all undecidability proofs that we made for tilings and cellular automata (and also
the proofs that were skipped) were obtained by a chain of many-one reductions from Semi-
algorithm halting we obtain from Proposition 46 the following:

Corollary 47 The following decision problems are r.e.-complete: TM halting on blank tape,
Finite tiling problem, Periodic tiling problem, 1D nilpotency and 2D Reversibility. The com-
plements of the following are r.e.-complete: Tiling problem with the seed tile, Tiling problem,
NW-deterministic tiling problem and 2D Surjectivity. ¤

Any semi-algorithm for any of the problems in the corollary is computationally universal.
A Turing machine will be called computationally universal if the language it recognizes

is r.e.-complete. Such machines exist because r.e.-complete languages exist, and every such
language is recognized by some Turing machine.

The goal of this section is to investigate computational universality in cellular automata.
Language recognition by Turing machines is well defined using blank tape symbols and initial
and accepting states, so the definition of computational universality is also precise. In the
case of cellular automata no such widely accepted standard definition for universality exists.
Various ways to encode the input instance, and different acceptance conditions can be found
in the literature. A precise definition would be needed if we wanted to prove that some
CA are not computationally universal. Our interest, however, is to prove that some CA are
computationally universal, and for that purpose we simply choose the encoding format and
acceptance condition suitably for that particular CA, and say that the CA is universal under
these conditions.

(Observe, however, that even in the case of Turing machines alternative notions of uni-
versality exist. For example, one could define universality by the condition that the problem
whether a given finite configuration of the Turing machine evolves into another given finite

71

configuration is r.e. complete. By finite configuration we mean a configuration where only
finitely many cells contain a non-blank tape symbol. Another definition used in the literature
calls a Turing machine universal if the problem whether a given finite configuration evolves
into an accepting configuration is r.e. complete.)

Let us first show an obvious way how an arbitrary Turing machine can be simulated by a
CA. The following construction simply implements a Turing machine M in one-dimensional
CA. Configurations of the CA consist of two tracks: one track stores the tape content while
the other track has just one non-quiescent cell that contains the Turing machine state. Each
Turing machine move is implemented by the CA local rule so that changes occur only in two
cells: the cells containing the Turing machine before and after the move.

Let Q and Γ be the state set and tape alphabet of Turing machine M , and let δ be its
transition function. The state set S of the CA consists of pairs

(q, a) ∈ (Q ∪ {0})× Γ.

where 0 6∈ Q is used to indicate that the Turing machine is not present in this cell. Pairs
whose first component is q 6= 0 indicate that the Turing machine head is reading the cell in
state q.

q

a a b a bB B B B B

(a)

B

q

a a b a bB B B B

(b)

Figure 32: (a) Turing machine configuration converted into (b) CA configuration.

The CA uses radius-1 neighborhood and the local rule is defined as follows: If the neigh-
borhood of a cell contains no Turing machine head then the state of the cell is not changed.
If the neighborhood contains more than one Turing machine heads then the local rule can
be defined arbitrarily, e.g., no action is taken. Such situation will never happen in valid sim-
ulations of the Turing machine. Suppose then that exactly one neighbor of the cell contains
the Turing machine head. A change in the state of the cell occurs only in the following cases,
where q 6= 0:

• The cell itself is in state (q, a). Let δ(q, a) = (q′, a′, d). The new state of the cell is
(0, a′).

72

• The right neighbor is in state (q, a) and δ(q, a) = (q′, a′,−1). Then the new state of
the cell will be (q′, x) where (0, x) is its old state.

• The left neighbor is in state (q, a) and δ(q, a) = (q′, a′, +1). Then the new state of the
cell will be (q′, x) where (0, x) is its old state.

The quiescent state of the CA is the pair (0, B) where B is the blank tape symbol of the
Turing machine.

Let us encode Turing machine configurations as CA configurations as follows: For all
q ∈ Q, i ∈ Z and t ∈ ΓZ the Turing machine configuration (q, i, t) is encoded as the CA
configuration c ∈ SZ where for every j ∈ Z

c(j) =

{
(q, t(j)) if j = i,
(0, t(j)) if j 6= i.

Let us denote then
c = E(q, i, t)

and call
E : Q× Z× ΓZ −→ SZ

the encoding function. See Figure 32 for an illustration for the encoding of a configuration.
It is clear from the definition of the CA that the diagram

Q× Z× ΓZ
` - Q× Z× ΓZ

SZ

E

? G - SZ

E

?

commutes. In other words, if the Turing machine changes (q, i, t) into (q′, i′, t′) in k steps
then the CA changes configuration E(q, i, t) into E(q′, i′, t′) in k steps. This means that the
CA simulates the Turing machine moves. If the Turing machine M that the construction
was performed on is computationally universal then the resulting CA can be called com-
putationally universal as well. In this form of universality the input word is encoded as a
finite initial configuration, and the word is accepted if a configuration with some cell in state
(qa, x) for some x ∈ Γ is eventually reached, where qa is the accepting state of the Turing
machine.

Proposition 48 There is a one-dimensional CA and a subset F ⊆ S of states such that the
following decision problem is r.e. complete: ”Does a given finite configuration c evolve into
a configuration where some cell is in state belonging to F ?”

73

Proof. Clearly the given decision problem is semi-decidable for any CA. The completeness
is proved by performing the construction above for a Turing machine M that recognizes an
r.e. complete language L ⊆ Σ∗ and by choosing

F = {(qa, x) | x ∈ Γ}.
Then for any w ∈ Σ∗ we have w ∈ L if and only if the finite configuration c = E(q0, 1, tw) is
a positive instance of the given decision problem, where q0 is the initial state of the Turing
machine, and tw ∈ ΓZ has word w written in positions 1, 2, . . . , |w| and blank B in all other
cells. ¤

It is an easy matter to modify the CA for alternative forms of universality. The following
proposition lists a few possibilities:

Proposition 49 For each of the following decision problems there is a one-dimensional CA
such that the given decision problem is r.e. complete:

(a) Does a given finite configuration c evolve into the quiescent configuration ?

(b) For a fixed spreading state s, does a given finite configuration c evolve into a configu-
ration e in which state s appears ?

(c) Does a given finite configuration c evolve into a fixed point ?

(d) Given two finite configurations c and e, does c evolve into e, that is, does there exist
n ≥ 0 such that Gn(c) = e ?

Proof. First note that all questions (a)–(d) are semi-decidable, so it is enough to show
completeness.

Consider a universal Turing machine that has the property that it never writes the blank
symbol B. Such Turing machine is easily obtained from any universal machine by introducing
a new symbol B′ that behaves exactly as B, and the Turing machine always writes B′ on
the tape instead of B. This modification is done so that we can easily recognize the active
part of the tape.

Let us modify the previous construction of the CA A that simulates a universal Turing
machine:

For (a) we modify A it so that if an accepting state in F appears, it immediately sends two
signals, one to the left and another one to the right, that change all states into the quiescent
state. When the signal reaches the quiescent state (indicating that the active part of the
tape ends) the signal disappears.

For (b) we modify A so that we introduce new spreading state s, and modify the local rule
so that states in F become s, regardless of their neighbors.

For (c) we introduce a new inactive state s. Cell in state s remains s and also all its
neighbors do not change their states. States in F become this s in one step. Then accepting

74

configuration is a fixed point, while non-accepting configurations are not fixed points since
the Turing machine always moves left or right.

For (d) we use the same construction as in (a) and choose e always to be the quiescent
configuration. ¤

Note: Game-of-life CA has been proved universal in the sense of case (a) of the previous
Proposition. Rule 110 has been proved universal in the following respect: For given, non-
empty words u, v, w, x ∈ {0, 1}∗ it is r.e. complete to decide whether the configuration

. . . uuuuwvvvv . . .

evolves into a configuration that contains pattern x.

4 Reversible cellular automata

This section takes an in-depth look into reversible CA (RCA). As we have seen previously,
reversible CA are exactly the injective ones. In two- and higher dimensional spaces it is
undecidable if a given CA is reversible, which implies that the inverse automaton can have
a very large neighborhood: no computable upper bound can be given.

We start this section by providing two methods for constructing reversible CA.

4.1 Partitioned CA

Partitioned CA (PCA) are particular types of reversible CA. The state set of a PCA with
m neighbors is the cartesian product

S = S1 × S2 × . . .× Sm

of m finite sets S1, S2, . . . , Sm. Elements si ∈ Si of state s = (s1, s2, . . . , sm) are called the
components of s. The i’th components of the states of all cells constitute the i’th track of a
configuration.

The local rule is given by a permutation

π : S −→ S

of the state set. Each cell takes the i’th component of its i’th neighbor, merges these for all
i = 1, 2, . . . , m together into an element of S, and applies permutation π to the result. More
precisely, by denoting by sj

i the i’th component of the j’th neighbor, we get the local rule

f [(s1
1, s

1
2, . . . , s

1
m), (s2

1, s
2
2, . . . , s

2
m), . . . , (sm

1 , sm
2 , . . . , sm

m)] = π(s1
1, s

2
2, . . . , s

m
m).

Example 25. Let d = 1 and N = (0, 1) so m = 2. Let

S = {0, 1} × {0, 1} = {00, 01, 10, 11}.
There are 4! = 24 different permutations of S. Take, for example, permutation π that maps

75

10
�
�
�
�
�

�
�
�
�
�

���
���
���

���
���
���00 01

11
��
��
��

��
��
��

Then, for example, initial configuration where one cell is in state 11 while all others are in
state 00 evolves as shown in Figure 33. In the illustration white and black color are used for
0 and 1, respectively, and the second component is drawn under the first component in each
cell.

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ����������������

��
��
��

��
��
�� ����������������

��
��
��

��
��
��
��
��
��

��
��
��

���������������� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

����������������

���
���
���

���
���
���
���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

����������������

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����������������
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Figure 33: Beginning of an orbit in a partitioned CA.

One step of the PCA consists of two simple CA operations: (1) the second track is shifted
one position to the left, and (2) permutation π is applied at each cell. Since both operations
(1) and (2) are clearly one-to-one, the composite PCA is reversible. The inverse function
first applies the inverse permutation π−1 at each cell and then shifts the second components
one position to the right. ¤

Analogously to the example, any PCA is a composition of two obviously reversible CA
functions:

(1) For every i = 1, 2, . . . , m, apply translation τ~ni
on the i’th track, where ~ni is the i’th

element of the neighborhood vector.

(2) Apply permutation π at every cell.

So we have the following result:

Proposition 50 Partitioned CA are reversible. ¤

Despite their apparent simplicity, PCA can have complex behavior. In fact, they can
exhibit computational universality.

76

Proposition 51 There is a one-dimensional PCA and a subset F ⊆ S of states such that
the following decision problem is r.e. complete: ”Does a given finite configuration c evolve
into a configuration where some cell is in state belonging to F ?”

Proof. Construction is similar in flavor to our earlier universal CA. However, reversibility
means that no information may be erased. For this reason we introduce a new ”garbage”
track where information about previous states of the Turing machine are stored and shifted
away to the left. We shift the garbage away quickly, two cells in one step, to make sure that
the garbage from previous moves does not interfere with forthcoming moves of the Turing
machine.

The track that contains the Turing machine state will be split into two tracks where the
first track is used when the machine moves left and the second track is used when it moves
right. This is done to allow simple partitioning of the states.

Let us start the construction based on a universal Turing machine M . As always, we
denote by Γ and Q the tape alphabet and the state set of M , respectively, and by δ the
transition function. The state set of the corresponding PCA is

S = S1 × S2 × S3 × S4

where
S1 = Γ,
S2 = Q ∪ {0},
S3 = Q ∪ {0}, and
S4 = (Q× Γ× {L, R}) ∪ {0}.

Here, 0 is a new symbol. The neighborhood vector is (0, 1,−1, 2). The order of the elements
in the vector matters since they correspond to the four tracks. In other words, the translation
step of the PCA consists of shifting the second and third track that contain the Turing
machine state information one cell two the left and right, respectively, and the fourth garbage
track is shifted two positions to the left.

We first define a partial function π : S −→ S, and then we complete it into a full
permutation of S. For every a ∈ Γ and q ∈ Q partial function π maps

(a, q, 0, 0) 7→ (a′, q′, 0, (q, a, L)) if δ(q, a) = (q′, a′,−1),
(a, q, 0, 0) 7→ (a′, 0, q′, (q, a, L)) if δ(q, a) = (q′, a′, +1),
(a, 0, q, 0) 7→ (a′, q′, 0, (q, a, R)) if δ(q, a) = (q′, a′,−1), and
(a, 0, q, 0) 7→ (a′, 0, q′, (q, a, R)) if δ(q, a) = (q′, a′, +1).

Notice that (i) the information about the first three components is stored in the last track,
and (ii) the new state q′ is stored on the second or the third track depending on whether the
machine moves left or right. From there it is moved in the next translation phase into the
correct cell. In addition, to keep the inactive part of the TM tape unchanged we map

(a, 0, 0, g) 7→ (a, 0, 0, g)

77

for all a ∈ S1 and g ∈ S4. These partially defined values of π are the only ones that will be
used by any cell in a valid simulation of the Turing machine. The simulation begins with the
initial configuration where the input word w is written in cells 1, 2, . . . , |w| of the first track,
and tracks 2,3 and 4 contain 0 everywhere except that the third component of cell 0 contains
the initial state of the Turing machine. See Figure 34 for the initial configuration with input
word w = baab, and for the first two steps under the assumption that δ(q0, b) = (q, x,−1)
and δ(q, b) = (r, a, R).

q,B,L

a a b
q
x

q ,b,R
0

B B B Bb a a b

q0

B B B B a a bxB B Ba

r
q ,b,R0

Figure 34: Sample first steps by a universal PCA.

It is clear that the first three tracks properly simulate the Turing machine, step-by-step.
The garbage track is shifted left by two cells, which makes sure that an empty garbage slot
is always available at the active cell. It follows that the input word is accepted if and only
if the accepting state qa eventually appears on the second or the third track.

The function π was only partially defined, but observe that it is one-to-one. Hence one
can (arbitrarily) complete it into a permutation of S. ¤

Next we show that all one-dimensional reversible CA are, in some sense, partitioned CA.
First we define a blocking function Bm that combines segments of m consecutive cells into a
single ”super cell”. Consider state set S. For every positive integer m function

Bm : SZ −→ (Sm)Z

is defined as follows: For every c ∈ SZ we have Bm(c) = e where for every i ∈ Z
e(i) = (cmi+1, cmi+2, . . . , cmi+m) ∈ Sm.

See Figure 35 for an illustration of B3. Function Bm is a bijection so it has the inverse
function B−1

m that breaks the super cells back to their components.

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Figure 35: Blocking function B3 merges segments of three cells into ”super cells”..

If G : SZ −→ SZ is a CA function over state set S then

B−1
m ◦G ◦Bm : (Sm)Z −→ (Sm)Z

78

is also a CA function, the m-block presentation of G. The state set of of the m-block
presentation is Sm.

Proposition 52 For every one-dimensional reversible CA G there is a positive integer n
such that the 2n-block presentation of G ◦ σn is a radius-1

2
partitioned CA.

Note: When we state that a CA A is a PCA we mean that it is isomorphic to a PCA,
that is, A becomes partitioned by renaming the states. More precisely, there is bijection
from the state set of A onto the state set of a partitioned CA B that commutes with the
CA evolutions according to A and B.

Proof. In the proof we frequently use the following notation: If c is a configuration and i, j
are integers, i ≤ j, then

c[i,j] = cici+1 . . . cj.

In other words, c[i,j] is the pattern that appears in c in the segment i, i + 1, . . . , j of cells.
Let r be a positive number such that both G and G−1 are defined by radius-r cellular

automata. Let n = 3r.

G(c)

r r r

c
G(c)

r r r

c

(a) (b)

Figure 36: Extracting (a) right stairs, and (b) left stairs from configuration c.

Right stairs are pairs of patterns of length 2r extracted from configurations c and G(c)
in a staggered way, as indicated in Figure 36(a). Precisely, the set of right stairs is

R = {(c[0,2r−1], G(c)[−r,r−1]) | c ∈ SZ} ⊆ S2r × S2r.

Analogously, left stairs are extracted as shown in Figure 36(b). The set of left stairs is

L = {(G(c)[0,2r−1], c[−r,r−1]) | c ∈ SZ} ⊆ S2r × S2r.

Notice that any right stair (extracted from some c ∈ SZ) and any left stair (extracted
from some e ∈ SZ) can in fact be extracted from the same configuration back-to-back, see
Figure 37. This follows from the fact that the three parts of stairs are at least as long as
the radius of the CA. The states in c to the right of the right stair do not affect the stair,
and analogously the states in e to the left of the left stair have no affect on the stair, so the
stairs appear back-to-back in the configuration whose left and right halves come from c and
e, respectively.

Analogously, using the local rule of G−1, we see that the stairs can be extracted from the
same configuration consecutively in the reverse order, as illustrated in Figure 38.

79

G(e)

c e

G(c)

Figure 37: Arbitrary right and left stairs can be extracted back-to-back from the same
configuration.

G(c)G(e)

e c

Figure 38: Extracting left and right stairs from the same configuration.

Let us show next that there is a natural bijection

ϕ : S6r −→ R×L

that maps for every c ∈ SZ

c0c1 . . . c6r−1 7→
[
(c[4r,6r−1], G(c)[3r,5r−1]), (G(c)[r,3r−1], c[0,2r−1])

]
.

Figure 39 illustrates ϕ. In the following reasoning we refer to the shaded segment in the
figure that is mapped by ϕ into the pair of striped stairs. Observe the following:

(a) Function ϕ is well defined, because the states in c that are outside the shaded segment
has no influence on the two stairs.

(b) Function ϕ is one-to-one: Using the local rule of G−1 we see that the lower portions of
the two striped stairs in Figure 39 uniquely determine the middle part of the shaded
segment.

(c) Function ϕ is surjective: We know that any left and right stairs can be extracted back-
to-back from the same configuration, so for any pair of stairs a shaded segment exists
that is mapped by ϕ to the stairs.

We conclude from (a)–(c) that function ϕ is a bijection. This immediately implies that

|L| · |R| = |S|6r.

80

������������
������
������
������
������

������
������
������
������������������

Figure 39: Bijection ϕ maps the shaded segment into the pair of striped stairs.

Analogously, we have a bijection

ψ : R×L −→ S6r

that maps a right stair/left stair pair into the 6r cells wide segment of G(c), shown shaded
in Figure 40.

������
������
������
������������������������������

������
������
������
������

Figure 40: Bijection ψ maps the pair of striped stairs into the shaded segment.

Now we are ready to define our partitioned CA. It uses radius-1
2

neighborhood N = (0, 1).
The state set is the cartesian product R×L. Following our notation for partitioned CA this
means that in the state set S1 × S2 we have S1 = R and S2 = L. The permutation of the
PCA is

π = ψ ◦ ϕ.

This PCA is isomorphic to the 6r-block presentation of G ◦ σ3r where the isomorphism is
given by renaming each s ∈ S6r as φ(s). Indeed, referring to Figure 41, if we use the blocking
function B6r to partition a configuration c ∈ SZ into segments . . . , s1, s2, . . . of length 6r,
apply function φ on each segment, translate the left stairs of the blocks one segment to the
left, apply function ψ, and finally break the segments using B−1

6r , we clearly end up with
configuration σ3r(G(c)), as required. ¤

ϕϕ

ψ ψ

u

������
������
������
���������������� ���������� ��������������������������������

��

��

s21

c

u21u0

G(c)

c
G(c)

s s3

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Figure 41: Presenting a one-dimensional reversible CA as a partitioned CA.

81

4.2 Margolus neighborhood

Using the so called Margolus neighborhood is a way to produce reversible CA. It can be
viewed as a particular case of partitioned CA. Two well known two-dimensional examples
that use this neighborhood are the Billiard Ball CA by Margolus and a lattice gas CA called
HPP.

Consider a two-dimensional configuration c ∈ SZ
2
. Partition it into two-by-two blocks,

and apply a fixed bijection π : S4 −→ S4 on each block. Then change the partitioning by
translating it one cell horizontally and vertically, and apply the same π again. Combined
these two rounds define a reversible CA.

Let us start with a very simple example that uses two states

S =
{
���
���
���

���
���
���,

}

and the following bijection π:

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��
�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

A configuration is updated in two rounds. The following illustration shows two iterations
through both rounds:

2
�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

1 2 1

In both rounds the configuration is partitioned in two-by-two blocks of cells, and π is applied
inside each block. In the first round the solid partitioning is used, while in the second round
the dotted partitioning is used. Notice that this π is an involution (its own inverse), so the
inverse CA uses the same rule, just that the dotted partitioning is used first, followed by the
solid partitioning.

Strictly speaking, the position of a cell inside the two-by-two block affects its local rule,
so there are four different local rules used at different positions. In this sense, in order to
have a CA where all cells use the same local rule we have to consider the ”super cells” formed
by two-by-two blocks. So this CA, in fact, has 24 = 16 states.

82

A good interpretation of this CA is to view each black state as a particle that moves
diagonally on the plane. The position of the particle in the next two-by-two block to be
updated determines the direction of the particle: It moves towards the center of the next
update block. Under this interpretation, and keeping in mind that the two partitionings are
alternated, the bijection π can be rewritten as

where we denote by an arrow the direction of each particle. Our sample iteration becomes

21 2 1

It is easy to see now that in this CA every particle moves uninterrupted in its direction, and
there are no interactions between particles. Note that each ”super cell” can contain up to
four particles, all moving to different directions.

Next, let us introduce particle interaction in the case when two particles collide head-on.
The new permutation π is the following:

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��
�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

The only change to the previous rule is in a block with two diagonally aligned black and
white cells: In such head-on collision both particles turn 90◦. The resulting CA is the HPP
lattice gas. Our sample configuration of three particles evolves now as follows:

83

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
��
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

HPP is a simple example, intended to simulate gas or fluid dynamics. The particles rep-
resent molecules in the simulated substance, and the local rule models the interaction of
colliding molecules. In simulations very large numbers of particles are used, which produces
a ”realistic” behavior. HPP is reversible as is the physical system it attempts to simulate.
HPP also has conservation laws that are familiar from physics: (1) The total number of
particles remains invariant since the left- and the right-hand-sides of the update rules have
the same particle counts. This also says that the total energy of the system is conserved,
since each particle has the same kinetic energy. (2) The total momentum of the system is
preserved. By momentum we mean the sum of the velocity vectors of the particles. Again,
this is immediately seen from the update rules when each black cell is attached the velocity
of the particle. These (number of particles, total momentum of the particles) are examples
of conserved quantities, which will be studied in more details in the next section. Note that
conservation laws are important in physics since they provide means to write equations. c
It turns out that HPP is not a sufficiently realistic model of fluid or gas behavior. Because
of the underlying square lattice, HPP is anisotropic: Different directions of the space have
different characteristics. For example waves move differently in directions that match with
the lattice than in other directions. This problem is remedied by changing square lattice
into a hexagonal lattice. Now there are six possible directions for the particles. So-called
FHP lattice gas is an example of such more advanced lattice gas.

A problem with HPP is also that there are extra conservation laws not present in the
physical system. For example, the total momentum of particles along each individual diag-
onal is preserved.

Another interesting example that uses the Margolus neighborhood is a CA that simulates
the billiard ball model of computation (BBM). In this case the local update rule is based on
the bijection

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
���

��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��
�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��
�
�
�
�

�
�
�

�
�
�

Note that again the numbers of black and white cells are conserved. The CA gets its name
from the fact that it can simulate collisions between balls of positive radius. Also bouncing
of such balls from static walls can be simulated. A ball will be represented by two particles
moving to the same direction along the same trajectory. The distance of the particles

84

determines the radius of the ball. In the following examples we use smallest possible balls,
i.e. the second particle follows the first one time step behind.

The following figure illustrates what happens when two balls collide.

����������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��������������������

������������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�����������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

��
��
��

��
��
��

�
�
�

�
�
�
��
��
��

��
��
��

��
��
��

��
��
��

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

������������������

������������������

��
��
��
���
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������

����������������

����������������

����������������

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
�� �

�
�
�
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

The light arrows indicate the trajectories of the two balls if no collision would occur. Notice
that the collision translates the trajectories exactly as a collision of two billiard balls would
alter their trajectories. Observe also that the collision is not perfectly simulated in the sense
that the balls stop for a moment during the collision, so the timing is not identical to the
physical collision of two balls.

A mirror is a stable pattern from which balls bounce. A properly placed two-by-four
block of black cells does the trick:

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
����
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
����
��
��

��
��
��

�
�
�
��
�
�

�
�
�

�
�
�
��
�
�

�
�
�

�
�
�
��
�
�

�
�
�

�
�
�
��
�
�

�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

����������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

����������������

����������������

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��
�
�
�
�

������������������

������������������

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��
�
�
�
�

�
�
�
���

��
��
��

������������������

������������������

��
��
��
����
��
��

��
��
��

��
��
��
����
��
��

��
��
��

�
�
�
��
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

������������������

������������������

�
�
�

�
�
�
��
��
��
��

�
�
�
��
�
�

�
�
�

��
��
��
��

Now the light arrow indicates the path that a moving point would take. Note also a time
delay in this bounce.

An interesting fact about collisions of positive radius balls is that one can implement
logical gates, and then combine these gates to implement boolean circuits. Let us represent

85

wires as potential trajectories of balls, and intersection points of the trajectories implement
logical gates. Logical state ”1” is represented by the presence of a ball while state ”0” is
indicated by the absence of a ball. Then, for example, two intersecting trajectories have the
following effect:

p

p q

p q
p

q p q

q

Two wires can cross if two walls are placed appropriately:

���
���
���
���

���
���
���
���

���
���
���

���
���
���

Wires can be turned using walls, and delays can be created by increasing the length of the
wire by additional turns.

Let us build some additional logic gates. The first gate is a switch gate that performs con-
ditional routing. The following figure shows our notation for the gate and its implementation
using balls and mirrors:

c

c c

p
p

p
c

p c

p cc

p

c����
����
����

����
����
����

���
���
���
���

���
���
���
���

86

Note that we can use the switch gate in the opposite direction to select between two inputs,
under the condition that the non-selected input is 0.

As a final example, consider the Fredkin gate. It is a controlled switch gate with three
inputs and corresponding outputs. If the first input is ”0” then the the other two signals are
swapped, otherwise all outputs are the same as the corresponding input:

p if c=1, q if c=0
c c

p

q q if c=1, q if c=0

It can be implemented using four switch gates, two of which are used in the opposite direction:

q

c

p

c

p’

q’

Note that in this construction trajectories cross so we need mirrors as discussed above. Also,
delay units may be needed to adjust the timing of the balls in the switch gates. Delays may
also be used to make the timing of the output to be independent of input values.

The Margolus neighborhood can be naturally generalized in several ways. It can be used
in other dimensions than d = 2. For example, in one-dimensional space we would partition
the line into segments of length two, apply a bijective function π : S2 −→ S2 in each segment,
and repeat the operation using a partitioning that is translated by one cell.

One modification is to use different block sizes. One can also use different bijections π1

and π2 on different partitionings. Finally, one can also increase from two the number of
partitionings and rounds in one iteration of the rule. In all cases it is easy to guarantee
reversibility by making sure that the block transforms are bijective, and it is equally easy to
force conservation laws in the system.

4.3 Conserved quantities

As discussed earlier, additive conserved quantities play an important role in physics. Let G
be a d-dimensional CA function over state set S. An additive quantity is any function

µ : S −→ R

that assigns a real value to each state. We extend µ to configurations by summing up the
values assigned to states of cells, over all cells. However, a problem arises from the fact
that the sum is infinite. We have two approaches to overcome the problem: Either we only
consider q-finite configurations where q is the quiescent state satisfying µ(q) = 0, or we
consider totally periodic configurations and make the sum over one period only.

87

First approach: Let q be a quiescent state of G and assume µ satisfies µ(q) = 0. Then for
any finite configuration c we define

µ̂F (c) =
∑

~n∈Zd

µ(c(~n)).

Note that the sum has only a finite number of non-zero values. We say that µ is conserved
on finite configurations by G if and only if for all finite configurations c holds

µ̂F (G(c)) = µ̂F (c).

Second approach: For every totally periodic configuration c we define

µ̂P (c) =
1

kd

∑

~n∈C

µ(c(~n))

where k is such that c is σk
i invariant for all i = 1, 2, . . . d, and C is a hypercube of size kd.

Note that for any such k and C we obtain the same value of µ̂P (c). It is the average value
in c over all cells. We say that µ is conserved on periodic configurations by G if and only if
for all totally periodic configurations c holds

µ̂P (G(c)) = µ̂P (c).

Let us first show that the two ways to define conserved quantities are equivalent:

Proposition 53 Let G be a CA with quiescent state q and let µ be an additive quantity
satisfying µ(q) = 0. Then µ is conserved on periodic configurations if and only if µ is
conserved on finite configurations.

Proof. ”=⇒” Suppose µ is conserved on periodic configurations and let c be an arbitrary
finite configuration. Consider a hypercube C that contains all non-quiescent cells as well as
all cells that have a non-quiescent neighbor in c. Extract the pattern with domain C from
configuration c and let p be the totally periodic configuration where this pattern repeats.
Then

µ̂P (p) =
1

|C| µ̂F (c)

and

µ̂P (G(p)) =
1

|C| µ̂F (G(c)).

But then
µ̂F (G(c)) = |C|µ̂P (G(p)) = |C|µ̂P (p) = µ̂F (c),

so µ is conserved on finite configurations.

88

”⇐=” Suppose µ is conserved on finite configurations and let p be an arbitrary totally
periodic configuration. Let C be a hypercube of size kd where k is such that p is invariant
under translations σk

i for all i = 1, 2, . . . , d. We may also assume that k is larger than the
radius of the CA that defines G. Let j be a large positive integer, and construct a finite
configuration c that consists of a size (jk)d hypercube extracted from p, with copies of the
quiescent state q outside the hypercube. Then

µ̂F (c) = (jk)dµ̂P (p).

Configurations G(c) and G(p) agree inside a size (jk− 2k)d hypercube, and in G(c) all cells
outside the co-centric size (jk + 2k)d hypercube are quiescent. Let

m = max{|µ(s)| | s ∈ S}

be the maximum absolute value assigned to any state. We have

∣∣µ̂F (G(c))− (jk)dµ̂P (G(p))
∣∣ ≤ 2m

[
(jk + 2k)d − (jk − 2k)d

] ≤ 2m
[
4dk(jk + 2k)d−1

]
.

Because µ is conserved on finite configurations,

µ̂F (G(c)) = µ̂F (c) = (jk)dµ̂P (p),

so we have

|µ̂P (p)− µ̂P (G(p))| ≤ 8dkm(jk + 2k)d−1

(jk)d
−→ 0

when j −→∞. This means that

µ̂P (p) = µ̂P (G(p)).

¤

Note that the restriction that µ(q) = 0 is not important: if µ is conserved on periodic
configurations so is µ′ where µ′(s) = µ(s) + c for some constant c. So if µ(q) 6= 0 we can
consider µ′(s) = µ(s)− µ(q) instead. It satisfies the constraint µ′(q) = 0 and it is conserved
on periodic configurations if and only if µ is.

Since the two concepts of conservation are equivalent we concentrate on finite configura-
tions in the following. From now on we denote briefly µ̂ for µ̂F , and say that the quantity is
conserved if it is conserved on finite configurations.

The following proposition provides an efficient characterization for conserved quantities.

Proposition 54 Quantity µ is conserved if and only if for any two finite configurations c1

and c2 that differ in a single cell holds

µ̂(c1)− µ̂(c2) = µ̂(G(c1))− µ̂(G(c2)). (8)

89

Proof. If µ is conserved then µ̂(G(c1)) = µ̂(c1) and µ̂(G(c2)) = µ̂(c2) so the given equation
holds. Conversely, suppose the given equation holds, and let c be an arbitrary finite config-
uration. Then there exists a finite sequence of configurations c1, c2, . . . , cn where c1 is the
quiescent configuration, cn = c, and configurations ci and ci+1 differ in a single cell for all
i = 1, 2, . . . , n− 1. By the hypothesis we have

µ̂(ci)− µ̂(ci+1) = µ̂(G(ci))− µ̂(G(ci+1))

for all i = 1, 2, . . . , n− 1. Adding all these equations together gives

µ̂(c1)− µ̂(cn) = µ̂(G(c1))− µ̂(G(cn))

Since G(c1) = c1 and cn = c, we obtain

µ̂(G(c)) = µ̂(c).

¤

Let us look at equations (8) in detail. Since µ̂ is translation invariant, it is sufficient to
consider only configurations c1 and c2 that differ in cell ~0 and agree at all other cells. In the
difference on the left-hand-side of (8) most values cancel out, so in fact

µ̂(c1)− µ̂(c2) = µ(c1(~0))− µ(c2(~0)).

Analogously, since G(c1) and G(c2) agree on all cells but those that have ~0 in their neigh-
borhood, the right-hand-side of (8) becomes

µ̂(G(c1))− µ̂(G(c2)) =
∑

~n∈A

µ(G(c1)(~n))− µ(G(c2)(~n))

where
A = {−~ni | i = 1, 2, . . . , m}

is the set of all cells that have ~0 as a neighbor. From this we already see the interesting fact
that there are only a finite number of different equations (8).

Let c1 and c2 be two finite configurations that only differ in cell ~0, let c′1 and c′2 be another
such pair, and suppose that c1 and c′1 agree with each other inside region

B = {~nj − ~ni | i, j = 1, 2, . . . , m},

and suppose that c2 and c′2 also agree inside B. Notice that region B contains all cells that
are neighbors of elements of A, so G(c1) and G(c′1) agree in A, and also G(c2) and G(c′2) agree
in A. Then the equation (8) we obtain using c1 and c2 is the same as the equation that we
obtain if we use c′1 and c′2 instead. This means that it is enough to form the equations (8) for
different patterns with domain B. In other words, for all pairs p1 = (B, g1) and p2 = (B, g2)

90

of patterns with domain B, where g1(~n) = g2(~n) for all ~n 6= ~0 and g1(~0) 6= g2(~0), we calculate
the successors (A, h1) = G(p1) and (A, h2) = G(p2), and form the corresponding equation

µ(g1(~0))− µ(g2(~0)) =
∑

~n∈A

µ(h1(~n))− µ(h2(~n)).

Quantity µ is conserved by G if and only if it satisfies all these equations. In addition,
requirement µ(q) = 0 may be added where q is the quiescent state, although this is not
necessary since µ(q) = 0 only scales the quantity by an additive constant.

If the CA has no quiescent state q we may pick an arbitrary ground state q and consider
q-finite configurations. The considerations above work unaltered, but we have to add the
equation

µ(q) = µ(f(q, q, . . . , q))

stating that the quantity is conserved on the configuration where all cells are in state q.
In fact, we can reduce the number of equations further by a more careful inspection of the

proof of Proposition 54. For simplicity, let us consider one-dimensional CA only (although a
similar analysis works for higher dimensional cases as well). The quiescent configuration can
be transformed into any desired finite configuration by changing states of cells one-by-one in
the left-to-right order. This means that configurations c1 and c2 in the equation (8) satisfy
the additional constraint that all cells to the right of the position where c1 and c2 differ are
quiescent. This means that it is enough to form equations using patterns p1 = (B, g1) and
p2 = (B, g2) that satisfy the following constraints (in the one-dimensional case):

• g1(n) = g2(n) = q for all n > 0,

• g1(0) = q and g2(0) 6= q, and

• g1(n) = g2(n) for all n < 0.

Example 26. As an example, let us find conservation laws of the traffic CA, that is, the
elementary CA with Wolfram number 226. The local rule replaces pattern 01 by pattern 10:

000 7→ 0 001 7→ 1 010 7→ 0 011 7→ 0
100 7→ 0 101 7→ 1 110 7→ 1 111 7→ 1

The neighborhood vector is N = (−1, 0, 1), so A = {−1, 0, 1} and B = {−2,−1, 0, 1, 2}. This
means that changing the state of cell 0 may affect the states of cells -1,0 and 1, and how
these are affected depends on the old states of cells in the set B. It is hence sufficient to form
the equations based on patterns with domain B. As discussed above, it is in fact sufficient
to form equations (8) based on pairs of patterns ab000 and ab100 for all a, b ∈ {0, 1}.

For a = 0, b = 0 we obtain from

0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0

91

the equation
µ(0)− µ(1) = 3µ(0)− [µ(1) + 2µ(0)].

This yields the trivial relation 0 = 0. For a = 0, b = 1 we get from

0 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0

also the trivial equation 0 = 0. For a = 1, b = 0 we have

1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0

which is again trivial, and finally, for a = b = 1 we have

1 1 0 0 0 1 1 1 0 0
1 0 0 1 1 0

which also yields the trivial equation. We conclude that in traffic CA all functions µ are
conserved. In particular, number of cells in state 1 is conserved. ¤

Example 27. Consider the CA discussed in Example 11. It uses the radius-1
2

neighborhood
N = (0, 1), so A = {−1, 0} and B = {−1, 0, 1}. The state set is S = {0, 1, 2} and the local
rule f is

f(a, b) =

2, if a = 2,
0, if a 6= 2 and a + b is even, and
1, if a 6= 2 and a + b is odd.

Now it is enough to consider pairs of patterns a00 and ab0 for a, b ∈ S, b 6= 0.

0 0 0 0 1 0
0 0 1 1

}
=⇒ µ(0)− µ(1) = 2µ(0)− 2µ(1) =⇒ µ(0) = µ(1)

0 0 0 0 2 0
0 0 0 2

}
=⇒ µ(0)− µ(2) = 2µ(0)− µ(0)− µ(2) =⇒ 0 = 0

1 0 0 1 1 0
1 0 0 1

}
=⇒ µ(0) = µ(1)

1 0 0 1 2 0
1 0 1 2

}
=⇒ 0 = 0

2 0 0 2 1 0
2 0 2 1

}
=⇒ 0 = 0

2 0 0 2 2 0
2 0 2 2

}
=⇒ 0 = 0

92

We conclude that any µ satisfying µ(0) = µ(1) is conserved. In particular, the number of
2’s is conserved.

¤

As a final note, we observe that for any fixed CA, the additive quantities that it conserves
form a linear space, when sum and scalar product are defined in the natural way, point wise:

(µ + µ′)(a) = µ(a) + µ′(a) for all µ, µ′ ∈ RS and a ∈ S,
(rµ)(a) = rµ(a) for all µ ∈ RS, r ∈ R and a ∈ S.

If G conserves µ and µ′ then for any q-finite configuration c and every r ∈ R holds

(µ + µ′)(c) = µ(c) + µ′(c) = µ(G(c)) + µ′(G(c)) = (µ + µ′)(G(c))

and
(rµ)(c) = rµ(c) = r(µ(G(c)) = (rµ)(G(c)),

which proves the linearity of the conserved quantities of G. Note also that equations (8) are
linear, so we have an algorithm to build a system of linear equations whose solutions are
exactly the conserved quantities of G.

5 Cellular automata dynamical systems

An especially fruitful view to cellular automata dynamics is to endow the configuration space
SZ

d
with a metric under which CA functions G are continuous. This makes the tools and

results of topological dynamics available to the analysis of cellular automata. The space SZ
d

under this metric is compact and complete. Convergence of a sequence c1, c2, . . . of elements
under this metric is exactly equivalent to the convergence introduced in Section 1.8. The
compactness principle (Proposition 4) of that section then simply states the compactness of
the metric space.

First, for any ~x ∈ Zd we denote

‖(x1, x2 . . . , xd)‖ = max{|x1|, |x2|, . . . , |xd|}.
See Figure 42 for an illustration in the two dimensional case. Then, we define the distance
d(e, c) between configurations e, c ∈ SZ

d
as follows:

d(e, c) =

{
0, if e = c,
2−min {‖~x‖ | c(~x)6=e(~x)}, if e 6= c.

In other words, two configurations that differ in a cell that is close to ~0 are far away from
each other under this metric, while configurations that agree with each other on a large
area around the origin are close to each other. Under this metric, two configurations have
distance < 2−r if and only if they agree with each other at all positions (x, y) where ‖~x‖ ≤ r.

Note that other vector norms ‖·‖ could be used as well, and any other decreasing function
whose limit at ∞ is 0 could be used instead of x 7→ 2−x. A different metric, but the same
topology would result.

93

4

0

3

2

1

Figure 42: The value of ‖~x‖ in the two-dimensional case.

Lemma 55 Function d : SZ
d × SZ

d −→ R is a metric.

Proof. We have to check the three defining properties of metric:

(a) d(c, e) ≥ 0, and d(c, e) = 0 if and only if c = e,

(b) d(c, e) = d(e, c), and

(c) d(c, e) ≤ d(c, c′) + d(c′, e).

The first two conditions (a) and (b) are immediate. The third condition (c), called the
triangle inequality, follows from the fact that for every ~x ∈ Zd, if c(~x) 6= e(~x) then either
c(~x) 6= c′(~x) or c′(~x) 6= e(~x), or both. This means that either d(c, c′) ≥ d(c, e) or d(c′, e) ≥
d(c, e), so even the strong form

d(c, e) ≤ max{d(c, c′), d(c′, e)}

of the triangle inequality holds. ¤

From now on we consider SZ
d

as a metric topological space under this metric. The
following subsection contains a brief review of some basic facts about metric spaces.

5.1 Review of topology and metric spaces

Let X be a set. A family T of subsets of X is called a topology if it satisfies the following
three conditions:

(i) ∅ ∈ T and X ∈ T ,

(ii) the union of the sets in any subfamily of T is in T ,

94

(iii) the intersection of finitely many elements of T is always in T .

Elements of T are called open sets, and their complements (with respect to X) are closed
sets. A set that is both open and closed is called clopen.

Example 28. For any X, let T contain all subsets of X. Then T is a topology, the discrete
topology of X. Also {X, ∅} is a topology, the trivial topology of X. ¤

Example 29. Let us call S ⊆ R open if for every x ∈ S there is a positive real ε > 0 such
that |y − x| < ε =⇒ y ∈ S. These open sets form a topology of X = R. It is called the
usual topology of R. For example, all open intervals (a, b) for a < b are open sets. Closed
intervals [a, b] are not open but they are closed. Set Q of rational numbers is not open or
closed. The only clopen sets are ∅ and R. ¤

Generalizing the previous example, let X be a set and let d : X ×X −→ R be a metric.
For every ε > 0 and x ∈ X we denote

Bε(x) = {y ∈ X | d(x, y) < ε}

and call Bε(x) the (open) ε-ball with center x. Let us call U ⊆ X open if

∀x ∈ U : ∃ε > 0 : Bε(x) ⊆ U.

These open sets form a topology of X, the metric topology induced by d.

Example 30. The discrete topology is induced by the discrete metric

d(x, y) =

{
0, if x = y,
1, if x 6= y.

In contrast, if |X| ≥ 2 then the trivial topology {X, ∅} is not metric. ¤

Let A ⊆ X. Point x ∈ X is an accumulation point of A if every open set U that contains
x also contains some element y 6= x of A. The following simple properties hold for closed
sets:

Proposition 56 A subset A ⊆ X is closed if and only if its accumulation points belong
to A. Closed sets satisfy the following properties (that are dual statements of the defining
properties of open sets):

(i) The empty set ∅ is closed, and X is closed,

(ii) the intersection of any number of closed sets is closed, and

(iii) the union of a finite number of closed sets is closed.

¤

95

Let A ⊆ X. The closure of A is the intersection of all closed sets that contain A. It is
then the smallest closed set that contains A. We denote the closure of A by A. Notice that
A itself is closed if and only if A = A. Notice also that the closure of A is the union of A
and its set of accumulation points.

Set A is called dense if A = X.

Example 31. Consider the usual topology of R. All real numbers are accumulation points
of the set Q of rational numbers. This means that the closure of Q is R, so Q is dense in R.
Accumulation points of the open interval (0, 1) are the elements of the closed interval [0, 1],
while the set Z of integers has no accumulation points. ¤

Let A ⊆ X. Point x ∈ A is an interior point of A if there is an open set U such that
x ∈ U and U ⊆ A. The set of all interior points of A is the interior of A. It is easily seen
to be the union of all open subsets of A, or equivalently, the largest open subset of A. Then
set A is open if and only if its interior is A itself.

The exterior of set A ⊆ X is the interior of the complement of A, and the boundary of A
consists of all points that are not in the interior or the exterior of A. Note that the interior,
exterior and boundary of A is a partitioning of X. A set A ⊆ X is called a neighborhood of
x ∈ X if x is an interior point of A, that is, if there is an open set U such that x ∈ U ⊆ A.

Example 32. In the usual topology of R, the interior, exterior and the boundary of an open
interval (a, b) are (a, b), (−∞, a) ∪ (b,∞) and {a, b}, respectively. The closed interval [a, b]
has these same interior, exterior and boundary. Set Q has empty interior and exterior. All
real numbers are in its boundary. ¤

A topology is called Hausdorff if for every x 6= y there are open Ux and Uy such that
x ∈ Ux, y ∈ Uy and Ux∩Uy = ∅. In other words, any two distinct points have non-intersecting
neighborhoods.

Example 33. Every metric topology is Hausdorff. Indeed, if x 6= y then d(x, y) > 0. If we
choose ε = 1

2
d(x, y) then Bε(x) and Bε(y) are non-intersecting neighborhoods of x and y ¤

A sequence x1, x2, . . . of points of X converges to point x ∈ X if for every open U ⊆ X
that contains x there is positive integer n such that xi ∈ U for all i ≥ n. If the topology is
metric this is equivalent to saying that for every ε > 0 there is n such that d(xi, x) < ε for
all i ≥ n.

Note that generally a converging sequence may converge to several different points, but
if the topology is Hausdorff (e.g. metric) the limit is unique.

Proposition 57 In Hausdorff topology every converging sequence converges to a unique
point. ¤

Proof. Suppose x1, x2, . . . converges to x and y where x 6= y. Since X is Hausdorff, there are
open sets U and V such that x ∈ U , y ∈ V and U ∩V = ∅. By the definition of convergence,
xi ∈ U and xi ∈ V for all sufficiently large i, a contradiction. ¤

96

Note: the proposition does not hold in all topological spaces. For example, in the trivial
topology T = {∅, X} every sequence converges to every point.

In Hausdorff topology we denote by limi→∞ xi the unique point into which the sequence
x1, x2, . . . converges, if it exists. This point is the limit of the sequence.

The following proposition states that if the topology is metric then the closure A of any
set A consists exactly of the limits of converging sequences of elements of A:

Proposition 58 Let X be a metric space and A ⊆ X. Then x ∈ A if and only if x =
limi→∞ ai for some converging sequence a1, a2, . . . where all ai ∈ A.

Proof. ”⇐=”: Let a1, a2, . . . be a converging sequence where all ai ∈ A and let x = limi→∞ ai.
Let U be an arbitrary open set that contains x. By the definition of convergence there are
some ai ∈ U , so U ∩ A 6= ∅. This means that x ∈ A. (This direction of the proof holds for
any topological space.)

”=⇒”: Conversely, suppose x ∈ A. For every positive integer i, let ai be an element of
A ∩B 1

i
(x). Then d(x, ai) < 1

i
, so x = limi−→∞ ai. ¤

Corollary 59 In metric space X, set A is closed if and only if it contains the limit of every
converging sequence of its elements. ¤

A family B of open sets is called a base of the topology iff every open set is the union of
some members of B. Equivalently: B ⊆ T is a base if for every open set U and x ∈ U there
exists some B ∈ B with the property that x ∈ B ⊆ U .

Example 34. The open intervals (a, b) with a < b form a base of the usual topology of R.
More generally, in any metric topology the open balls Bε(x) over all ε > 0 and x ∈ X form
a base. ¤

If B is a base of a topology then this topology is uniquely determined by B: open sets
are exactly the unions of members of B. The following proposition gives a necessary and
sufficient condition on when a family B is a base of some topology:

Proposition 60 B is a base of a topology if and only if it satisfies the following two condi-
tions:

(i) Every x ∈ X belongs to some B ∈ B, and

(ii) For every A,B ∈ B and every x ∈ A ∩B there is C ∈ B such that x ∈ C ⊆ A ∩B.

Proof. Suppose first that B is a base of a topology. Condition (i) follows from the fact that
X is open. Let us prove (ii). Let A,B ∈ B be arbitrary, and let x ∈ A ∩ B. Because A and
B are both open, so is A∩B. Hence there is a base set C ∈ B that satisfies x ∈ C ⊆ A∩B.

97

Conversely, suppose (i) and (ii) hold, and let T contain all unions of all subfamilies of B.
The empty union is ∅ so ∅ ∈ T . It follows from (i) that the union of all elements in B is X,
so X ∈ T .

Let Ui be arbitrary elements of T . Then each Ui is a union of elements of B, so their
union is also a union of elements of B. Hence the union of Ui’s is in T .

Consider then arbitrary U, V ∈ T , and let x ∈ U ∩V . Because x ∈ U , and U is a union of
members of B, there is some A ∈ B such that x ∈ A ⊆ U . Analogously there is some B ∈ B
such that x ∈ B ⊆ V . By property (ii) there is C ∈ B such that x ∈ C ⊆ A ∩ B ⊆ U ∩ V .
Such C exists for every x, so we see that U ∩ V ∈ T . This means that the intersection of
finitely many elements of T is in T . ¤

Next we define compactness. Let A ⊆ X where X is a topological space. A family
of open sets Ui is called an open cover of A if every element of A belongs to some Ui. A
subfamily of an open cover of A is called a subcover if it is also a cover of A.

Set A ⊆ X is called compact if every open cover of A has a finite subcover of A. The
topology is called compact if the whole space X is compact. In other words, a topology is
compact if every family of open sets whose union is X has a finite subfamily whose union is
X.

Example 35. In the usual topology of R the set

A = {0} ∪ { 1

n
| n ∈ Z+}

is compact. Namely, an open set that contains 0 covers all but finitely many elements of A.
So any open cover of A contains a finite subcover: Open set U that covers 0 together with a
finite number of open sets that cover the finitely many elements of A that are outside of U .

On the other hand, set B = { 1
n
| n ∈ Z+} is not compact. It has an open cover in which

every open set covers exactly one element of B. Such cover has no finite subcover. ¤

The following proposition states the finite intersection property. It is dual to the open
cover property we used as the definition, and in fact the finite intersection property could
have been taken equally well as the definition of compactness. We state the property for the
whole space X:

Proposition 61 Topology of X is compact if and only if every family of closed sets whose
intersection is empty has a finite subfamily whose intersection is empty.

Proof. This follows directly from the definition of compactness and de Morgan’s laws: A
family of open sets is a cover of X if and only if the family of their complements have empty
intersection. ¤

We typically apply the previous proposition in the following set-up:

98

Corollary 62 Let F1 ⊇ F2 ⊇ F3 ⊇ . . . be an infinite chain of closed sets in a compact space
X. If

∞⋂
i=1

Fi = ∅,

then Fi = ∅ for some i. ¤

The next proposition gives a characterization of compact subsets in metric spaces. The
proposition gives a condition that looks very similar to Proposition 4 for configurations. In
fact, we use the proposition later to show the compactness of the configuration space. The
proposition is valid (and is stated) for arbitrary metric spaces, but we only prove it now for
metric spaces that have a countable base. Our configuration space satisfies this restriction,
so the proof is sufficient for our set-up. The proof for general metric spaces is not very
difficult either.

Proposition 63 Suppose X is a metric space. Set A ⊆ X is compact if and only if every
sequence a1, a2, . . . of elements of A has a subsequence that converges to an element of A.

Proof. ”=⇒” Suppose A is compact, and let a1, a2, . . . be arbitrary sequence where each
ai ∈ A.

Suppose first that there is some a ∈ A such that for every ε > 0 the ball Bε(a) contains
infinitely many different elements of the sequence a1, a2, Then the sequence has a sub-
sequence that converges to a: There namely is a subsequence whose n’th element belongs to
B 1

n
(a).

Suppose then that for every a ∈ A there is some εa > 0 such that Bεa(a) only contains
finitely many different elements of the sequence a1, a2, Clearly the family of Bεa(a) over
all a ∈ A is an open cover of A, so by compactness of A it has a finite subcover

Ui = Bεai
(ai) for i = 1, 2, . . . m.

But each Ui only covers finitely many different elements of sequence a1, a2, . . ., while each
element of the sequence is covered by some Ui. This means that the sequence has only
finitely many different elements. Then some element a ∈ A repeats infinitely many times in
the sequence so the sequence has a constant subsequence a, a, . . . which trivially converges
to a ∈ A.

”⇐=” Suppose every sequence of elements of A has a converging subsequence whose limit is
in A. Here we simplify the set-up by making the additional assumption that the topology
has a countable base. Then it is enough to show that any countable open cover of A has
a finite sub-cover. (Indeed, for an arbitrary open cover by Ui we can consider instead the
countable cover that consists of all base sets Bj that are completely included in some Ui. If
every countable cover has a finite subcover, then the original cover also has a finite subcover
where we take for each selected Bj one Ui from the original cover that satisfies Bj ⊆ Ui.)

99

So consider a countable open cover {U1, U2, . . .} of A. If it has no finite subcover then
for every i there is some ai ∈ A such that ai 6∈ Uj for all j < i. By the hypothesis, sequence
a1, a2, . . . has a converging subsequence with limit a ∈ A. But a ∈ Uj for some j, and then
by the definition of convergence ai ∈ Uj for infinitely many indices i. In particular, there
is i > j such that ai ∈ Uj, which contradicts the choice of ai’s. We conclude that a finite
subcover must exist. ¤

Next two propositions show that in our forthcoming situation compact sets of the space
are exactly the closed sets.

Proposition 64 If X is a compact topological space then every closed A ⊆ X is compact.

Proof. Let A ⊆ X be closed. Consider an open cover of A. Together with the complement
of A it forms an open cover of X. By compactness of X this has a finite subcover of X,
from which we obtain a finite subcover of A by removing the complement of A (if present).
Hence A is compact. ¤

Proposition 65 If X is Hausdorff then every compact A ⊆ X is closed.

Proof. Let A ⊆ X be compact. Let x ∈ X \ A. By the Hausdorff property, for every a ∈ A
there are open sets Ua and Va such that a ∈ Ua, x ∈ Va and Ua ∩ Va = ∅. Sets Ua form an
open cover of A so by compactness of A there is a finite subcover Ua1 , . . . , Uam of A. But
then the intersection

Vx = Va1 ∩ . . . ∩ Vam

of the corresponding sets Vai
is an open set satisfying x ∈ Vx and Vx ∩ A = ∅. The union of

sets Vx over all x ∈ X \A is the complement of A. Since the union is open, we see that A is
closed. ¤

Let X be a metric space. A sequence x1, x2, . . . of points of X is a Cauchy sequence if
for every ε > 0 there exists n ≥ 1 such that i, j > n =⇒ d(xi, xj) < ε. Metric space X is
complete if every Cauchy sequence converges.

Example 36. Under the discrete metric, a sequence is a Cauchy sequence if and only if it is
constant beyond some point, so the sequence converges. Discrete metric space is complete.
The space Q of rational numbers under the usual metric is an example of a non-complete
space. ¤

All compact metric spaces are complete:

Proposition 66 A compact metric space is complete.

100

Proof. Suppose X is a compact metric space, and let x1, x2, . . . be an arbitrary Cauchy
sequence. By Proposition 63 it has a subsequence that converges to some x ∈ X. Let
us prove the the whole sequence converges to x. For any ε > 0 there is some n such that
d(xi, xj) < ε/2 for all i, j > n (=Caychy property), and some k > n such that d(xk, x) < ε/2.
This implies that

d(xi, x) ≤ d(xi, xk) + d(xk, x) < ε/2 + ε/2 = ε

for all i > n. Hence the sequence x1, x2, . . . converges to x. ¤

A topological space is separable if it has a countable dense subset,and it is second countable
if it has a countable base. Our space of interest is both separable and second countable. In
fact, every compact metric space has these properties.

Proposition 67 A compact metric space is separable.

Proof. For every n the cover of X by the open balls B1/n(x) has a finite subcover. The
centers of all the balls in these finite subcovers for n = 1, 2, 3, . . . form a countable set A. It
is dense: For every y ∈ X and n ≥ 1 there is a ball B1/n(x) with center x ∈ A that contains
y. Then x ∈ B1/n(y). ¤

Proposition 68 A separable metric space has a countable base.

Proof. Let {x1, x2, . . .} be a dense countable subset of X. Then the open balls B1/n(xi) over
all positive integers i, n form a countable base. Indeed: For every open U and x ∈ U there
exists ε > 0 such that Bε(x) ⊆ U . Choose an integer n > 2/ε. Some xi ∈ B1/n(x). Because
1/n < ε/2 we have

x ∈ B1/n(xi) ⊆ Bε(x) ⊆ U.

¤

A topological space X is called a Baire space if every countable intersection of dense
open sets is dense. That is, if U1, U2, . . . are open sets such that for all i hold U i = X, then
the set

A =
∞⋂
i=1

Ui

is dense. (In particular, A is non-empty.)

Proposition 69 Every compact metric space is a Baire space.

Proof. Let U1, U2, . . . be open dense sets, and let A be their intersection. Let U be an
arbitrary non-empty open set. It is enough to prove that U ∩ A 6= ∅. Let us define a
sequence V0, V1, V2, . . . of open sets as follows: V0 = U , and for every n ≥ 1, we choose as Vn

101

a non-empty, open set whose closure is a subset of Vn−1∩Un. Such Vn exists for the following
reasons: Set Vn−1 ∩ Un is open, and non-empty by the denseness of Un. This means that
Bε(x) ⊆ Vn−1 ∩ Un for some ε > 0 and x ∈ X. Then Bε/2(x) can be selected as Vn, because
its closure is a subset of Bε(x).

Closures of Vn form a decreasing chain

V 0 ⊇ V 1 ⊇ V 2 ⊇ . . .

of non-empty compact sets. By Corollary 62 their intersection is non-empty. The intersection
is a subset of every Un and also of U , so we conclude that A ∩ U 6= ∅. ¤

Finally, a few words about continuous functions. Let X and Y be two topological spaces.
A function f : X −→ Y is continuous at point x ∈ X if for every open V ⊆ Y that contains
f(x) there exists an open U ⊆ X such that x ∈ U and f(U) ⊆ V .

If X and Y are metric spaces with metrics d and e, respectively, then continuity at x is
equivalent to the following: For every ε > 0 there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).

We call function f : X −→ Y is continuous if it is continuous at every x ∈ X.

Example 37. If X has the discrete topology then every function f : X −→ Y is continuous.
Also, if Y has the trivial topology {∅, Y } then every f : X −→ Y is continuous. In all
topological spaces X and Y all constant functions f : X −→ Y are continuous. If X has the
trivial topology and Y has the discrete topology then the constant functions are the only
continuous functions. ¤

Proposition 70 Let f : X −→ Y be a function between two topological spaces. The follow-
ing conditions are equivalent:

(i) Function f : X −→ Y is continuous,

(ii) pre-image f−1(V) is open in X for every open V ⊆ Y ,

(iii) pre-image f−1(C) is closed in X for every closed C ⊆ Y .

Proof. (i) =⇒ (ii): Suppose f is continuous and let V ⊆ Y be open. Let x ∈ f−1(V) be
arbitrary, so f(x) ∈ V . From continuity it follows that there is an open U ⊆ X such that
f(U) ⊆ V and x ∈ U . This means that x ∈ U ⊆ f−1(V), which implies that f−1(V) is open.

(ii) =⇒ (i): Suppose f−1(V) is open for every open V ⊆ Y . Let x ∈ X be arbitrary. Let us
show that f is continuous at point x. Let f(x) ∈ V for open V ⊆ Y . Then U = f−1(V) is
an open set that satisfies x ∈ U and f(U) ⊆ V . So f is continuous at x.

(ii) ⇐⇒ (iii): Follows directly from the fact that for every A ⊆ Y holds

X \ f−1(A) = f−1(Y \ A).

¤

The following proposition characterizes continuous functions from a metric space:

102

Proposition 71 Let X be a metric space and Y a topological space. Then f : X −→ Y is
continuous if and only if for every converging sequence x1, x2, . . . the sequence f(x1), f(x2), . . .
converges and

lim
i→∞

f(xi) = f(lim
i→∞

xi).

Proof. ”=⇒”: Suppose that f is continuous and let x1, x2, . . . be a converging sequence of
elements of X. Let x = limi→∞ xi. Let us prove that f(x1), f(x2), . . . converges to f(x).
Let U be an open set that contains f(x). Then f−1(U) is open and x ∈ f−1(U). Because
x1, x2, . . . converges to x there is n such that xi ∈ f−1(U) for all i ≥ n. But then f(xi) ∈ U
for all i ≥ n.

”⇐=”: Let x ∈ X. To prove that f is continuous at point x, we assume the contrary and
derive a contradiction. So suppose there is an open V ⊆ Y that contains f(x) such that for
every δ there is a point y in Bδ(x) such that f(y) 6∈ V . Using δ = 1

i
for positive integers i we

see that for every i there is xi ∈ X such that d(xi, x) < 1
i

and f(xi) 6∈ V . Sequence x1, x2, . . .
converges to x so by the hypothesis sequence f(x1), f(x2), . . . converges to f(x) ∈ V . But
this is not possible since all f(xi) 6∈ V . ¤

Observe the similarity of the condition in the previous proposition with Proposition 5
that deals with cellular automata. This is not coincidental: Later we’ll use Proposition 5
and Proposition 71 to conclude that G is a continuous function.

Next propositions give some properties of continuous functions and compact sets.

Proposition 72 Suppose function f : X −→ Y is continuous. For every compact A the set
f(A) is compact.

Proof. Consider an open cover of f(A) by open sets Vi. Then, by Proposition 70 the sets
f−1(Vi) form an open cover of A. By compactness of A there is a finite subcover of A by
f−1(Vi) where i ∈ F for some finite set F . But then the corresponding sets Vi for i ∈ F form
a finite subcover of f(A). Hence f(A) is compact. ¤

Proposition 73 If f : X −→ Y is a continuous bijection where X is compact and Y is
Hausdorff then the inverse function f−1 : Y −→ X is also continuous.

Proof. By Proposition 70 it is enough to show that for every closed A ⊆ X also f(A) is
closed. But if A ⊆ X is closed then by Proposition 64 it is also compact. By Proposition 72
set f(A) is also compact, and then by Proposition 65 set f(A) is closed. ¤

103

5.2 Basic facts about the configuration space

Let us return to the space of interest to us: The space SZ
d

of configurations, with the metric

d(e, c) =

{
0, if e = c,
2−min {‖~x‖ | c(~x)6=e(~x)}, if e 6= c.

The open ball of radius ε = 2−r centered at c ∈ SZ
d

is

Bε(c) = {e ∈ SZ
d | e(~x) = c(~x) for all ‖~x‖ ≤ r}.

These balls hence form a base. This already implies that the topology has a countable base.
More generally, for any finite domain D ⊆ Zd and configuration c ∈ SZ

d
we define the

cylinder set
Cyl(c,D) = {e ∈ SZ

d | e(~x) = c(~x) for all ~x ∈ D}
that contains all those configurations that agree with c in domain D.

Note that for sufficiently large r we have D ⊆ E where

E = {~x ∈ Zd | ‖~x‖ ≤ r}.

Then
Cyl(c,D) =

⋃

e∈Cyl(c,D)

Cyl(e, E),

so all cylinders are (finite) unions of open balls, and hence they are open in the topology.
Balls form a base of the topology, so also cylinders form a base.

Let us next show that a sequence of configurations c1, c2, . . . converges to c ∈ SZ
d

in
this topology, if and only if it converges to c according to the definition of convergence in
Section 1.8. First, suppose convergence to c in the topology, and let ~n ∈ Zd be arbitrary.
Consider the cylinder U determined by c and domain {~n}. Convergence to c implies that
for all sufficiently large i holds ci ∈ U , that is, ci(~n) = c(~n). So the sequence converges to c
according to the definition of Section 1.8.

Conversely, suppose converge to c as defined in Section 1.8. Let U be an open set that
contains c. Because cylinders form a base, there is a finite D ⊆ Zd such that Cyl(c,D) ⊆ U .
By the definition of convergence of c1, c2, . . . there is k ∈ Z such that ci ∈ Cyl(c,D) for all
i > k. This means that the sequence converges to c in the topology.

Now we immediately obtain the following corollaries of our earlier propositions:

Corollary 74 Metric space SZ
d

is compact.

Proof. Follows directly from Propositions 4 and 63. ¤

Since SZ
d

is metric and compact, all propositions of Section 5.1 hold in this set-up. In
particular, SZ

d
is Hausdorff, complete, separable, second countable and a Baire space.

104

Corollary 75 Every CA function G : SZ
d −→ SZ

d
is continuous.

Proof. Follows directly from Propositions 5 and 71. ¤

Pairs (X, F) where X is compact and F : X −→ X is continuous are commonly called
(topological) dynamical systems. So we see that (SZ

d
, G) is a (topological) dynamical system

for each CA function G.

5.3 Hedlund’s theorem

We know that every CA function is continuous and commutes with translations. The next
result by Hedlund states that also the converse is true: Any function SZ

d −→ SZ
d

that is
continuous and commutes with translations is a CA function. As we see in the proof below,
continuity implies that there is a local rule for each cell, and translation invariance implies
that the local rules are the same for all cells.

Proposition 76 Function G : SZ
d −→ SZ

d
is a CA function if and only if it is continuous

and it commutes with translations of Zd.

Proof. One direction follows from Corollary 75 and Proposition 3. For the other direction,
suppose that G is continuous and commutes with translations. It was proved in the home-
work assignments that in compact spaces continuous functions are uniformly continuous. In
particular, this implies that there exists r > 0 such that

d(c, e) < 2−r =⇒ d(G(c), G(e)) < 1,

or, equivalently,

c(~x) = e(~x) for all ‖~x‖ ≤ r =⇒ G(c)(~0) = G(e)(~0).

This provides a radius-r CA function F such that for all c ∈ SZ
d

holds G(c)(~0) = F (c)(~0).
It was assumed that G commutes with translations, and we know that CA function F

commutes with translations. Hence, for every ~n ∈ Zd and every c ∈ SZ
d

G(c)(~n) = τ(G(c))(~0) = G(τ(c))(~0) = F (τ(c))(~0) = τ(F (c))(~0) = F (c)(~n)

where we denoted by τ the translation determined by ~n. We conclude that G = F , so G is
a CA function. ¤

Note how we now get a direct topological proof of Proposition 7: If CA function G :
SZ

d −→ SZ
d

is bijective then by Proposition 73 the inverse function G−1 is continuous. Since
trivially G−1 commutes with translations (τ ◦G−1 = G−1 ◦G◦ τ ◦G−1 = G−1 ◦ τ ◦G◦G−1 =
G−1 ◦ τ for any translation τ), it follows from Hedlund’s theorem that G−1 is a CA function.

105

5.4 Limit sets and attractors

The dynamics of a CA on Garden-of-Eden configurations is not relevant when analyzing its
long-term behavior. They only represent a transient part in the dynamics. So it makes sense
to restrict the attention to points that are not Garden-of-Eden for G, or for Gn for any finite
n. This relevant part of the space is the limit set of the system.

More formally, the limit set ΩG of CA G is the intersection of all forward images of SZ
d
:

ΩG =
∞⋂

n=0

Gn(SZ
d

).

This means that c ∈ ΩG if and only if c is not a Garden-of-Eden of Gn for any n.

Example 38. The limit set of the xor CA of Example 1 is the whole configuration space
{0, 1}Z. This is of course true for any surjective CA. Consider then a nilpotent CA, i.e. a
CA G in which every configuration eventually evolves into the quiescent configuration cq.
It was proved in the beginning of Section 3.4 that there is a number n such that Gn maps
every configuration into cq. This means that Gk(SZ

d
) = {cq} for all k ≥ n, so ΩG = {cq}.

As a non-surjective, non-nilpotent example consider the elementary CA with Wolfram
number 128. It is a CA in which the quiescent state 0 is spreading: every cell whose
neighborhood contains 0 becomes 0, and pattern 111 is the only one that is mapped into
1 by the local rule. In this CA every finite configuration eventually becomes the quiescent
configuration, but the CA is not nilpotent since, for example, configuration . . . 111 . . . is a
fixed point. Note that every pattern 100 . . . 01 is an orphan for Gn for sufficiently large n,
so ΩG does not contain any configuration with such a pattern. This means that the only
potential elements of ΩG are configurations where 1’s form a contiguous segment. These are
configurations

. . . 111111 . . .

. . . 000000 . . .

. . . 000111 . . .

. . . 111000 . . .
. . . 000111 . . . 111000 . . .

It is easy to see that each such configuration has a pre-image of the same form, which implies
that they all belong to the limit set. We see that in this case the limit set is countably infinite.

¤

The following proposition states a few simple but fundamental properties of limit sets.
A subshift of SZ

d
is any X ⊆ SZ

d
that is topologically closed, non-empty and translation

invariant (i.e. τ(X) = X for all translations τ). The whole configuration space SZ
d

is also
called a d-dimensional full shift.

Proposition 77 Let G be a CA function and let Ω be its limit set. Then

(a) Ω is a subshift.

106

(b) The limit set satisfies G(Ω) = Ω, and if X ⊆ SZ
d

satisfies G(X) = X then X ⊆ Ω.

(c) For every configuration c we have that c ∈ Ω if and only if there is a sequence
. . . , c−2, c−1, c0 of configurations such that c0 = c and G(ci) = ci+1 for all i < 0.
(In other words, elements of Ω are exactly the configurations that belong to two-way
infinite orbits.)

(d) The limit set is finite if and only if the CA is nilpotent, in which case the limit set
contains just one configuration. (See the beginning of Section 3.4 for the definition of
nilpotent CA.)

Proof. (a) Because Gn is continuous for every n, it follows from Proposition 72 that Gn(SZ
d
)

is compact for every n. Hence it is closed (Proposition 65) which means that the limit set Ω
is closed (Proposition 56). Consequently, Ω is compact (Proposition 64). Note that

SZ
d ⊇ G(SZ

d

) ⊇ G2(SZ
d

) ⊇ G3(SZ
d

) ⊇ . . .

forms a descending chain of non-empty compact sets. It follows then from the finite in-
tersection property (Proposition 61) that their intersection Ω cannot be empty. (Another,
non-topological proof for non-emptiness of Ω is based on the simple observation that some
homogeneous configuration . . . aaa . . . must be temporally periodic, and hence in Ω.)

To prove translation invariance, consider an arbitrary translation τ and arbitrary c ∈ Ω.
For every n, we have c = Gn(e) for some e ∈ SZ

d
, so

τ(c) = τ(Gn(e)) = Gn(τ(e))

which means that τ(c) ∈ Gn(SZ
d
). This is true for all n, so τ(c) ∈ Ω. We conclude that

τ(Ω) ⊆ Ω. Then also τ−1(Ω) ⊆ Ω so that Ω = τ(τ−1(Ω)) ⊆ τ(Ω). We conclude that
Ω = τ(Ω).

(b) Always G−n(c) ⊆ G−n−1(G(c)) so if c ∈ Ω then also G(c) ∈ Ω. Hence G(Ω) ⊆ Ω. To
prove Ω ⊆ G(Ω) consider an arbitrary c ∈ Ω. Because {c} is closed and G is continuous
we have that G−1(c) is closed. For every n the set Gn(SZ

d
) is also closed and hence the

intersection
An = G−1(c) ∩Gn(SZ

d

)

is closed, thus compact. The intersection is also non-empty because G−n−1(c) is not empty.
This means that

A1 ⊇ A2 ⊇ A3 ⊇ . . .

is a decreasing chain of non-empty compact sets. It follows from the finite intersection
property (Proposition 61) that

∞⋂
n=1

An 6= ∅.

107

Let e ∈ An for all n, so G(e) = c and e ∈ Gn(SZ
d
) for all n. We see that c has a pre-image

e that belongs to the limit set Ω, so c ∈ G(Ω), as required.
For the second part of (b), suppose X satisfies G(X) = X. Then Gn(X) = X for all n,

and therefore X ⊆ Gn(SZ
d
) for all n. Thus X ⊆ Ω.

(c) If c belongs to some two-way infinite orbit then G−n(c) is not empty for any n, so c ∈ Ω.
Conversely, suppose that c0 ∈ Ω. It follows from (b) that there exists c−1 ∈ Ω such that
G(c−1) = c0. The same argument for c−1 yields c−2 that satisfies G(c−2) = c−1, and by
iterating the reasoning we obtain the required sequence . . . , c−2, c−1, c0.

(d) If G is nilpotent then Ω contains only the quiescent configuration cq. Suppose then that
G is not nilpotent. Let σ be the translation determined by vector ~e1 = (1, 0, 0, . . . , 0). Let
us prove that Ω contains a configuration c such that σn(c) 6= c for all n ∈ Z. Then, by (a),
we have σn(c) ∈ Ω for all n, which means that there are infinitely many different elements
in Ω.

Let cq ∈ Ω be a homogeneous configuration in the limit set where every cell is in state q.
It exists for some state q. Since G is not nilpotent there exists state a ∈ S that is different
from q such that for every n there is a configuration en such that Gn(en) has some cell in
state a. Combining a configuration that produces in n steps cq and configuration en provides
a configuration whose image under Gn has all cells (x1, x2, . . . , xd) with x1 > 0 in state q,
and some cell is in state a. This implies further that there must be some state b 6= q and
a configuration fn for every n such that Gn(fn) has state b in cell ~0 and state q in all cells
(x1, x2, . . . , xd) with x1 > 0. Let

B = {c ∈ SZ
d | c(~0) = b and c(x1, x2, . . . , xd) = q when x1 > 0 }.

Set B is topologically closed and, as shown above, B∩Gn(SZ
d
) 6= ∅ for all n. It follows from

the finite intersection property that B ∩ Ω 6= ∅. All c ∈ B ∩ Ω satisfy σk(c) 6= c so we have
found a configuration with the desired properties. ¤

The limit set is an example of an attractor of a CA. (In fact it is the unique maximal
attractor.) Non-empty set A ⊆ SZ

d
is called an attractor for CA G if there exists a clopen

U ⊆ SZ
d

such that G(U) ⊆ U and

A =
∞⋂

n=0

Gn(U).

We call A the attractor determined by U . It is clear that the limit set Ω is an attractor
(determined by U = SZ

d
), and that every attractor is a subset of Ω. It is also clear that every

attractor is compact and contains a totally periodic configuration. If A is an attractor then
G(A) = A which can be seen in the same way as G(Ω) = Ω was proved in Proposition 77(b).
Finally, notice that since there are only countably many different clopen sets, the number of
attractors is countable.

108

Attractor A is called minimal if there are no proper subsets that are attractors. If A is
an attractor then its basin of attraction is the set

BA = {c ∈ SZ
d | lim

n→∞
d(Gn(c), A) = 0}

where
d(x,A) = min {d(x, a) | a ∈ A}.

(Minimum exists due to the compactness of A.) In other words, the basin of attraction
consists of all points that are attracted to A in the sense that they approach A in the limit.

Proposition 78 Let A be an attractor determined by clopen U that satisfies G(U) ⊆ U ,
and let B be the basin of attraction for A. Then

(a) G(B) ⊆ B and G(SZ
d \ B) ⊆ SZ

d \ B,

(b) U ⊆ B,

(c) B =
∞⋃

n=0

G−n(U),

(d) B is open.

Proof. (a) If c ∈ B then limn→∞ d(Gn(G(c)), A) = limn→∞ d(Gn+1(c), A) = 0 so G(c) ∈ B.
Conversely, if G(c) ∈ B then limn→∞ d(Gn(c), A) = limn→∞ d(Gn−1(G(c)), A) = 0, so c ∈ B.

(b) For every ε > 0 let

Bε(A) =
⋃
x∈A

Bε(x).

Set Bε(A) is open so its complement is closed. Let us prove that there is n such that
Gn(U) ⊆ Bε(A). If not, then for every n the intersection of Gn(U) and the complement of
Bε(A) is a non-empty compact set. Let Cn be this non-empty intersection. Clearly

C1 ⊇ C2 ⊇ C3 ⊇ . . .

so it follows from the finite intersection property of compact sets that

∞⋂
i=1

Ci 6= ∅.

But his means that there is a configuration in A that is not in Bε(A), a contradiction.
Because U ⊇ G(U) ⊇ G2(U) ⊇ . . . we see that Gn(U) ⊆ Bε(A) for all sufficiently large

n. Let c ∈ U be arbitrary. Then for every ε we have d(Gn(c), A) < ε for all sufficiently large
n. This is true for every positive ε, so c ∈ B.

109

(c) It follows from (a) and (b) that G−n(U) ⊆ B for all n, so the inclusion from right to left
is clear. For the converse inclusion we observe first that for every cylinder set C there exists
ε > 0 such that Bε(C) = C. Clopen sets are finite unions of cylinders, so for clopen U holds
Bε(U) = U for some ε > 0. Because A ⊆ U

Bε(A) ⊆ Bε(U) = U.

If c ∈ B then Gn(c) ∈ Bε(A) for sufficiently large n, so Gn(c) ∈ U . This means that
c ∈ G−n(U).

(d) Follows directly from (c) and the facts that U is open and G is continuous. ¤

Example 39. Consider the xor CA. Let us prove that the limit set is the only attractor.
For any finite word w ∈ {0, 1}∗ and n ∈ Z let us denote by

Cyl(w, n) = {c ∈ {0, 1}Z | c(n)c(n + 1) . . . c(n + |w| − 1) = w}
the cylinder of configurations that contain pattern w starting in position n. For non-empty
w let us denote by G(w) the word u of length |w| − 1 where ui ≡ wi + wi+1 (mod 2). It is
easy to see that

G(Cyl(w, n)) = Cyl(G(w), n).

Suppose A is an attractor determined by clopen U that satisfies G(U) ⊆ U . Let w be
the shortest word such that Cyl(w, n) ⊆ U for some n ∈ Z. If w is the empty word then
U = {0, 1}Z so A is the limit set {0, 1}Z. If w is not the empty word then

Cyl(G(w), n) = G(Cyl(w, n)) ⊆ G(U) ⊆ U,

which contradicts the choice of w since G(w) is shorter than w. We conclude that U = {0, 1}Z
is the only clopen set that satisfies G(U) ⊆ U , and the limit set is the only attractor. ¤

Example 40. Consider the elementary rule 128. We found its limit set in Example 38.
It has another attractor that contains only one configuration . . . 000 This attractor is
determined by the clopen cylinder

U = {c | c(0) = 0}.
The basin B of attraction consists of all configurations in which cell 0 eventually becomes 0,
which means that all configurations except . . . 111 . . . are in B.

There are no other attractors: If X is clopen then X contains a configuration with
some cell in state 0. This implies that the attractor determined by X necessarily contains
configuration . . . 000 But then its basin of attraction contains all configurations with
some cell in state 0. There are only two such sets, and they are the basins of attraction of
the two attractors above, so no other attractors exist. ¤

The following proposition discusses the possible attractor structures of cellular automata.
There two basic alternatives: Either there are two disjoint attractors, in which case there
in fact are infinitely many disjoint attractors and a hierarchy of nested attractors, or the
intersection of all attractors is non-empty.

110

Proposition 79 For every CA G either

(a) there are two attractors whose intersection is empty, or

(b) the intersection of all attractors is non-empty.

Proof. Suppose there are no disjoint attractors, and let us prove that the intersection of all
attractors is non-empty.

Let U1, U2, . . . be a sequence that contains all clopen sets that satisfy G(Ui) ⊆ Ui. Then
each attractor is determined by some Ui. Suppose there is n such that U1 ∩ U2 ∩ . . . ∩ Un

is empty. Let n be smallest such number, so that U = U1 ∩ U2 ∩ . . . ∩ Un−1 is not empty
but U ∩ Un is empty. Finite intersections of clopen sets are clopen so U is clopen. Since
G(Ui) ⊆ Ui for all i, we have G(U) ⊆ U . Hence there are clopen sets U and Un that are
disjoint and satisfy G(U) ⊆ U and G(Un) ⊆ Un. The attractors specifies by U and Un are
disjoint and condition (a) of the proposition holds.

Suppose then that for every n the intersection U1 ∩U2 ∩ . . .∩Un is non-empty. It follows
from the finite intersection property of compact sets that the intersection V of all Ui’s is
non-empty. Set V is closed (but not necessarily open) and it satisfies G(V) ⊆ V and V ⊆ Ui

for all i. The intersection ∞⋂
n=0

Gn(V)

is non-empty (finite intersection property) and it is contained in every attractor. Hence the
intersection of attractors is non-empty. ¤

In case (b) of the previous proposition the intersection of attractors can itself be an
attractor (in which case it is the unique minimal attractor). As seen in Example 40, elemen-
tary CA 128 has such intersection. In some cases the intersection of all attractors is not an
attractor, as shown by the following example.

Example 41. Consider elementary CA 136. In this CA the new state of a cell is 1 if and
only if the old states of the cell and its right neighbor were 1. Every clopen set contains
a finite configuration, and all finite configurations evolve into the quiescent configuration
. . . 0000 This means that the quiescent configuration is in every attractor. So condition
(b) of Proposition 79 holds. For every positive integer m we denote by Cm the cylinder
of all configurations that have state 0 in cells 1, 2, . . . m. Since G(Cm) ⊆ Cm, cylinder Cm

determines an attractor Am. Since state 0 spreads to the left, all configurations in Am

have state 0 in all cells i ≤ m. So the intersection of all attractors Am is the singleton
A = {. . . 0000 . . .}.

However, the intersection A of all attractors is not an attractor itself: Every clopen
set U contains a configuration where cells j are in state 1 for all sufficiently large j, and
therefore the corresponding attractor also contains such a configuration. Hence the attractor
determined by U is different from A. ¤

The following is an example of type (a) attractor structure.

111

Example 42. Consider the majority CA (elementary CA 232, see Example 6). The cylinder
C00 determined by pattern 00 satisfies G(C00) ⊆ C00. Also the cylinder C11 determined by
pattern 11 satisfies G(C11) ⊆ C11. Both cylinders determine an attractor, and since the
cylinders are disjoint the attractors they determine are also disjoint. ¤

The following proposition analyzes type (a) attractor structure. In this case, it turns out
that no minimal attractors exist:

Proposition 80 If there exist two disjoint attractors then every attractor contains as subset
two disjoint attractors.

Proof. Let A and B be two disjoint attractors, determined by clopen sets U and V , respec-
tively. Intersection U ∩ V is clopen and satisfies G(U ∩ V) ⊆ U ∩ V . If U ∩ V is not empty
then ∞⋂

n=0

Gn(U ∩ V)

is a non-empty set that is a subset of both A and B, which contradicts the fact that A and
B are disjoint. We conclude that U and V must be disjoint.

Let C be an arbitrary attractor, determined by clopen set W . There is a translation τ
such that U ′ = τ(U) ∩ W and V ′ = τ(V) ∩ W are non-empty. Note that U ′ and V ′ are
clopen, U ′∩V ′ = ∅ and U ′, V ′ ⊆ W . Moreover, G(U ′) ⊆ U ′ and G(V ′) ⊆ V ′. All this means
that the attractors determined by U ′ and V ′ are disjoint subsets of C. ¤

In particular, it follows from the previous proposition that if two disjoint attractors exist
then there exist infinitely many attractors that are pairwise disjoint. Indeed, if A1 and B1

are disjoint attractors then B1 contains two disjoint attractors A2 and B2, B2 contains two
disjoint attractors A3 and B3, and so on. Sets A1, A2, A3, . . . are pairwise disjoint attractors
of the CA.

It also follows from the proposition that if disjoint attractors exist then there is no
minimal attractor since every attractor contains proper subsets that are attractors.

Proposition 81 A minimal attractor of a CA is always the intersection of all attractors.
In particular: Every CA has at most one minimal attractor.

Proof. Let A be a minimal attractor, and let B be an arbitrary attractor. If A and B
are disjoint then by Proposition 80 attractor A contains proper subsets that are attractors,
which contradicts the minimality of A. So A ∩ B 6= ∅. Since A ∩ B contains an attractor
(determined by U ∩V where U and V are clopen sets that determine A and B, respectively)
it follows from the minimality of A that this attractor must be equal to A. Hence A ⊆ B. ¤

In summary: a minimal attractor exists if and only if the intersection of all attractors is
an attractor. This intersection is then the unique minimal attractor. Other possibilities are

112

that there are disjoint attractors, or that the intersection of all attractors is a non-empty set
that is not an attractor. In these cases no minimal attractor exists.

We finish the section with some general properties of attractors that holds in any topo-
logical dynamical system.

Proposition 82 Let A and B be two attractors of G.

(a) The union A ∪B is an attractor.

(b) If A ∩B 6= ∅ then there exists an attractor C ⊆ A ∩B.

Proof. Let U, V be inward clopen sets that specify the attractors A and B.

(a) The union U ∪ V is clopen and satisfies G(U ∪ V) ⊆ U ∪ V so it determines an attractor

C =
∞⋂

n=0

Gn(U ∪ V) =
∞⋂

n=0

Gn(U) ∪Gn(V).

It is clear that A ⊆ C and B ⊆ C so A ∪ B ⊆ C. For the converse inclusion, let c ∈ C
be arbitrary. Then, for every n = 0, 1, 2, . . . we have c ∈ Gn(U) or c ∈ Gn(V). Therefore,
c ∈ Gn(U) for infinitely many n, or c ∈ Gn(V) for infinitely many n. But because

U ⊇ G(U) ⊇ G2(U) ⊇ . . . ,

it follows that if c ∈ Gn(U) for infinitely many n then c ∈ Gn(U) for all n. Analogous
statement holds in the case that c ∈ Gn(V) for infinitely many n. So we have that c ∈ A or
c ∈ B.

(b) If A ∩ B 6= ∅ we must have U ∩ V 6= ∅. The intersection U ∩ V is clopen and inward so
it determines an attractor C. We clearly have C ⊆ A and C ⊆ B. ¤

5.5 Equicontinuity and sensitivity

In this section we study concepts that are related to the propagation of changes in the initial
configuration. Loosely speaking, a dynamical system is ”chaotic” if small perturbations in
the state of the system get magnified during the evolution. This means that we cannot predict
the long term behavior of the system by simulation unless the initial state is known precisely.
In contrast, configurations whose orbits are arbitrarily well tracked by all sufficiently close
configurations are called equicontinuous. Such orbits can be reliably simulated.

Precisely speaking, configuration c ∈ SZ
d

is an equicontinuity point for CA G if

∀ε > 0, ∃δ > 0, ∀e ∈ Bδ(c), ∀n ≥ 1 : d(Gn(c), Gn(e)) < ε.

In other words, all functions G,G2, G3, . . . are continuous at point c with the same positive
parameter δ > 0 corresponding to any ε > 0. (Hence the term ”equicontinuous”.) Let
E = EG denote the set of equicontinuity points of G.

113

In terms of cylinders, the equicontinuity property can be rephrased as follows: c ∈ E if
and only if for every finite observation window E ⊆ Zd there corresponds a finite domain
D ⊆ Zd such that

e ∈ Cyl(c, D) =⇒ ∀n ≥ 1 : Gn(e) ∈ Cyl(Gn(c), E).

Cellular automaton G is called equicontinuous if all configurations are equicontinuous,
that is, if E = SZ

d
. It turns out that only relatively trivial (namely eventually periodic) CA

are equicontinuous.

Proposition 83 A CA G is equicontinuous if and only if Gm+p = Gm for some p ≥ 1 and
m ≥ 0.

Proof. If Gm+p = Gm then there are only finitely many different functions G, G2, G3, . . ., so
the equicontinuity of G follows directly.

For the other direction, suppose that G is equicontinuous. In the definition of equiconti-
nuity, choose ε = 1. We see that every c ∈ SZ

d
has an open neighborhood Uc such that

e ∈ Uc =⇒ d(Gn(c), Gn(e)) < 1, for all n ≥ 1.

By compactness, there are finitely many configurations c1, c2, . . . , cn such that Uc1 , Uc2 , . . . , Ucn

is a cover of SZ
d
. This means that for every e ∈ SZ

d
there exists i ∈ {1, 2, . . . , n} such that

Gn(e)(~0) = Gn(ci)(~0) for all n.
Totally (spatially) periodic configurations are dense in SZ

d
, so we can choose c1, c2, . . . , cn

to be totally periodic. Because totally (spatially) periodic configurations are (temporally)
eventually periodic, for each i ∈ {1, 2, . . . , n} there exist mi ≥ 0 and pi ≥ 1 such that
Gmi+pi(ci) = Gmi(ci). If we choose m ≥ m1,m2, . . . mn and p = p1p2 . . . pn, then Gm+p(ci) =
Gm(ci) for all i, so that

Gm+p(e)(~0) = Gm+p(ci)(~0) = Gm(ci)(~0) = Gm(e)(~0)

for all e ∈ SZ
d
. By translation invariance of G, we have Gm+p = Gm. ¤

Corollary 84 A surjective CA G is equicontinuous if and only if Gp = id for some p ≥ 1.

Proof. Suppose G is surjective and equicontinuous. By Proposition 83 there exist p ≥ 1 and
m ≥ 0 such that Gm+p = Gm. Let c ∈ SZ

d
be arbitrary. By surjectivity there exists e ∈ SZ

d

such that Gm(e) = c. Hence Gp(c) = Gm+p(e) = Gm(e) = c, so we see that Gp = id . The
other direction is trivial. ¤

Cellular automaton G is sensitive to initial conditions (or simply sensitive) if there is
a positive number ε > 0 such that for every configuration c there exist configurations e

114

arbitrarily close to c such that d(Gn(c), Gn(e)) > ε for some n. More compactly stated: G
is sensitive iff

∃ε > 0, ∀c ∈ SZ
d

, ∀δ > 0, ∃e ∈ Bδ(c), ∃n ≥ 1 : d(Gn(c), Gn(e)) > ε.

In cellular automata terminology this means that there is a finite observation window E ⊆
Zd such that for every configuration c and every domain D, there exists a configuration
e ∈ Cyl(c,D) such that Gn(e) 6∈ Cyl(Gn(c), E), for some n ≥ 1.

Example 43. Any non-zero translation τ is sensitive to initial conditions. As another
example, consider the one-dimensional xor CA. For any configuration c and positive integer
n the configuration e obtained from c by toggling the state of cell n has the property that
d(c, e) = 2−n while d(Gn(c), Gn(e)) = 1. Hence xor is sensitive. Note also that if G is
sensitive and H is an arbitrary CA then the product G×H is sensitive, where the product
CA consists of two tracks where G and H act independently of each other. In particular this
means that non-surjective CA can be sensitive. ¤

It is easy to see that a sensitive CA cannot have any equicontinuity points.

Proposition 85 If G is sensitive then EG = ∅.

Proof. If G is sensitive then by changing the order of the first two quantifiers in the definition

∃ε > 0, ∀c ∈ SZ
d

, ∀δ > 0, . . .

of sensitivity we obtain

∀c ∈ SZ
d

, ∃ε > 0, ∀δ > 0, ∃e ∈ Bδ(c), ∃n ≥ 1 : d(Gn(c), Gn(e)) > ε.

This is equivalent to E = ∅. ¤

So far we discussed CA in arbitrary dimension d. Among one-dimensional CA one can
prove further results (which are not valid in higher dimensions). In particular, (1) the
converse of Proposition 85 holds (so a one-dimensional CA is sensitive if and only if it has no
equicontinuity points), and (2) if a one-dimensional CA has any equicontinuity points then
the set of equicontinuity points is dense (more precisely: E is then a residual set).

Recall that a set A ⊆ SZ
d

is called residual if it is the intersection of countably many
dense open sets. By Proposition 69 the space SZ

d
is a Baire space, so any residual set is

dense. Intuitively, residual sets are ”fat” and contain ”almost all” configurations.
The source of the differences between the one- and the higher dimensional equicontinuity

points is the fact in the one-dimensional case equicontinuity is characterized by the presence
of blocking words that prevent any information passing from one side to the other, while an
analogous, two-dimensional counter part (”blocking rectangle”) does not divide the space
into disconnected areas, and information can circumvent the obstacle.

115

More precisely, consider a one-dimensional CA G over the state set S. An m-blocking
word u is a word over the alphabet S such that for some offset p ∈ Z

c, e ∈ Cyl(u, 0) =⇒ Gn(c)(i) = Gn(e)(i) for all n ≥ 0 and p ≤ i < p + m.

Here we use the notation

Cyl(u, n) = {c ∈ SZ | c(n)c(n + 1) . . . c(n + |u| − 1) = u}

for the cylinder of configurations that contain word u starting in position n. In other words,
if c contains the blocking word u then the states of the cells in some segment of length m at
all times are independent of the initial states outside of the blocking word u. In the following
illustration, word u is blocking iff the states in the gray area are independent of the states
outside of the shaded word u:

u

0 p

m

Note that obviously we must have 0 ≤ p ≤ |u| −m.

Example 44. In the majority CA (elementary CA number 232) words 11 and 00 are both
2-blocking. ¤

Lemma 86 Let G be a one-dimensional CA with neighborhood radius r. Suppose G has an
r-blocking word u. Let c be any configuration that contains infinitely many copies of u to the
right and to the left:

u u u u u u u

Such c is equicontinuous.

Proof. Let n ≥ 1 be arbitrary. Configuration c contains copies of word u to the right of
position n and to the left of position −n. Let uwu be a subpattern of c where the first and
the last u are positioned to the left and to the right of positions −n and n, respectively.

116

u uw

r r

-n n

A B

Let e be any configuration with the same subpattern uwu in the same position as c. Because
u is r-blocking, there are segments A = {a−r+1, a−r+2, . . . a} and B = {b, b+1, . . . b+r−1}
of length r, where a ≤ −n and b ≥ n, such that Gt(e)(i) = Gt(c)(i) for all t ≥ 0 and all
i ∈ A and i ∈ B. Based on the fact that r is the neighborhood radius of G, we easily see
using induction on t that Gt(e)(i) = Gt(c)(i) for all t ≥ 0 and all a < i < b. ¤

Proposition 87 Let G be a one-dimensional CA, defined by a radius-r local rule. Then
exactly one of the following two alternatives holds:

(1) E is residual. This is equivalent to the existence of an r-blocking word.

(2) E = ∅. This is equivalent to the sensitivity of G.

Proof. (i) Suppose first that G has an r-blocking word u. Let us prove that E is residual.
For any finite E ⊆ Z denote by

UE = {c ∈ SZ | ∃ finite D ⊆ Z such that e ∈ Cyl(c,D) =⇒ ∀n ≥ 1 : Gn(e) ∈ Cyl(Gn(c), E) }

the set of points that satisfy the equicontinuity condition w.r.t the observation window E.
Set UE is open because if c ∈ UE then all configurations of the corresponding cylinder
Cyl(c,D) are also in UE. Clearly

E =
⋂

E⊆Z finite

UE,

so it is enough to show that sets UE are dense. Let w ∈ S∗ be any finite word. By Lemma 86
the configuration . . . uu w uu . . . is an equicontinuity point, so E is dense. But E ⊆ UE so
all UE are dense as well. We conclude that E is residual.

(ii) Suppose then that G is not sensitive. Let us show that G has an r-blocking word. Let
E = {−m,−m + 1, . . . ,m} where m is such that 2m + 1 ≥ r. Due to non-sensitivity, there
exists c ∈ SZ and domain D = {−n,−n+1, . . . , n}, n ≥ m, such that for all e ∈ Cyl(c,D) and
all n ≥ 1 holds Gn(e) ∈ Cyl(Gn(c), E). But this means that the word c(−n)c(−n+1) . . . c(n)
is a (2m + 1)-blocking word, and hence also an r-blocking word.

117

Now we have all the ingredients needed to prove the proposition. The four implications in

∃ r-blocking word =⇒ E residual =⇒ E 6= ∅ =⇒ G is not sensitive =⇒ ∃ r-blocking word

are part (i) above, trivial, Proposition 85, and part (ii) above, respectively. So all four
conditions in the implication cycle are equivalent. The proposition now follows from the
simple observation that either E = ∅ or E 6= ∅, but not both. ¤

If E is residual then the CA is called almost equicontinuous. A one-dimensional CA is
either sensitive or almost equicontinuous.

Note: In the two-dimensional case Proposition 87 does not hold. In fact,

• there are two-dimensional CA such that E 6= ∅ but E is not dense,

• there are two-dimensional non-sensitive CA such that E = ∅.
We skip these examples.

A very strong form of sensitivity is expansivity. A CA G is called positively expansive if

∃ε > 0 : c 6= e =⇒ ∃n ≥ 0 : d(Gn(c), Gn(e)) > ε.

In other words, there exists a finite observation window E ⊆ Zd such that for any distinct
configurations c and e there exists time n ≥ 0 such that configurations Gn(c) and Gn(e)
differ in some cell in the window E.

If we allow in the definition of positive expansivity the integer n take also negative values
we obtain the definition of expansivity. This concept is only defined for reversible CA. More
precisely, a reversible CA is called expansive if there exists a finite E such that for any two
different configurations c and e there exists an integer n (which may be also negative) such
that Gn(c) and Gn(e) differ in some cell in domain E.

Example 45. Non-zero translations are not positively expansive but in the one-dimensional
case they are expansive. The xor CA is not positively expansive because differences only
propagate to the left, but the three neighbor xor (elementary CA 150, local rule f(a, b, c) ≡
a + b + c (mod 2)) is positively expansive. ¤

Our first observation is that expansivity and positive expansivity are stronger conditions
than sensitivity to initial conditions.

Proposition 88 Expansive and positively expansive CA are sensitive.

Proof. For positive expansivity this is clear since the space SZ
d

does not have any isolated
points. If E is the finite observation window confirming positive expansivity of G then the
same E also confirms sensitivity: For any finite D ⊆ Zd and any c ∈ SZ

d
there exist a

configuration e ∈ Cyl(c,D) such that e 6= c. By positive expansivity, Gn(e)(~x) 6= Gn(c)(~x)
for some n ≥ 0 and ~x ∈ E. This proves sensitivity.

118

Suppose then that reversible G is expansive, and let E be a finite observation window
confirming its expansivity. Let D ⊆ Zd and c ∈ SZ

d
be arbitrary. It is enough to show that

for some e ∈ Cyl(c,D), some n ≥ 0 and some ~x ∈ E we have Gn(e)(~x) 6= Gn(c)(~x). By
expansivity, such n and ~x exist for every e 6= c, except that time n may be negative. If n ≥ 0
the proof is complete, so suppose now that Gn(e)(~x) 6= Gn(c)(~x) where n < 0. In reversible
CA periodic points are dense, so there exist periodic c′ and e′ such that c′, e′ ∈ Cyl(c, D),
and Gn(e′)(~x) = Gn(e)(~x) 6= Gn(c)(~x) = Gn(c′)(~x). If p is a common period for c′ and e′

we have that Gn+kp(e′)(~x) = Gn(e′)(~x) 6= Gn(c′)(~x) = Gn+kp(c′)(~x), for every k ∈ Z. For
sufficiently large k the time n + kp is positive, so either c′ or e′ confirms the sensitivity. ¤

It is also easy to see that positively expansive CA must be surjective.

Proposition 89 Positively expansive CA G is surjective.

Proof. By the Garden-of-Eden -theorem, if G is not surjective then there are two configura-
tions c, e such that G(c) = G(e) but the difference set

diff (c, e) = {~n ∈ Zd | c(~n) 6= e(~n) }

is finite and non-empty. By translation invariance, for any observation window E we can
choose c and e in such a way that E ∩ diff (c, e) = ∅. This contradicts positive expansivity,
as the difference of c and e is never seen inside the window E. ¤

The following two propositions show that only one-dimensional CA can be positively
expansive or expansive, and that reversible CA can never be positively expansive.

Proposition 90 For d ≥ 2, no d-dimensional CA is (positively) expansive.

Proof. We only prove this for positive expansivity. The proof for expansivity is similar.
Suppose that G is a positively expansive d-dimensional CA, where d ≥ 2. Let E ⊆ Zd

be a finite observation window that confirms the positive expansivity. As we may replace E
by any of its supersets, we may assume that E is a size (2k + 1)d hypercube, centered at the
origin.

For every i = 1, 2, . . ., let Di denote the size (2i + 1)d hypercube centered at the origin.
Let us use the compactness of SZ

d
to show that for some n ∈ Z+ we have the following

property: If c and e are any two configurations such that

Gt(c)(~x) = Gt(e)(~x) for all 0 ≤ t ≤ n and all ~x ∈ Dk

then
c(~y) = e(~y) for all ~y ∈ Dk+1.

Suppose the contrary: for every n there exist cn, en ∈ SZ
d

such that Gt(cn)(~x) = Gt(en)(~x)
for all 0 ≤ t ≤ n and all ~x ∈ Dk but cn(~y) 6= en(~y) for some ~y ∈ Dk+1. Let c, e be the

119

limit of a converging subsequence of pairs cn, en, for n = 1, 2, Then c(~y) 6= e(~y) for some
~y ∈ Dk+1 but Gt(c)(~x) = Gt(e)(~x) for all t ≥ 0 and all ~x ∈ Dk = E. This contradicts the
positive expansivity of G.

So we have number n such that states Gt(c)(~x) for 0 ≤ t ≤ n and ~x ∈ Dk uniquely
determine c(~y) for all ~y ∈ Dk+1. But then we also have the property that for any j ≥ 0
the states Gt(c)(~x) for 0 ≤ t ≤ n and ~x ∈ Dk+j uniquely determine c(~y) for ~y ∈ Dk+j+1.
This is because every cell ~y ∈ Dj+k+1 belongs to a size (2k + 3)d hypercube whose co-centric
hypercube of size (2k + 1)d is inside Dk+j.

So in the space-time diagram

2k+1

n

n

n

n

2(k+j)+1

j

the states in the gray area uniquely determine the shaded area. In other words, for every
j ≥ 0 the following holds: if c(~y) 6= e(~y) for some ~y ∈ Dk+j then Gt(c)(~x) 6= Gt(e)(~x) for
some 0 ≤ t ≤ jn and some ~x ∈ Dk.

A contradiction now arises from the fact that if d ≥ 2 the volume of Dk+j grows faster
than the size of Dk × {0, 1, . . . , jn} when j increases. More precisely, for some sufficiently
large j,

|Dk+j| = (2k + 2j + 1)d > (2k + 1)d(jn + 1) = |Dk × {0, 1, . . . , jn}|.

By the pigeon-hole principle then there exists configurations c, e that are not identical inside
Dk+j but Gt(c)(~x) = Gt(e)(~x) for all 0 ≤ t ≤ jn and all ~x ∈ Dk, a contradiction. ¤

Proposition 91 A reversible CA is not positively expansive.

Proof. By Proposition 90 it is enough to consider a one-dimensional reversible CA G. Sup-
pose that G would be positively expansive, and let E = {−m,−m + 1, . . . , m} be an ob-
servation window confirming positive expansivity. Let r be the neighborhood radius of its
inverse G−1.

120

By compactness (as in the proof of Proposition 90) we see that for some n ≥ 1 we have
that if c and e are any two configurations such that

Gt(c)(i) = Gt(e)(i) for all 0 ≤ t ≤ n and all −m ≤ i ≤ m

then
c(i) = e(i) for all −m− r ≤ i ≤ m + r.

But because r is the neighborhood radius of G−1, this in turn implies that

G−1(c)(i) = G−1(e)(i) for all −m ≤ i ≤ m.

In other words, in the space-time diagram

r

-m m

A

B
r

states in region A uniquely determine the states in region B. Inductively we can conclude
that

Gt(c)(i) = Gt(e)(i) for all t < 0 and −m ≤ i ≤ m,

so all states above segment B are also uniquely determined. This implies that G−1 is even-
tually periodic and hence, due to its reversibility, periodic. Clearly, a periodic CA cannot
be positively expansive. ¤

The following diagram summarizes the sensitivity results we obtained in this section for
one-dimensional CA:

SensitiveAlmost equicontinuous

Eq.continuous

Surjective

Reversible

Periodic
Pos.exp.Expansive.

In higher dimensions the circles representing expansive and positively expansive CA are
missing, and the complement of sensitive CA is not the set of almost equicontinuous CA.
Other aspects of the diagram are valid in higher dimensions as well.

121

5.6 Mixing properties

Mixing of the configuration space is another property associated to chaos. As sensitivity,
also mixing comes in different variants. Cellular automaton G is called transitive if for all
non-empty open sets U and V there exists n ≥ 0 such that Gn(U) ∩ V 6= ∅. As cylinders
form a basis, it is sufficient to check this condition for all non-empty cylinders U and V .
If G is non-surjective then its transitivity is contradicted by non-empty open sets U and V
such that V ∩G(SZ

d
) = ∅ and U ∩ V = ∅. So only surjective CA can be transitive.

Note that the condition Gn(U) ∩ V 6= ∅ can be replaced by the equivalent condition
U ∩G−n(V) 6= ∅. Also, we can require n to be strictly positive since we can use G−1(V) in
place of V .

Example 46. The xor -cellular automaton is easily seen transitive. For any fixed word w
of length n, define the mapping h : Sn −→ Sn so that u 7→ v iff Gn(. . . w u . . .) = . . . v . . .
where v is a word of length n starting in the same position as w, only n time steps later.
Mapping h is injective, and therefore also surjective. We see that for any two cylinders U
and V with domain {1, 2, . . . , n} holds Gn(U) ∩ V 6= ∅. This proves transitivity. ¤

Transitivity is a stronger property that sensitivity:

Proposition 92 A transitive CA (with at least two states) is sensitive to initial conditions.

Proof. Let G be a CA that is not sensitive. Because G is not sensitive there exists some
configuration c ∈ SZ

d
and a finite domain D ⊆ Zd such that

e ∈ Cyl(c, D) =⇒ Gt(e)(~0) = Gt(c)(~0) for all t ≥ 0.

Denote C = Cyl(c,D). Let τ = τ~n be a translation by some vector ~n 6= ~0 such that
U = τ−1(C) ∩ C 6= ∅. Such a translation exists because the domain D is finite. Set U is a
non-empty cylinder. Let e ∈ U be arbitrary, so e ∈ C and τ(e) ∈ C. For all t ≥ 0

Gt(e)(~n) = τ(Gt(e))(~0) = Gt(τ(e))(~0) = Gt(c)(~0) = Gt(e)(~0).

We conclude that Gt(U) ∩ V = ∅ for all t ≥ 0 where V is any cylinder with domain {~0, ~n}
and with different state assigned to ~0 and ~n. Hence G is not transitive. ¤

Example 47. As an example of a surjective CA that is sensitive but not transitive, consider
the product τ×I of a non-zero translation τ and the identity function I, both over the binary
state set {0, 1}. This CA is sensitive because τ is sensitive, but it is not transitive because
I is not transitive. ¤

The following proposition characterizes transitive systems in terms of orbits. Let us
denote by

TG = T = {c ∈ SZ
d | the orbit c, G(c), G2(c), . . . is dense}

the set of transitive points of G, i.e., those points whose orbit is dense.

122

Proposition 93 The following three conditions are equivalent for a CA G:

(i) G is transitive,

(ii) TG is a residual set,

(iii) TG 6= ∅.

Proof. ”(i) =⇒ (ii)” Suppose that G is transitive. Let U1, U2, . . . be the set of all cylinders.
For each cylinder Un, let

Xn = {c ∈ SZ
d | Gm(c) ∈ Un for some m ≥ 0 }

be the set of all points whose forward orbits intersect Un. Then

TG = ∩∞i=0Xn,

so it is sufficient so show that each Xn is open and dense. If c ∈ Xn then there is m such
that Gm(c) ∈ Un. Function Gm is continuous, so G−m(Un) is an open neighborhood of c that
is a subset of Xn. Hence Xn is open. For denseness consider an arbitrary open set U . By
transitivity of G there exists m such that Gm(U) ∩ Un 6= ∅, that is, U ∩Xn 6= ∅.
”(ii) =⇒ (iii)” follows form the fact that SZ

d
is a Baire space.

”(iii) =⇒ (i)” Suppose that c has dense forward orbit, and let U and V be arbitrary non-
empty open sets. By the denseness of the orbit we have that Gn(c) ∈ U for some n.
Because V ′ = V \ {c,G(c), G2(c), . . . , Gn(c)} is non-empty and open, there exists m such
that Gm(c) ∈ V ′. Clearly m > n and Gm(c) ∈ V , so Gm−n(U) ∩ V 6= ∅. Hence the CA is
transitive. ¤

We can make the following easy observation concerning attractors of transitive CA:

Proposition 94 The limit set SZ
d

is the only attractor of a transitive CA.

Proof. Suppose U is a clopen set satisfying G(U) ⊆ U . If U is not the whole space SZ
d

then
there is another clopen set V such that U ∩ V = ∅. But since Gn(U) ⊆ U for all n, we have
Gn(U)∩V = ∅ for all n, which means that G is not transitive. We conclude that a transitive
CA can only have one attractor, specified by U = SZ

d
. ¤

The following examples shows that the converse is not true.

Example 48. Consider the CA G = H ◦ σ due to Coven and Hedlund, where H is the
elementary CA number 180 and σ is the left shift. It is a one-dimensional, binary state CA
with neighborhood (0, 1, 2). In H, the state of a cell is swapped if and only if it is followed
by word 10.

123

Let us show that H is surjective and non-sensitive (and hence non-transitive) but the
limit set Ω = SZ is the only attractor. The surjectivity of H is clear since the elementary
CA 180 is left-permutive. Non-sensitivity follows from the fact that 000 is a two-blocking
word (exercise, based on the fact that the only preimage of word wn = 00(11)n10 that begins
with 00 is wn+1 = 00(11)n+110.)

Let E = {a, a + 1, . . . , b} be any finite contiguous domain, and let C1, C2, . . . , Cn be the
cylinders with domain E. If we build a directed graph with n vertices C1, C2, . . . , Cn, and
put an edge Ci −→ Cj if and only if G(Ci) ∩ Cj 6= ∅ then one can show that the graph
is strongly connected. We say that the CA is chain transitive. If U 6= ∅, SZ is any clopen
set then it is a union of some cylinders Ci for some domain E. Due to chain transitivity
G(Ci) ∩ Cj 6= ∅ for some Ci ⊆ U and Cj ⊆ SZ \ U . Hence G(U) 6⊆ U . It follows that the
limit set SZ is the only attractor. ¤

Motivated by the example above, let us define a weaker form of transitivity. A CA is
called chain transitive if for every c, e ∈ SZ

d
and every finite D ⊆ Zd there exists a sequence

c0, c1, . . . , cn of configurations such that c0 = c, cn = e and for every i = 1, 2, . . . , n we have
G(ci−1) ∈ Cyl(ci, D). In other words, for all domains D, the following directed graph must
be strongly connected: The vertices are the cylinders Ci with domain D, and there is an
edge Ci −→ Cj iff G(Ci) ∩ Cj 6= ∅.

Chain transitive CA are surjective as they can have no orphans. Clearly every transitive
CA is chain transitive.

Proposition 95 A CA G is chain transitive if and only if the only SZ
d

is the only attractor
of G.

Proof. If G is not chain transitive then for some domain D the directed graph constructed
for that domain is not strongly connected. Let Ci and Cj be vertices such that there is no
path in the graph from Ci to Cj. Let U be the union of all the cylinders that can be reached

in the graph from Ci. Then U is clopen as a finite union of cylinders, U 6= SZ
d

because
A ∩ Cj = ∅, and G(U) ⊆ U . Hence U specifies an attractor different from SZ

d
.

Conversely, suppose that G is chain transitive. Let U be a clopen set such that G(U) ⊆ U ,
and suppose that U 6= ∅ and U 6= SZ. Let D ⊆ Zd be a finite domain such that U is a
disjoint union of cylinders with domain D. By chain transitivity there are cylinders Ci and
Cj with domain D such that Ci ⊆ U , Cj ⊆ SZ \ U and G(Ci) ∩ Cj 6= ∅. Hence G(U) 6⊆ U ,

a contradiction. We conclude that U = SZ
d

is the only non-empty clopen set satisfying
G(U) ⊆ U , so SZ

d
is the only attractor. ¤

Mixing is a more restrictive concept than transitivity: Cellular automaton G is called
mixing if for all non-empty open sets U and V there exists positive integer n such that
Gk(U)∩V 6= ∅ for all k ≥ n. Again, it is sufficient to verify this condition in the case U and
V are cylinders. It is immediate from the definition that every mixing CA is also transitive:

Proposition 96 A mixing CA is transitive. ¤

124

Without a proof, we state the following implication. For a proof, see e.g.

P.Kůrka. Topological and Symbolic Dynamics. Societe Mathematique de France, 2003.

Proposition 97 A positively expansive CA is mixing. ¤

We can now add transitivity and mixing to the sensitivity classification diagram:

SensitiveAlmost equicontinuous

Eq.continuous

Surjective

Reversible

Periodic

Pos.exp.

Transitive.

Mixing

The relationship of reversible, expansive CA to transitivity and mixing is not known, so
expansive CA were excluded from the diagram.

Note that the concepts concerning sensitivity and transitivity are not just CA related
notions, but they are concepts defined in the same way in the context of general topological
dynamical systems. (The sensitivity related concepts require that the space has a metric,
while for transitivity and mixing only the topology is needed.) Devaney defines a chaotic
dynamical system to be a system that

1. is sensitive to initial conditions,

2. is transitive, and

3. temporally periodic points are dense.

We proved in proposition 92 that transitivity always implies sensitivity in cellular automata,
so transitivity and dense periodic orbits characterize chaotic CA. It is also conjectured (but
not proven!) that all surjective CA have dense periodic orbits, and if true, this would imply
that in cellular automata transitivity is equivalent to chaos.

Open Problem. Is it true that in every surjective CA every cylinder contains a temporally
periodic configuration ? ¤

Among reversible CA temporally periodic configurations are dense (because spatially to-
tally periodic configurations are also temporally periodic), so among reversible CA Devaney’s
chaos is equivalent to transitivity.

125

5.7 Measure invariance in surjective CA

One useful tool not yet used by us is the invariance of the uniform measure under surjective
CA (i.e., the balance property stated in Proposition 10). Let us start by recalling some basic
definitions of ergodic theory. Let us denote X = SZ

d
. A non-empty family Σ of subsets of

X is called a σ-algebra if its is closed under complementation and countable unions, that is,
if

A ∈ Σ =⇒ X \ A ∈ Σ
A1, A2, . . . ∈ Σ =⇒ A1 ∪ A2 ∪ . . . ∈ Σ.

The Borel σ-algebra B is the smallest σ-algebra that contains all open sets. (It is well defined
as the intersection of all σ-algebras that contain the open sets.) From now on, B denotes
the Borel σ-algebra, and its elements are called Borel sets or (Borel) measurable sets. The
following results (Dynkin’s π-λ Theorem) is needed later. For a proof, see any textbook on
measures:

Lemma 98 Let Γ be a family of subsets of X that is closed under finite intersections (so-
called π-system). Let ∆ be a family of subsets of X that contains X and is closed under
complementation and countable unions of pairwise disjoint sets (so-called λ-system). If Γ ⊆
∆ then there exists a σ-algebra Σ such that Γ ⊆ Σ ⊆ ∆. ¤

For any continuous function G : X −→ X and any Borel measurable set A, the set G−1(A)
is also Borel measurable. (The family Σ consisting of all A ⊆ X such that G−1(A) ∈ B is
easily seen to be a σ-algebra. For open U the set G−1(U) is open and hence in B, so all open
sets are in Σ. It follows that B ⊆ Σ.) In particular, pre-images of measurable sets under CA
functions are measurable.

A Borel probability measure is a function µ : B −→ R that satisfies the following condi-
tions:

• µ(∅) = 0, µ(X) = 1, and µ(A) ≥ 0 for all A ∈ B, and

• (σ-additivity) If A1, A2, . . . are pairwise disjoint elements of B then

µ(A1 ∪ A2 ∪ . . .) = µ(A1) + µ(A2) + . . .

Note that σ-additivity applies to countable families of pairwise disjoint Borel sets.

Example 49. Let c ∈ X be fixed, and define

µ(A) =

{
1, if c ∈ A,
0, if c 6∈ A.

This is easily seen to be a measure, the point measure. More generally, if C ⊆ X is finite we
can define a measure by

µ(A) =
|A ∩ C|
|C| .

126

¤

Let us first show that the values of a measure on cylinders uniquely determines the
measure:

Proposition 99 If two Borel probability measures agree on cylinders then they are identical.

Proof. Let Γ be the set of cylinders. Then Γ is closed under finite intersections. Suppose µ1

and µ2 be two Borel probability measures such that µ1(C) = µ2(C) for all C ∈ Γ. Let ∆ be
the family of Borel sets A such that µ1(A) = µ2(A). All cylinders are in ∆. If A ∈ ∆ then

µ1(X \ A) = 1− µ1(A) = 1− µ2(A) = µ2(X \ A),

so the complement of A is in ∆. If A1, A2, . . . are pairwise disjoint elements of ∆ then

µ1(A1 ∪ A2 ∪ . . .) = µ1(A1) + µ1(A2) + . . . = µ2(A1) + µ2(A2) + . . . = µ2(A1 ∪ A2 ∪ . . .).

We see that ∆ and Γ satisfy the conditions in Lemma 98, so there exists a σ-algebra Σ such
that Γ ⊆ Σ ⊆ ∆. As all open sets are countable unions of cylinders we see that Σ contains
all open sets, and therefore all Borel sets. We conclude that µ1(A) = µ2(A) for all Borel sets
A. ¤

For any Borel probability measure µ and any continuous G : X −→ X we define a new
measure G(µ) as follows:

G(µ)(A) = µ(G−1(A)) for all A ∈ B.

The function G(µ) is defined on every Borel set A because G−1(A) is Borel. So defined G(µ)
is a Borel probability measure:

Lemma 100 For any Borel probability measure µ on X and any continuous G : X −→ X
the function G(µ) is a Borel probability measure on X.

Proof. Follows directly from the facts that G−1(∅) = ∅, G−1(X) = X, G−1(X \ A) =
X \G−1(A) and

G−1(A1 ∪ A2 ∪ . . .) = G−1(A1) ∪G−1(A1) ∪

Moreover, we need to note that G−1(Ai) and G−1(Aj) are disjoint if Ai and Aj are disjoint.
¤

The measure G(µ) describes the probability distribution of configurations after one ap-
plication of G, if the configurations were originally drawn according to distribution µ: The
G(µ)-probability that a configuration belongs to a measurable set A after one application of
G is the same as the µ-probability that it originally belonged to G−1(A).

We have seen that any CA G defines a function µ 7→ G(µ) on Borel probability measures.
It turns out that this function can be viewed as a dynamical system because the Borel

127

probability measures can be given a compact metric such this application is continuous. We
do not go into any further details of this interesting aspect.

We say that measure µ is invariant under G if G(µ) = µ. Ergodic theory is a field that
studies dynamics under invariant measures. In the following we show that all surjective CA
have a very simple invariant measure, the uniform measure.

The simplest Borel probability measures are the Bernoulli probability measures. Given
a probability distribution p : S −→ [0, 1] that satisfies

∑
a∈S pa = 1, the corresponding

Bernoulli measure µp gives cylinder C = Cyl(c, D) the value

µp(C) =
∏

~n∈D

p(c(~n)).

We skip the proof that this assignment on cylinders extends into a probability measure on
Borel sets. (See any book on measures.)

A particular case of Bernoulli measures is the uniform probability measure that uses
p(a) = 1

|S| for all a ∈ S. In this case

µp(C) =

(
1

|S|
)|D|

,

so each cylinder with the same domain is given the same probability. Under this probability
measure ”each configuration has the same probability”.

Proposition 101 Let G be a surjective CA and let µ be the uniform Bernoulli measure.
Then G(µ) = µ.

Proof. This is another way of stating the balance property of Proposition 10. From
Proposition 99 we know that it is enough to show that G(µ)(C) = µ(C) for all cylinders
C = Cyl(c,D′) with arbitrary finite domain D′. By Proposition 10

G−1(C) = C1 ∪ C2 ∪ . . . Cn

where Ci are disjoint cylinders with some domain D, and n = |S||D|−|D′|. We have

µ(G−1(C)) = µ(C1) + µ(C2) + . . . + µ(Cn) = n

(
1

|S|
)|D|

=

(
1

|S|
)|D′|

= µ(C).

¤

As the first application of the measure invariance we prove the following fact:

Proposition 102 Attractors of surjective CA G are exactly the clopen sets U that satisfy
G(U) = U . The complement of an attractor is then also an attractor (or the empty set).

128

Proof. Let G be a surjective CA, and let U be any clopen set such that G(U) ⊆ U . Then
U ⊆ G−1(U). Let us prove that G−1(U) = U . Denote V = G−1(U) \U . By Proposition 101

µ(V) = µ(G−1(U))− µ(U) = 0,

for the unform measure µ. But V is clopen, and the only open set of measure 0 is the empty
set. We conclude that G−1(U) = U . By surjectivity, G(U) = U and G(SZ

d \ U) = SZ
d \ U .

¤

It also follows now that the full space SZ
d

is the only subshift attractor (i.e. a translation
invariant attractor) of a surjective CA.

Corollary 103 The only translation invariant attractor of a surjective CA is the full space
SZ

d
.

Proof. By Proposition 102, all attractors of a surjective CA are clopen. But the only
translation invariant clopen sets are SZ

d
and the empty set. To see this, let C be a translation

invariant clopen set, and suppose that C 6= SZ
d
. Let U 6= ∅ be an open set such that

U ∩ C = ∅. For any translation τ , we have τ(U) ∩ C = τ(U) ∩ τ(C) = τ(U ∩ C) = ∅. But
then C = ∅ because for any non-empty open sets A and B there exists a translation τ such
that τ(A) ∩B 6= ∅. ¤

One of the basic theorems of Ergodic theory is the Poincaré recurrence theorem. It deals
with measure invariant transformations so it directly applies to surjective CA. We first prove
a variant which states that among the points inside any measurable set A, the set of points
that do not return back to A infinitely many times has measure zero:

Proposition 104 Let G be a surjective CA and let µ denote the uniform measure. For
every Borel set A the set

B = {c ∈ A | ∃k : ∀n > k : Gn(c) 6∈ A}
of points of A that only return finitely many times to A has measure µ(B) = 0.

Proof. For every k ≥ 0 denote by

Ak = G−k(A) ∪G−k−1(A) ∪G−k−2(A) ∪ . . .

the set of points that visit A after at least k applications of G. These sets form a decreasing
chain

A0 ⊇ A1 ⊇ A2 ⊇ . . .

under inclusion. Each Ak is a Borel set as a countable union of Borel sets G−i(A). For
every k we have G−1(Ak) = Ak+1. Because the uniform measure is invariant, we have
µ(Ak) = µ(Ak+1). This means that all Ak have the same measure µ(Ak) = µ(A0).

129

Because A ⊆ A0, we have that A \ Ak ⊆ A0 \ Ak for every k, and consequently

µ(A \ Ak) ≤ µ(A0 \ Ak) = µ(A0)− µ(Ak) = 0.

Set B consists of those points of of A that do not belong to some Ak, that is,

B =
∞⋃

k=0

(A \ Ak).

But then

µ(B) ≤
∞∑

k=0

µ(A \ Ak) =
∞∑

k=0

0 = 0,

which completes the proof. ¤

Remark: In particular, the set of points of A that never return to A has measure zero.
(This is the set A \ A1 in the previous proof.)

A configuration is called recurrent if it returns to each of its open neighborhoods. Denote
by

RG = R = {c ∈ SZ
d | ∀ open U : c ∈ U =⇒ ∃n ≥ 1 : Gn(c) ∈ U}.

the set of recurrent points. If c is recurrent then it, in fact, returns infinitely many times to all
its open neighborhoods U : Either c is periodic, or for every n the set U\{G(c), G2(c), . . . , Gn(c)}
is an open neighborhood of c, which then must be visited by c. Another variant of Poincare’s
recurrence theorem tells us that in surjective CA recurrent points are dense:

Proposition 105 If G is surjective then R is a countable intersection of open sets of uni-
form measure 1. In particular, R is residual and µ(R) = 1.

Proof. Let U1, U2, . . . be an enumeration of all cylinders. For each k = 1, 2, . . . define

Xk = {c ∈ Uk | ∀n ≥ 1 : Gn(c) 6∈ Uk}.

By Proposition 104 (or more precisely, the remark following the proposition) we know that
µ(Xk) = 0. Set Xk is closed because

Xk = Uk \
∞⋃

n=1

G−n(Uk)

where Uk is clopen.
Let us prove that

X1 ∪X2 ∪ . . . = SZ
d \ R.

Indeed, if c ∈ Xk then c cannot be recurrent as Uk is an open neighborhood it never returns
to. Conversely, if c is not recurrent then it has an open neighborhood U such that Gn(c) 6∈ U

130

for all n = 1, 2, As cylinders form a basis, there exists k such that c ∈ Uk ⊆ U . But then
c ∈ Xk.

We conclude that

R =
∞⋂

k=1

(SZ
d \Xk)

is a countable intersection of open sets with measure µ(SZ
d \Xk) = 1− µ(Xk) = 1.

To complete the proof we note that if µ(A) = 1 then A is dense (because otherwise
its complement would contain a cylinder and all cylinders have positive measure). Also
any countable intersection of measure 1 sets has measure 1. (Because its complement is a
countable union of sets of measure 0.) ¤

If a surjective CA is non-sensitive, we can now conclude that periodic points are dense:

Proposition 106 If a one-dimensional CA G is surjective and not sensitive then the peri-
odic configurations are dense in SZ.

Proof. By proposition 87 there is an r-blocking word u where r is the neighborhood radius
of G. Let w ∈ S∗ be an arbitrary word. It is enough to show that there is a periodic
configuration that contains pattern w. Let C be a cylinder determined by word uwu. By
Proposition 105, cylinder C contains a recurrent configuration x so, in particular, Gn(x) ∈ C
for some n ≥ 1.

u w u

wu u

x

G (x)
n

s p

Let c = . . . wuwuwu . . . be the spatially periodic configuration with period wu, contained
in cylinder C. Because u is an r-blocking word, configuration Gn(c) contains a pattern swp
where p and s are a suffix and prefix of u such that |p|+ |s| ≥ |u|. Because Gn(c) is spatially
periodic with period length |wu| we see that Gn(c) = . . . wuwuwu Hence c is temporally
periodic. ¤

A measure theoretic concept that corresponds to transitivity in topological dynamics is
ergodicity. We say that CA G is ergodic with respect to the uniform measure µ if for Borel
sets A holds

G−1(A) = A =⇒ µ(A) = 0 or µ(A) = 1.

131

Recall that we denote by T the set of transitive points, i.e., the points whose forward
orbit is dense. (Topologically) transitive CA were characterized in Proposition 93 as those
having transitive points, and it was shown that in this case T is, in fact, residual. In ergodic
CA the set T of transitive points has measure one:

Proposition 107 If a CA G ergodic (with respect to the uniform measure µ) then µ(T) = 1.

Proof. Let U1, U2, . . . be an enumeration of all cylinders. For every k, let

Xk =
∞⋂

n=1

∪∞i=nG−i(Uk)

be the set of points that visit Uk infinitely many times. Sets Xk are Borel sets and satisfy
G−1(Xk) = Xk. Due to ergodicity, either µ(Xk) = 0 or µ(Xk) = 1.

By the Poincaré recurrence theorem (Proposition 104), µ(Uk \Xk) = 0. Consequently,

µ(Xk) ≥ µ(Uk ∩Xk) = µ(Uk)− µ(Uk \Xk) = µ(Uk) > 0,

so µ(Xk) = 1.
The result now follows from the fact that

T = X1 ∩X2 ∩

¤

A measure one set is always dense, so Propositions 93 and 107 give the following:

Corollary 108 Ergodic CA are transitive. ¤

132

